
Chapter 1 Latent Variable Models1.1 Statisti
al ModelingWe are given a set of observations X = fxi j i = 1 : : : jX jg. The data xi may be multivariate andare not ne
essarily independent. We are interested in learning about the nature of the pro
ess thatgave rise to these data. In parti
ular, we believe that by investigating the relationships that existbetween the various 
omponents of the xi, or between the di�erent xi, we 
an arrive a su

in
tdes
ription of the data, and that this des
ription will reveal the stru
ture of the generating pro
ess.In this quest we shall follow a path that lies at the interse
tion of two �elds: unsupervised learningand density estimation.In the ma
hine learning literature, the proje
t that we have laid out is known as unsupervisedlearning. We shall fo
us on a subset of the ma
hine learning te
hniques, de�ned by our belief thatthe underlying generative pro
ess is sto
hasti
, where we seek to learn an expli
it probabilisti
model that des
ribes the data. This will ex
lude from our purview some e�e
tive te
hniques, forexample the Kohonen and ART networks; in general, however, there are probabilisti
 formulationsthat very 
losely resemble ea
h of these, and so we expe
t the loss not to be too serious. In return,we gain a

ess to a powerful 
olle
tion of probabilisti
 analysis tools.Thus, we seek a des
ription of the probability distribution (or density, for 
ontinuous observa-tions) fun
tion P (X )1. As su
h, our obje
tives are similar to those of the �eld of density estima-tion. However, it is not the resultant distribution (or density) fun
tion that holds our interest, butrather the stru
ture of the fun
tion and what that stru
ture reveals about the pro
ess that generatedthe data. Thus, we will not pursue many useful, \non-parametri
" te
hniques of density estimationon the basis that these will give us little insight into the underlying pro
ess.It is important to note that the general task of density estimation { given data X , estimateP (X ) { is not well formed unless something is known a priori about the probability fun
tion. Thisprior knowledge may be as simple as a belief that the fun
tion must be smooth, but in the absen
eof any prior, any s
heme for ranking two 
andidate distributions will fail at least as often as itwill su

eed. This point is made 
learly by Wolpert (1996). In our 
ase, the prior knowledge,di
tated by s
ienti�
 experien
e and intuition, will go towards the sele
tion of one or more familiesof parameterized probability fun
tions P� (X ). � here denotes a set of parameters, ea
h of whi
h1We shall use the notation P (�) generi
ally for probability distribution and density fun
tions. The exa
t nature ofthe fun
tion should be 
lear from 
ontext and the arguments provided, when this is not so we shall identify parti
ularfun
tions with a subs
ript su
h as P� (�)



3may be dis
rete or 
ontinuous. There are two 
entral problems to be addressed in the proje
t ofstatisti
al modeling: the �rst, 
alled learning or �tting, is to estimate a suitable set of parametersb�, or, if one is of the Bayesian persuasion, a posterior distribution over the parameters P (� j X ), thatis appropriate for the observed data. The se
ond, model 
omparison, is to 
hoose from among agroup of 
andidate models the one whi
h is better supported by, or more probable given, the data. Itis worth noting that in the stri
t Bayesian viewpoint there is no di�eren
e between these operations:we 
an simply introdu
e a hyper-parameter that identi�es whi
h model is to be used and theninfer its posterior distribution. However, we are interested in the properties of the parti
ular modelthat best des
ribes the data, and so although we might a

ept a distribution over parameters, weinsist on identifying a single best model.1.2 Parameter EstimationWe are given a set of observations X , along with a parameterized family of probability fun
tionsP� (X ). We would like to infer an \optimal" value of the parameters su
h that the 
orrespondingfun
tion des
ribes the data best. There are many 
ompeting de�nitions of \optimal" in this 
ontext.It will be simplest to survey these de�nitions by starting from the Bayesian viewpoint. In theBayesian framework, the parameters � are treated as random variables, to be handled on a similarfooting to the observations X . In this 
ase we 
an more aptly write our family of distributions asPM (X j �), where the subs
ript M identi�es the parti
ular model. Bayes' rule then allows us to �nda posterior distribution of the �,PM (� j X ) = PM (X j �)PM (�)PM (X ) (1.1)The fun
tion PM (�) denotes the probability asso
iated with parti
ular value of the parametersunder the model M a priori { that is, without referen
e to any observations. It is 
alled the priordistribution. Similarly, PM (� j X ) gives the probability of the parameter values � in the 
ontext ofthe observed data. This is the a posteriori or simply posterior distribution. The term PM (X j �)is the familiar fun
tion that des
ribes the distributions within our model, however in the 
ontext ofparameter estimation by (1.1) it is best viewed as a fun
tion of �, rather than of X . In this 
ontextit is given a di�erent name; it is 
alled the likelihood of the parameters in light of the data, andwill be written LX (�) to emphasize the ex
hange of rôles between � and X . It is important to notethat the the numeri
al value of the probability of data X under parameters �, P� (X ) or P (X j �),is identi
al to that of the likelihood of parameters � given data X , LX (�). The di�eren
e is onlyone of interpretation. The �nal term in (1.1) is the denominator PM (X ). This is also given a name,but one that will only really be relevant when we dis
uss model sele
tion below. It is 
alled the



4eviden
e for the model M , or else the marginal likelihood, sin
e it is obtained by integratingthe likelihood with respe
t to �. From the point of view of parameter estimation from observationsit is usually of little importan
e, as it has a 
onstant value with no dependen
e on the parameters.In the stri
t Bayesian point of view the equation (1.1) represents all that there is to be saidabout parameter estimation. On
e we know the posterior distribution of the parameters we haveexa
tly expressed the 
omplete extent of our knowledge about their value. In this view, any attemptto provide a single parameter estimate as a des
ription of the situation must give up some usefulinformation. This is most apparent if we ask how the parameter estimate is to be used. Typi
ally,we are interested in predi
ting the value of some statisti
 that is dependent on the parameters; itmight, for example, be the next data point to be drawn from the distribution. In this 
ase we needto integrate over the posterior (this will also be true for model sele
tion, treated below). Let us 
allthe statisti
 that we wish to predi
t k. The probability distribution that des
ribes our predi
tionwill be PM (k j X ) = Z d� PM (k j �)PM (� j X ) (1.2)Here we see the pra
ti
al diÆ
ulty in the stri
t Bayesian point of view. For many models, thisintegral is impossible to 
ompute exa
tly. One approa
h taken is to approximate the integral by aMonte-Carlo sampling te
hnique su
h as the Gibbs or Metropolis samplers, or by various so-
alled\hybrid" Monte-Carlo methods (Gelfand and Smith 1990; Smith and Roberts 1993; Neal 1996). Su
hmethods are asymptoti
ally exa
t, although the number of samples needed to rea
h the asymptoti
distribution 
an be probitively large.In pra
ti
e, we often use a single estimate of the values of the parameters. This approa
h maybe understood from one of two points of view. In the �rst 
ase, we will argue below that a suitable
hoi
e of estimate 
an, under 
ertain 
ir
umstan
es, a
tually provide a reasonable approximation tothe 
orre
t Bayesian predi
tor. In the se
ond, it may be that the problem we are trying to solverequires a single estimate. If that is so, the problem will have introdu
ed (perhaps impli
itly) aloss-fun
tion, whi
h we 
an then optimize to obtain the appropriate estimate.In many 
ases the posterior distribution is very strongly peaked at its modal value, written �MPfor maximum a posteriori. In this 
ase we may assume that the only signi�
ant 
ontribution to theintegral 
omes from parameters very near the peak, and we may assume that the value of PM (x j �)is approximately 
onstant for these values of �. Armed with these assumptions, along with theknowledge that R d� PM (� j X ) = 1, we 
an make the approximationZ d� PM (x j �)PM (� j X ) � PM �x j �MP� (1.3)That is, 
al
ulations made by simply plugging in the MAP estimator in the parameterized densityapproximate the Bayesian results. In general, this approximation improves with the number of



5available data. The MAP value is also important in other, more a

urate, approximations to theposterior whi
h are based on the Lapla
e or saddle-point integral. In these te
hniques, the posterioris approximated by a Gaussian whose mean lies at the posterior mode and whose 
ovarian
e is inthe inverse of the Hessian of the posterior with respe
t to the parameters, evaluated at the mode(Ma
Kay 1992). We will treat these in greater detail when we dis
uss model sele
tion.The MAP estimator maximizes the posterior (1.1). The denominator on the right hand sideof Bayes' rule does not depend on �, and so the maximization applies only to the numeratorPM (X j �)PM (�). In many situations we may 
hoose to negle
t the prior and maximize onlythe �rst fa
tor, the likelihood. This yields the maximum-likelihood or ML estimate, �ML. TheML estimate o

upies an extremely prominent position in the 
lassi
al (non-Bayesian) approa
h tostatisti
s. In parti
ular, the ML estimate 
an be shown to be asymptoti
ally eÆ
ient, that is, asthe sample size grows the expe
ted square error of the ML estimate approa
hes the fundamentallower bound on su
h errors (known as the Cram�er-Rao bound). In the presen
e of a \vague" prior(for example, a uniform prior in 
ases where this is well de�ned) the ML estimate enjoys all theproperties of MAP estimator dis
ussed above.The MAP estimator 
an be seen to minimize the expe
ted value of a probability-of-error lossfun
tion, whi
h penalizes all errors equally. For 
ontinuous parameters we de�ne the loss by thelimit as �! 0 of the fun
tion taking the value 0 in an �-ball around the true parameter values and1 elsewhere. An alternative loss fun
tion penalizes errors by the square of the departure from thetrue value. Minimizing the expe
ted value of this loss leads to the minimum-square-error (MSE)estimator. The fa
t that the se
ond moment of any distribution is smallest about its mean impliesthat the MSE estimator is the mean of the posterior. Finding this value may well involve integrationof the posterior, with all its attendent prati
al diÆ
ulties. The result about the asymptoti
 eÆ
ien
yof the ML estimator quoted above implies that as the number of data grow larger the mode andmean of the posterior must 
onverge.We have argued that the MAP and ML parameter estimates are of 
onsiderable importan
ein statisti
al theory, either as legimate goals in their own part, or as inputs to approximations ofBayesian integrals. In mu
h of this dissertation we shall fo
us on maximum-likelihood te
hniques,ta
itly assuming a vague prior. In almost all 
ases, (in parti
ular, in the EM algorithm that we shallen
ounter shortly and whi
h will resurfa
e throughout this dissertation) the te
hniques that we willdis
uss 
an easily be adapted in the presen
e of a strong prior to yield a MAP estimate.1.3 Model Sele
tionWe now 
onsider the situation in whi
h we do not have a single parameterized family of probabilityfun
tions, but rather must 
hoose between alternative families with di�erent (and perhaps di�erent



6numbers of) parameters. These families might be very 
losely related. For example, we will dis
uss
lustering models at some length in 
hapter 2, where the data are presumed to arise from somenumber of distin
t distributions, one for ea
h 
luster. In this 
ase we shall need to determine theappropriate number of 
lusters, given the data. This is a model sele
tion problem.Hyperparameters and sta
ked generalizationOne approa
h to the model sele
tion problem is to ignore it. We 
an 
ombine the models into asingle family, with a hyperparameter that sele
ts between them. The parameter set is then theunion of the parameters of the di�erent models, along with the hyperparameter. In the 
ase ofnested models, where one family is a proper subset of the other, this is almost the same as sele
tingthe most 
omplex model with the addition of the new hyperparameter. If we pro
eed with the fullBayesian predi
tive pro
edure (1.2) this is, in fa
t, the 
orre
t approa
h. In the 
ase of 
lustering,for example, we should use an unbounded number of 
lusters (Neal 1991). However, with su
hmodels, the posterior distribution will tend to be far more 
omplex than with a single, 
ontinuouslyparameterized family. In parti
ular, we expe
t modes 
orresponding to the MAP estimator for ea
hmodel, along with the 
orresponding value of the hyperparameter. In the fa
e of suÆ
ient data oneof these modes is likely to dominate, in whi
h 
ase we will have sele
ted one model after all. Withless data, we generally need to integrate this posterior, for example when making predi
tions, byMonte-Carlo means (Neal 1991).A related approa
h, now termed sta
ked generalization, was proposed by Stone (1974) and hasre
ently been explored by Wolpert (1992) and Breiman (1996). We 
an expli
itly write the marginalof the predi
tive density over the model sele
tion hyperparameter. If the models are labelled Mithis is P (k j X ) =Xi P (Mi j X )PMi (k j X ) (1.4)where the rightmost fa
tor is the predi
tive distribution derived from the ith model. Thus, thepredi
tive distribution is the weighted sum of the predi
tions made by the di�erent models. Theweighting fa
tor for the ith model is given by Bayes' rule,P (Mi j X ) / P (X j Mi)P (Mi) (1.5)that is, it is proportional to the produ
t of the eviden
e or marginal likelihood P (X j Mi) = PMi (X )and the prior probability of the model. The weights are normalized to add to one.



7Choosing one model: the dangers of maximum likelihoodSu
h 
ombined model approa
hes are attra
tive in situations where the goal is predi
tive, and thetrue family is unknown. In the 
ase of statisti
al modeling as we have laid it out, however, weare often interested in identifying the parti
ular model that is best supported by the data. In theexample of 
lustering, one of our goals may well be to determine how many 
lasses are present. If weare 
ontent with a probabilisti
 answer, then the marginal likelihood, or eviden
e, des
ribed above,indi
ates the relative probabilities of ea
h model, as long as the prior weighting of ea
h model isequal. If not, we may ele
t to 
hoose the most probable model, thereby ta
itly assuming a zero-one loss fun
tion as in the 
ase of the MAP parameter estimate. In the following dis
ussion weshall assume the latter point of view, arguing for the sele
tion of a single, most probable model;however most of the approximations we will dis
uss 
an equally well be used to estimate the posteriorprobabilities of various models and thus used in te
hniques su
h as sta
ked generalization.Note that 
hoosing the model with the greatest marginal likelihood is di�erent from 
hoosingthe model with the greatest maximum in the likelihood, whi
h might have been the na�ively favouredpoli
y. In general, more 
omplex models will exploit the greater 
exibility of their parameterizationsto a
hieve higher likelihood maxima on the same data; however, su
h models will be able to explainall sorts of di�erent data by adjusting their parameters appropriately, and 
an thus only assign arelatively low probability to any parti
ular data set. In other words, the 
omplexity is penalized inthe integral, as the region of parameter spa
e that assigns high likelihood to the data is likely tobe proportionately smaller. Thus, the Bayes approa
h leads to the sele
tion of the simplest model,within the group 
onsidered, that is adequate to explain the data; as a result this approa
h has been
ompared with the philosophi
al \razor" of William of O
kham.We 
an express the diÆ
ulty with maximum-likelihood model 
hoi
e in another way. The max-imal likelihood for a given model, represents the suitability of one parti
ular member of the modelfamily to des
ribe the data. The member 
hosen depends 
riti
ally on the data provided. If themodel is 
omplex, and two equivalent, independent samples from the same probability distributionare available, the member fun
tions 
hosen in the two 
ases may be very di�erent. In either 
ase,the fun
tion may well be far from the true density.An example appears in �gure 1.1. To produ
e this �gure, one dimensional data, shown as �lledhalf-
ir
les on the lower axis, were generated from the Gaussian density shown by the solid line.These data were �t by two di�erent models: one, a simple Gaussian density with mean and varian
eestimated from the data; the other a three-
omponent mixture of Gaussians (basi
ally the weightedsum of three Gaussian densities). Both models were �t by maximum likelihood estimation (thedetails of �tting the mixture model will be dis
ussed in a subsequent 
hapter). The optimal estimatesare shown: the simple Gaussian estimate is plotted with dashes; the more 
omplex mixture estiamtewith dashes and dots | the faint dotted lines show the shapes of the three mixture 
omponents.
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Figure 1.1: The dangers of over-�tting with a 
omplex model.The mixture model has a higher likelihood than the simpler one. In this 
ase, the log likelihood perpoint for the simple model is -2.54, while that of the mixture model is -2.41. In part, this in
reasein likelihood has been a
hieved by adapting to the 
luster of data that appears near the value 4,assigning high probability to this region. Di�erent data, unlikely to 
luster near 4, will probablyyield a very di�erent estimate.It is obvious by inspe
tion that the simple model has approximated the true density with greatera

ura
y. This tenden
y of 
omplex models to �t the pe
uliarities of the given sample, rather thanthe underlying density funtion, is 
alled over-�tting.Bayesian analysisWe 
onsider two 
andidate models,M0 andM1, to be used to des
ribe the data X . The two modelshave, respe
tively, p0 and p1 parameters, with p0 � p1. The parameter ve
tors will be written �0and �1. In some 
ases we shall 
onsider nested models, where the family of fun
tions allowed underM1 is a proper superset of the fun
tions available in M0. In this 
ase we shall further assume thatM0 
an be obtained from M1 by �xing the values of p1 � p0 parameters, and that the remainingp0 parameters of M1 are identi
al to the parameters of M0. Thus, M1 is to be thought of as themore 
omplex model, and, in the nested 
ase, may be a dire
t generalization of M0. The Bayesianmodel sele
tion pro
edure (sometimes 
alled empiri
al Bayes) di
tates that we sele
t model M1if and only if the posterior odds in favour of M1, P (M1 j X ) =P (M0 j X ) are greater than one.



9Using Bayes' rule, we 
an write this asP (M1 j X )P (M0 j X ) = PM1 (X )PM0 (X ) � P (M1)P (M0) (1.6)The se
ond term on the right hand side of this expression is the prior odds ofM1 being 
orre
t; the�rst term, whi
h is the ratio of the marginal likelihoods, is 
alled the Bayes fa
tor. It is 
onvenientto work with logarithms, and so the empiri
al Bayes 
riterion for sele
ting M1, in the fa
e of equalprior probabilities for the two models (prior odds = 1), islogB10 = logPM1 (X )� logPM0 (X ) > 0 (1.7)These are the same marginal likelihoods that appeared in the denominator of (1.1). While they donot play mu
h of a rôle in parameter estimation, they 
an be seen to be vital to model sele
tion.The marginal likelihood is an integral over the parameter ve
tor �i for the model Mi,PMi (X ) = Z d�i PMi (X j �i)PMi (�i) (1.8)As in the 
ase of predi
tions using the posterior (1.2) this integral is often diÆ
ult to 
ompute.Analyti
 solutions 
an be found for simple exponential family models, in
luding multivariate normallinear regression models, with so-
alled 
onjugate priors on the parameters (these being priors
hosen in part for the simpli
ity of the resulting integral). In the general 
ase we need to estimatethe integral via Monto-Carlo te
hniques (whi
h we will not dis
uss here, but see Gelfand and Smith(1990), Smith and Roberts (1993) and Neal (1996)) or else employ analyti
 approximations whi
h,while they may be asymptoti
ally exa
t, yield biased estimates with realisti
 sample sizes.Approximations to the Bayes fa
torA simple and widely used approximation is 
alled Lapla
e's method (Tierney and Kadane 1986;Ma
Kay 1992). Let us write �(�) for the logarithm of the integrand in (1.8), the unnormalizedposterior over the parameters. We have dropped the subs
ript i for simpli
ity. We 
an expand �(�)in a Taylor series about its maximum, whi
h falls at �MP.�(�) = �(�MP) +r�(�MP) � (� � �MP) + 12(� � �MP)Trr�(�MP)(� � �MP) + : : : (1.9)where the notation rr� denotes the Hessian matrix of se
ond derivatives [�2�=��i��j ℄ and shouldnot be 
onfused with the Lapla
ian, r2� = Tr [rr�℄. As �MP lies at a maximum of �, thegradient there is 0 and the linear term in the expansion vanishes. We ignore the terms of higherorder than quadrati
, a 
hoi
e tantamount to approximating the posterior by a Gaussian, and write



10(KMP)�1 = �(rr�(�MP))�1 for the 
ovarian
e of the approximation. The integral of (1.8) is thenPMi (X ) � ��KMPi =2����1=2 exp�i(�MPi ) = ��KMPi =2����1=2 PMi �X j �MPi �PMi ��MPi � (1.10)where we have reintrodu
ed the model subs
ript. The log Bayes fa
tor of (1.7) is thus approximatedby logB10 � �MP10 +�MP10 + 12 log ��KMP0 =2�����KMP1 =2��� (1.11)where �MP10 is similar to the log likelihood ratio statisti
 for 
lassi
al model 
omparison, althoughevaluated at the MAP estimates, and �MP10 is the di�eren
e in the log priors of the MAP estimatorsfor the two models. Note that this is di�erent to the log of the prior odds of M1, whi
h we haveassumed to be 0. The priors in this 
ase are not the priors of the models, but rather the priors ofthe parameters of ea
h model, evaluated at the maximum of the posterior. In general, the more
omplex model may be expe
ted to spread its prior more thinly over a larger parameter spa
e, andthus to provide a smaller prior density at any parti
ular point. Thus, we expe
t the term �MP10 tobe negative, penalizing the likelihood ratio. Similarly, the determinant of the Hessian of the more
omplex model is likely to be larger (if the parameters are all estimated with roughly equivalenterror e and we rotate to a diagonal basis we see that it will s
ale as (1=e)pi) and so the ratio of jKjwill be less than one, also penalizing the likelihood. The Lapla
e approximation is asymptoti
ally
orre
t, with, under 
ertain regularity 
onditions, relative error of order O(N�1) where N is thenumber of observations (Kass et al : 1990).In the dis
ussion of parameter estimation, we argued that we would remain agnosti
 on thenature of the prior and 
hoose the maximum-likelihood estimator, whi
h is likely to be 
lose tothe MAP value for vague priors. Can we redu
e (1.11) from the same standpoint? Assuming theprior is vague, and that �ML is 
lose to �MP, we 
an approximate �MP10 by the more 
onventionallikelihood ratio, �10, evaluated at the respe
tive maxima of the likelihoods. Also, the prior will nothave strong 
urvature, and so the Hessian of the log unnormalized posterior, evaluated now at �MLwill be dominated by the likelihood term. Thus we 
an repla
e KMPi by the observed informationmatrix Ki = �rr`X ��MLi �. This gives uslogB10 � �10 +�ML10 + 12 log jK0=2�jjK1=2�j (1.12)where �ML10 is the log ratio of priors evaluated at the maximum likelihood parameter values. Thisapproximation exhibits relative error O(N�1=2).At �rst glan
e, it would seem that we 
annot dispense with the term �ML10 as it re
e
ts the di�er-en
e in dimensionality of the two models and provides an important penalty. However, 
onsiderationof the asymptoti
 behaviour of (1.12) reveals that for large data sets it may be negle
ted. If we have



11N data points, the likelihood ratio takes the form PNn=1 log �PM1 �xn j �ML1 � =PM0 �xn j �ML0 �� andwill therefore grow with N . A similar argument applies to the Hessian of the log-likelihood, so thatthe magnitude of the �nal term of (1.12) grows as logN . Thus the term �ML10 , whi
h is 
onstantwith 
hanges in the number of data 
an be asymptoti
ally negle
ted.We 
an further simplify the ratio of Hessians that appears in the �nal term of (1.12). With Ndata points, we have log jKi=2�j = log ������ 12� NXn=1rrPMi (xn j �i)������ log ���NK̂=2����= log�(N=2�)pi ���K̂����= pi(logN � log 2�) + log ���K̂��� (1.13)where K̂ is the expe
ted value with respe
t to the distribution of x of the one-point HessianrrPMi (x j �i) evaulated at �MLi . Again we drop the terms that do not grow with N , and ob-tain logB10 � �10 � 12(p1 � p0) logN (1.14)This approximation was introdu
ed by S
hwartz (1978) with a far more rigorous derivation in the
ase of multivariate linear regression with an exponential family noise distribution, and was extendedby Haughton (1988) to regression on 
urves. The heuristi
 approa
h we have adopted here suggeststhat it should be useful for many model families, and indeed it is used quite widely. It is referred toin the literature as the S
hwartz 
riterion, or as the Bayesian Information Criterion, BIC.In general the BIC approximation to the Bayes fa
tor introdu
es relative errors of order O(1).Some authors attempt to redu
e the BIC error in the 
ontext of parti
ular models by approximatingthe 
onstant (with respe
t to N) term that we have negle
ted. One approa
h, pra
ti
al in thismodern day of the 
omputer, is to determine a suitable value of the 
onstant empiri
ally by simulatingand �tting data from known distributions. Other authors pay 
lose attention to the de�nition of thenumber N . In the above, we simply took it to be the total 
ount of data; on other hand, from thederivation it is 
lear that it is really the growth rate of the Hessian. In some models, the parametersare lo
al and are only a�e
ted by data that fall within a small region. The 
lustering models of
hapter 2, for example, fall into this 
ategory. In this 
ase it may be argued that N is not the totalnumber of data, but rather the average number of data falling into ea
h 
luster. In pra
ti
e, however,all of these 
orre
tions are of order O(1) and, provided that the number of data are large, the BICalone has been found to produ
e reasonable results. We shall see, however, that in the 
ontext oflatent variable models 
are must be taken in the 
hoi
e of the number of parameters (Geiger et al :1998). We will postpone our dis
ussion of this issue, along with treatment of another approximate



12Bayes te
hnique for latent variable models introdu
ed by Cheeseman and Stutz (1996). Instead, weshall pro
eed to investigate another 
lass of model sele
tion methods based on dire
t estimates ofthe probability of over-�tting.ValidationWe have motivated mu
h of our development of model sele
tion 
riteria by the notion of predi
tivea

ura
y. One approa
h, then, is to try to measure the predi
tive performan
e of the various modelsdire
tly by observing the probability they assign to data outside the observations used for training.This approa
h is 
alled validation. In its simplest form the pro
ess of validation involves thedivision of the set of observations X into two parts, the training data for whi
h we will 
ontinueto use the symbol X , and the validation or test data for whi
h we will write V . The posterior overparameters for ea
h model (or the parameter estimates) are obtained on the training data, and themodels are ranked by the probability that they assign to the validation setVi = Z d�i PMi (V j �i)PMi (�i j X ) � PMi �V j �MPi � (1.15)The intuition behind this approa
h is appealing, but it is often a fairly noisy 
riterion. We usuallyhave only a limited amount of data available, and the ne
essity to divide it in two means that boththe estimate of the parameters, and the estimate of the expe
ted o�-training set error are likely tobe noisy. On
e we have 
hosen a model by validation, we 
an 
ombine the training and validationdata sets and then reestimate the parameters to improve our predi
tions. However, the noise dueto small X and V may lead to the in
orre
t model being sele
ted.In the simplest validation pro
edure there is a single training set and a single validation set.However, we 
ould equally well train on V and test on X . This would yield two independentestimates of the o�-training-set performan
e of a parti
ular model. The average of the two will thushave smaller varian
e than any one of them. In general, we 
an split up the data set into NV disjointsubsets. One by one, we take ea
h of these subsets, 
all it validation data, train on its 
omplementin the data set, and validate the resulting model. Thus we obtain NV independent estimates of Vi,whi
h we 
an average to redu
e the error in the estimate by O(1=pNV ). This simple improvementon the basi
 validation s
heme is 
alled 
ross-validation. In the extreme 
ase where NV = N , thenumber of data, the term leave-one-out 
ross-validation is applied.Non-Bayesian PenaltiesThe spirit of su
h validation te
hniques, along with approximations similar to those made duringthe Bayesian treatment above, 
an also be used to obtain alternative likelihood penalization s
hemessimilar to the BIC. The goal here is to estimate by how mu
h the observed training likelihood is



13likely to di�er from the likelihood of the validation set.Let us suppose that the true distribution of the data is some distribution P� (�), whi
h we areattempting to �t with a family P� (�). Let �� represent the parameters that 
ome 
losest to the truedistribution in the sense of the Kullba
k-Leibler divergen
e, that is�� = argmin� KL[P�kP�℄ = argmin� Z dx P� (x) log P� (x)P� (x) (1.16)If the true distribution is a
tually a member of the parametri
 family then the minimum KL di-vergen
e will, of 
ourse, be 0. Asymptoti
ally, the maximum likelihood estimator will approa
h��. When dis
ussing parameter estimation we made the well known observation that the maximumlikelihood estimator is asymptoti
ally eÆ
ient, whi
h holds when the true distribution falls withinthe parameterized family. This result 
an be extended to the general 
ase.The ML estimator given data X has the property that r`X ��ML� = 0. Assuming that �ML is
lose to ��, we 
an make a linear approximation to the gradient at ��r`X (��) � r`X ��ML�+ (�� � �ML)rr`X ��ML� = (�� � �ML)K (1.17)where K is the observed information matrix, as before. Thus the error �� � �ML � K�1r`X (��)Asymptoti
ally, the expe
ted value of the di�eren
e is 0. To 
al
ulate the varian
e we note thatfor iid data E [K℄ = NK̂ where N is the number of observations and K̂ is the expe
ted one-pointHessian. We write Ĵ = Var [r`xi (��)℄ as the more 
onventional de�nition of the Fisher information,the varian
e of the one-point log likelihood gradient, so that Var [r`X (��)℄ = NĴ , and soVar ��� � �ML� � 1N K̂�1ĴK̂�1 (1.18)The expe
tations and varian
es are all with respe
t to the true density P� (�). If this is the sameas P�� (�) then the two de�nitions of the information are equivalent and Ĵ = K̂, so that the meansquare error approa
hes the standard Cr�amer{Rao bound 1=NĴ .Given the asymptoti
 behaviour of the ML estimate, we 
an ask what likelihood we will assign toa validation point, v generated from the true distribution P� (v). We expand around the \
orre
t"validation value at ��.`v ��ML� � `v (��) + (�ML � ��)Tr�`v (��) + 12(�ML � ��)Trr�`v (��) (�ML � ��) (1.19)= `v (��) + (�ML � ��)Tr�`v (��) + 12Tr �rr�`v (��) (�ML � ��)(�ML � ��)T �(1.20)If we now take the expe
tation with respe
t to the true distribution of the training data and of v,we 
an take the expe
ted gradient at �� to be 0. Also, sin
e v is independent of X and therefore of



14�ML, we 
an fa
tor the expe
tation within the tra
e.E �`v ��ML�� = E [`v (��)℄ + 12Tr �E [rr�`v (��)℄ E �(�ML � ��)(�ML � ��)T ��= E [`v (��)℄� 12Tr hK̂Var �(�ML � ��)�i= E [`v (��)℄� 12Tr�K̂ 1N K̂�1Ĵ K̂�1�= E [`v (��)℄� 12NTr hĴK̂�1i (1.21)This expression shows the approximate bias in the validation likelihood. On the training data we
an expand `X (��) around �ML (where the gradient is always 0) to obtainE [`X (��)℄ = E �`X ��ML��� 12Tr hĴK̂�1i (1.22)Now, the expe
ted values of the log-likelihoods at the �xed point �� are equal (up to a fa
tor of thenumber of training data, N). Thus, we obtainE �`v ��ML�� = 1N �E �`X ��ML���Tr hĴK̂�1i� (1.23)This 
an be viewed as a predi
tion of the expe
ted di�eren
e between the validation likelihoodand the training likelihood. We might therefore rank models a

ording to their training likelihoodspenalized by the tra
e term.This is the NIC (Network Information Criterion) of Murata et al : (1991, 1993, 1994). To use itwe repla
e the expe
ted values of the information measures Ĵ and K̂ by their observed values,NIC = `X ��ML��Tr �JK�1� (1.24)with K the observed information and J = Pi(r`xi ��ML�)2=(N � p) where p is the number ofparameters. If the true distribution lies within the parameterized family then Ĵ = K̂ and we 
anrepla
e the tra
e penalty by the number of parameters p. This is the AIC of Akaike (1974). Akaikeused AIC as an abbreviation for An Information Criterion, although it is usually taken to stand forthe Akaike Information Criterion.1.4 Graphi
al RepresentationsIn most experiments we measure more than one variable simultaneously. Thus the observations xithat we have des
ribed above are usually multivariate. It is often useful to partition the observationsinto a number of distin
t random variables, ea
h of whi
h may still be multivariate. For example,
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x1ix1ix1i x2ix2ix2i x3ix3ix3iP �x3i j x2i ; x1i �P �x2i j x1i �P �x1i � P �x3i j x2i ; x1i �P �x2i �P �x1i � P �x3i j x1i �P �x2i j x1i �P �x1i �Figure 1.2: Graphi
al representation of 
onditional independen
e.we may make measurements with di�erent instruments and regard the output of ea
h instrument,whether a single number or a ve
tor, as a random variable. The advantage to su
h a partition isthat it is often possible to write the parameterized model distribution P� (xi) more easily in termsof the partitioned variables. Why would this be so?Let us 
onsider a 
ase where the observation xi is partitioned into three random variablesx1i ; x2i ; x3i . In general any probability fun
tion of the xi may be written in 
onditional form:P (xi) = P �x3i j x2i ; x1i �P �x2i j x1i �P �x1i � (1.25)However, it might be that x2i is independent of x1i and so we repla
e the se
ond term on the rightabove with just P �x2i �. Another possibility is that x3i is 
onditionally independent of x2i given x1iso that we 
an write P �x3i j x1i � in pla
e of the �rst right hand term. This might seem like only anotational 
onvenien
e, but, in fa
t, if we are to parameterize the probability distribution we havesaved ourself some parameters. The fa
torized fun
tion is simpler (in the sense of model sele
tion)than before.The fa
torized stru
ture of the distribution 
an be shown graphi
ally as in �gure 1.2. In panel Athe 
ase of no 
onditional or marginal independen
ies is shown as a fully 
onne
ted undire
ted graph.Panel B represents the marginal independen
e of x1i and x2i . Panel C represents the 
onditionalindependen
e of x2i and x3i . Ea
h of the latter two 
ases is represented by a dire
ted a
y
li
graph or DAG.It should be noted that the 
onne
tion between probabilisti
 models and DAGs is far from
osmeti
. An important and deep theory is available 
onne
ting reasoning about the probabilitydistribution with algorithmi
 manipulations of the graph (Pearl 1988; Lauritzen 1996). However, weshall not exploit this theory at all; for us the graph will simply be a 
onvenient tool for visualization.When representing parameterized probability fun
tions P� (xi) we will �nd it useful to introdu
enodes in our graphi
al representation 
orresponding to the parameters. Sin
e we have fa
torized ourprobability fun
tions, we need to partition the parameters � into the groups appropriate for ea
h
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i iFigure 1.3: Graphi
al representations of repeated observation models.fa
tor fun
tion. In general, we might writeP� (xi) = P�3 �x3i j x2i ; x1i �P�2 �x2i j x1i �P�1 �x1i � (1.26)where � is the union of �r; r = 1 : : : 3. Figure 1.3A illustrates the representation. Whereas before itwas suÆ
ient to show the variables involved in a single observation i, with the impli
it informationthat ea
h observation is independent and identi
ally distributed, we now need to make 
lear thatthe parameters are 
hosen exa
tly on
e and have the same value over all observations, whereas ea
hobservation has its own set of random variables xri . This time the fa
t that the xri are independent(
onditioned on the parameters) is shown expli
itly by the la
k of edges between nodes at di�erentvalues of i.We 
an 
ondense the representation as shown in Figure 1.3B2. The re
tangle represents a single2To the best of my knowledge, this representation was introdu
ed in the 
omputer program BUGS from the MRCbiostatisti
s unit at Cambridge (Thomas 1994; Spiegelhalter et al : 1996).
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P�x (xi j yi)P�y (yi)i
Figure 1.4: Graphi
al representation of a latent variable model.observation with an index indi
ated its lower right hand 
orner; variables that appear within there
tangle are repeated a
ross observations, while the parameters whi
h are 
hosen only on
e for allobservations appear outside it. As before, the la
k of edges between nodes at di�ering i indi
atesthat the observations are independent. Now, our de
ision to represent all the fun
tions P� (xi) by asingle subgraph indi
ates further that they are identi
al.If the observations are not independent, say there are 
orrelations between the variables x1i atdi�erent i, we may represent this fa
t by an edge that 
rosses out of, and then ba
k into, there
tangle, as in �gure 1.3C. However, we 
annot show the limits of this intera
tion. For example, ifx1i is generated by a Markov pro
ess, so that x1i is 
onditionally independent of x11 : : : x1i�2 given x1i�1we need the expanded time view of �gure 1.3A, with additional edges for the Markovian dependen
e,to distinguish this from the other possible 
ross-observation dependen
y stru
tures.1.5 Latent VariablesWe have seen that it 
an be useful to partition the observed variables so as to simplify the expres-sion of the probability fun
tion by exploiting the 
onditional dependen
y stru
ture of the problem.Another manipulation that 
an assist in this simpli�
ation is the introdu
tion of latent variables.These are variables whi
h are not observed. The parameters, of 
ourse, are also not observed; thelatent variables are di�erent in that they are presumed to be instantiated on
e for every observation,that is there is a latent yi for ea
h observation xi. In graphi
al terms, the simplest latent variablemodel is sket
hed in �gure 1.4. Note that the latent variable node appears within the re
tangle.In a latent variable model we 
an add a third operation to our pair of learning and model



18sele
tion, inferen
e. This will refer to the estimation of value of the latent variables yi given knownparameters and the observations xi. The di�eren
e from �tting, that is, estimating the parameters,is simply one of s
ale.Again, it has been shown that 
ertain algorithmi
 manipulations on the graph that de�nes thelatent variable model 
an yield the 
orre
t form of inferen
e (Pearl 1988). For most of the modelswe shall dis
uss, however, inferen
e will be a simple matter of the appli
ation of Bayes' rule:P� (yi j xi) = P� (xi j yi)P� (yi)P� (xi) (1.27)1.6 The Expe
tation{Maximization AlgorithmHow do we go about learning the parameter values of a latent variable model? It is possible to de�nea likelihood fun
tion for the parameters by integrating over the latent variables3.`X (�) = log Z dY P� (X j Y)P� (Y) (1.28)where the integral is over all the yi in the set Y . However, in many 
ases this likelihood is quitediÆ
ult to optimize in 
losed form. Gradient- or Hessian-based numeri
al optimization s
hemes
an be very e�e
tive for a number of problems. In the 
ase of latent variable models, however,another algorithm exists that is frequently more straightforward and of 
omparable eÆ
ien
y. Thisis the Expe
tation{Maximization (or EM) algorithm (Dempster et al : 1977). Quite 
ompli
atedmodels may be �t eÆ
iently by use of EM (Xu and Jordan 1996).We shall �rst lay out the steps of the EM algorithm and only then o�er two (informal) proofs ofits validity. The se
ond of these proofs will also provide the justi�
ation for various extensions.If we had, in fa
t, observed the variables yi we would be able to write the joint data loglikelihood `X ;Y (�; �) = logP� (X j Y) + logP� (Y) (1.29)This likelihood is often mu
h easier to manipulate than the true likelihood of (1.28), sin
e it avoidsthe awkward log-of-integral (or log-of-sum) expression. It will be the starting point for EM.To begin the EM algorithm we provide seed guesses for the parameters. We will label su

essiveoutputs of the iterations by the iteration number in the supers
ript. Thus, the initial guesses willbe 
alled �0. At the nth iteration we estimate new values of the parameters by the following twosteps.E-step: Find the expe
tation of the joint data log-likelihood under the distribution of the yi given3In this general introdu
tion we shall assume that the yi are 
ontinuous, but dis
rete latent variables may behandled in the same fashion with the integral repla
ed by a sum.



19the n� 1th parameter estimates and the observations.Qn(�) = EYjX ;�n�1 [`X ;Y (�)℄ (1.30)M-step: Then maximize this expe
ted joint data log-likelihood with respe
t to the parameters toobtain the new estimates. �n = argmaxQn(�) (1.31)Why does EM work? Let us 
onsider the e�e
t of the iterations on the true log-likelihood fun
tiongiven in (1.28). In ea
h iteration we start with parameters �n�1 and estimate new parameters �n.For notational simpli
ity we will write Pn�1 (�) for the various probability fun
tions with parameters�n�1 and similarly for Pn (�). The resulting log-likelihood is`X (�n) = log Z dy Pn (Y)Pn (X j Y) (1.32)We introdu
e a fa
tor of Pn�1 (Y j X )Pn�1 (Y j X ) within the integral and rearrange to obtain`X (�n) = log Z dy Pn�1 (Y j X )�Pn (Y)Pn (X j Y)Pn�1 (Y j X ) � (1.33)We 
an now use Jensen's inequality (see, for example, Cover and Thomas (1991)) applied to the
onvex fun
tion log(�) to ex
hange the logarithm and integral. In this 
ontext, Jensen's inequalitystates that, for positive weights �i that sum to 1,log(Xi �ixi) �Xi �i log(xi) (1.34)We 
an generalize this for a positive 
ontinuous weight fun
tion with unit integral, in our 
asePn�1 (Y j X ), to obtain`X (�n) � Z dy Pn�1 (Y j X ) log�Pn (Y)Pn (X j Y)Pn�1 (Y j X ) � (1.35)= Z dy Pn�1 (Y j X ) log (Pn (Y)Pn (X j Y))�Z dy Pn�1 (Y j X ) log (Pn�1 (Y j X )) (1.36)Thus the quantity on the right hand side of (1.36) is a lower bound on the likelihood at the nthiteration. The �rst term is readily identi�ed as the quantity Qn(�) from our statement of the EMalgorithm (1.30). The se
ond term has no dependen
e on �n. Thus by maximizing Qn(�) as di
tatedby the m-step (1.31) we are maximizing a lower bound on the likelihood. Further, we know that the



20maximum must be � `X ��n�1� sin
e we 
an obtain that value by simply putting �n = �n�1. Thuswe 
an be sure that as long as the EM algorithm does not 
onverge, the likelihood of the modelmust in
rease.We need also to show that when the EM algorithm does 
onverge, we have rea
hed a maximumof the true likelihood. This proof appears in (Dempster et al : 1977), and we will not reprodu
e it.Instead, we will follow Neal and Hinton (1998) and take a slightly di�erent view of the algorithm;this approa
h will yield the ne
essary se
ond 
omponent of the proof.1.7 Free Energy and EMLet us de�ne a more general form of the fun
tion Q in (1.30) by taking the expe
tation with respe
tto an arbitrary probability fun
tion p(Y), in pla
e of the parti
ular probability Pn�1 (Y j X ).Q(p; �) = Ep [`X ;Y (�)℄ (1.37)We 
an then introdu
e a fun
tion that we will 
all the free energy by analogy with statisti
alme
hani
s, F (p; �) = Q(p; �) +H(p) (1.38)where H(p) = �Ep [log p℄ is the entropy of p. This fun
tion is familiar from above; it is the righthand side of (1.36) with the arbitrary fun
tion p repla
ing Pn�1 (Y j X ). Furthermore, in arrivingat that expression our 
hoi
e of weighting fun
tion to use in Jensen's inequality was arbitrary, so Falso bounds the likelihood `X (�) below. In drawing the physi
al analogy we should note that our Fshould, in fa
t, be regarded as the negative of the 
onventional free energy, whi
h is 
onsistent withthe fa
t that we are interested in maximizing F , while physi
al systems evolve to minimize their freeenergy.We observe (Neal and Hinton 1998) that, if � is held 
onstant, the free energy is, in fa
t, maxi-mized by 
hoosing p(Y) = P� (Y j X ). To see this, we maximize the quantityL�(p) = F (p; �)� � Z dY p(Y) (1.39)= Z dY p(Y) (`X ;Y (�)� log p(Y)� �) (1.40)where � is a Lagrange multiplier enfor
ing the normalization 
onstraint. From the theory of the
al
ulus of variations (Mathews and Walker 1970) we �nd that at the maximum with respe
t to p thefun
tional derivative of the integrand must be 0 (this is a trivial spe
ial 
ase of the Euler-Lagrange



21equations). Thus the maximum o

urs when0 = ��p (p(Y) (`X ;Y (�)� log p(Y)� �))= (`X ;Y (�)� log p(Y)� �) � p(Y)p(Y) (1.41)and so p(Y) = e���1LX ;Y (�) = e���1P� (X ;Y) (1.42)The requirement that p be normalized determines the multiplier � and yields p(Y) = P� (Y j X ).Thus we obtain a new interpretation of the EM algorithm.E-step: Maximize F with respe
t to p holding � 
onstant.M-step: Maximize F with respe
t to � holding p 
onstant.We 
an now sket
h the proof that if F a
hieves a lo
al maximum at p�; �� then `X (�) a
hieves alo
al maximum at �� (Theorem 2 of Neal and Hinton (1998)). We �rst note that if p(Y) = P� (Y j X )then F (P� (Y j X ) ; �) = Q(P� (Y j X ) ; �) +H(P� (Y j X ))= EYjX ;� [`X ;Y (�)℄� EYjX ;� [logP� (Y j X )℄= EYjX ;� � logP� (Y ;X )logP� (Y j X )�= EYjX ;� [logP� (X )℄= logP� (X )= `X (�) (1.43)Thus, writing p�(Y) for P�� (Y j X ), we have `X (��) = F (p�; ��). Suppose there is some ��� �-
loseto �� at whi
h the log-likelihood is larger, and that p�� is the 
orresponding P��� (Y j X ). Then itmust be that F (p��; ���) > F (p�; ��). But, assuming that P�� (Y j X ) varies 
ontinuously with ��,if ��� is �-
lose to �� then p�� is Æ-
lose to p�. This violates the assumption that F a
hieves a lo
almaximum at p�; ��, and so there 
an be no su
h ��� 
lose to �� with larger likelihood. Thus `X (��)is a lo
al maximum. A similar argument 
an be made for the global maximum (and we don't evenneed the 
ontinuity assumption).1.8 Generalizations of EMThis formulation does not just provide straightforward a

ess to the above proof; it also justi�esa number of generalizations of the EM algorithm. The �rst a
tually follows from the argument



22following (1.36) and appeared in (Dempster et al : 1977). This is the generalized M-step. As longas, at ea
h iteration, the fun
tion Q is in
reased relative to its value at �n�1, all of the guaranteesof in
reasing the likelihood are maintained. We do not need to maximize Q at ea
h iteration, we
an instead just take a step in the dire
tion of its gradient (provided we are guaranteed that Q willindeed be maximized at 
onvergen
e { see the 
omments below). This variant is 
alled gradient orgeneralized EM (usually written GEM):E-step: Find the expe
tation of the joint data log-likelihood under the distribution of the yi giventhe n� 1th parameter estimates and the observations. (This is un
hanged.)Qn(�) = EYjX ;�n�1 [`X ;Y (�)℄ (1.44)GM-step: Change � in the dire
tion of the gradient of Q.�n = �n�1 + �r�Qn(�n�1) (1.45)where � is some learning rate parameter 
hosen in a

ordan
e with the usual prin
iples of gradientas
ent. Clearly, this is useful when Q 
annot be maximized in 
losed form. In su
h situations it isusually 
omputationally more eÆ
ient to use GEM rather than numeri
ally optimizing Q in ea
hM-step.The free energy formulation suggests an alternative generalization. In prin
iple, we 
ould makea 
orresponding generalized E-step, and 
hoose a fun
tion p di�erent from Pn�1 (Y j X ), provided itin
reases the free energy. We must be 
areful, however. We have shown that when the free energyrea
hes a lo
al maximum, so does the likelihood. If we generate fun
tions p by an algorithm that
an 
onverge even though F is not at a true lo
al maximum, our guarantees of maximal likelihoodevaporate. Su
h a situation arises when the fun
tions p are restri
ted in fun
tional form so that formost values of � the fun
tion P� (Y j X ) does not lie within the family of possibilities. In this 
asewe 
an at best optimize F on the surfa
e of 
onstraint de�ned by the fun
tion family. An exampleis found in the Helmholtz ma
hine (Dayan et al : 1995). The wake-sleep learning algorithm (Hintonet al : 1995) for the Helmholtz ma
hine involves exa
tly su
h a 
onstrained generalized E-step wherethe estimate p must be the output of a sigmoid belief network. As a result, it 
annot guarantee
onvergen
e to the maximum likelihood parameters.A similar 
aution, of 
ourse, 
an apply to generalized M-steps too. The usual 
hoi
e of a gradientM-step, however, is guaranteed to 
onverge to a lo
al stationary point of F .One example of an approximate E-step that maintains the 
onvergen
e properties is providedby Neal and Hinton (1998). This is the in
remental E-step, appli
able when the xi and yi areindependent. In this 
ase, we 
an restri
t the fun
tions p to the family of fun
tions with the form



23p(Y) =Qi pi(yi) sin
e the independen
e of the yi guarantees that the optimal p will be in the family.We 
an now write F (p; �) = Xi Fi(pi; �)= Xi Epi [`� (xi; yi)℄ +H(pi) (1.46)and maximize ea
h 
omponent F in turn. The in
remental EM algorithm now pro
eeds from initialguesses �0 and p0i so:IE-step: Choose some i. Maximize Fi(pi; �n�1) and leave the remaining pj ; j 6= i un
hanged.pni (yi) = Pn�1 (yi j xi) (1.47)pnj (yj) = pn�1j (yj)M-step: Maximize F with respe
t to � holding p 
onstant.In pra
ti
e, for many distributions of interest, the M-step 
an be performed from suÆ
ientstatisti
s of the data, whi
h are eÆ
iently updated with respe
t to pi (Neal and Hinton 1998). Weshall, in fa
t, use a similar approa
h to tra
k non-stationary mixture distributions eÆ
iently.


