
Chapter 4 Sparse Hidden Markov ModelsThe hidden Markov model (HMM) is one of the most suessful and widely used generativemodels in the �eld of statistial modeling. The statistial theory of HMMs has been driven in largepart by the �eld of speeh proessing and is extremely well worked-out. Indeed, the Baum-Welhalgorithm of the sixties is one of the earlier examples of an implementation of an EM algorithm,and muh of the theory of EM was well understood in this ontext well before the publiation of thegeneral formulation. Nevertheless, advanes in the theory of HMMs are still made. Reent examplesinlude the fatorial hidden Markov model Ghahramani and Jordan (1997).In this hapter we review the generative model underlying the HMM, and disuss the appliableEM learning algorithm. We then examine a partiular sub-lass of the general model, the sparseHMM, in whih the majority of outputs are zeros (or null). We then onsider a \mixture" of theserestrited models. This mixture-like ompound model is a speial ase of the fatorial HMM: weonstrut an EM algorithm with an imperfet E-step, of the form that was justi�ed in setion 1.8.This approah, though not exat, will ome lose to the true the maximum likelihood solution forertain lasses of data.4.1 The Generative Model4.1.1 The Markov hainThe �nite Markov hain (or Markov proess) has been extensively studied in stohasti proesstheory. It onsists of a series of N identially distributed disrete variables fyig, with the propertythat eah is dependent only on the value of the preeding one. More preisely, the joint distributionover the variables fators as follows.P (y1; y2 : : :) = P (y1) NYi=2P (yi j yi�1) (4.1)As a result, yi is onditionally independent of all of the variables y1 : : : yi�2 given yi�1.The di�erent values that the variables may take on are alled the states of the proess; in themodels we disuss there is a �nite number of suh values and we take them to be the numbers 1 : : : P .The \state" terminology suggests a onnetion between a Markov proess and a non-determinsti�nite-state automaton. In fat, the sequene of states traversed by suh an automaton in the abseneof input (or given onstant input) indeed forms a Markov sequene. We shall use the two sets of



65terminology interhangeably, as is ommon in the �eld, referring, for instane, to the model as beingin state p at step i when yi takes the value p.The joint distribution (4.1) is ompletely spei�ed by the two disrete probability distributions,the initial state probabilities P (y1) and the state transition probabilities P (yi j yi�1) fori > 1. We an ollet eah of the transition probabilities into a P � P transition matrix T+, sothat T+pq = P (yi = p j yi�1 = q). The initial probabilities might be olleted into a seperate vetorT0, however, in most ases it is more onvenient to roll them into the transition matrix as follows.We introdue a new \random" variable y0 whih preedes (in the sense of the Markov onditioningriterion) the �rst atual random variable y1. This variable assumes the value 0, whih is not apossible outome for any other variable, with probability one. In this model, the transition matrixis augmented to a (P + 1) � (P + 1) matrix T , with the �rst olumn ontaining the initial stateprobabilities; the �rst row being entirely zero to indiate that the system never makes a transitionbak into the state 0; and the remaining elements being the transition probabilities. For obviousreasons it will be onvenient to number the rows and olumns of T from 0, rather than 1. Onenormalization requirements are aounted for, the augmented transition matrix T ontains P 2�1 freeparameters; P � 1 speify the initial probabilities and P (P � 1) speify the transition probabilities.Using this notation, manipulations of the probability funtions beomes quite straightforward.For example, if the marginal distribution of the variable yi�1 is given by the vetor �i�1, then themarginal distribution of yi is given by P (yi = p) =Pq P (yi = p j yi�1 = q)P (yi�1 = q), whih anbe written more suintly as �i = T�i�1. As a result, the marginal distribution of the ith variableis �i = T i0BBBBBBBBB�
100...0
1CCCCCCCCCA (4.2)

Given some basi regularity onditions on the transition matrix T , there exists a unique proba-bility distribution over the states, represented by the vetor �, whih satis�es the onditionPT (yi) = � ) PT (yi+1) = � (4.3)For obvious reasons, this is alled the stationary distribution of the Markov proess.Clearly, � is a right eigenvetor of the matrix T with eigenvalue 1. It an be shown, undersome additional mild onditions on T (related to the ergodiity of the Markov proess), that allother eigenvalues have absolute values stritly smaller than 1 (Seneta 1981; Karlin 1991). As aresult, given any initial distribution on the states, after a suÆient number of steps the marginal
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yiTf�pg iFigure 4.1: The hidden Markov modeldistribution of the yi will approah �. The stationary distribution is thus an attrator in the spaeof marginal distributions on the Markov variables. The magnitude of the largest non-unit eigenvaluesets the rate of deay of the non-stationary omponents, and thus the number of steps we need towait in the typial ase before the marginal state-distribution approahes the stationary one. Thisis alled the mixing time of the (ergodi) hain.4.1.2 The hidden Markov modelThe hidden Markov model is a latent variable generative model derived from the basi Markovmodel desribed above. The struture of the model is drawn in graphial terms in �gure 4.1. Panel Arepresents all of the variables of the model expliitly. The variables yi form a Markov hain, butin this ase they are not diretly observed. Instead, we see output variables xi whih depend onlyon the orresponding state yi; that is, eah xi is onditionally independent of all other variables,both observed and latent, given yi. We adopt the onvention of a deterministi initial state y0 toompress all of the Markov parameters into a single matrix. There is no orresponding observablex0. The onditional distribution P (xi j yi) is stationary with respet to the instane variable i. Thus,assoiated with eah state p (exept 0) is an unhanging output distribution whih plays a similarrôle to the omponent distributions of the mixture model. We will write �p for the parameters of thisdistribution and Pp (x) for the distribution (or density) funtion, just as in the ase of the mixturemodel. Indeed, the onnetion between the two is quite deep. In �gure 4.1B the same HMM, alongwith expliit parameter nodes, is shown in the more ompat plate representation. It is lear thatthe struture is extremely similar to that of the mixture model; the only di�erene is the dependeneof the latent variable between di�erent instanes. (As an aside, the plate notation is not well suited



67for suh models, sine it does not make lear the essential Markov nature of the latent variableproess, whih is that the arrow linking the yi nodes strethes only to the next plate.)The parameters of model are the Markov probabilities ontained in the matrix T along with allof the parameters �p of the output distributions. The likelihood of the parameters, with observationsX = fxig, is found by summing over all possible strings of Markov states y1 : : : yNLX (T; f�pg) = Xy1:::yNYi Tyi;yi�1Pyi (xi) (4.4)An alternative, reursive, form for the alulation of this likelihood will appear below.4.2 Learning: The Baum-Welh AlgorithmThe ommonly used learning algorithm for HMMs was developed in the ourse of lassi�ed work byEri Baum and Lawrene Welh in the sixties. This algorithm turns out to be the standard EMalgorithm applied to the generative model; however, its development pre-dated the publiation ofthe original EM paper (Dempster et al : 1977) by at least a deade. The appliation is onsiderablymore involved than the examples we have handled thus far. In partiular, the E-step, in whihparts of the onditional P� (Y j X ) are alulated, is suÆiently elaborate to have laimed a nameof its own; it is alled the forward{bakward algorithm. One this is ompleted, the M-step is morestraightforward. The omplete approah is ommonly known as the Baum-Welh algorithm.The joint data likelihood, based on observations, X = fxig and latent variable values Y = fyigis LX ;Y (T; f�pg) = NYi=1 Tyi;yi�1Pyi (xi) (4.5)leading to the log-likelihood`X ;Y (T; f�pg) =Xi logTyi;yi�1 +Xi logPyi (xi) (4.6)As in the ase of the mixture model, we introdue latent indiator variables in plae of thedisrete latent variables yi. We de�ne zp;i to take the value 1 if yi = p and 0 otherwise. We anthen rewrite the log-likelihood as follows`X ;Z (T; f�pg) =Xi Xp;q zp;izq;i�1 logTpq +Xi Xp zp;i logPp (xi) (4.7)In the E-step for the nth iterarion, we take the expeted value of this likelihood with respet tothe onditional distribution determined by the parameter values on the (n�1)th step, P�n�1 (Z j X ).



68This gives usQn(T; f�pg) = EZjX ;�n�1 [`X ;Z (T; f�pg)℄= Xi Xp;q EZjX ;�n�1 [zp;izq;i�1℄ logTpq +Xi Xp EZjX ;�n�1 [zp;i℄ logPp (xi)= Xi Xp;q tnpq;i logTpq +Xi Xp snp;i logPp (xi) (4.8)where we have written snp;i for EZjX ;�n�1 [zp;i℄ and tnpq;i for EZjX ;�n�1 [zp;izq;i�1℄. These quantitiesare analogous to the responsibilities of the mixture model, although that name is not used in thisase. We shall all them the state estimates and transition estimates respetively. They aregiven by the probabilitiessnp;i = P�n�1 (zp;i = 1 j x1 : : : xN ) (4.9)tnpq;i = P�n�1 (zp;i = 1 & zq;i�1 = 1 j x1 : : : xN ) (4.10)Unlike in the ase of the mixture model, the onditioning on the observations does not redue toonditioning only on xi, due to the oupling of latent variables in this model. These probabilitiesneed to be alulated by an iterative approah known as the forward{bakward algorithm.4.2.1 E-step: The forward{bakward algorithmThe algorithm by whih the state and transition estimates are found is a speial ase of a generalinferene algorithm on probabilisti graphial models (Jordan 1998). However, we have not developedthe general theory of suh models here. Therefore, we simply lay out the algorithm, and then showthat it does indeed ahieve the neessary estimates.We are given a hidden Markov model with known parameters, T and f�pg, and a set of obser-vations fxig. We wish to alulate the marginal probabilities of (4.9) and (4.10). Introdue twoquantities, eah a joint probability distribution, whose values an be alulated reursively at eahtimestep. The �rst is the likelihood that the system emitted the observed values x1 : : : xi and wasthen in state p at the ith time-step.Fp;i = P (yi = p; x1 : : : xi) (4.11)= Pp (xi)Xq TpqFq;i�1 (4.12)Note that the likelihood that the model generated the omplete string of observations is then justLX (T; f�pg) =Xp Fp;N (4.13)



69thus obtaining the promised reursive expression for this likelihood. We will need this value againbelow, and so reserve for it the symbol L.The seond reursive quantity we need is the likelihood that, starting from state p on step i thesystem generated the observed string xi+1 : : : xN .Bp;i = P (xi+1 : : : xN j yi = p) (4.14)= Xq TqpPq (xi+1)Bq;i+1 (4.15)Note that due to the Markov nature of the latent variable hain, observations xi+1 and furtherare independent of all previous observations given the value of yi and so Bp;i is also equal toP (xi+1 : : : xN j yi = p; x1 : : : xi)Both reursions an be written more suintly if we introdue a (P + 1) � (P + 1) diagonalmatrix Ri (indexed, like T , from 0) with Rpp;i = Pp (xi). We then obtain, with vetor forms forboth F and B Fi = RiTFi�1 and Bi = TTRi+1Bi+1 (4.16)Notie that one of these reursions runs forward over the observations, while the other runs bak-wards. Thus the name \forward{bakward".The estimates sp;i and tpq;i an be expressed in terms of F and B:sp;i = P (yi = p j x1 : : : xN )= P (xi+1 : : : xN j yi = p)P (yi = p; x1 : : : xi)P (x1 : : : xN )= Fp;iBp;i=L (4.17)andtpq;i = P (yi = p; yi�1 = q j x1 : : : xN )= P (xi+1 : : : xN j yi = p)P (xi j yi = p)P (yi = p j yi�1 = q)P (yi�1 = q; x1 : : : xi�1)P (x1 : : : xN )= Bp;iRpp;iTpqFq;i�1=L (4.18)where, in the seond step of eah of these results we have used the Markovian properties of themodel to remove irrelevant onditioning variables.The E-step of the Baum-Welh algorithm, then, is ahieved by substituting into (4.17) and (4.18)the (n� 1)th iteration parameter estimates, to obtain snp;i and tnpq;q .



704.2.2 M-step: Parameter re-estimationThe re-estimation of the Markov transition matrix is straightforward, and reminisient of the re-estimation of the mixing probabilities of a mixture model. We optimize the expeted log-likelihoodof (4.8) with respet to Tpq, enforing the onstraint Pp Tpq = 1 with a Lagrange multiplier, toobtain ��Tpq ����Tnpq  Xi Xp;q tnpq;i logTpq � �Xp Tpq! =Xi tnpq;iTnpq � � = 0 (4.19)From whih we �nd that Tpq /Pi tnpq;i. The normalization onstraint then gives usTnpq = PNi=1 tnpq;iPN�1i=0 snq;i (4.20)where we use the fat that Pp tnpq;i = snq;i�1 whih follows from the marginalization of the jointdistribution represented by tpq;iThe remaining update rules, for the output distribution parameters f�pg, depend on the formof the output distribution funtion. We an, however, make some headway. First, note that the�p are independent of eah other, and so an eah be optimized separately. Furthermore, only theseond term in the expeted log-likelihood (4.8) has any dependene on �p. As a result, we arriveat an update rule idential to that enountered in the ase of the mixture model (2.15), with theresponsibilities replaed by the state estimates snp;i.�np = argmax�p Xi snp;i logP�p (xi) (4.21)As in the mixture ase, we may interpret this as a weighted �t of the output distribution parametersto the observations xi, with weights given by the estimates snp;i.4.3 Sparse HMMsIn this setion, we introdue a speial ase of the HMM. This restrited model, the sparse hid-den Markov model or SHMM, is one that may be enountered with some frequeny in pratialmodeling situations; indeed we develop it here beause it will be of use to us in a neural data anal-ysis problem takled in the following hapters. The restrited model itself will only be of limitedinterest from an algorithmi point of view: all of the standard HMM learning algorithms may beused and, though we will desribe an adaptation of the standard Baum-Welh algorithm, the advan-tages thereby derived are merely in the realm of eÆieny. However, the introdution of this modelwill allow us to speak meaningfully of a mixture of sparse HMMs, and derive an eÆient learningalgorithm for suh a mixture.



71The proesses that we onsider are sparse in the following sense. In eah string of observationsxi, the majority yield a null value, whih we represent by the symbol �. This value tells us relativelylittle about the state of the underlying proess; in e�et, the proess has no output at these obser-vation times. Sattered within this string of �s are oasional non-null output values, but these aredistributed sparsely. Nevertheless, they provide our only information about the state of the proess.We will examine hidden Markov models for suh a proess. Eah model ontains one or morestates for whih the output distribution produes the outome � with probability 1. We will referto these as the null states. We will assume for the purposes of this disussion that the outputdistributions in the remaining states assign probability 0 to this outome, although most of theresults of this and the following setions an be arried through even if this were not the ase. Thesparsity of the proess requires that the transition matrix be set up so that on the majority of time-steps the model is in a null state. On the whole, then, the transition probabilities from null statesto states with full output distributions are relatively low, while transitions in the other diretion arerelatively likely.How sparse is sparse? There is no preise answer to this question. All of the algorithms that wedisuss an be equally well applied to models whih spend little or no time in null states. However, itwill be apparent that under that ondition they would produe poor results. The transition betweensparse and full, then, is a matter for empirial disovery within the framework of the appliation.Learning in the SHMM may proeed by the standard Baum-Welh algorithm that was laid outin the ase of the full HMM. However, it is possible to ahieve some optimizations on the basis ofthe sparse output struture, whih we will disuss here. Before we an do so, however, we need toreast the forward{bakward algorithm slightly.4.3.1 Another view of the forward{bakward algorithmThe presentation in setion 4.2.1 desribed the forward{bakward algorithm in a notationally om-pat form ideal for exposition. In fat, as desribed, the algorithm is numerially unstable inimplementations. This instability an be resolved by a small modi�ation, whih is the subjet ofthis setion. The same modi�ation is important to adaptations of the algorithm to sparse HMMs.The diÆulty with the urrently desribed algorithm is this. At eah instane i, the onjuntionof observations that appear in the likelihoods desribed by Fi and Bi is of a di�erent size. Forinstane, F1 desribes the likelihood P (y1; x1), while FN desribes P (yN ; x1 : : : xN ). If the typialdensity at the observation point xi is a, then while F1 is of order a, FN is of order aN . Similarly,B1 is of order aN�1, while BN is of order a0. The produt of the two terms is always of order aN ,and it is divided by the likelihood (also order aN) to derive estimates sp;i and tpq;i of order 1. Ifthe value a is onsiderably di�erent from 1, the intermediate values in this alulation an beomeeither very large or very small, and the omputation may beome numerially unstable.



72We an resolve this problem by introduing an alternative group of reursive funtions thatremain of order 1 throughout. In fat, we need three funtionsCi = P (xi j x1 : : : xi�1) (4.22)Fp;i = P (yi = p j x1 : : : xi) (4.23)Bp;i = P (xi+1 : : : xN j yi = p)P (xi+1 : : : xN j x1 : : : xi) (4.24)whih are alulated reursively as follows.Ci = 1TRiTFi�1 (4.25)Fi = RiTFi�1=Ci (4.26)Bi = TTRi+1Bi+1=Ci+1 (4.27)where 1 is a vetor of P ones, and is introdued to indiate a sum of the elements of the followingvetor-valued produt.Given these new funtions, the state and transition estimates beomesp;i = Fp;iBp;i and tpq;i = Bp;iRpp;iTpqFq;i�1=Ci: (4.28)The normalization of the reursive terms F and B de�ned here is ruial to the following ex-position of the forward{bakward algorithm for SHMMs. Thus, all subsequent referenes to thealgorithm, and the symbols F , B and C will refer to this reast version.4.3.2 Forward{bakward algorithm for sparse HMMsBy de�nition, the output sequenes reorded from a sparse HMM tend to ontain long strethes ofnull outputs. These segments leave the model in an identi�able on�guration; that is, the value of Fiat the end, and Bi at the beginning of suh a sequene is relatively independent of the measurementsbefore and after suh a segment.Consider a long segment of null observations strething from observation indies a to a+ l. Weassume that the values of the funtions Fa�1 and Ba+l are known, while we seek to alulate Fa+land Ba�1.Consider, �rst, the forward term. Let the notation R� stand for the value of the likelihood matrixRi in ases where xi = �. Reall that suh matries are diagonal, with Rpp;i = Pp (xi). In this ase,these elements are 1 for null states and 0 elsewhere. We then haveFa+l / (R�T )(l+1)Fa�1 (4.29)



73with the vetor then normalized so that the sum of its elements is 1. Whatever the value of Fa�1,this expression will be dominated by the leading eigenvetor of the matrix R�T . We will write F�for the suitably normalized eigenvetor | note that normalization here means that the sum of theelements, rather than the sum of the squares of the elements, is 1. In fat, F� is the stationarydistribution of the Markov hain that is obtained by restriting the urrent estimate of the Markovmodel to only the null states, the transition matrix of whih is given by renormalizing the olumnsof the matrix R�TR�. Thus the forward step after a sequene of null outputs is ahieved by simplysetting the value of the forward term to F�.Using a similar argument we an show that at the beginning of a long segment of nulls, thevalue of the bakward term Ba�1 will approah the leading eigenvetor of the matrix TTR�, suitablynormalized. We write ~B� for the unnormalized eigenvetor. Unlike the forward terms, Bi is notitself a probability distribution and thus we have no immediate way to normalize. However theproduts FiBi = P (yi j x1 : : : xN ) are probabilities. Thus, knowing the value of Fa�1 we an �ndthe appropriate normalization for Ba�1 (whih is potentially di�erent before eah null segment).The forward{bakward steps aross a sequene of nulls from a to a+ l is thusFa+l = F� (4.30)Ba�1 = ~B�=FTa�1 ~B� (4.31)The use of these forms limits the appliation of the full forward{bakward algorithm to onlythose regions in whih some non-null outputs are observed, often at a onsiderable omputationalsavings.4.4 Mixtures of Sparse HMMsWe onsider the following model. We have M independent sparse hidden Markov models. Call theoutput of the mth model at time-step i, xm;i1. We do not observe these variables diretly, insteadwe make a single observation at eah time-step, derived from these values aording to the followingxi =8>>><>>>: � if all xm;i = �xm�;i if only xm�;i 6= �= if multiple xm;i 6= � (4.32)1Variables in the ensuing development will often need to be identi�ed by state, omponent model and observationnumber. We shall adopt two onventions to assist in orretly parsing all of these subsripts. 1. The order will alwaysbe (state, model, instane), but some indies might be omitted if unneessary. 2. the letters p and q will be usedto index state, m and l for model, and i for instane; n will be used in the supersript for EM iteration number asbefore.
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y1;0 y1;1 y1;2 y1;3x1;1 x1;2 x1;3y2;0 y2;1 y2;2 y2;3x2;1 x2;2 x2;3y3;0 y3;1 y3;2 y3;3x3;1 x3;2 x3;3x1 x2 x3Figure 4.2: A mixture of sparse hidden Markov modelsIf more than one HMM has non-null output, we see only the fat that a ollision oured, notedby the speial output value =. We obtain no information about whih, nor even how many, of theHMMs had non-null outputs.The model is illustrated in �gure 4.2. The random variables in the model are the state variablesym;i and the orresponding outputs xm;i. The observed value xi is atually a deterministi funtionof the outputs, xm;i, of eah omponent sparse HMM.4.4.1 LearningSine the omponent SHMMs are presumed to be independent, the joint data likelihood, givenobservations X = fxig, HMM outputs Xm = fxm;ig and indiator variables Z = fzm;ig is simplythe produt of the joint data likelihoods (4.5) for eah of the omponent HMMs given observationsfxm;ig and indiators fzm;ig. In the log domain, this is`X ;Xm;Z (fTmg; f�p;mg) =Xm Xi  Xp;q zp;m;izq;m;i logTpq;m +Xp zp;i logPp;m (xm;i)! (4.33)



75The E-step involves alulation of the expeted value of this expression with respet to thedistribution P (zp;m;i; xm;i j xi). Note that the expetation is taken not only with respet to thezm;i (as usual), but also with respet to the xm;i, whih are not diretly observed in this ase. Theexpeted value isQn(fTmg; f�p;mg) = EZ;XmjX ;�n�1 [`X ;Xm;Z (fTmg; f�p;mg)℄= Xm Xi Xp;q EZ;XmjX ;�n�1 [zp;m;izq;m;i�1℄ logTpq;m+Xm Xi Xp EZ;XmjX ;�n�1 [zp;m;i logPp;m (xm;i)℄= Xm Xi Xp;q tnpq;m;i logTpq;m+Xm Xi Xp snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄ (4.34)Note the hange in distribution that appears in the expetation of the �nal expression; we have usedthe fat that zp;m;i is an indiator variable as followsEZ;XmjX ;�n�1 [zp;m;i logPp;m (xm;i)℄= Xzp;m;i Z dxm;i P�n�1 (zp;m;i; xm;i j X ) zp;m;i logPp;m (xm;i)= P�n�1 (zp;m;i = 1 j X ) Z dxm;i P�n�1 (xm;i j zp;m;i = 1;X ) logPp;m (xm;i)+ P�n�1 (zp;m;i = 0 j X ) 0= snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄ (4.35)What is this expeted value? If no ollision was observed then xm;i is ompletely determined byzp;m;i and xi. If state p of model m is a null state, xm;i = �; otherwise xm;i = xi. On the otherhand, if a ollision was observed then xi tells us nothing about the value of xm;i. It is still truethat if the state (p;m) has no output, xm;i = �; but now, if the state is non-null, xi;m is distributedaording to Pp;m (x). Thus, for non-null states, we haveExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄ = 8<: logPp;m (xi) if xi 6= =�H[Pp;m℄ if xi = = (4.36)where H[�℄ indiates the entropy of the distribution.4.4.2 Coupled forward{bakward algorithmWe need to alulate the state and transition estimates that appear in (4.34). We do so by runningthe forward{bakward algorithm separately on eah omponent SHMM. Sine diret observation of



76the outputs of the omponent models is not possible, however, we must estimate those outputs usingthe observed output of the entire mixture, as well as the reursive terms, Fm;i�1 and Bm;i�1, fromall of the omponents. This use of the values of the reursive terms from other omponent SHMMsleads to a oupling of the di�erent instanes of the forward{bakward algorithm.Despite this oupling, however, the separation of the estimation proess into multiple omponentreursions onstrains the E-step optimization to only those distributions whih satisfy a fatorizationonstraint of the form (for the F reursion):P (fym;ig j x1 : : : xi) =Ym P (ym;i j x1 : : : xi) (4.37)as well as a seond, similar, onstraint due to the B reursion. Suh imperfet E-steps were disussedbriey in setion 1.8. At eah time-step we alulate the full joint distribution of the ym;i (whihontains PM terms) but then store only the marginals (needing only P �M terms). Clearly, toalulate the state and transtion estimates we only need the marginals, and so from that point ofview the restrition is reasonable. However, the Fm;i are also used to estimate the distribution atthe (i + 1)th step. Use of the fatorized distribution for the ith step, rather than the full jointdistribution, leads to a mis-estimation of the joint distribution at the (i+1)th step. It is thus, thatthe onstraint of (4.37) appears.We will disuss the impat of this onstraint on the EM proess below. First, let us proeed withthe exposition of the algorithm. The reursive terms are de�ned muh as before.Ci = P (xi j x1 : : : xi�1) (4.38)Fp;m;i = P (ym;i = p j x1 : : : xi) (4.39)Bp;m;i = P (xi+1 : : : xN j ym;i = p)P (xi+1 : : : xN j x1 : : : xi) (4.40)However, in this ase the xi are not the diret outputs of the HMM, but are rather the overallobservations from the mixture. Thus, the alulations beome slightly more elaborate. We willobtain here expressions for only the forward terms Ci and Fp;m;i. The alulation of Bp;m;i proeedssimilarly.We write ~Fp;m;i for P (ym;i = p j x1 : : : xi�1), the probability of �nding the mth model in statep on step i given the previous observations, but not the urrent one. This is, of ourse, basedreursively on our estimate of the distribution of states ym;i�1 given observations up to xi�1. Withour fatorial assumption on the distribution of ym;i�1 this is given by~Fm;i = TmFm;i�1 (4.41)



77Also of interest will be the probability that model m is in a null state. We will write �p;m = 1 ifPp;m (�) = 1 and �p;m = 0 otherwise. Using this indiator, we obtain ~F�;m;i =Pp�p;m ~Fp;m;i.It will be useful to treat separately the three ases where xi is 1. null, 2. non-null and non-ollision,and 3. a ollision.1. xi = �In this ase Ci is the probability that every omponent is in a null state,Ci =Ym ~F�;m;i (4.42)To alulate Fp;m;i we need to �nd the distribution P (xi = �; ym;i = p j x1 : : : xi�1) =P (xi = � j ym;i = p; x1 : : : xi�1) ~Fp;m;i. This is learly 0 if �p;m = 0. If �p;m = 1, thenP (xi = � j ym;i = p; x1 : : : xi�1) is just the probability that all other omponents are in nullstates. Thus Fp;m;i = 1CiP (xi = �; ym;i = p j x1 : : : xi�1)= 1Ci�p;m ~Fp;m;i Yl6=m ~F�;l;i= �p;m ~Fp;m;i~F�;m;i (4.43)2. xi 6= �; =Here, Ci is the probability that one omponent outputs the observed value xi, while all theother omponents are in null states.Ci =Xm Xp Pp;m (xi) ~Fp;m;i Yl6=m ~F�;l;i (4.44)P (xi j ym;i = p; x1 : : : xi�1) is straightforward if (p;m) is not null; being Pp;m (xi) times thethe probability that all other omponents are in null states. If, on the other hand, �p;m = 1,then the onditional probability is given by the probability that exatly one of the remainingomponents outputs the value xi.Fp;m;i = 1Ci ~Fp;m;i0�(1��p;m)Pp;m (xi)Yl ~F�;l;i +�p;mXl6=mXp Pp;l (xi) ~Fp;l;i Yk 6=l;m ~F�;k;i1A(4.45)3. xi = =



78In this ase, Ci is the probability that at least two omponents are in a non-null stateCi = 1� Ym F�;m;i!�0�Xm (1� F�;m;i)Yl6=mF�;m;i1A (4.46)The expression for Fp;m;i is notationally umbersome, so we will not write it expliitly. Instead,we note that P (xi j ym;i = p; x1 : : : xi�1) is the probability that at least one other omponentis non-null if �p;m = 0 and that at least two other omponents are non-null if �p;m = 1. Bothof these probabilities are found in a form similar to that of Ci, above.One the terms Fi;m and Bi;m have been alulated, the state and transition estimates are derivedusing (4.28) applied to eah omponent in turn.Consequenes of the fatorial approximationTo what extent does the fatorial onstraint of the oupled forward{bakward algorithm a�et theeventual parameter estimates? We may an make two separate arguments for robustness of theestimates to error.First, it might be feared that, sine the terms F and B are alulated reursively and sine thereis an error in eah alulation, the estimated value and the true value would progressively divergeover time. This is not the ase. Boyen and Koller (1999) have examined fatorial approximationssuh as the present one in the ontext of general dynami probabilisti networks. They argue thatthe approximation error does not grow over time beause two fores oppose the growth. First, theinorporation of observed data tends to drive the approximated distribution towards the orret one.Seond, the randomization due to the stohasti transition from the (i�1)th step to the ith tends tobroaden both the orret distribution and the approximate one, whih also has the e�et of bringingthem loser together. In other words, TmFm;i�1 may be loser to the true P (ym;i j xi : : : xi�1) thanFm;i�1 is to P (ym;i�1 j xi : : : xi�1). Intuitively, we may think of eah random transition ontributingto a \forgetting" of the old, inorret, distribution.To these arguments we an add a third, peuliar to the urrent model. When the observationxi = �, our forward and bakward steps are orret. Reall from the disussion of the forward{bakward algorithm for sparse HMMs that after a substantial steth of null observations, Fi (Bi)is relatively independent of its value at the beginning (end) of the segment. Thus, in the mixture,whenever we enounter a streth of null observations we tend to reset the forward{bakward estimatesto their orret values.Seond, even if the errors in the state and transition estimates are typially large, it is possiblethat their e�et on parameter estimates derived through EM may be small. Constrained E-stepsof the sort we perform here were disussed briey in setion 1.8. There it was pointed out that



79generalized EM using a onstrained optimization of the latent variable distribution will eventuallyyield the orret maximum-likelihood parameter estimates if and only if the onditional distributionat the optimum P�� (Y j X ) satis�es the onstraint. In the present ase, this will be true if, at theoptimal parameter values, only one omponent is likely to be in a non-null state at eah time-stepwhere xi 6= �; =. In other words, all observed data an be assigned with high likelihood to onlyone omponent. If, on the other hand, two di�erent omponents laim equal responsibility for thepoint, then the fatored distribution will assign a probability lose to 0.25 that they were bothin non-null states, whereas the orret joint probability would be 0 (if they were both in non-nullstates a ollision would have been observed). Futhermore, provided that most data are well assignedin this way, the above arguments suggest that a small number of ambiguous points will not havea profound e�et on the estimates assoiated with the others. Thus, in well lustered data, theapproximation has little e�et on the eventual estimates, even if, in intermediate steps of EM, it isinaurate. Note that \well-lustered" here does not neessarily mean that the output distributionsare well separated. Eah data point must be assigned to a single omponent, either beause onlythat omponent has an output distribution whih assigns it high likelihood or beause its temporalrelationship to nearby points marks it as arising from a partiular model.4.4.3 Parameter re-estimationThe M-step requires optimization of the expeted log-likelihood (4.34) with respet to the parame-ters, with the estimates snp;m;i and tnpq;m;i �xed at the values derived from the E-step. The expressionof (4.34) ontains separate additive terms for eah omponent model; as a result, it an be ompti-mized with respet to the parameters of eah SHMM independently. The part that involves the mthmodel isQnm(Tm; f�p;mg) =Xi Xp;q tnpq;m;i logTpq;m +Xi Xp snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)℄(4.47)Optimization with respet to Tpq;m an learly proeed exatly as in the standard ase, and so weobtain Tnpq;m = PNi=1 tnpq;m;iPN�1i=0 snq;m;i (4.48)Re-estimation of the output distribution parameters �p;m is almost the same as in the standardBaum{Welh algorithm. It is still the ase that the di�erent output distributions an be optimizedindependently. For states with null output distributions, of ourse, there are no parameters to �t.



80For non-null distributions, we reall the result of (4.36) and �nd that�np;m = argmax�p;m 0� Xi:xi 6=�;= snp;m;i logP�p;m (xi)� Xi:xi== snp;m;iH[Pp;m℄1A (4.49)(Note that if xi = � and (p;m) is not a null state, snp;m;i must be 0, and so we an ignore theorresponding terms). Thus, the parameters are �t to the observed non-null and non-ollision data,weighted by the state estimates as usual, but with an additional entropy penalty on the likelihoodwhih weighted by the sum of the state estimates for ollision time-steps. In pratie, if the numberof ollisions is small relative to the total number of non-null observations, we an often neglet thisterm.


