
Chapter 4 Sparse Hidden Markov ModelsThe hidden Markov model (HMM) is one of the most su

essful and widely used generativemodels in the �eld of statisti
al modeling. The statisti
al theory of HMMs has been driven in largepart by the �eld of spee
h pro
essing and is extremely well worked-out. Indeed, the Baum-Wel
halgorithm of the sixties is one of the earlier examples of an implementation of an EM algorithm,and mu
h of the theory of EM was well understood in this 
ontext well before the publi
ation of thegeneral formulation. Nevertheless, advan
es in the theory of HMMs are still made. Re
ent examplesin
lude the fa
torial hidden Markov model Ghahramani and Jordan (1997).In this 
hapter we review the generative model underlying the HMM, and dis
uss the appli
ableEM learning algorithm. We then examine a parti
ular sub-
lass of the general model, the sparseHMM, in whi
h the majority of outputs are zeros (or null). We then 
onsider a \mixture" of theserestri
ted models. This mixture-like 
ompound model is a spe
ial 
ase of the fa
torial HMM: we
onstru
t an EM algorithm with an imperfe
t E-step, of the form that was justi�ed in se
tion 1.8.This approa
h, though not exa
t, will 
ome 
lose to the true the maximum likelihood solution for
ertain 
lasses of data.4.1 The Generative Model4.1.1 The Markov 
hainThe �nite Markov 
hain (or Markov pro
ess) has been extensively studied in sto
hasti
 pro
esstheory. It 
onsists of a series of N identi
ally distributed dis
rete variables fyig, with the propertythat ea
h is dependent only on the value of the pre
eding one. More pre
isely, the joint distributionover the variables fa
tors as follows.P (y1; y2 : : :) = P (y1) NYi=2P (yi j yi�1) (4.1)As a result, yi is 
onditionally independent of all of the variables y1 : : : yi�2 given yi�1.The di�erent values that the variables may take on are 
alled the states of the pro
ess; in themodels we dis
uss there is a �nite number of su
h values and we take them to be the numbers 1 : : : P .The \state" terminology suggests a 
onne
tion between a Markov pro
ess and a non-determinsti
�nite-state automaton. In fa
t, the sequen
e of states traversed by su
h an automaton in the absen
eof input (or given 
onstant input) indeed forms a Markov sequen
e. We shall use the two sets of



65terminology inter
hangeably, as is 
ommon in the �eld, referring, for instan
e, to the model as beingin state p at step i when yi takes the value p.The joint distribution (4.1) is 
ompletely spe
i�ed by the two dis
rete probability distributions,the initial state probabilities P (y1) and the state transition probabilities P (yi j yi�1) fori > 1. We 
an 
olle
t ea
h of the transition probabilities into a P � P transition matrix T+, sothat T+pq = P (yi = p j yi�1 = q). The initial probabilities might be 
olle
ted into a seperate ve
torT0, however, in most 
ases it is more 
onvenient to roll them into the transition matrix as follows.We introdu
e a new \random" variable y0 whi
h pre
edes (in the sense of the Markov 
onditioning
riterion) the �rst a
tual random variable y1. This variable assumes the value 0, whi
h is not apossible out
ome for any other variable, with probability one. In this model, the transition matrixis augmented to a (P + 1) � (P + 1) matrix T , with the �rst 
olumn 
ontaining the initial stateprobabilities; the �rst row being entirely zero to indi
ate that the system never makes a transitionba
k into the state 0; and the remaining elements being the transition probabilities. For obviousreasons it will be 
onvenient to number the rows and 
olumns of T from 0, rather than 1. On
enormalization requirements are a

ounted for, the augmented transition matrix T 
ontains P 2�1 freeparameters; P � 1 spe
ify the initial probabilities and P (P � 1) spe
ify the transition probabilities.Using this notation, manipulations of the probability fun
tions be
omes quite straightforward.For example, if the marginal distribution of the variable yi�1 is given by the ve
tor �i�1, then themarginal distribution of yi is given by P (yi = p) =Pq P (yi = p j yi�1 = q)P (yi�1 = q), whi
h 
anbe written more su

intly as �i = T�i�1. As a result, the marginal distribution of the ith variableis �i = T i0BBBBBBBBB�
100...0
1CCCCCCCCCA (4.2)

Given some basi
 regularity 
onditions on the transition matrix T , there exists a unique proba-bility distribution over the states, represented by the ve
tor �, whi
h satis�es the 
onditionPT (yi) = � ) PT (yi+1) = � (4.3)For obvious reasons, this is 
alled the stationary distribution of the Markov pro
ess.Clearly, � is a right eigenve
tor of the matrix T with eigenvalue 1. It 
an be shown, undersome additional mild 
onditions on T (related to the ergodi
ity of the Markov pro
ess), that allother eigenvalues have absolute values stri
tly smaller than 1 (Seneta 1981; Karlin 1991). As aresult, given any initial distribution on the states, after a suÆ
ient number of steps the marginal
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yiTf�pg iFigure 4.1: The hidden Markov modeldistribution of the yi will approa
h �. The stationary distribution is thus an attra
tor in the spa
eof marginal distributions on the Markov variables. The magnitude of the largest non-unit eigenvaluesets the rate of de
ay of the non-stationary 
omponents, and thus the number of steps we need towait in the typi
al 
ase before the marginal state-distribution approa
hes the stationary one. Thisis 
alled the mixing time of the (ergodi
) 
hain.4.1.2 The hidden Markov modelThe hidden Markov model is a latent variable generative model derived from the basi
 Markovmodel des
ribed above. The stru
ture of the model is drawn in graphi
al terms in �gure 4.1. Panel Arepresents all of the variables of the model expli
itly. The variables yi form a Markov 
hain, butin this 
ase they are not dire
tly observed. Instead, we see output variables xi whi
h depend onlyon the 
orresponding state yi; that is, ea
h xi is 
onditionally independent of all other variables,both observed and latent, given yi. We adopt the 
onvention of a deterministi
 initial state y0 to
ompress all of the Markov parameters into a single matrix. There is no 
orresponding observablex0. The 
onditional distribution P (xi j yi) is stationary with respe
t to the instan
e variable i. Thus,asso
iated with ea
h state p (ex
ept 0) is an un
hanging output distribution whi
h plays a similarrôle to the 
omponent distributions of the mixture model. We will write �p for the parameters of thisdistribution and Pp (x) for the distribution (or density) fun
tion, just as in the 
ase of the mixturemodel. Indeed, the 
onne
tion between the two is quite deep. In �gure 4.1B the same HMM, alongwith expli
it parameter nodes, is shown in the more 
ompa
t plate representation. It is 
lear thatthe stru
ture is extremely similar to that of the mixture model; the only di�eren
e is the dependen
eof the latent variable between di�erent instan
es. (As an aside, the plate notation is not well suited



67for su
h models, sin
e it does not make 
lear the essential Markov nature of the latent variablepro
ess, whi
h is that the arrow linking the yi nodes stret
hes only to the next plate.)The parameters of model are the Markov probabilities 
ontained in the matrix T along with allof the parameters �p of the output distributions. The likelihood of the parameters, with observationsX = fxig, is found by summing over all possible strings of Markov states y1 : : : yNLX (T; f�pg) = Xy1:::yNYi Tyi;yi�1Pyi (xi) (4.4)An alternative, re
ursive, form for the 
al
ulation of this likelihood will appear below.4.2 Learning: The Baum-Wel
h AlgorithmThe 
ommonly used learning algorithm for HMMs was developed in the 
ourse of 
lassi�ed work byEri
 Baum and Lawren
e Wel
h in the sixties. This algorithm turns out to be the standard EMalgorithm applied to the generative model; however, its development pre-dated the publi
ation ofthe original EM paper (Dempster et al : 1977) by at least a de
ade. The appli
ation is 
onsiderablymore involved than the examples we have handled thus far. In parti
ular, the E-step, in whi
hparts of the 
onditional P� (Y j X ) are 
al
ulated, is suÆ
iently elaborate to have 
laimed a nameof its own; it is 
alled the forward{ba
kward algorithm. On
e this is 
ompleted, the M-step is morestraightforward. The 
omplete approa
h is 
ommonly known as the Baum-Wel
h algorithm.The joint data likelihood, based on observations, X = fxig and latent variable values Y = fyigis LX ;Y (T; f�pg) = NYi=1 Tyi;yi�1Pyi (xi) (4.5)leading to the log-likelihood`X ;Y (T; f�pg) =Xi logTyi;yi�1 +Xi logPyi (xi) (4.6)As in the 
ase of the mixture model, we introdu
e latent indi
ator variables in pla
e of thedis
rete latent variables yi. We de�ne zp;i to take the value 1 if yi = p and 0 otherwise. We 
anthen rewrite the log-likelihood as follows`X ;Z (T; f�pg) =Xi Xp;q zp;izq;i�1 logTpq +Xi Xp zp;i logPp (xi) (4.7)In the E-step for the nth iterarion, we take the expe
ted value of this likelihood with respe
t tothe 
onditional distribution determined by the parameter values on the (n�1)th step, P�n�1 (Z j X ).



68This gives usQn(T; f�pg) = EZjX ;�n�1 [`X ;Z (T; f�pg)℄= Xi Xp;q EZjX ;�n�1 [zp;izq;i�1℄ logTpq +Xi Xp EZjX ;�n�1 [zp;i℄ logPp (xi)= Xi Xp;q tnpq;i logTpq +Xi Xp snp;i logPp (xi) (4.8)where we have written snp;i for EZjX ;�n�1 [zp;i℄ and tnpq;i for EZjX ;�n�1 [zp;izq;i�1℄. These quantitiesare analogous to the responsibilities of the mixture model, although that name is not used in this
ase. We shall 
all them the state estimates and transition estimates respe
tively. They aregiven by the probabilitiessnp;i = P�n�1 (zp;i = 1 j x1 : : : xN ) (4.9)tnpq;i = P�n�1 (zp;i = 1 & zq;i�1 = 1 j x1 : : : xN ) (4.10)Unlike in the 
ase of the mixture model, the 
onditioning on the observations does not redu
e to
onditioning only on xi, due to the 
oupling of latent variables in this model. These probabilitiesneed to be 
al
ulated by an iterative approa
h known as the forward{ba
kward algorithm.4.2.1 E-step: The forward{ba
kward algorithmThe algorithm by whi
h the state and transition estimates are found is a spe
ial 
ase of a generalinferen
e algorithm on probabilisti
 graphi
al models (Jordan 1998). However, we have not developedthe general theory of su
h models here. Therefore, we simply lay out the algorithm, and then showthat it does indeed a
hieve the ne
essary estimates.We are given a hidden Markov model with known parameters, T and f�pg, and a set of obser-vations fxig. We wish to 
al
ulate the marginal probabilities of (4.9) and (4.10). Introdu
e twoquantities, ea
h a joint probability distribution, whose values 
an be 
al
ulated re
ursively at ea
htimestep. The �rst is the likelihood that the system emitted the observed values x1 : : : xi and wasthen in state p at the ith time-step.Fp;i = P (yi = p; x1 : : : xi) (4.11)= Pp (xi)Xq TpqFq;i�1 (4.12)Note that the likelihood that the model generated the 
omplete string of observations is then justLX (T; f�pg) =Xp Fp;N (4.13)



69thus obtaining the promised re
ursive expression for this likelihood. We will need this value againbelow, and so reserve for it the symbol L.The se
ond re
ursive quantity we need is the likelihood that, starting from state p on step i thesystem generated the observed string xi+1 : : : xN .Bp;i = P (xi+1 : : : xN j yi = p) (4.14)= Xq TqpPq (xi+1)Bq;i+1 (4.15)Note that due to the Markov nature of the latent variable 
hain, observations xi+1 and furtherare independent of all previous observations given the value of yi and so Bp;i is also equal toP (xi+1 : : : xN j yi = p; x1 : : : xi)Both re
ursions 
an be written more su

in
tly if we introdu
e a (P + 1) � (P + 1) diagonalmatrix Ri (indexed, like T , from 0) with Rpp;i = Pp (xi). We then obtain, with ve
tor forms forboth F and B Fi = RiTFi�1 and Bi = TTRi+1Bi+1 (4.16)Noti
e that one of these re
ursions runs forward over the observations, while the other runs ba
k-wards. Thus the name \forward{ba
kward".The estimates sp;i and tpq;i 
an be expressed in terms of F and B:sp;i = P (yi = p j x1 : : : xN )= P (xi+1 : : : xN j yi = p)P (yi = p; x1 : : : xi)P (x1 : : : xN )= Fp;iBp;i=L (4.17)andtpq;i = P (yi = p; yi�1 = q j x1 : : : xN )= P (xi+1 : : : xN j yi = p)P (xi j yi = p)P (yi = p j yi�1 = q)P (yi�1 = q; x1 : : : xi�1)P (x1 : : : xN )= Bp;iRpp;iTpqFq;i�1=L (4.18)where, in the se
ond step of ea
h of these results we have used the Markovian properties of themodel to remove irrelevant 
onditioning variables.The E-step of the Baum-Wel
h algorithm, then, is a
hieved by substituting into (4.17) and (4.18)the (n� 1)th iteration parameter estimates, to obtain snp;i and tnpq;q .



704.2.2 M-step: Parameter re-estimationThe re-estimation of the Markov transition matrix is straightforward, and reminis
ient of the re-estimation of the mixing probabilities of a mixture model. We optimize the expe
ted log-likelihoodof (4.8) with respe
t to Tpq, enfor
ing the 
onstraint Pp Tpq = 1 with a Lagrange multiplier, toobtain ��Tpq ����Tnpq  Xi Xp;q tnpq;i logTpq � �Xp Tpq! =Xi tnpq;iTnpq � � = 0 (4.19)From whi
h we �nd that Tpq /Pi tnpq;i. The normalization 
onstraint then gives usTnpq = PNi=1 tnpq;iPN�1i=0 snq;i (4.20)where we use the fa
t that Pp tnpq;i = snq;i�1 whi
h follows from the marginalization of the jointdistribution represented by tpq;iThe remaining update rules, for the output distribution parameters f�pg, depend on the formof the output distribution fun
tion. We 
an, however, make some headway. First, note that the�p are independent of ea
h other, and so 
an ea
h be optimized separately. Furthermore, only these
ond term in the expe
ted log-likelihood (4.8) has any dependen
e on �p. As a result, we arriveat an update rule identi
al to that en
ountered in the 
ase of the mixture model (2.15), with theresponsibilities repla
ed by the state estimates snp;i.�np = argmax�p Xi snp;i logP�p (xi) (4.21)As in the mixture 
ase, we may interpret this as a weighted �t of the output distribution parametersto the observations xi, with weights given by the estimates snp;i.4.3 Sparse HMMsIn this se
tion, we introdu
e a spe
ial 
ase of the HMM. This restri
ted model, the sparse hid-den Markov model or SHMM, is one that may be en
ountered with some frequen
y in pra
ti
almodeling situations; indeed we develop it here be
ause it will be of use to us in a neural data anal-ysis problem ta
kled in the following 
hapters. The restri
ted model itself will only be of limitedinterest from an algorithmi
 point of view: all of the standard HMM learning algorithms may beused and, though we will des
ribe an adaptation of the standard Baum-Wel
h algorithm, the advan-tages thereby derived are merely in the realm of eÆ
ien
y. However, the introdu
tion of this modelwill allow us to speak meaningfully of a mixture of sparse HMMs, and derive an eÆ
ient learningalgorithm for su
h a mixture.



71The pro
esses that we 
onsider are sparse in the following sense. In ea
h string of observationsxi, the majority yield a null value, whi
h we represent by the symbol �. This value tells us relativelylittle about the state of the underlying pro
ess; in e�e
t, the pro
ess has no output at these obser-vation times. S
attered within this string of �s are o

asional non-null output values, but these aredistributed sparsely. Nevertheless, they provide our only information about the state of the pro
ess.We will examine hidden Markov models for su
h a pro
ess. Ea
h model 
ontains one or morestates for whi
h the output distribution produ
es the out
ome � with probability 1. We will referto these as the null states. We will assume for the purposes of this dis
ussion that the outputdistributions in the remaining states assign probability 0 to this out
ome, although most of theresults of this and the following se
tions 
an be 
arried through even if this were not the 
ase. Thesparsity of the pro
ess requires that the transition matrix be set up so that on the majority of time-steps the model is in a null state. On the whole, then, the transition probabilities from null statesto states with full output distributions are relatively low, while transitions in the other dire
tion arerelatively likely.How sparse is sparse? There is no pre
ise answer to this question. All of the algorithms that wedis
uss 
an be equally well applied to models whi
h spend little or no time in null states. However, itwill be apparent that under that 
ondition they would produ
e poor results. The transition betweensparse and full, then, is a matter for empiri
al dis
overy within the framework of the appli
ation.Learning in the SHMM may pro
eed by the standard Baum-Wel
h algorithm that was laid outin the 
ase of the full HMM. However, it is possible to a
hieve some optimizations on the basis ofthe sparse output stru
ture, whi
h we will dis
uss here. Before we 
an do so, however, we need tore
ast the forward{ba
kward algorithm slightly.4.3.1 Another view of the forward{ba
kward algorithmThe presentation in se
tion 4.2.1 des
ribed the forward{ba
kward algorithm in a notationally 
om-pa
t form ideal for exposition. In fa
t, as des
ribed, the algorithm is numeri
ally unstable inimplementations. This instability 
an be resolved by a small modi�
ation, whi
h is the subje
t ofthis se
tion. The same modi�
ation is important to adaptations of the algorithm to sparse HMMs.The diÆ
ulty with the 
urrently des
ribed algorithm is this. At ea
h instan
e i, the 
onjun
tionof observations that appear in the likelihoods des
ribed by Fi and Bi is of a di�erent size. Forinstan
e, F1 des
ribes the likelihood P (y1; x1), while FN des
ribes P (yN ; x1 : : : xN ). If the typi
aldensity at the observation point xi is a, then while F1 is of order a, FN is of order aN . Similarly,B1 is of order aN�1, while BN is of order a0. The produ
t of the two terms is always of order aN ,and it is divided by the likelihood (also order aN) to derive estimates sp;i and tpq;i of order 1. Ifthe value a is 
onsiderably di�erent from 1, the intermediate values in this 
al
ulation 
an be
omeeither very large or very small, and the 
omputation may be
ome numeri
ally unstable.



72We 
an resolve this problem by introdu
ing an alternative group of re
ursive fun
tions thatremain of order 1 throughout. In fa
t, we need three fun
tionsCi = P (xi j x1 : : : xi�1) (4.22)Fp;i = P (yi = p j x1 : : : xi) (4.23)Bp;i = P (xi+1 : : : xN j yi = p)P (xi+1 : : : xN j x1 : : : xi) (4.24)whi
h are 
al
ulated re
ursively as follows.Ci = 1TRiTFi�1 (4.25)Fi = RiTFi�1=Ci (4.26)Bi = TTRi+1Bi+1=Ci+1 (4.27)where 1 is a ve
tor of P ones, and is introdu
ed to indi
ate a sum of the elements of the followingve
tor-valued produ
t.Given these new fun
tions, the state and transition estimates be
omesp;i = Fp;iBp;i and tpq;i = Bp;iRpp;iTpqFq;i�1=Ci: (4.28)The normalization of the re
ursive terms F and B de�ned here is 
ru
ial to the following ex-position of the forward{ba
kward algorithm for SHMMs. Thus, all subsequent referen
es to thealgorithm, and the symbols F , B and C will refer to this re
ast version.4.3.2 Forward{ba
kward algorithm for sparse HMMsBy de�nition, the output sequen
es re
orded from a sparse HMM tend to 
ontain long stret
hes ofnull outputs. These segments leave the model in an identi�able 
on�guration; that is, the value of Fiat the end, and Bi at the beginning of su
h a sequen
e is relatively independent of the measurementsbefore and after su
h a segment.Consider a long segment of null observations stret
hing from observation indi
es a to a+ l. Weassume that the values of the fun
tions Fa�1 and Ba+l are known, while we seek to 
al
ulate Fa+land Ba�1.Consider, �rst, the forward term. Let the notation R� stand for the value of the likelihood matrixRi in 
ases where xi = �. Re
all that su
h matri
es are diagonal, with Rpp;i = Pp (xi). In this 
ase,these elements are 1 for null states and 0 elsewhere. We then haveFa+l / (R�T )(l+1)Fa�1 (4.29)



73with the ve
tor then normalized so that the sum of its elements is 1. Whatever the value of Fa�1,this expression will be dominated by the leading eigenve
tor of the matrix R�T . We will write F�for the suitably normalized eigenve
tor | note that normalization here means that the sum of theelements, rather than the sum of the squares of the elements, is 1. In fa
t, F� is the stationarydistribution of the Markov 
hain that is obtained by restri
ting the 
urrent estimate of the Markovmodel to only the null states, the transition matrix of whi
h is given by renormalizing the 
olumnsof the matrix R�TR�. Thus the forward step after a sequen
e of null outputs is a
hieved by simplysetting the value of the forward term to F�.Using a similar argument we 
an show that at the beginning of a long segment of nulls, thevalue of the ba
kward term Ba�1 will approa
h the leading eigenve
tor of the matrix TTR�, suitablynormalized. We write ~B� for the unnormalized eigenve
tor. Unlike the forward terms, Bi is notitself a probability distribution and thus we have no immediate way to normalize. However theprodu
ts FiBi = P (yi j x1 : : : xN ) are probabilities. Thus, knowing the value of Fa�1 we 
an �ndthe appropriate normalization for Ba�1 (whi
h is potentially di�erent before ea
h null segment).The forward{ba
kward steps a
ross a sequen
e of nulls from a to a+ l is thusFa+l = F� (4.30)Ba�1 = ~B�=FTa�1 ~B� (4.31)The use of these forms limits the appli
ation of the full forward{ba
kward algorithm to onlythose regions in whi
h some non-null outputs are observed, often at a 
onsiderable 
omputationalsavings.4.4 Mixtures of Sparse HMMsWe 
onsider the following model. We have M independent sparse hidden Markov models. Call theoutput of the mth model at time-step i, xm;i1. We do not observe these variables dire
tly, insteadwe make a single observation at ea
h time-step, derived from these values a

ording to the followingxi =8>>><>>>: � if all xm;i = �xm�;i if only xm�;i 6= �
= if multiple xm;i 6= � (4.32)1Variables in the ensuing development will often need to be identi�ed by state, 
omponent model and observationnumber. We shall adopt two 
onventions to assist in 
orre
tly parsing all of these subs
ripts. 1. The order will alwaysbe (state, model, instan
e), but some indi
es might be omitted if unne
essary. 2. the letters p and q will be usedto index state, m and l for model, and i for instan
e; n will be used in the supers
ript for EM iteration number asbefore.



74

PSfrag repla
ements

y1;0 y1;1 y1;2 y1;3x1;1 x1;2 x1;3y2;0 y2;1 y2;2 y2;3x2;1 x2;2 x2;3y3;0 y3;1 y3;2 y3;3x3;1 x3;2 x3;3x1 x2 x3Figure 4.2: A mixture of sparse hidden Markov modelsIf more than one HMM has non-null output, we see only the fa
t that a 
ollision o

ured, notedby the spe
ial output value 
=. We obtain no information about whi
h, nor even how many, of theHMMs had non-null outputs.The model is illustrated in �gure 4.2. The random variables in the model are the state variablesym;i and the 
orresponding outputs xm;i. The observed value xi is a
tually a deterministi
 fun
tionof the outputs, xm;i, of ea
h 
omponent sparse HMM.4.4.1 LearningSin
e the 
omponent SHMMs are presumed to be independent, the joint data likelihood, givenobservations X = fxig, HMM outputs Xm = fxm;ig and indi
ator variables Z = fzm;ig is simplythe produ
t of the joint data likelihoods (4.5) for ea
h of the 
omponent HMMs given observationsfxm;ig and indi
ators fzm;ig. In the log domain, this is`X ;Xm;Z (fTmg; f�p;mg) =Xm Xi  Xp;q zp;m;izq;m;i logTpq;m +Xp zp;i logPp;m (xm;i)! (4.33)



75The E-step involves 
al
ulation of the expe
ted value of this expression with respe
t to thedistribution P (zp;m;i; xm;i j xi). Note that the expe
tation is taken not only with respe
t to thezm;i (as usual), but also with respe
t to the xm;i, whi
h are not dire
tly observed in this 
ase. Theexpe
ted value isQn(fTmg; f�p;mg) = EZ;XmjX ;�n�1 [`X ;Xm;Z (fTmg; f�p;mg)℄= Xm Xi Xp;q EZ;XmjX ;�n�1 [zp;m;izq;m;i�1℄ logTpq;m+Xm Xi Xp EZ;XmjX ;�n�1 [zp;m;i logPp;m (xm;i)℄= Xm Xi Xp;q tnpq;m;i logTpq;m+Xm Xi Xp snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄ (4.34)Note the 
hange in distribution that appears in the expe
tation of the �nal expression; we have usedthe fa
t that zp;m;i is an indi
ator variable as followsEZ;XmjX ;�n�1 [zp;m;i logPp;m (xm;i)℄= Xzp;m;i Z dxm;i P�n�1 (zp;m;i; xm;i j X ) zp;m;i logPp;m (xm;i)= P�n�1 (zp;m;i = 1 j X ) Z dxm;i P�n�1 (xm;i j zp;m;i = 1;X ) logPp;m (xm;i)+ P�n�1 (zp;m;i = 0 j X ) 0= snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄ (4.35)What is this expe
ted value? If no 
ollision was observed then xm;i is 
ompletely determined byzp;m;i and xi. If state p of model m is a null state, xm;i = �; otherwise xm;i = xi. On the otherhand, if a 
ollision was observed then xi tells us nothing about the value of xm;i. It is still truethat if the state (p;m) has no output, xm;i = �; but now, if the state is non-null, xi;m is distributeda

ording to Pp;m (x). Thus, for non-null states, we haveExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄ = 8<: logPp;m (xi) if xi 6= 
=�H[Pp;m℄ if xi = 
= (4.36)where H[�℄ indi
ates the entropy of the distribution.4.4.2 Coupled forward{ba
kward algorithmWe need to 
al
ulate the state and transition estimates that appear in (4.34). We do so by runningthe forward{ba
kward algorithm separately on ea
h 
omponent SHMM. Sin
e dire
t observation of



76the outputs of the 
omponent models is not possible, however, we must estimate those outputs usingthe observed output of the entire mixture, as well as the re
ursive terms, Fm;i�1 and Bm;i�1, fromall of the 
omponents. This use of the values of the re
ursive terms from other 
omponent SHMMsleads to a 
oupling of the di�erent instan
es of the forward{ba
kward algorithm.Despite this 
oupling, however, the separation of the estimation pro
ess into multiple 
omponentre
ursions 
onstrains the E-step optimization to only those distributions whi
h satisfy a fa
torization
onstraint of the form (for the F re
ursion):P (fym;ig j x1 : : : xi) =Ym P (ym;i j x1 : : : xi) (4.37)as well as a se
ond, similar, 
onstraint due to the B re
ursion. Su
h imperfe
t E-steps were dis
ussedbrie
y in se
tion 1.8. At ea
h time-step we 
al
ulate the full joint distribution of the ym;i (whi
h
ontains PM terms) but then store only the marginals (needing only P �M terms). Clearly, to
al
ulate the state and transtion estimates we only need the marginals, and so from that point ofview the restri
tion is reasonable. However, the Fm;i are also used to estimate the distribution atthe (i + 1)th step. Use of the fa
torized distribution for the ith step, rather than the full jointdistribution, leads to a mis-estimation of the joint distribution at the (i+1)th step. It is thus, thatthe 
onstraint of (4.37) appears.We will dis
uss the impa
t of this 
onstraint on the EM pro
ess below. First, let us pro
eed withthe exposition of the algorithm. The re
ursive terms are de�ned mu
h as before.Ci = P (xi j x1 : : : xi�1) (4.38)Fp;m;i = P (ym;i = p j x1 : : : xi) (4.39)Bp;m;i = P (xi+1 : : : xN j ym;i = p)P (xi+1 : : : xN j x1 : : : xi) (4.40)However, in this 
ase the xi are not the dire
t outputs of the HMM, but are rather the overallobservations from the mixture. Thus, the 
al
ulations be
ome slightly more elaborate. We willobtain here expressions for only the forward terms Ci and Fp;m;i. The 
al
ulation of Bp;m;i pro
eedssimilarly.We write ~Fp;m;i for P (ym;i = p j x1 : : : xi�1), the probability of �nding the mth model in statep on step i given the previous observations, but not the 
urrent one. This is, of 
ourse, basedre
ursively on our estimate of the distribution of states ym;i�1 given observations up to xi�1. Withour fa
torial assumption on the distribution of ym;i�1 this is given by~Fm;i = TmFm;i�1 (4.41)



77Also of interest will be the probability that model m is in a null state. We will write �p;m = 1 ifPp;m (�) = 1 and �p;m = 0 otherwise. Using this indi
ator, we obtain ~F�;m;i =Pp�p;m ~Fp;m;i.It will be useful to treat separately the three 
ases where xi is 1. null, 2. non-null and non-
ollision,and 3. a 
ollision.1. xi = �In this 
ase Ci is the probability that every 
omponent is in a null state,Ci =Ym ~F�;m;i (4.42)To 
al
ulate Fp;m;i we need to �nd the distribution P (xi = �; ym;i = p j x1 : : : xi�1) =P (xi = � j ym;i = p; x1 : : : xi�1) ~Fp;m;i. This is 
learly 0 if �p;m = 0. If �p;m = 1, thenP (xi = � j ym;i = p; x1 : : : xi�1) is just the probability that all other 
omponents are in nullstates. Thus Fp;m;i = 1CiP (xi = �; ym;i = p j x1 : : : xi�1)= 1Ci�p;m ~Fp;m;i Yl6=m ~F�;l;i= �p;m ~Fp;m;i~F�;m;i (4.43)2. xi 6= �; 
=Here, Ci is the probability that one 
omponent outputs the observed value xi, while all theother 
omponents are in null states.Ci =Xm Xp Pp;m (xi) ~Fp;m;i Yl6=m ~F�;l;i (4.44)P (xi j ym;i = p; x1 : : : xi�1) is straightforward if (p;m) is not null; being Pp;m (xi) times thethe probability that all other 
omponents are in null states. If, on the other hand, �p;m = 1,then the 
onditional probability is given by the probability that exa
tly one of the remaining
omponents outputs the value xi.Fp;m;i = 1Ci ~Fp;m;i0�(1��p;m)Pp;m (xi)Yl ~F�;l;i +�p;mXl6=mXp Pp;l (xi) ~Fp;l;i Yk 6=l;m ~F�;k;i1A(4.45)3. xi = 
=



78In this 
ase, Ci is the probability that at least two 
omponents are in a non-null stateCi = 1� Ym F�;m;i!�0�Xm (1� F�;m;i)Yl6=mF�;m;i1A (4.46)The expression for Fp;m;i is notationally 
umbersome, so we will not write it expli
itly. Instead,we note that P (xi j ym;i = p; x1 : : : xi�1) is the probability that at least one other 
omponentis non-null if �p;m = 0 and that at least two other 
omponents are non-null if �p;m = 1. Bothof these probabilities are found in a form similar to that of Ci, above.On
e the terms Fi;m and Bi;m have been 
al
ulated, the state and transition estimates are derivedusing (4.28) applied to ea
h 
omponent in turn.Consequen
es of the fa
torial approximationTo what extent does the fa
torial 
onstraint of the 
oupled forward{ba
kward algorithm a�e
t theeventual parameter estimates? We may 
an make two separate arguments for robustness of theestimates to error.First, it might be feared that, sin
e the terms F and B are 
al
ulated re
ursively and sin
e thereis an error in ea
h 
al
ulation, the estimated value and the true value would progressively divergeover time. This is not the 
ase. Boyen and Koller (1999) have examined fa
torial approximationssu
h as the present one in the 
ontext of general dynami
 probabilisti
 networks. They argue thatthe approximation error does not grow over time be
ause two for
es oppose the growth. First, thein
orporation of observed data tends to drive the approximated distribution towards the 
orre
t one.Se
ond, the randomization due to the sto
hasti
 transition from the (i�1)th step to the ith tends tobroaden both the 
orre
t distribution and the approximate one, whi
h also has the e�e
t of bringingthem 
loser together. In other words, TmFm;i�1 may be 
loser to the true P (ym;i j xi : : : xi�1) thanFm;i�1 is to P (ym;i�1 j xi : : : xi�1). Intuitively, we may think of ea
h random transition 
ontributingto a \forgetting" of the old, in
orre
t, distribution.To these arguments we 
an add a third, pe
uliar to the 
urrent model. When the observationxi = �, our forward and ba
kward steps are 
orre
t. Re
all from the dis
ussion of the forward{ba
kward algorithm for sparse HMMs that after a substantial stet
h of null observations, Fi (Bi)is relatively independent of its value at the beginning (end) of the segment. Thus, in the mixture,whenever we enounter a stret
h of null observations we tend to reset the forward{ba
kward estimatesto their 
orre
t values.Se
ond, even if the errors in the state and transition estimates are typi
ally large, it is possiblethat their e�e
t on parameter estimates derived through EM may be small. Constrained E-stepsof the sort we perform here were dis
ussed brie
y in se
tion 1.8. There it was pointed out that



79generalized EM using a 
onstrained optimization of the latent variable distribution will eventuallyyield the 
orre
t maximum-likelihood parameter estimates if and only if the 
onditional distributionat the optimum P�� (Y j X ) satis�es the 
onstraint. In the present 
ase, this will be true if, at theoptimal parameter values, only one 
omponent is likely to be in a non-null state at ea
h time-stepwhere xi 6= �; 
=. In other words, all observed data 
an be assigned with high likelihood to onlyone 
omponent. If, on the other hand, two di�erent 
omponents 
laim equal responsibility for thepoint, then the fa
tored distribution will assign a probability 
lose to 0.25 that they were bothin non-null states, whereas the 
orre
t joint probability would be 0 (if they were both in non-nullstates a 
ollision would have been observed). Futhermore, provided that most data are well assignedin this way, the above arguments suggest that a small number of ambiguous points will not havea profound e�e
t on the estimates asso
iated with the others. Thus, in well 
lustered data, theapproximation has little e�e
t on the eventual estimates, even if, in intermediate steps of EM, it isina

urate. Note that \well-
lustered" here does not ne
essarily mean that the output distributionsare well separated. Ea
h data point must be assigned to a single 
omponent, either be
ause onlythat 
omponent has an output distribution whi
h assigns it high likelihood or be
ause its temporalrelationship to nearby points marks it as arising from a parti
ular model.4.4.3 Parameter re-estimationThe M-step requires optimization of the expe
ted log-likelihood (4.34) with respe
t to the parame-ters, with the estimates snp;m;i and tnpq;m;i �xed at the values derived from the E-step. The expressionof (4.34) 
ontains separate additive terms for ea
h 
omponent model; as a result, it 
an be ompti-mized with respe
t to the parameters of ea
h SHMM independently. The part that involves the mthmodel isQnm(Tm; f�p;mg) =Xi Xp;q tnpq;m;i logTpq;m +Xi Xp snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄(4.47)Optimization with respe
t to Tpq;m 
an 
learly pro
eed exa
tly as in the standard 
ase, and so weobtain Tnpq;m = PNi=1 tnpq;m;iPN�1i=0 snq;m;i (4.48)Re-estimation of the output distribution parameters �p;m is almost the same as in the standardBaum{Wel
h algorithm. It is still the 
ase that the di�erent output distributions 
an be optimizedindependently. For states with null output distributions, of 
ourse, there are no parameters to �t.



80For non-null distributions, we re
all the result of (4.36) and �nd that�np;m = argmax�p;m 0� Xi:xi 6=�;
= snp;m;i logP�p;m (xi)� Xi:xi=
= snp;m;iH[Pp;m℄1A (4.49)(Note that if xi = � and (p;m) is not a null state, snp;m;i must be 0, and so we 
an ignore the
orresponding terms). Thus, the parameters are �t to the observed non-null and non-
ollision data,weighted by the state estimates as usual, but with an additional entropy penalty on the likelihoodwhi
h weighted by the sum of the state estimates for 
ollision time-steps. In pra
ti
e, if the numberof 
ollisions is small relative to the total number of non-null observations, we 
an often negle
t thisterm.


