
Chapter 1 Latent Variable Models1.1 Statistial ModelingWe are given a set of observations X = fxi j i = 1 : : : jX jg. The data xi may be multivariate andare not neessarily independent. We are interested in learning about the nature of the proess thatgave rise to these data. In partiular, we believe that by investigating the relationships that existbetween the various omponents of the xi, or between the di�erent xi, we an arrive a suintdesription of the data, and that this desription will reveal the struture of the generating proess.In this quest we shall follow a path that lies at the intersetion of two �elds: unsupervised learningand density estimation.In the mahine learning literature, the projet that we have laid out is known as unsupervisedlearning. We shall fous on a subset of the mahine learning tehniques, de�ned by our belief thatthe underlying generative proess is stohasti, where we seek to learn an expliit probabilistimodel that desribes the data. This will exlude from our purview some e�etive tehniques, forexample the Kohonen and ART networks; in general, however, there are probabilisti formulationsthat very losely resemble eah of these, and so we expet the loss not to be too serious. In return,we gain aess to a powerful olletion of probabilisti analysis tools.Thus, we seek a desription of the probability distribution (or density, for ontinuous observa-tions) funtion P (X )1. As suh, our objetives are similar to those of the �eld of density estima-tion. However, it is not the resultant distribution (or density) funtion that holds our interest, butrather the struture of the funtion and what that struture reveals about the proess that generatedthe data. Thus, we will not pursue many useful, \non-parametri" tehniques of density estimationon the basis that these will give us little insight into the underlying proess.It is important to note that the general task of density estimation { given data X , estimateP (X ) { is not well formed unless something is known a priori about the probability funtion. Thisprior knowledge may be as simple as a belief that the funtion must be smooth, but in the abseneof any prior, any sheme for ranking two andidate distributions will fail at least as often as itwill sueed. This point is made learly by Wolpert (1996). In our ase, the prior knowledge,ditated by sienti� experiene and intuition, will go towards the seletion of one or more familiesof parameterized probability funtions P� (X ). � here denotes a set of parameters, eah of whih1We shall use the notation P (�) generially for probability distribution and density funtions. The exat nature ofthe funtion should be lear from ontext and the arguments provided, when this is not so we shall identify partiularfuntions with a subsript suh as P� (�)



3may be disrete or ontinuous. There are two entral problems to be addressed in the projet ofstatistial modeling: the �rst, alled learning or �tting, is to estimate a suitable set of parametersb�, or, if one is of the Bayesian persuasion, a posterior distribution over the parameters P (� j X ), thatis appropriate for the observed data. The seond, model omparison, is to hoose from among agroup of andidate models the one whih is better supported by, or more probable given, the data. Itis worth noting that in the strit Bayesian viewpoint there is no di�erene between these operations:we an simply introdue a hyper-parameter that identi�es whih model is to be used and theninfer its posterior distribution. However, we are interested in the properties of the partiular modelthat best desribes the data, and so although we might aept a distribution over parameters, weinsist on identifying a single best model.1.2 Parameter EstimationWe are given a set of observations X , along with a parameterized family of probability funtionsP� (X ). We would like to infer an \optimal" value of the parameters suh that the orrespondingfuntion desribes the data best. There are many ompeting de�nitions of \optimal" in this ontext.It will be simplest to survey these de�nitions by starting from the Bayesian viewpoint. In theBayesian framework, the parameters � are treated as random variables, to be handled on a similarfooting to the observations X . In this ase we an more aptly write our family of distributions asPM (X j �), where the subsript M identi�es the partiular model. Bayes' rule then allows us to �nda posterior distribution of the �,PM (� j X ) = PM (X j �)PM (�)PM (X ) (1.1)The funtion PM (�) denotes the probability assoiated with partiular value of the parametersunder the model M a priori { that is, without referene to any observations. It is alled the priordistribution. Similarly, PM (� j X ) gives the probability of the parameter values � in the ontext ofthe observed data. This is the a posteriori or simply posterior distribution. The term PM (X j �)is the familiar funtion that desribes the distributions within our model, however in the ontext ofparameter estimation by (1.1) it is best viewed as a funtion of �, rather than of X . In this ontextit is given a di�erent name; it is alled the likelihood of the parameters in light of the data, andwill be written LX (�) to emphasize the exhange of rôles between � and X . It is important to notethat the the numerial value of the probability of data X under parameters �, P� (X ) or P (X j �),is idential to that of the likelihood of parameters � given data X , LX (�). The di�erene is onlyone of interpretation. The �nal term in (1.1) is the denominator PM (X ). This is also given a name,but one that will only really be relevant when we disuss model seletion below. It is alled the



4evidene for the model M , or else the marginal likelihood, sine it is obtained by integratingthe likelihood with respet to �. From the point of view of parameter estimation from observationsit is usually of little importane, as it has a onstant value with no dependene on the parameters.In the strit Bayesian point of view the equation (1.1) represents all that there is to be saidabout parameter estimation. One we know the posterior distribution of the parameters we haveexatly expressed the omplete extent of our knowledge about their value. In this view, any attemptto provide a single parameter estimate as a desription of the situation must give up some usefulinformation. This is most apparent if we ask how the parameter estimate is to be used. Typially,we are interested in prediting the value of some statisti that is dependent on the parameters; itmight, for example, be the next data point to be drawn from the distribution. In this ase we needto integrate over the posterior (this will also be true for model seletion, treated below). Let us allthe statisti that we wish to predit k. The probability distribution that desribes our preditionwill be PM (k j X ) = Z d� PM (k j �)PM (� j X ) (1.2)Here we see the pratial diÆulty in the strit Bayesian point of view. For many models, thisintegral is impossible to ompute exatly. One approah taken is to approximate the integral by aMonte-Carlo sampling tehnique suh as the Gibbs or Metropolis samplers, or by various so-alled\hybrid" Monte-Carlo methods (Gelfand and Smith 1990; Smith and Roberts 1993; Neal 1996). Suhmethods are asymptotially exat, although the number of samples needed to reah the asymptotidistribution an be probitively large.In pratie, we often use a single estimate of the values of the parameters. This approah maybe understood from one of two points of view. In the �rst ase, we will argue below that a suitablehoie of estimate an, under ertain irumstanes, atually provide a reasonable approximation tothe orret Bayesian preditor. In the seond, it may be that the problem we are trying to solverequires a single estimate. If that is so, the problem will have introdued (perhaps impliitly) aloss-funtion, whih we an then optimize to obtain the appropriate estimate.In many ases the posterior distribution is very strongly peaked at its modal value, written �MPfor maximum a posteriori. In this ase we may assume that the only signi�ant ontribution to theintegral omes from parameters very near the peak, and we may assume that the value of PM (x j �)is approximately onstant for these values of �. Armed with these assumptions, along with theknowledge that R d� PM (� j X ) = 1, we an make the approximationZ d� PM (x j �)PM (� j X ) � PM �x j �MP� (1.3)That is, alulations made by simply plugging in the MAP estimator in the parameterized densityapproximate the Bayesian results. In general, this approximation improves with the number of



5available data. The MAP value is also important in other, more aurate, approximations to theposterior whih are based on the Laplae or saddle-point integral. In these tehniques, the posterioris approximated by a Gaussian whose mean lies at the posterior mode and whose ovariane is inthe inverse of the Hessian of the posterior with respet to the parameters, evaluated at the mode(MaKay 1992). We will treat these in greater detail when we disuss model seletion.The MAP estimator maximizes the posterior (1.1). The denominator on the right hand sideof Bayes' rule does not depend on �, and so the maximization applies only to the numeratorPM (X j �)PM (�). In many situations we may hoose to neglet the prior and maximize onlythe �rst fator, the likelihood. This yields the maximum-likelihood or ML estimate, �ML. TheML estimate oupies an extremely prominent position in the lassial (non-Bayesian) approah tostatistis. In partiular, the ML estimate an be shown to be asymptotially eÆient, that is, asthe sample size grows the expeted square error of the ML estimate approahes the fundamentallower bound on suh errors (known as the Cram�er-Rao bound). In the presene of a \vague" prior(for example, a uniform prior in ases where this is well de�ned) the ML estimate enjoys all theproperties of MAP estimator disussed above.The MAP estimator an be seen to minimize the expeted value of a probability-of-error lossfuntion, whih penalizes all errors equally. For ontinuous parameters we de�ne the loss by thelimit as �! 0 of the funtion taking the value 0 in an �-ball around the true parameter values and1 elsewhere. An alternative loss funtion penalizes errors by the square of the departure from thetrue value. Minimizing the expeted value of this loss leads to the minimum-square-error (MSE)estimator. The fat that the seond moment of any distribution is smallest about its mean impliesthat the MSE estimator is the mean of the posterior. Finding this value may well involve integrationof the posterior, with all its attendent pratial diÆulties. The result about the asymptoti eÆienyof the ML estimator quoted above implies that as the number of data grow larger the mode andmean of the posterior must onverge.We have argued that the MAP and ML parameter estimates are of onsiderable importanein statistial theory, either as legimate goals in their own part, or as inputs to approximations ofBayesian integrals. In muh of this dissertation we shall fous on maximum-likelihood tehniques,taitly assuming a vague prior. In almost all ases, (in partiular, in the EM algorithm that we shallenounter shortly and whih will resurfae throughout this dissertation) the tehniques that we willdisuss an easily be adapted in the presene of a strong prior to yield a MAP estimate.1.3 Model SeletionWe now onsider the situation in whih we do not have a single parameterized family of probabilityfuntions, but rather must hoose between alternative families with di�erent (and perhaps di�erent



6numbers of) parameters. These families might be very losely related. For example, we will disusslustering models at some length in hapter 2, where the data are presumed to arise from somenumber of distint distributions, one for eah luster. In this ase we shall need to determine theappropriate number of lusters, given the data. This is a model seletion problem.Hyperparameters and staked generalizationOne approah to the model seletion problem is to ignore it. We an ombine the models into asingle family, with a hyperparameter that selets between them. The parameter set is then theunion of the parameters of the di�erent models, along with the hyperparameter. In the ase ofnested models, where one family is a proper subset of the other, this is almost the same as seletingthe most omplex model with the addition of the new hyperparameter. If we proeed with the fullBayesian preditive proedure (1.2) this is, in fat, the orret approah. In the ase of lustering,for example, we should use an unbounded number of lusters (Neal 1991). However, with suhmodels, the posterior distribution will tend to be far more omplex than with a single, ontinuouslyparameterized family. In partiular, we expet modes orresponding to the MAP estimator for eahmodel, along with the orresponding value of the hyperparameter. In the fae of suÆient data oneof these modes is likely to dominate, in whih ase we will have seleted one model after all. Withless data, we generally need to integrate this posterior, for example when making preditions, byMonte-Carlo means (Neal 1991).A related approah, now termed staked generalization, was proposed by Stone (1974) and hasreently been explored by Wolpert (1992) and Breiman (1996). We an expliitly write the marginalof the preditive density over the model seletion hyperparameter. If the models are labelled Mithis is P (k j X ) =Xi P (Mi j X )PMi (k j X ) (1.4)where the rightmost fator is the preditive distribution derived from the ith model. Thus, thepreditive distribution is the weighted sum of the preditions made by the di�erent models. Theweighting fator for the ith model is given by Bayes' rule,P (Mi j X ) / P (X j Mi)P (Mi) (1.5)that is, it is proportional to the produt of the evidene or marginal likelihood P (X j Mi) = PMi (X )and the prior probability of the model. The weights are normalized to add to one.



7Choosing one model: the dangers of maximum likelihoodSuh ombined model approahes are attrative in situations where the goal is preditive, and thetrue family is unknown. In the ase of statistial modeling as we have laid it out, however, weare often interested in identifying the partiular model that is best supported by the data. In theexample of lustering, one of our goals may well be to determine how many lasses are present. If weare ontent with a probabilisti answer, then the marginal likelihood, or evidene, desribed above,indiates the relative probabilities of eah model, as long as the prior weighting of eah model isequal. If not, we may elet to hoose the most probable model, thereby taitly assuming a zero-one loss funtion as in the ase of the MAP parameter estimate. In the following disussion weshall assume the latter point of view, arguing for the seletion of a single, most probable model;however most of the approximations we will disuss an equally well be used to estimate the posteriorprobabilities of various models and thus used in tehniques suh as staked generalization.Note that hoosing the model with the greatest marginal likelihood is di�erent from hoosingthe model with the greatest maximum in the likelihood, whih might have been the na�ively favouredpoliy. In general, more omplex models will exploit the greater exibility of their parameterizationsto ahieve higher likelihood maxima on the same data; however, suh models will be able to explainall sorts of di�erent data by adjusting their parameters appropriately, and an thus only assign arelatively low probability to any partiular data set. In other words, the omplexity is penalized inthe integral, as the region of parameter spae that assigns high likelihood to the data is likely tobe proportionately smaller. Thus, the Bayes approah leads to the seletion of the simplest model,within the group onsidered, that is adequate to explain the data; as a result this approah has beenompared with the philosophial \razor" of William of Okham.We an express the diÆulty with maximum-likelihood model hoie in another way. The max-imal likelihood for a given model, represents the suitability of one partiular member of the modelfamily to desribe the data. The member hosen depends ritially on the data provided. If themodel is omplex, and two equivalent, independent samples from the same probability distributionare available, the member funtions hosen in the two ases may be very di�erent. In either ase,the funtion may well be far from the true density.An example appears in �gure 1.1. To produe this �gure, one dimensional data, shown as �lledhalf-irles on the lower axis, were generated from the Gaussian density shown by the solid line.These data were �t by two di�erent models: one, a simple Gaussian density with mean and varianeestimated from the data; the other a three-omponent mixture of Gaussians (basially the weightedsum of three Gaussian densities). Both models were �t by maximum likelihood estimation (thedetails of �tting the mixture model will be disussed in a subsequent hapter). The optimal estimatesare shown: the simple Gaussian estimate is plotted with dashes; the more omplex mixture estiamtewith dashes and dots | the faint dotted lines show the shapes of the three mixture omponents.



8

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 1.1: The dangers of over-�tting with a omplex model.The mixture model has a higher likelihood than the simpler one. In this ase, the log likelihood perpoint for the simple model is -2.54, while that of the mixture model is -2.41. In part, this inreasein likelihood has been ahieved by adapting to the luster of data that appears near the value 4,assigning high probability to this region. Di�erent data, unlikely to luster near 4, will probablyyield a very di�erent estimate.It is obvious by inspetion that the simple model has approximated the true density with greaterauray. This tendeny of omplex models to �t the peuliarities of the given sample, rather thanthe underlying density funtion, is alled over-�tting.Bayesian analysisWe onsider two andidate models,M0 andM1, to be used to desribe the data X . The two modelshave, respetively, p0 and p1 parameters, with p0 � p1. The parameter vetors will be written �0and �1. In some ases we shall onsider nested models, where the family of funtions allowed underM1 is a proper superset of the funtions available in M0. In this ase we shall further assume thatM0 an be obtained from M1 by �xing the values of p1 � p0 parameters, and that the remainingp0 parameters of M1 are idential to the parameters of M0. Thus, M1 is to be thought of as themore omplex model, and, in the nested ase, may be a diret generalization of M0. The Bayesianmodel seletion proedure (sometimes alled empirial Bayes) ditates that we selet model M1if and only if the posterior odds in favour of M1, P (M1 j X ) =P (M0 j X ) are greater than one.



9Using Bayes' rule, we an write this asP (M1 j X )P (M0 j X ) = PM1 (X )PM0 (X ) � P (M1)P (M0) (1.6)The seond term on the right hand side of this expression is the prior odds ofM1 being orret; the�rst term, whih is the ratio of the marginal likelihoods, is alled the Bayes fator. It is onvenientto work with logarithms, and so the empirial Bayes riterion for seleting M1, in the fae of equalprior probabilities for the two models (prior odds = 1), islogB10 = logPM1 (X )� logPM0 (X ) > 0 (1.7)These are the same marginal likelihoods that appeared in the denominator of (1.1). While they donot play muh of a rôle in parameter estimation, they an be seen to be vital to model seletion.The marginal likelihood is an integral over the parameter vetor �i for the model Mi,PMi (X ) = Z d�i PMi (X j �i)PMi (�i) (1.8)As in the ase of preditions using the posterior (1.2) this integral is often diÆult to ompute.Analyti solutions an be found for simple exponential family models, inluding multivariate normallinear regression models, with so-alled onjugate priors on the parameters (these being priorshosen in part for the simpliity of the resulting integral). In the general ase we need to estimatethe integral via Monto-Carlo tehniques (whih we will not disuss here, but see Gelfand and Smith(1990), Smith and Roberts (1993) and Neal (1996)) or else employ analyti approximations whih,while they may be asymptotially exat, yield biased estimates with realisti sample sizes.Approximations to the Bayes fatorA simple and widely used approximation is alled Laplae's method (Tierney and Kadane 1986;MaKay 1992). Let us write �(�) for the logarithm of the integrand in (1.8), the unnormalizedposterior over the parameters. We have dropped the subsript i for simpliity. We an expand �(�)in a Taylor series about its maximum, whih falls at �MP.�(�) = �(�MP) +r�(�MP) � (� � �MP) + 12(� � �MP)Trr�(�MP)(� � �MP) + : : : (1.9)where the notation rr� denotes the Hessian matrix of seond derivatives [�2�=��i��j ℄ and shouldnot be onfused with the Laplaian, r2� = Tr [rr�℄. As �MP lies at a maximum of �, thegradient there is 0 and the linear term in the expansion vanishes. We ignore the terms of higherorder than quadrati, a hoie tantamount to approximating the posterior by a Gaussian, and write



10(KMP)�1 = �(rr�(�MP))�1 for the ovariane of the approximation. The integral of (1.8) is thenPMi (X ) � ��KMPi =2����1=2 exp�i(�MPi ) = ��KMPi =2����1=2 PMi �X j �MPi �PMi ��MPi � (1.10)where we have reintrodued the model subsript. The log Bayes fator of (1.7) is thus approximatedby logB10 � �MP10 +�MP10 + 12 log ��KMP0 =2�����KMP1 =2��� (1.11)where �MP10 is similar to the log likelihood ratio statisti for lassial model omparison, althoughevaluated at the MAP estimates, and �MP10 is the di�erene in the log priors of the MAP estimatorsfor the two models. Note that this is di�erent to the log of the prior odds of M1, whih we haveassumed to be 0. The priors in this ase are not the priors of the models, but rather the priors ofthe parameters of eah model, evaluated at the maximum of the posterior. In general, the moreomplex model may be expeted to spread its prior more thinly over a larger parameter spae, andthus to provide a smaller prior density at any partiular point. Thus, we expet the term �MP10 tobe negative, penalizing the likelihood ratio. Similarly, the determinant of the Hessian of the moreomplex model is likely to be larger (if the parameters are all estimated with roughly equivalenterror e and we rotate to a diagonal basis we see that it will sale as (1=e)pi) and so the ratio of jKjwill be less than one, also penalizing the likelihood. The Laplae approximation is asymptotiallyorret, with, under ertain regularity onditions, relative error of order O(N�1) where N is thenumber of observations (Kass et al : 1990).In the disussion of parameter estimation, we argued that we would remain agnosti on thenature of the prior and hoose the maximum-likelihood estimator, whih is likely to be lose tothe MAP value for vague priors. Can we redue (1.11) from the same standpoint? Assuming theprior is vague, and that �ML is lose to �MP, we an approximate �MP10 by the more onventionallikelihood ratio, �10, evaluated at the respetive maxima of the likelihoods. Also, the prior will nothave strong urvature, and so the Hessian of the log unnormalized posterior, evaluated now at �MLwill be dominated by the likelihood term. Thus we an replae KMPi by the observed informationmatrix Ki = �rr`X ��MLi �. This gives uslogB10 � �10 +�ML10 + 12 log jK0=2�jjK1=2�j (1.12)where �ML10 is the log ratio of priors evaluated at the maximum likelihood parameter values. Thisapproximation exhibits relative error O(N�1=2).At �rst glane, it would seem that we annot dispense with the term �ML10 as it reets the di�er-ene in dimensionality of the two models and provides an important penalty. However, onsiderationof the asymptoti behaviour of (1.12) reveals that for large data sets it may be negleted. If we have



11N data points, the likelihood ratio takes the form PNn=1 log �PM1 �xn j �ML1 � =PM0 �xn j �ML0 �� andwill therefore grow with N . A similar argument applies to the Hessian of the log-likelihood, so thatthe magnitude of the �nal term of (1.12) grows as logN . Thus the term �ML10 , whih is onstantwith hanges in the number of data an be asymptotially negleted.We an further simplify the ratio of Hessians that appears in the �nal term of (1.12). With Ndata points, we have log jKi=2�j = log ������ 12� NXn=1rrPMi (xn j �i)������ log ���NK̂=2����= log�(N=2�)pi ���K̂����= pi(logN � log 2�) + log ���K̂��� (1.13)where K̂ is the expeted value with respet to the distribution of x of the one-point HessianrrPMi (x j �i) evaulated at �MLi . Again we drop the terms that do not grow with N , and ob-tain logB10 � �10 � 12(p1 � p0) logN (1.14)This approximation was introdued by Shwartz (1978) with a far more rigorous derivation in thease of multivariate linear regression with an exponential family noise distribution, and was extendedby Haughton (1988) to regression on urves. The heuristi approah we have adopted here suggeststhat it should be useful for many model families, and indeed it is used quite widely. It is referred toin the literature as the Shwartz riterion, or as the Bayesian Information Criterion, BIC.In general the BIC approximation to the Bayes fator introdues relative errors of order O(1).Some authors attempt to redue the BIC error in the ontext of partiular models by approximatingthe onstant (with respet to N) term that we have negleted. One approah, pratial in thismodern day of the omputer, is to determine a suitable value of the onstant empirially by simulatingand �tting data from known distributions. Other authors pay lose attention to the de�nition of thenumber N . In the above, we simply took it to be the total ount of data; on other hand, from thederivation it is lear that it is really the growth rate of the Hessian. In some models, the parametersare loal and are only a�eted by data that fall within a small region. The lustering models ofhapter 2, for example, fall into this ategory. In this ase it may be argued that N is not the totalnumber of data, but rather the average number of data falling into eah luster. In pratie, however,all of these orretions are of order O(1) and, provided that the number of data are large, the BICalone has been found to produe reasonable results. We shall see, however, that in the ontext oflatent variable models are must be taken in the hoie of the number of parameters (Geiger et al :1998). We will postpone our disussion of this issue, along with treatment of another approximate



12Bayes tehnique for latent variable models introdued by Cheeseman and Stutz (1996). Instead, weshall proeed to investigate another lass of model seletion methods based on diret estimates ofthe probability of over-�tting.ValidationWe have motivated muh of our development of model seletion riteria by the notion of preditiveauray. One approah, then, is to try to measure the preditive performane of the various modelsdiretly by observing the probability they assign to data outside the observations used for training.This approah is alled validation. In its simplest form the proess of validation involves thedivision of the set of observations X into two parts, the training data for whih we will ontinueto use the symbol X , and the validation or test data for whih we will write V . The posterior overparameters for eah model (or the parameter estimates) are obtained on the training data, and themodels are ranked by the probability that they assign to the validation setVi = Z d�i PMi (V j �i)PMi (�i j X ) � PMi �V j �MPi � (1.15)The intuition behind this approah is appealing, but it is often a fairly noisy riterion. We usuallyhave only a limited amount of data available, and the neessity to divide it in two means that boththe estimate of the parameters, and the estimate of the expeted o�-training set error are likely tobe noisy. One we have hosen a model by validation, we an ombine the training and validationdata sets and then reestimate the parameters to improve our preditions. However, the noise dueto small X and V may lead to the inorret model being seleted.In the simplest validation proedure there is a single training set and a single validation set.However, we ould equally well train on V and test on X . This would yield two independentestimates of the o�-training-set performane of a partiular model. The average of the two will thushave smaller variane than any one of them. In general, we an split up the data set into NV disjointsubsets. One by one, we take eah of these subsets, all it validation data, train on its omplementin the data set, and validate the resulting model. Thus we obtain NV independent estimates of Vi,whih we an average to redue the error in the estimate by O(1=pNV ). This simple improvementon the basi validation sheme is alled ross-validation. In the extreme ase where NV = N , thenumber of data, the term leave-one-out ross-validation is applied.Non-Bayesian PenaltiesThe spirit of suh validation tehniques, along with approximations similar to those made duringthe Bayesian treatment above, an also be used to obtain alternative likelihood penalization shemessimilar to the BIC. The goal here is to estimate by how muh the observed training likelihood is



13likely to di�er from the likelihood of the validation set.Let us suppose that the true distribution of the data is some distribution P� (�), whih we areattempting to �t with a family P� (�). Let �� represent the parameters that ome losest to the truedistribution in the sense of the Kullbak-Leibler divergene, that is�� = argmin� KL[P�kP�℄ = argmin� Z dx P� (x) log P� (x)P� (x) (1.16)If the true distribution is atually a member of the parametri family then the minimum KL di-vergene will, of ourse, be 0. Asymptotially, the maximum likelihood estimator will approah��. When disussing parameter estimation we made the well known observation that the maximumlikelihood estimator is asymptotially eÆient, whih holds when the true distribution falls withinthe parameterized family. This result an be extended to the general ase.The ML estimator given data X has the property that r`X ��ML� = 0. Assuming that �ML islose to ��, we an make a linear approximation to the gradient at ��r`X (��) � r`X ��ML�+ (�� � �ML)rr`X ��ML� = (�� � �ML)K (1.17)where K is the observed information matrix, as before. Thus the error �� � �ML � K�1r`X (��)Asymptotially, the expeted value of the di�erene is 0. To alulate the variane we note thatfor iid data E [K℄ = NK̂ where N is the number of observations and K̂ is the expeted one-pointHessian. We write Ĵ = Var [r`xi (��)℄ as the more onventional de�nition of the Fisher information,the variane of the one-point log likelihood gradient, so that Var [r`X (��)℄ = NĴ , and soVar ��� � �ML� � 1N K̂�1ĴK̂�1 (1.18)The expetations and varianes are all with respet to the true density P� (�). If this is the sameas P�� (�) then the two de�nitions of the information are equivalent and Ĵ = K̂, so that the meansquare error approahes the standard Cr�amer{Rao bound 1=NĴ .Given the asymptoti behaviour of the ML estimate, we an ask what likelihood we will assign toa validation point, v generated from the true distribution P� (v). We expand around the \orret"validation value at ��.`v ��ML� � `v (��) + (�ML � ��)Tr�`v (��) + 12(�ML � ��)Trr�`v (��) (�ML � ��) (1.19)= `v (��) + (�ML � ��)Tr�`v (��) + 12Tr �rr�`v (��) (�ML � ��)(�ML � ��)T �(1.20)If we now take the expetation with respet to the true distribution of the training data and of v,we an take the expeted gradient at �� to be 0. Also, sine v is independent of X and therefore of



14�ML, we an fator the expetation within the trae.E �`v ��ML�� = E [`v (��)℄ + 12Tr �E [rr�`v (��)℄ E �(�ML � ��)(�ML � ��)T ��= E [`v (��)℄� 12Tr hK̂Var �(�ML � ��)�i= E [`v (��)℄� 12Tr�K̂ 1N K̂�1Ĵ K̂�1�= E [`v (��)℄� 12NTr hĴK̂�1i (1.21)This expression shows the approximate bias in the validation likelihood. On the training data wean expand `X (��) around �ML (where the gradient is always 0) to obtainE [`X (��)℄ = E �`X ��ML��� 12Tr hĴK̂�1i (1.22)Now, the expeted values of the log-likelihoods at the �xed point �� are equal (up to a fator of thenumber of training data, N). Thus, we obtainE �`v ��ML�� = 1N �E �`X ��ML���Tr hĴK̂�1i� (1.23)This an be viewed as a predition of the expeted di�erene between the validation likelihoodand the training likelihood. We might therefore rank models aording to their training likelihoodspenalized by the trae term.This is the NIC (Network Information Criterion) of Murata et al : (1991, 1993, 1994). To use itwe replae the expeted values of the information measures Ĵ and K̂ by their observed values,NIC = `X ��ML��Tr �JK�1� (1.24)with K the observed information and J = Pi(r`xi ��ML�)2=(N � p) where p is the number ofparameters. If the true distribution lies within the parameterized family then Ĵ = K̂ and we anreplae the trae penalty by the number of parameters p. This is the AIC of Akaike (1974). Akaikeused AIC as an abbreviation for An Information Criterion, although it is usually taken to stand forthe Akaike Information Criterion.1.4 Graphial RepresentationsIn most experiments we measure more than one variable simultaneously. Thus the observations xithat we have desribed above are usually multivariate. It is often useful to partition the observationsinto a number of distint random variables, eah of whih may still be multivariate. For example,
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x1ix1ix1i x2ix2ix2i x3ix3ix3iP �x3i j x2i ; x1i �P �x2i j x1i �P �x1i � P �x3i j x2i ; x1i �P �x2i �P �x1i � P �x3i j x1i �P �x2i j x1i �P �x1i �Figure 1.2: Graphial representation of onditional independene.we may make measurements with di�erent instruments and regard the output of eah instrument,whether a single number or a vetor, as a random variable. The advantage to suh a partition isthat it is often possible to write the parameterized model distribution P� (xi) more easily in termsof the partitioned variables. Why would this be so?Let us onsider a ase where the observation xi is partitioned into three random variablesx1i ; x2i ; x3i . In general any probability funtion of the xi may be written in onditional form:P (xi) = P �x3i j x2i ; x1i �P �x2i j x1i �P �x1i � (1.25)However, it might be that x2i is independent of x1i and so we replae the seond term on the rightabove with just P �x2i �. Another possibility is that x3i is onditionally independent of x2i given x1iso that we an write P �x3i j x1i � in plae of the �rst right hand term. This might seem like only anotational onveniene, but, in fat, if we are to parameterize the probability distribution we havesaved ourself some parameters. The fatorized funtion is simpler (in the sense of model seletion)than before.The fatorized struture of the distribution an be shown graphially as in �gure 1.2. In panel Athe ase of no onditional or marginal independenies is shown as a fully onneted undireted graph.Panel B represents the marginal independene of x1i and x2i . Panel C represents the onditionalindependene of x2i and x3i . Eah of the latter two ases is represented by a direted ayligraph or DAG.It should be noted that the onnetion between probabilisti models and DAGs is far fromosmeti. An important and deep theory is available onneting reasoning about the probabilitydistribution with algorithmi manipulations of the graph (Pearl 1988; Lauritzen 1996). However, weshall not exploit this theory at all; for us the graph will simply be a onvenient tool for visualization.When representing parameterized probability funtions P� (xi) we will �nd it useful to introduenodes in our graphial representation orresponding to the parameters. Sine we have fatorized ourprobability funtions, we need to partition the parameters � into the groups appropriate for eah
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i iFigure 1.3: Graphial representations of repeated observation models.fator funtion. In general, we might writeP� (xi) = P�3 �x3i j x2i ; x1i �P�2 �x2i j x1i �P�1 �x1i � (1.26)where � is the union of �r; r = 1 : : : 3. Figure 1.3A illustrates the representation. Whereas before itwas suÆient to show the variables involved in a single observation i, with the impliit informationthat eah observation is independent and identially distributed, we now need to make lear thatthe parameters are hosen exatly one and have the same value over all observations, whereas eahobservation has its own set of random variables xri . This time the fat that the xri are independent(onditioned on the parameters) is shown expliitly by the lak of edges between nodes at di�erentvalues of i.We an ondense the representation as shown in Figure 1.3B2. The retangle represents a single2To the best of my knowledge, this representation was introdued in the omputer program BUGS from the MRCbiostatistis unit at Cambridge (Thomas 1994; Spiegelhalter et al : 1996).
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P�x (xi j yi)P�y (yi)i
Figure 1.4: Graphial representation of a latent variable model.observation with an index indiated its lower right hand orner; variables that appear within theretangle are repeated aross observations, while the parameters whih are hosen only one for allobservations appear outside it. As before, the lak of edges between nodes at di�ering i indiatesthat the observations are independent. Now, our deision to represent all the funtions P� (xi) by asingle subgraph indiates further that they are idential.If the observations are not independent, say there are orrelations between the variables x1i atdi�erent i, we may represent this fat by an edge that rosses out of, and then bak into, theretangle, as in �gure 1.3C. However, we annot show the limits of this interation. For example, ifx1i is generated by a Markov proess, so that x1i is onditionally independent of x11 : : : x1i�2 given x1i�1we need the expanded time view of �gure 1.3A, with additional edges for the Markovian dependene,to distinguish this from the other possible ross-observation dependeny strutures.1.5 Latent VariablesWe have seen that it an be useful to partition the observed variables so as to simplify the expres-sion of the probability funtion by exploiting the onditional dependeny struture of the problem.Another manipulation that an assist in this simpli�ation is the introdution of latent variables.These are variables whih are not observed. The parameters, of ourse, are also not observed; thelatent variables are di�erent in that they are presumed to be instantiated one for every observation,that is there is a latent yi for eah observation xi. In graphial terms, the simplest latent variablemodel is skethed in �gure 1.4. Note that the latent variable node appears within the retangle.In a latent variable model we an add a third operation to our pair of learning and model



18seletion, inferene. This will refer to the estimation of value of the latent variables yi given knownparameters and the observations xi. The di�erene from �tting, that is, estimating the parameters,is simply one of sale.Again, it has been shown that ertain algorithmi manipulations on the graph that de�nes thelatent variable model an yield the orret form of inferene (Pearl 1988). For most of the modelswe shall disuss, however, inferene will be a simple matter of the appliation of Bayes' rule:P� (yi j xi) = P� (xi j yi)P� (yi)P� (xi) (1.27)1.6 The Expetation{Maximization AlgorithmHow do we go about learning the parameter values of a latent variable model? It is possible to de�nea likelihood funtion for the parameters by integrating over the latent variables3.`X (�) = log Z dY P� (X j Y)P� (Y) (1.28)where the integral is over all the yi in the set Y . However, in many ases this likelihood is quitediÆult to optimize in losed form. Gradient- or Hessian-based numerial optimization shemesan be very e�etive for a number of problems. In the ase of latent variable models, however,another algorithm exists that is frequently more straightforward and of omparable eÆieny. Thisis the Expetation{Maximization (or EM) algorithm (Dempster et al : 1977). Quite ompliatedmodels may be �t eÆiently by use of EM (Xu and Jordan 1996).We shall �rst lay out the steps of the EM algorithm and only then o�er two (informal) proofs ofits validity. The seond of these proofs will also provide the justi�ation for various extensions.If we had, in fat, observed the variables yi we would be able to write the joint data loglikelihood `X ;Y (�; �) = logP� (X j Y) + logP� (Y) (1.29)This likelihood is often muh easier to manipulate than the true likelihood of (1.28), sine it avoidsthe awkward log-of-integral (or log-of-sum) expression. It will be the starting point for EM.To begin the EM algorithm we provide seed guesses for the parameters. We will label suessiveoutputs of the iterations by the iteration number in the supersript. Thus, the initial guesses willbe alled �0. At the nth iteration we estimate new values of the parameters by the following twosteps.E-step: Find the expetation of the joint data log-likelihood under the distribution of the yi given3In this general introdution we shall assume that the yi are ontinuous, but disrete latent variables may behandled in the same fashion with the integral replaed by a sum.



19the n� 1th parameter estimates and the observations.Qn(�) = EYjX ;�n�1 [`X ;Y (�)℄ (1.30)M-step: Then maximize this expeted joint data log-likelihood with respet to the parameters toobtain the new estimates. �n = argmaxQn(�) (1.31)Why does EM work? Let us onsider the e�et of the iterations on the true log-likelihood funtiongiven in (1.28). In eah iteration we start with parameters �n�1 and estimate new parameters �n.For notational simpliity we will write Pn�1 (�) for the various probability funtions with parameters�n�1 and similarly for Pn (�). The resulting log-likelihood is`X (�n) = log Z dy Pn (Y)Pn (X j Y) (1.32)We introdue a fator of Pn�1 (Y j X )Pn�1 (Y j X ) within the integral and rearrange to obtain`X (�n) = log Z dy Pn�1 (Y j X )�Pn (Y)Pn (X j Y)Pn�1 (Y j X ) � (1.33)We an now use Jensen's inequality (see, for example, Cover and Thomas (1991)) applied to theonvex funtion log(�) to exhange the logarithm and integral. In this ontext, Jensen's inequalitystates that, for positive weights �i that sum to 1,log(Xi �ixi) �Xi �i log(xi) (1.34)We an generalize this for a positive ontinuous weight funtion with unit integral, in our asePn�1 (Y j X ), to obtain`X (�n) � Z dy Pn�1 (Y j X ) log�Pn (Y)Pn (X j Y)Pn�1 (Y j X ) � (1.35)= Z dy Pn�1 (Y j X ) log (Pn (Y)Pn (X j Y))�Z dy Pn�1 (Y j X ) log (Pn�1 (Y j X )) (1.36)Thus the quantity on the right hand side of (1.36) is a lower bound on the likelihood at the nthiteration. The �rst term is readily identi�ed as the quantity Qn(�) from our statement of the EMalgorithm (1.30). The seond term has no dependene on �n. Thus by maximizing Qn(�) as ditatedby the m-step (1.31) we are maximizing a lower bound on the likelihood. Further, we know that the



20maximum must be � `X ��n�1� sine we an obtain that value by simply putting �n = �n�1. Thuswe an be sure that as long as the EM algorithm does not onverge, the likelihood of the modelmust inrease.We need also to show that when the EM algorithm does onverge, we have reahed a maximumof the true likelihood. This proof appears in (Dempster et al : 1977), and we will not reprodue it.Instead, we will follow Neal and Hinton (1998) and take a slightly di�erent view of the algorithm;this approah will yield the neessary seond omponent of the proof.1.7 Free Energy and EMLet us de�ne a more general form of the funtion Q in (1.30) by taking the expetation with respetto an arbitrary probability funtion p(Y), in plae of the partiular probability Pn�1 (Y j X ).Q(p; �) = Ep [`X ;Y (�)℄ (1.37)We an then introdue a funtion that we will all the free energy by analogy with statistialmehanis, F (p; �) = Q(p; �) +H(p) (1.38)where H(p) = �Ep [log p℄ is the entropy of p. This funtion is familiar from above; it is the righthand side of (1.36) with the arbitrary funtion p replaing Pn�1 (Y j X ). Furthermore, in arrivingat that expression our hoie of weighting funtion to use in Jensen's inequality was arbitrary, so Falso bounds the likelihood `X (�) below. In drawing the physial analogy we should note that our Fshould, in fat, be regarded as the negative of the onventional free energy, whih is onsistent withthe fat that we are interested in maximizing F , while physial systems evolve to minimize their freeenergy.We observe (Neal and Hinton 1998) that, if � is held onstant, the free energy is, in fat, maxi-mized by hoosing p(Y) = P� (Y j X ). To see this, we maximize the quantityL�(p) = F (p; �)� � Z dY p(Y) (1.39)= Z dY p(Y) (`X ;Y (�)� log p(Y)� �) (1.40)where � is a Lagrange multiplier enforing the normalization onstraint. From the theory of thealulus of variations (Mathews and Walker 1970) we �nd that at the maximum with respet to p thefuntional derivative of the integrand must be 0 (this is a trivial speial ase of the Euler-Lagrange



21equations). Thus the maximum ours when0 = ��p (p(Y) (`X ;Y (�)� log p(Y)� �))= (`X ;Y (�)� log p(Y)� �) � p(Y)p(Y) (1.41)and so p(Y) = e���1LX ;Y (�) = e���1P� (X ;Y) (1.42)The requirement that p be normalized determines the multiplier � and yields p(Y) = P� (Y j X ).Thus we obtain a new interpretation of the EM algorithm.E-step: Maximize F with respet to p holding � onstant.M-step: Maximize F with respet to � holding p onstant.We an now sketh the proof that if F ahieves a loal maximum at p�; �� then `X (�) ahieves aloal maximum at �� (Theorem 2 of Neal and Hinton (1998)). We �rst note that if p(Y) = P� (Y j X )then F (P� (Y j X ) ; �) = Q(P� (Y j X ) ; �) +H(P� (Y j X ))= EYjX ;� [`X ;Y (�)℄� EYjX ;� [logP� (Y j X )℄= EYjX ;� � logP� (Y ;X )logP� (Y j X )�= EYjX ;� [logP� (X )℄= logP� (X )= `X (�) (1.43)Thus, writing p�(Y) for P�� (Y j X ), we have `X (��) = F (p�; ��). Suppose there is some ��� �-loseto �� at whih the log-likelihood is larger, and that p�� is the orresponding P��� (Y j X ). Then itmust be that F (p��; ���) > F (p�; ��). But, assuming that P�� (Y j X ) varies ontinuously with ��,if ��� is �-lose to �� then p�� is Æ-lose to p�. This violates the assumption that F ahieves a loalmaximum at p�; ��, and so there an be no suh ��� lose to �� with larger likelihood. Thus `X (��)is a loal maximum. A similar argument an be made for the global maximum (and we don't evenneed the ontinuity assumption).1.8 Generalizations of EMThis formulation does not just provide straightforward aess to the above proof; it also justi�esa number of generalizations of the EM algorithm. The �rst atually follows from the argument



22following (1.36) and appeared in (Dempster et al : 1977). This is the generalized M-step. As longas, at eah iteration, the funtion Q is inreased relative to its value at �n�1, all of the guaranteesof inreasing the likelihood are maintained. We do not need to maximize Q at eah iteration, wean instead just take a step in the diretion of its gradient (provided we are guaranteed that Q willindeed be maximized at onvergene { see the omments below). This variant is alled gradient orgeneralized EM (usually written GEM):E-step: Find the expetation of the joint data log-likelihood under the distribution of the yi giventhe n� 1th parameter estimates and the observations. (This is unhanged.)Qn(�) = EYjX ;�n�1 [`X ;Y (�)℄ (1.44)GM-step: Change � in the diretion of the gradient of Q.�n = �n�1 + �r�Qn(�n�1) (1.45)where � is some learning rate parameter hosen in aordane with the usual priniples of gradientasent. Clearly, this is useful when Q annot be maximized in losed form. In suh situations it isusually omputationally more eÆient to use GEM rather than numerially optimizing Q in eahM-step.The free energy formulation suggests an alternative generalization. In priniple, we ould makea orresponding generalized E-step, and hoose a funtion p di�erent from Pn�1 (Y j X ), provided itinreases the free energy. We must be areful, however. We have shown that when the free energyreahes a loal maximum, so does the likelihood. If we generate funtions p by an algorithm thatan onverge even though F is not at a true loal maximum, our guarantees of maximal likelihoodevaporate. Suh a situation arises when the funtions p are restrited in funtional form so that formost values of � the funtion P� (Y j X ) does not lie within the family of possibilities. In this asewe an at best optimize F on the surfae of onstraint de�ned by the funtion family. An exampleis found in the Helmholtz mahine (Dayan et al : 1995). The wake-sleep learning algorithm (Hintonet al : 1995) for the Helmholtz mahine involves exatly suh a onstrained generalized E-step wherethe estimate p must be the output of a sigmoid belief network. As a result, it annot guaranteeonvergene to the maximum likelihood parameters.A similar aution, of ourse, an apply to generalized M-steps too. The usual hoie of a gradientM-step, however, is guaranteed to onverge to a loal stationary point of F .One example of an approximate E-step that maintains the onvergene properties is providedby Neal and Hinton (1998). This is the inremental E-step, appliable when the xi and yi areindependent. In this ase, we an restrit the funtions p to the family of funtions with the form



23p(Y) =Qi pi(yi) sine the independene of the yi guarantees that the optimal p will be in the family.We an now write F (p; �) = Xi Fi(pi; �)= Xi Epi [`� (xi; yi)℄ +H(pi) (1.46)and maximize eah omponent F in turn. The inremental EM algorithm now proeeds from initialguesses �0 and p0i so:IE-step: Choose some i. Maximize Fi(pi; �n�1) and leave the remaining pj ; j 6= i unhanged.pni (yi) = Pn�1 (yi j xi) (1.47)pnj (yj) = pn�1j (yj)M-step: Maximize F with respet to � holding p onstant.In pratie, for many distributions of interest, the M-step an be performed from suÆientstatistis of the data, whih are eÆiently updated with respet to pi (Neal and Hinton 1998). Weshall, in fat, use a similar approah to trak non-stationary mixture distributions eÆiently.


