Chapter 4 Sparse Hidden Markov Models

The hidden Markov model (HMM) is one of the most successful and widely used generative
models in the field of statistical modeling. The statistical theory of HMMs has been driven in large
part by the field of speech processing and is extremely well worked-out. Indeed, the Baum-Welch
algorithm of the sixties is one of the earlier examples of an implementation of an EM algorithm,
and much of the theory of EM was well understood in this context well before the publication of the
general formulation. Nevertheless, advances in the theory of HMMs are still made. Recent examples
include the factorial hidden Markov model Ghahramani and Jordan (1997).

In this chapter we review the generative model underlying the HMM, and discuss the applicable
EM learning algorithm. We then examine a particular sub-class of the general model, the sparse
HMM, in which the majority of outputs are zeros (or null). We then consider a “mixture” of these
restricted models. This mixture-like compound model is a special case of the factorial HMM: we
construct an EM algorithm with an imperfect E-step, of the form that was justified in section 1.8.
This approach, though not exact, will come close to the true the maximum likelihood solution for

certain classes of data.

4.1 The Generative Model

4.1.1 The Markov chain

The finite Markov chain (or Markov process) has been extensively studied in stochastic process
theory. It consists of a series of N identically distributed discrete variables {y;}, with the property
that each is dependent only on the value of the preceding one. More precisely, the joint distribution

over the variables factors as follows.

N

P(yi,y2--) =P) [P wilwia) (4.1)
i=2
As a result, y; is conditionally independent of all of the variables y; ...y; o given y; 1.

The different values that the variables may take on are called the states of the process; in the
models we discuss there is a finite number of such values and we take them to be the numbers 1... P.
The “state” terminology suggests a connection between a Markov process and a non-determinstic
finite-state automaton. In fact, the sequence of states traversed by such an automaton in the absence

of input (or given constant input) indeed forms a Markov sequence. We shall use the two sets of

65

terminology interchangeably, as is common in the field, referring, for instance, to the model as being
in state p at step i when y; takes the value p.

The joint distribution (4.1) is completely specified by the two discrete probability distributions,
the initial state probabilities P (y;) and the state transition probabilities P (y; | y;—1) for
1 > 1. We can collect each of the transition probabilities into a P x P transition matrix 7., so
that 7 ,, = P (y; = p| yi—1 = q). The initial probabilities might be collected into a seperate vector
Ty, however, in most cases it is more convenient to roll them into the transition matrix as follows.
We introduce a new “random” variable yo which precedes (in the sense of the Markov conditioning
criterion) the first actual random variable y;. This variable assumes the value 0, which is not a
possible outcome for any other variable, with probability one. In this model, the transition matrix
is augmented to a (P + 1) x (P + 1) matrix T, with the first column containing the initial state
probabilities; the first row being entirely zero to indicate that the system never makes a transition
back into the state 0; and the remaining elements being the transition probabilities. For obvious
reasons it will be convenient to number the rows and columns of T' from 0, rather than 1. Once
normalization requirements are accounted for, the augmented transition matrix T contains P> —1 free
parameters; P — 1 specify the initial probabilities and P(P — 1) specify the transition probabilities.

Using this notation, manipulations of the probability functions becomes quite straightforward.
For example, if the marginal distribution of the variable y; 1 is given by the vector 7;_1, then the
marginal distribution of y; is given by P (y; = p) = Zq P(yi=p|yi-1 =q)P (yi-1 = q), which can
be written more succintly as m; = T'm;—1. As a result, the marginal distribution of the ith variable

is

m=T"] 0 (4.2)

0

Given some basic regularity conditions on the transition matrix 7', there exists a unique proba-

bility distribution over the states, represented by the vector 7, which satisfies the condition

Pr(yi)=n = Pr(yit1)=m (4.3)

For obvious reasons, this is called the stationary distribution of the Markov process.

Clearly, m is a right eigenvector of the matrix 7" with eigenvalue 1. It can be shown, under
some additional mild conditions on T' (related to the ergodicity of the Markov process), that all
other eigenvalues have absolute values strictly smaller than 1 (Seneta 1981; Karlin 1991). As a

result, given any initial distribution on the states, after a sufficient number of steps the marginal

66

)

3
(=
&
©
¢
)

Figure 4.1: The hidden Markov model

distribution of the y; will approach 7. The stationary distribution is thus an attractor in the space
of marginal distributions on the Markov variables. The magnitude of the largest non-unit eigenvalue
sets the rate of decay of the non-stationary components, and thus the number of steps we need to
wait in the typical case before the marginal state-distribution approaches the stationary one. This

is called the mixing time of the (ergodic) chain.

4.1.2 The hidden Markov model

The hidden Markov model is a latent variable generative model derived from the basic Markov
model described above. The structure of the model is drawn in graphical terms in figure 4.1. Panel A
represents all of the variables of the model explicitly. The variables y; form a Markov chain, but
in this case they are not directly observed. Instead, we see output variables x; which depend only
on the corresponding state y;; that is, each x; is conditionally independent of all other variables,
both observed and latent, given y;. We adopt the convention of a deterministic initial state yo to
compress all of the Markov parameters into a single matrix. There is no corresponding observable
Tp.

The conditional distribution P (x; | y;) is stationary with respect to the instance variable i. Thus,
associated with each state p (except 0) is an unchanging output distribution which plays a similar
role to the component distributions of the mixture model. We will write 8, for the parameters of this
distribution and P, (z) for the distribution (or density) function, just as in the case of the mixture
model. Indeed, the connection between the two is quite deep. In figure 4.1B the same HMM, along
with explicit parameter nodes, is shown in the more compact plate representation. It is clear that
the structure is extremely similar to that of the mixture model; the only difference is the dependence

of the latent variable between different instances. (As an aside, the plate notation is not well suited

67

for such models, since it does not make clear the essential Markov nature of the latent variable
process, which is that the arrow linking the y; nodes stretches only to the next plate.)

The parameters of model are the Markov probabilities contained in the matrix T along with all
of the parameters 6, of the output distributions. The likelihood of the parameters, with observations

X = {x,}, is found by summing over all possible strings of Markov states y; ...yn

(T,{6,}) = Z Hszl 1Py (24) (4.4)

YN i

An alternative, recursive, form for the calculation of this likelihood will appear below.

4.2 Learning: The Baum-Welch Algorithm

The commonly used learning algorithm for HMMs was developed in the course of classified work by
Eric Baum and Lawrence Welch in the sixties. This algorithm turns out to be the standard EM
algorithm applied to the generative model; however, its development pre-dated the publication of
the original EM paper (Dempster et al. 1977) by at least a decade. The application is considerably
more involved than the examples we have handled thus far. In particular, the E-step, in which
parts of the conditional Py (Y | X') are calculated, is sufficiently elaborate to have claimed a name
of its own; it is called the forward backward algorithm. Once this is completed, the M-step is more
straightforward. The complete approach is commonly known as the Baum-Welch algorithm.

The joint data likelihood, based on observations, X = {z;} and latent variable values Y = {y;}

is

N
Lxy (T7 {010}) = H Tyi,yiqpyi (Tl) (45)
i=1
leading to the log-likelihood
lxy (T, {6,}) = Zlog i + > log Py, (@) (4.6)
i

As in the case of the mixture model, we introduce latent indicator variables in place of the
discrete latent variables y;. We define z,; to take the value 1 if y; = p and 0 otherwise. We can

then rewrite the log-likelihood as follows
ly.z (T,{6,}) = ZZzplqu 1longq+ZszlogP) (4.7)

In the E-step for the nth iterarion, we take the expected value of this likelihood with respect to

the conditional distribution determined by the parameter values on the (n—1)th step, Pyn—1 (2 | X).

68

This gives us

Q"(T {6p}) = Ezixom—1[la,z (T, {6,})]

ZZEZ\XS" 1[szzqz 1 10g +ZZEZ‘X0" 1 sz]logP (;L‘Z)
= Zthqleng"'Zz i log Py () (4.8)

where we have written s ; for Ez\x gn-1[2p,] and ¢}, ; for Ez)x gn-1[2p,i24,i-1]. These quantities
are analogous to the responsibilities of the mixture model, although that name is not used in this
case. We shall call them the state estimates and transition estimates respectively. They are

given by the probabilities

$pi = Pon-1(zpi=1|21...2N) (4.9)
tpgi = Pon1(zpi=1& 21 =1|m1...2N) (4.10)

Unlike in the case of the mixture model, the conditioning on the observations does not reduce to
conditioning only on z;, due to the coupling of latent variables in this model. These probabilities

need to be calculated by an iterative approach known as the forward—backward algorithm.

4.2.1 E-step: The forward-backward algorithm

The algorithm by which the state and transition estimates are found is a special case of a general
inference algorithm on probabilistic graphical models (Jordan 1998). However, we have not developed
the general theory of such models here. Therefore, we simply lay out the algorithm, and then show
that it does indeed achieve the necessary estimates.

We are given a hidden Markov model with known parameters, T' and {6,}, and a set of obser-
vations {z;}. We wish to calculate the marginal probabilities of (4.9) and (4.10). Introduce two
quantities, each a joint probability distribution, whose values can be calculated recursively at each
timestep. The first is the likelihood that the system emitted the observed values x; ...xz; and was

then in state p at the ith time-step.

Fp.i Plyi=p x1...25) (4.11)

= Py(@:) Y TpgFyina (4.12)
q

Note that the likelihood that the model generated the complete string of observations is then just

(T, {6,}) = ZF7 (4.13)

69

thus obtaining the promised recursive expression for this likelihood. We will need this value again
below, and so reserve for it the symbol L.
The second recursive quantity we need is the likelihood that, starting from state p on step ¢ the

system generated the observed string z;y1...znN.

Byi = P(zipr...an|yi =p) (4.14)

D TPy (@is1) Byint (4.15)
q

Note that due to the Markov nature of the latent variable chain, observations z;y; and further
are independent of all previous observations given the value of y; and so B, ; is also equal to
P(xiy1...xn |yi =D, 21 ... x5)

Both recursions can be written more succinctly if we introduce a (P + 1) x (P + 1) diagonal
matrix R; (indexed, like T', from 0) with R,,; = P, (z;). We then obtain, with vector forms for
both F and B

F;=RTF;, and B;=T Ri.1Bin (4.16)

Notice that one of these recursions runs forward over the observations, while the other runs back-
wards. Thus the name “forward-backward”.

The estimates s, ; and t,,; can be expressed in terms of F' and B:

Spi = Pyi=plzi...xN)
P(ziy1...2n |yi =D)P (yi = p, 21 ... 25)
P(xi...zN)
F,;B,;/L (4.17)

and

tpgi = PWi=pyia=q|o...2N)
P@it1...an |yi=p)P(zi lyi=pP)P(yi=p|yi1 =P i1 =g 21...2i1)
P(xzi...zN)
= By iRppiTpeFygi-1/L (4.18)

where, in the second step of each of these results we have used the Markovian properties of the
model to remove irrelevant, conditioning variables.
The E-step of the Baum-Welch algorithm, then, is achieved by substituting into (4.17) and (4.18)

the (n — 1)th iteration parameter estimates, to obtain s} ; and 7, .

70

4.2.2 M-step: Parameter re-estimation

The re-estimation of the Markov transition matrix is straightforward, and reminiscient of the re-
estimation of the mixing probabilities of a mixture model. We optimize the expected log-likelihood
of (4.8) with respect to Ty, enforcing the constraint Zp Ty = 1 with a Lagrange multiplier, to

obtain

0
0Ty |

tn .
(Z Ztgqyi log Tpy — A Zqu> = Z % -A=0 (4.19)
pa p PR]

i Py

From which we find that T}, o< >, #7 ;. The normalization constraint then gives us

Py,
N
St
n _ i=1 "pg,?
i=0 Sq,i
where we use the fact that }° ¢} ; = si; ; which follows from the marginalization of the joint

distribution represented by t,,.;

The remaining update rules, for the output distribution parameters {6,}, depend on the form
of the output distribution function. We can, however, make some headway. First, note that the
0, are independent of each other, and so can each be optimized separately. Furthermore, only the
second term in the expected log-likelihood (4.8) has any dependence on 6,. As a result, we arrive
at an update rule identical to that encountered in the case of the mixture model (2.15), with the

responsibilities replaced by the state estimates s ;
= argmax Z ;log Py, () (4.21)

As in the mixture case, we may interpret this as a weighted fit of the output distribution parameters

to the observations z;, with weights given by the estimates s ;

4.3 Sparse HMMs

In this section, we introduce a special case of the HMM. This restricted model, the sparse hid-
den Markov model or SHMM, is one that may be encountered with some frequency in practical
modeling situations; indeed we develop it here because it will be of use to us in a neural data anal-
ysis problem tackled in the following chapters. The restricted model itself will only be of limited
interest from an algorithmic point of view: all of the standard HMM learning algorithms may be
used and, though we will describe an adaptation of the standard Baum-Welch algorithm, the advan-
tages thereby derived are merely in the realm of efficiency. However, the introduction of this model
will allow us to speak meaningfully of a mixture of sparse HMMs, and derive an efficient learning

algorithm for such a mixture.

71

The processes that we consider are sparse in the following sense. In each string of observations
x;, the majority yield a null value, which we represent by the symbol g. This value tells us relatively
little about the state of the underlying process; in effect, the process has no output at these obser-
vation times. Scattered within this string of ¢s are occasional non-null output values, but these are
distributed sparsely. Nevertheless, they provide our only information about the state of the process.

We will examine hidden Markov models for such a process. Each model contains one or more
states for which the output distribution produces the outcome ¢ with probability 1. We will refer
to these as the null states. We will assume for the purposes of this discussion that the output
distributions in the remaining states assign probability 0 to this outcome, although most of the
results of this and the following sections can be carried through even if this were not the case. The
sparsity of the process requires that the transition matrix be set up so that on the majority of time-
steps the model is in a null state. On the whole, then, the transition probabilities from null states
to states with full output distributions are relatively low, while transitions in the other direction are
relatively likely.

How sparse is sparse? There is no precise answer to this question. All of the algorithms that we
discuss can be equally well applied to models which spend little or no time in null states. However, it
will be apparent that under that condition they would produce poor results. The transition between
sparse and full, then, is a matter for empirical discovery within the framework of the application.

Learning in the SHMM may proceed by the standard Baum-Welch algorithm that was laid out
in the case of the full HMM. However, it is possible to achieve some optimizations on the basis of
the sparse output structure, which we will discuss here. Before we can do so, however, we need to

recast the forward—backward algorithm slightly.

4.3.1 Another view of the forward—backward algorithm

The presentation in section 4.2.1 described the forward backward algorithm in a notationally com-
pact form ideal for exposition. In fact, as described, the algorithm is numerically unstable in
implementations. This instability can be resolved by a small modification, which is the subject of
this section. The same modification is important to adaptations of the algorithm to sparse HMMs.

The difficulty with the currently described algorithm is this. At each instance i, the conjunction
of observations that appear in the likelihoods described by F; and B; is of a different size. For
instance, F describes the likelihood P (y1,21), while Fiy describes P (yn,z1...zn). If the typical

density at the observation point z; is a, then while Fy is of order a, Fy is of order a”V. Similarly,

N-1 N

By is of order a , while By is of order a®. The product of the two terms is always of order a?,
and it is divided by the likelihood (also order a’¥) to derive estimates s,; and t,,; of order 1. If
the value a is considerably different from 1, the intermediate values in this calculation can become

either very large or very small, and the computation may become numerically unstable.

72

We can resolve this problem by introducing an alternative group of recursive functions that

remain of order 1 throughout. In fact, we need three functions

P(zix1 ... =
i = (Tip1 TN | Yi = p) (4.24)
which are calculated recursively as follows.
Cc; = 1"R,TF,_, (4.25)
i = RiTF, .1/C; (4.26)
B; = T'Ri1Bij1/Cina (4.27)

where 1 is a vector of P ones, and is introduced to indicate a sum of the elements of the following
vector-valued product.

Given these new functions, the state and transition estimates become
Spi = Fp,iBp.i and tpg.i = Bp,iRpp,iTpgFyi-1/Ci. (4.28)

The normalization of the recursive terms F' and B defined here is crucial to the following ex-
position of the forward backward algorithm for SHMMs. Thus, all subsequent references to the

algorithm, and the symbols F';, B and C will refer to this recast version.

4.3.2 Forward-backward algorithm for sparse HMMs

By definition, the output sequences recorded from a sparse HMM tend to contain long stretches of
null outputs. These segments leave the model in an identifiable configuration; that is, the value of F;
at the end, and B; at the beginning of such a sequence is relatively independent of the measurements
before and after such a segment.

Consider a long segment of null observations stretching from observation indices a to a +1. We
assume that the values of the functions F,_; and B,; are known, while we seek to calculate F,
and B,_1.

Consider, first, the forward term. Let the notation R, stand for the value of the likelihood matrix
R; in cases where z; = ¢. Recall that such matrices are diagonal, with R, ; = P, (z;). In this case,

these elements are 1 for null states and 0 elsewhere. We then have

Fop o (R,T)HVE, (4.29)

73

with the vector then normalized so that the sum of its elements is 1. Whatever the value of F, 1,
this expression will be dominated by the leading eigenvector of the matrix R,7". We will write Fj
for the suitably normalized eigenvector note that normalization here means that the sum of the
elements, rather than the sum of the squares of the elements, is 1. In fact, F, is the stationary
distribution of the Markov chain that is obtained by restricting the current estimate of the Markov
model to only the null states, the transition matrix of which is given by renormalizing the columns
of the matrix R;TR,. Thus the forward step after a sequence of null outputs is achieved by simply
setting the value of the forward term to Fj.

Using a similar argument we can show that at the beginning of a long segment of nulls, the
value of the backward term B, _; will approach the leading eigenvector of the matrix T'T Ry, suitably
normalized. We write B, for the unnormalized eigenvector. Unlike the forward terms, B; is not
itself a probability distribution and thus we have no immediate way to normalize. However the
products F;B; = P (y; | 1 ...xN) are probabilities. Thus, knowing the value of F,_; we can find
the appropriate normalization for B, 1 (which is potentially different before each null segment).

The forward-backward steps across a sequence of nulls from a to a + [is thus

Fort = Fy (4.30)

B,.1 = B;/Fl B, (4.31)

The use of these forms limits the application of the full forward—backward algorithm to only
those regions in which some non-null outputs are observed, often at a considerable computational

savings.

4.4 Mixtures of Sparse HMMs

We consider the following model. We have M independent sparse hidden Markov models. Call the
output of the mth model at time-step i, ., ;'. We do not observe these variables directly, instead

we make a single observation at each time-step, derived from these values according to the following

[0] if all T, =0
Ti =q Ty, ifonly @« ; #0 (4.32)
¢ if multiple x,, ; # ¢

IVariables in the ensuing development will often need to be identified by state, component model and observation
number. We shall adopt two conventions to assist in correctly parsing all of these subscripts. 1. The order will always
be (state, model, instance), but some indices might be omitted if unnecessary. 2. the letters p and g will be used
to index state, m and [for model, and ¢ for instance; n will be used in the superscript for EM iteration number as
before.

Y1,0

2

Figure 4.2: A mixture of sparse hidden Markov models

If more than one HMM has non-null output, we see only the fact that a collision occured, noted
by the special output value ¢. We obtain no information about which, nor even how many, of the
HMMs had non-null outputs.

The model is illustrated in figure 4.2. The random variables in the model are the state variables
Ym,i and the corresponding outputs z,, ;. The observed value z; is actually a deterministic function

of the outputs, z,, ;, of each component sparse HMM.

4.4.1 Learning

Since the component SHMMs are presumed to be independent, the joint data likelihood, given
observations X = {z;}, HMM outputs A}, = {z,;} and indicator variables Z = {z,, ;} is simply
the product of the joint data likelihoods (4.5) for each of the component HMMs given observations

{Zm,;} and indicators {2y, ;}. In the log domain, this is

Cx 2z (T} B }) = DD (Z Zp.maiZqm.i 108 Tpgm + Y 2p.i10g Pp.m (azm)) (4.33)
m p.q

i p

75

The E-step involves calculation of the expected value of this expression with respect to the
distribution P (2pm. i, Zm.i | i). Note that the expectation is taken not only with respect to the
Zm.i (as usual), but also with respect to the z,, ;, which are not directly observed in this case. The

expected value is

Q"({Tm}Abpm}) = Ezx,xom1 [lxx,.2 (T} {0pm})]

Z Z Z Ez X, x,0m-1 [2p,m,i%q,m,i—1]108 Tpg,m
m

i Py

+ Z Z Z 5Z,XM\X,9"*1 [zpmm' log Pp.m (xm,z)]
m i p
= >3t 108 Thgm

i P

+ Z Z Z Sg,m,igwm,i\zp,m,z':l,Xﬂ"*l [log Pp.m (TmZ)] (4.34)
m 7 D

Note the change in distribution that appears in the expectation of the final expression; we have used

the fact that 2, ,, ; is an indicator variable as follows

Ez x| x,0m—1 [2p,m,i 108 Ppm (Tim,i)]

= E /dﬂ?m7i Pgn—l (Zp’mJ,ZIZmJ

Zp,m,i

= Pypn1 (2pmi = 1| X)/dxm,i Pgn—1 (Tm,i | 2p,m,i = 1, X)10g Py (Tim,i)

+ Pgn—l (Zp,m,i =0 | X) 0

X) zp,m,i1ogPp,m (Tm,i)

= SpmiCamilzpmi=1.2,0m1 108 Pp.m (Tm)] (4.35)

What is this expected value? If no collision was observed then x,, ; is completely determined by
Zp.m,i and z;. If state p of model m is a null state, z,,; = ¢; otherwise z,,, ; = z;. On the other
hand, if a collision was observed then z; tells us nothing about the value of z,, ;. It is still true
that if the state (p, m) has no output, z,, ; = @; but now, if the state is non-null, x; ,,, is distributed

according to Py, (z). Thus, for non-null states, we have

logPpm (z;) if z; # ¢
gzm,i\zp,m,izl,X,S"*l [log Pp,m (xmz)] = P ’ ! (4.36)
—H[Ppm] ifzi=g¢

where H[-] indicates the entropy of the distribution.

4.4.2 Coupled forward—-backward algorithm

We need to calculate the state and transition estimates that appear in (4.34). We do so by running

the forward-backward algorithm separately on each component SHMM. Since direct observation of

76

the outputs of the component models is not possible, however, we must estimate those outputs using
the observed output of the entire mixture, as well as the recursive terms, Fy, ;—1 and B, ;—1, from
all of the components. This use of the values of the recursive terms from other component SHMMs
leads to a coupling of the different instances of the forward-backward algorithm.

Despite this coupling, however, the separation of the estimation process into multiple component
recursions constrains the E-step optimization to only those distributions which satisfy a factorization

constraint of the form (for the F' recursion)

P {ymi} lz1.. . 2i) = H P (Ym,i | 21 ...25) (4.37)

m

as well as a second, similar, constraint due to the B recursion. Such imperfect E-steps were discussed
briefly in section 1.8. At each time-step we calculate the full joint distribution of the y,, ; (which
contains PM terms) but then store only the marginals (needing only P x M terms). Clearly, to
calculate the state and transtion estimates we only need the marginals, and so from that point of
view the restriction is reasonable. However, the F), ; are also used to estimate the distribution at
the (i + 1)th step. Use of the factorized distribution for the ith step, rather than the full joint
distribution, leads to a mis-estimation of the joint distribution at the (i + 1)th step. It is thus, that
the constraint of (4.37) appears.

We will discuss the impact of this constraint on the EM process below. First, let us proceed with

the exposition of the algorithm. The recursive terms are defined much as before.

Fomi = Pymi=plax...x;) (4.39)
' P(@it1---TN | Ym,i = D) (4.40)
pomot P(’EH_l’EN "El’lfl) -

However, in this case the x; are not the direct outputs of the HMM, but are rather the overall
observations from the mixture. Thus, the calculations become slightly more elaborate. We will
obtain here expressions for only the forward terms C; and Fj ,,, ;. The calculation of By ,,, ; proceeds
similarly.

We write Fp7m,i for P (ym,; =p| 1 ...2;_1), the probability of finding the mth model in state
p on step ¢ given the previous observations, but not the current one. This is, of course, based
recursively on our estimate of the distribution of states y,, ;—1 given observations up to z;—;. With

our factorial assumption on the distribution of y,, ;1 this is given by

Foi=TnFy i (4.41)

77
Also of interest will be the probability that model m is in a null state. We will write @, ,, = 1 if
Pp.m (9) =1 and @, ,, = 0 otherwise. Using this indicator, we obtain Fj ,, ; = > DpmFpm.i.
It will be useful to treat separately the three cases where z; is 1. null, 2. non-null and non-collision,

and 3. a collision.

l. z,=9

In this case C; is the probability that every component is in a null state,
Ci =[] Fom.i (4.42)
m

To calculate F), ,,, ; we need to find the distribution P (z; = 6, ym,; =p|x1...2i1) =

P(xi=0|Ymi=p 21 .7 1) Fymi This is clearly 0 if @y, = 0. If @,,, = 1, then
P(zi=0]|ym:=p,x1...x;_1) is just the probability that all other components are in null

states. Thus

1
Foomi = EP (% =0, Ymi=D]|T1...25_1)
1 _ _
= & OpmFpm,i I1 Fou
’ l#m
F m,i
= @,,,mL (4.43)
thi,m7z

2.z #£0,¢

Here, C; is the probability that one component outputs the observed value z;, while all the

other components are in null states.

Ci=>_3 Ppm (@) Fpmi [] Fori (4.44)
m p l#m

P(zi|ymi=mp,21...2i—1) is straightforward if (p,m) is not null; being P, , (z;) times the

the probability that all other components are in null states. If, on the other hand, @, , =1,

then the conditional probability is given by the probability that exactly one of the remaining

components outputs the value z;.

1 .- . . _
Fymi= G Fpmi | (1= Opm)Ppm (xi) Lo+ 0pm DD Poa(@i) Fpri [Fori
’ l I#m p k#l,m
(4.45)

78

In this case, C; is the probability that at least two components are in a non-null state

Ci=1- (H Fg,,m,i> - Fymi) [Fom.i (4.46)

m l#m

The expression for F}, ,,, ; is notationally cumbersome, so we will not write it explicitly. Instead,
we note that P (z; | ym,; = p, 1 ... 2;—1) is the probability that at least one other component
is non-null if @, ,, = 0 and that at least two other components are non-null if @, ,, = 1. Both

of these probabilities are found in a form similar to that of C;, above.

Once the terms F; ,,, and B, have been calculated, the state and transition estimates are derived

using (4.28) applied to each component in turn.

Consequences of the factorial approximation

To what extent does the factorial constraint of the coupled forward—backward algorithm affect the
eventual parameter estimates? We may can make two separate arguments for robustness of the
estimates to error.

First, it might be feared that, since the terms F' and B are calculated recursively and since there
is an error in each calculation, the estimated value and the true value would progressively diverge
over time. This is not the case. Boyen and Koller (1999) have examined factorial approximations
such as the present one in the context of general dynamic probabilistic networks. They argue that
the approximation error does not grow over time because two forces oppose the growth. First, the
incorporation of observed data tends to drive the approximated distribution towards the correct one.
Second, the randomization due to the stochastic transition from the (i —1)th step to the ith tends to
broaden both the correct distribution and the approximate one, which also has the effect of bringing
them closer together. In other words, T), F,, ;—1 may be closer to the true P (yp,; | ;... 2;_1) than
Fri—115t0 P (Ym,iz1 | ;... 2;_1). Intuitively, we may think of each random transition contributing
to a “forgetting” of the old, incorrect, distribution.

To these arguments we can add a third, peculiar to the current model. When the observation
x; = ¢, our forward and backward steps are correct. Recall from the discussion of the forward—
backward algorithm for sparse HMMs that after a substantial stetch of null observations, F; (B;)
is relatively independent of its value at the beginning (end) of the segment. Thus, in the mixture,
whenever we enounter a stretch of null observations we tend to reset the forward—backward estimates
to their correct values.

Second, even if the errors in the state and transition estimates are typically large, it is possible
that their effect on parameter estimates derived through EM may be small. Constrained E-steps

of the sort we perform here were discussed briefly in section 1.8. There it was pointed out that

79

generalized EM using a constrained optimization of the latent variable distribution will eventually
yield the correct maximum-likelihood parameter estimates if and only if the conditional distribution
at the optimum Py« () | X) satisfies the constraint. In the present case, this will be true if, at the
optimal parameter values, only one component is likely to be in a non-null state at each time-step
where z; # @,¢. In other words, all observed data can be assigned with high likelihood to only
one component. If, on the other hand, two different components claim equal responsibility for the
point, then the factored distribution will assign a probability close to 0.25 that they were both
in non-null states, whereas the correct joint probability would be 0 (if they were both in non-null
states a collision would have been observed). Futhermore, provided that most data are well assigned
in this way, the above arguments suggest that a small number of ambiguous points will not have
a profound effect on the estimates associated with the others. Thus, in well clustered data, the
approximation has little effect on the eventual estimates, even if, in intermediate steps of EM, it is
inaccurate. Note that “well-clustered” here does not necessarily mean that the output distributions
are well separated. Each data point must be assigned to a single component, either because only
that component has an output distribution which assigns it high likelihood or because its temporal

relationship to nearby points marks it as arising from a particular model.

4.4.3 Parameter re-estimation

The M-step requires optimization of the expected log-likelihood (4.34) with respect to the parame-
ters, with the estimates s}, ; and ¢}, ; fixed at the values derived from the E-step. The expression
of (4.34) contains separate additive terms for each component model; as a result, it can be ompti-
mized with respect to the parameters of each SHMM independently. The part that involves the mth

model is

Qm (T, A0pm}) = Z Z th,m,i log Typg,m + Z Z Sg,m,igzm,i\zp,m,z':LX,ﬂ"*‘ [log Pp.m (Tm.i)]
p

Py i
(4.47)
Optimization with respect to Ty, ,, can clearly proceed exactly as in the standard case, and so we
obtain N
n
n _ Zi:l tpq,m,i (4 48)
pg.m N-1 , .
Zi:O Sq,m7i

Re-estimation of the output distribution parameters 8, ,, is almost the same as in the standard
Baum Welch algorithm. It is still the case that the different output distributions can be optimized

independently. For states with null output distributions, of course, there are no parameters to fit.

80

For non-null distributions, we recall the result of (4.36) and find that

0, = argmax Z S$p.m.i 108 Pa, . (z;) — Z s;m’iH[Pp,m] (4.49)
Op,m LT F£D,q T, =q
(Note that if z; = ¢ and (p,m) is not a null state, s; . ; must be 0, and so we can ignore the

corresponding terms). Thus, the parameters are fit to the observed non-null and non-collision data,
weighted by the state estimates as usual, but with an additional entropy penalty on the likelihood
which weighted by the sum of the state estimates for collision time-steps. In practice, if the number
of collisions is small relative to the total number of non-null observations, we can often neglect this

term.

