
Chapter 2 Clustering and Mixture Models2.1 Clustering of DataWe have laid out our overall goal as follows: given a group of observations X = fxi j i = 1 : : :Ng,xi not ne
essarily univariate or independent, dis
over the stru
ture of the sto
hasti
 pro
ess fromwhi
h the data arose. In this 
hapter we will investigate one parti
ular form of stru
ture: we willexamine ways to dis
over if the data fall naturally into distin
t 
lusters of points.Clustering has a long history of essentially ad ho
 te
hniques (Duda and Hart 1973; Jain andDubes 1988). In re
ent years, however, 
onsiderable progress has been made with various statisti
allywell-founded te
hniques. In our treatment of the problem we will pass very qui
kly to one parti
ularstatisti
al model, the mixture, whi
h will be seen to be a parti
ularly simple example of a latentvariable model.In general, the 
lustering problem assumes that the observations are independent and identi
allydistributed (iid), and further that some measure of dissimilarity between observations is available.This measure may be quite general; there is no need for it be symmetri
, to obey the triangleinequality, or even to be always nonnegative. Many of the te
hniques whi
h work with these weakassumptions are fundamentally agglomerative, that is they form the data into progressively larger
lusters by merging together smaller groups that display signi�
ant similarity. We shall not dis
usssu
h algorithms; many examples are reviewed by Jain and Dubes (1988).Probabilisti
 models require well-de�ned measures in the spa
e of observations, whi
h in turnrequire a de�ned metri
. Thus, we will examine 
lustering problems where the similarity measureobeys all the requirements of a metri
. Indeed, we will go further and assume that ea
h of ourobservations de�nes a point in IRD , and that the similarity measure is simply the Eu
lidean distan
ebetween the points. In parti
ular, this assumption allows us to speak of distan
es to points that werenot observed, and thus to speak quantitatively of the pro
ess that generated the data, somethingnot always possible in the extremely general spa
es.In this early treatment we shall also assume that the number of 
lusters, M , is known. On
e wehave a
hieved a properly probabilisti
 framework, the problem of determining the number of 
lusterswill be redu
ed to that of model sele
tion and so the te
hniques of the previous 
hapter will be
omeappli
able.A parti
ularly straightforward 
riterion for the assignment of D-dimensional observations fxigto M 
lusters is as follows. We asso
iate with ea
h 
luster a 
entral point �m 2 IRD ;m = 1 : : :M ,



25and then require that the sum of the squared distan
es from ea
h point to the 
enter of its assigned
luster be minimal. For this to be the 
ase, it is 
lear that �m must be the mean of the observationsassigned to the mth 
luster, hen
e this approa
h is often referred to as the k-means 
lustering
riterion (M
Queen 1967). (The `k' in k-means refers to the number of 
lusters, a quantity for whi
hwe have 
hosen the symbol M .)The 
lustering is fully spe
i�ed by the lo
ation of the �m, sin
e the assignments of the xi arethen determined by whi
h mean is 
losest. How are we to �nd the optimal lo
ations of the �m?Iterative algorithms to do this have been known sin
e the 60's. The basi
 approa
h was providedby Forgy (1965) (this approa
h is also known, in the related ve
tor quantization literature, as theLloyd{Max algorithm). We begin with an initial, random partitioning of the data into M sets. The�m are pla
ed at the means of these data sets. We then iterate the following two steps1. Re-assign all data points to the 
losest �m.2. Move ea
h �m is the mean of its assigned data.This basi
 iteration (whi
h, as we will see, is quite reminis
ient of the EM algorithm) is what weshall 
all the k-means algorithm.A number of variants of this basi
 approa
h have been suggested. For 
ompleteness, we mentionthem here; no details will be provided and we will not en
ounter them again in this dissertation,preferring instead the probabilisti
 approa
h des
ribed below. A more 
omplete review is availablein Duda and Hart (1973), Jain and Dubes (1988) or Ripley (1996).The ISODATA algorithm (Hall and Ball 1965; see also Duda and Hart 1973) introdu
es anadditional step to the iteration above, in whi
h the number of 
lusters may be adjusted. Hartiganand Wong (1979) re-assign only one data point at a time, updating the means ea
h time a point
hanges hands. M
Queen (1967) gives an in
remental algorithm, in whi
h data are 
onsidered one-by-one in a single pass and the 
orresponding 
luster mean updated after ea
h assignment. Adaptiveresonan
e theory (ART) (Carpenter and Grossberg 1987a, 1987b, 1990) provides a similar s
hemewithin a \neural" framework; rather than 
hoosing the 
losest mean, the data point is 
omparedto ea
h in a set order and the assignment is made to the �rst 
luster for whi
h the data point fallswithin a distan
e threshold. In addition, the distortion measures involved in ART are not exa
tlythe squared-distan
e measures of the other te
hniques.2.2 A Statisti
al InterpretationAs presented, the k-means and related algorithms appear ad ho
, but in fa
t they 
an be given astatisti
al interpretation (S
ott and Symons 1971). We note that the sum of squared distan
e from�m is (up to a normalization 
onstant) the negative log-likelihood of the model that the data are



26generated by an isotropi
 (that is, identity 
ovarian
e matrix) multivariate Gaussian distributionwith mean �m. Thus, we 
an introdu
e the following likelihood fun
tionLX (f�mg;Y) =Yi G(xi � �yi) (2.1)where Y = fyig is a set of assignment variables taking values between 1 andM , whi
h tell us in whi
h
luster the ea
h observation falls, while G(�) denotes a standard multivariate Gaussian density withmean 0 and 
ovarian
e I . The values of f�mg and Y whi
h maximize this likelihood are pre
iselythe solutions to the k-means sum-of-squares 
riterion. We have therefore 
onverted our 
lusteringproblem into maximum-likelihood estimation.This viewpoint also allows us to easily generalize the sum-of-squares 
riterion. In pla
e of theisotropi
 Gaussian, we might 
hoose Gaussians with arbitrary 
ovarian
e matri
es, so that ea
h
luster is ellipsoidal but 
an have a di�erent size and orientation. Indeed, we 
an in general 
hooseany parameterized family of densities, and require that ea
h 
luster be represented by one of them(S
ott and Symons 1971; Ban�eld and Raftery 1993). The likelihood is thenLX (�;Y) =Yi P�yi (xi) (2.2)where the �m;m = 1 : : :M parameterize the densities. If we are to retain the intuitive notion of a
luster being spatially 
ompa
t we would expe
t the densities to all be well lo
alized. Algorithmsto maximize these likelihoods are exa
tly analogous to the pro
edures we dis
ussed above in whatwe now see was the isotropi
 Gaussian 
ase.In this framework we maximize the likelihood with respe
t to both the density parameters andthe assignment variables simultaneously. This is appropriate if our goal is to group the data at hand,as is often the 
ase. However, the proje
t we laid out was to dis
over the nature of the pro
ess thatgenerated the data. The pro
ess is 
hara
terized only by the density parameters, along with theprobability distribution of the yi. The parti
ular 
hoi
es of the yi are not important, and indeed wewish to maximize not the likelihood (2.2), but its marginal taken over all the possible assignmentsY . This leads to the mixture model.2.3 Mixture ModelsThe mixture model is perhaps the simplest example of a latent variable statisti
al model. It
onsists of a single observed ve
tor variable and one dis
rete s
alar latent variable. Both observationsand latent variables are iid. This model is represented by the graph in �gure 2.1a, using all the
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Figure 2.1: A mixture model.
onventions introdu
ed in se
tion 1.4. The marginal density of the ith observation xi isP� (xi) =Xyi P� (yi)P� (xi j yi) (2.3)where the sum is taken over all the possible values the latent variable might assume. The 
hoi
e ofdis
rete values available to yi is arbitrary, although the number of su
h values is not. We will writeM for the number of distin
t values the latent variable 
an take, and will assume that these values liein the range 1 : : :M . The distribution fun
tion of the yi is un
onstrained, and so is parameterized bythe probabilities asso
iated with ea
h value (stri
tly, by the probabilities of the �rst M � 1 values).We will write �m for P� (yi = m) and P�m (xi) or even just Pm (xi) for P� (xi j yi = m). We 
anthen rewrite the marginal density thus,P� (xi) = MXm=1�mP�m (xi) (2.4)where the parameter set � = f�1 : : : �M ; �1 : : : �Mg.Why the name \mixture model"? The latent variable 
an be viewed as a gate that, for ea
hobservation, sele
ts one of the densities Pm (�), from whi
h the xi is then drawn. Thus, the resultantset of observations is formed by mixing together sets of data drawn from ea
h of the 
omponentdensities Pm (�). The relative sizes of these sets are de�ned by the mixing parameters �m.



282.4 EM for MixturesThe EM algorithm for mixture distributions has a parti
ularly appealing form. The log-likelihoodfun
tion for the parameters is `X (�) =Xi log MXm=1�mP�m (xi) (2.5)whi
h has the log-of-sum stru
ture 
ommon to latent variable models. The joint data log likelihoodis `X ;Y (�) =Xi log�yiP�yi (xi) (2.6)Written in this way, it is hard to manipulate. For this reason we will �rst re-express the mixturedensity in a way more 
ondu
ive to appli
ation of EM.In pla
e of the singleM -valued latent variable yi we introdu
e a set ofM binary-valued indi
atorlatent variables zm;i. For any observation, the one of these 
orresponding to the value of yi takesthe value 1, while the others are all 0. This version of the model is drawn in �gure 2.1b. Thezm;i are all dependent on ea
h other. A random variable xm;i is drawn from the mth 
omponentdistribution and multiplied by the value of zm;i. All of these produ
ts are summed to produ
e the�nal observation. The square nodes in the graph represent deterministi
 
ombinations of randomvariables.Armed with the variables zm;i we 
an rewrite the joint data log-likelihood`X ;Z (�) =Xi Xm zm;i log�mP�m (xi) (2.7)with only one term in the inner sum being non-zero. The fa
t that this expression is linear in thezm;i makes the E-step of the EM algorithm quite straightforward.Qn(�) = EZjX ;�n�1 [`X ;Y (�)℄= EZjX ;�n�1 "Xi Xm zm;i log�mP�m (xi)#= Xi Xm Ezm;ijxi;�n�1 [zm;i℄ log�mP�m (xi)= Xi Xm rnm;i log�mP�m (xi) (2.8)where we have written rnm;i for Ezm;ijxi;�n�1 [zm;i℄. The variable zm;i is binary, and so its expe
tedvalue is just the probability that it assumes the value 1, whi
h it does when the gating variable yi



29is equal to m. Thus,rnm;i = Ezm;ijxi;�n�1 �zim� = P�n�1 (yi = m j xi)= P�n�1 (xi j yi = m)P�n�1 (yi = m)P�n�1 (xi)= �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) (2.9)In other words, the number rnm;i is the posterior probability that the ith observation was generatedfrommth 
omponent, under the (n�1)th iteration of the parameters. It is 
alled the responsibilityof the mth 
omponent for the ith observation. In 
lustering terms it 
an be thought of as the degreeto whi
h observation xi is asso
iated with 
luster m.We 
an also say some general things about the M-step without knowing the form of the 
omponentdensities. Rewriting (2.8), we haveQn(�) =Xm log�mXi rnm;i +Xm Xi rnm;i logP�m (xi) (2.10)and so the maximization with respe
t to �m and �m 
an pro
eed separately. We 
an �nd the newvalues of the �m dire
tly. We impose the 
onstraint P�m = 1 using a Lagrange multiplier � anddi�erentiate to obtain���m �����nm  Xm log�mXi rnm;i � �X�m! =Xi rnm;i�nm � � = 0 (2.11)and so �nm is proportional to Pi rnm;i. The normalization 
onstraint then gives us�nm = Pi rnm;ijX j (2.12)where the denominator is the number of observations and we have used the fa
t that Pm rnm;i = 1.We 
annot, of 
ourse, solve for the �nm without knowing the forms of the 
omponent densities,but even here we 
an make a little headway. First, note that the �m (unlike the �m) are independentof ea
h other, and so we 
an maximize with respe
t to ea
h 
omponent separately. Furthermore,the only term in (2.10) that depends on �m is Pi rnm;i logP�m (xi). Now, if we were to �t the mth
omponent density alone to all of the observations, we would �nd the parameters by maximizing thelog-likelihood Pi logP�m (xi). Thus, we 
an interpret the M-step as �tting ea
h of the 
omponentdistributions to all of the observations, weighting the 
ontribution of the ith datum to the log-likelihood by the responsibility rnm;i.Here, then, is the EM algorithm for mixture distributions:



30E-step: Cal
ulate the responsibilities at the nth iterationrnm;i = �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) (2.13)M-step: Estimate the new mixing parameters�nm = Pi rnm;ijX j (2.14)and the new 
omponent distribution parameters�nm = argmax�m Xi rnm;i logP�m (xi) (2.15)2.5 Appli
ations of Mixture ModelsWe have introdu
ed the mixture model from the point of view of 
lustering. The 
omponent densitiesare thus taken to represent di�erent physi
al pro
esses, the observed data being a mixture of pointsgenerated by these pro
esses. The mixture-model likelihood and the EM algorithm used to optimizeit, di�er in fo
us from the 
lustering likelihood of (2.2) and the k-means algorithms: the mixtureparameter estimates des
ribe the generating pro
ess, while the sum-of-squares and related methods�nd the best grouping of the observed data. In general, if we 
onsider many sets of data thatgenerated by mixing the outputs of the same group of pro
esses, we expe
t the mixture parameterestimates to exhibit mu
h tighter varian
e than their 
lustering analogues. In situations where weexpe
t to 
lassify new data, or to make predi
tions, it is 
lear that the former approa
h is to bepreferred.The di�eren
e may also be viewed in another way. The likelihood of (2.2) di
tates a \hard"
lustering s
heme | the solution involves an expli
it assignment of observations into 
lusters. In
ontrast, �tting the mixture model des
ribes a \soft" or \fuzzy" 
lustering s
heme where observationsare not, in fa
t, 
lassi�ed, but are partially asso
iated with 
lusters through the responsibilities. Wemight intuitively expe
t these te
hniques to yield di�erent answers. Fuzzy 
lustering s
hemes havebeen proposed, without the probabilisti
 interpretation, within the theory of fuzzy sets (Ba
ker 1978;Bezdek 1981).The 
lustering view of mixture modeling is only really meaningful in situations where the 
om-ponent densities are reasonably well separated. In su
h 
ases the likelihood lands
ape generallyexhibits sharp maxima to whi
h EM 
onverges qui
kly.Mixture models 
an also be employed in situations where the 
omponent densities overlap forthe purposes of density estimation. The mixture density (2.4) 
an be quite 
omplex, even when
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Figure 2.2: Two views of a mixture model.the 
omponent distributions are relatively simple. As a result, 
ompli
ated densities 
an be \non-parametri
ally" �t, with mixtures of Gaussians for instan
e, by the EM algorithm. From thisviewpoint, there is no signi�
an
e to the gating variable or to the 
omponent distributions { thereis only one pro
ess with a 
ompli
ated density and the mixture is just a 
onvenient and 
exible rep-resentation of the unknown density fun
tion. Indeed, one 
ould view the familiar kernel-estimationte
hnique as a parti
ular 
ase of a mixture model used in this way. The two views of the mix-ture model are illustrated in �gure 2.2 where mixture models (the s
aled 
omponents are shownby the dashed lines, the resulting mixture density by the solid lines) are �t to di�erent types ofone-dimensional data (histogrammed and shown by the grey bars).We should make a short observation on our 
hoi
e of the EM algorithm for learning the mixturemodel. If the 
omponent distributions overlap 
onsiderably it has been argued (Redner and Walker1984) that the 
onvergen
e of the EM algorithm to the optimal parameters of the mixture is slow(�rst order) and that superlinear methods should be preferred. However Redner and Walker (1984)themselves point out, and Xu and Jordan (1996) later elaborate, that the 
onvergen
e of the likelihoodof the mixture model is rapid, and that the mixture density approximates the true density quitequi
kly under EM. Thus, when the mixture model is used for 
lustering and thus the estimatesof parameters are of importan
e, the 
omponents are likely to be reasonably well separated andtherefore EM will 
onverge well; while in the density estimation 
ase, the 
riterion of importan
e isthe 
onvergen
e of the density estimate, and again this is rapid under EM.2.6 Mixtures of GaussiansA parti
ularly fruitful mixture model, both in the 
ontext of 
lustering and of density estimation,arises when the 
omponents are (possibly multivariate) Gaussian densities. The parameters �m are



32then a mean ve
tor �m and a 
ovarian
e matrix �m. The log-likelihood of the model is`X (�) =Xi log MXm=1�m j2��mj�1=2 e� 12 (x��m)T��1m (x��m) (2.16)The joint data log-likelihood with the indi
ator latent variables (2.7) is then`X ;Z (�) =Xi Xm zm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (2.17)where the ex
hange of the logarithm and the sum has eliminated the exponentials. The E-step is asfor a generi
 mixture distribution (2.13), in this 
ase given byrnm;i / �n�1m ��2��n�1m ���1=2 e� 12 (x��n�1m )T (�n�1m )�1(x��n�1m ) (2.18)with the responsibilities normalized so as to sum to 1. In the M-step, the estimation of the mixingparameters is as for the generi
 mixture (2.14). The estimation of the mth 
omponent parametersis a
hieved by maximizingQnm(�) = �Xi rnm;i�12 log j2��mj+ 12(xi � �m)T��1m (xi � �m)� (2.19)Di�erentiating and equating to 0 we obtain�Qnm��m �����nm = �Xi rnm;i(�nm)�1(xi � �nm) = 0�nm = Pi rnm;ixiPi rnm;i (2.20)and (di�erentiating with respe
t to Rm = ��1m )�Qnm�Rm ����Rnm = Xi rnm;i�12(Rnm)�1 � 12(xi � �nm)(xi � �nm)T� = 0�nm = Pi rnm;i(xi � �nm)(xi � �nm)TPi rnm;i (2.21)Thus the mean is updated to the responsibility-weighted mean of the observations, and the 
ovarian
eto their responsibility-weighted 
ovarian
e. This is a parti
ularly elegant and fast update.2.7 Pra
ti
al IssuesWe have argued that in situations where predi
tive power is desired, or where the parameters ofthe generating model are to be estimated as a

urately as possible, the mixture model approa
h



33to 
lustering is to be preferred. Can we then blindly �t (with the EM algorithm) a basi
 mixturemodel to solve all 
lustering problems that 
onfront us? Unfortunately, we will �nd that a numberof pra
ti
al issues need to be examined quite 
losely before we 
an a
hieve robust and repeatableparameter estimates.We shall raise the issues one by one, dis
ussing brie
y some of the possible solutions to them aswe pro
eed. The order is arbitrary, and some of the more basi
 and serious points are not dis
usseduntil last. In 
hapter 3 we will dis
uss in depth an elaboration of the EM algorithm whi
h providesa new way to address a number of these issues.2.7.1 OutliersIt is often the 
ase that some of the data under 
onsideration do not fall into any of the data 
lusters.These outliers may be 
aused by measurement errors, su
h as sensor artifa
ts or data mis-entry,or may be due to an additional data generating pro
ess whi
h is di�use and for whi
h no model isavailable. The outliers may have a 
onsiderable e�e
t on the estimates of the 
luster parameters.For example, in a mixture of Gaussians 
lustering algorithm, the estimate of the mean for ea
hGaussian 
omponent is disproportionally sensitive to data from the tails of the distribution. Theoutliers fall far from all of the Gaussian 
lusters but nevertheless must be assigned to one or theother of them. As su
h, they will perturb the estimates of the means.We 
an resolve this problem by introdu
ing an additional generative 
omponent in the mixturewhi
h 
an take responsibility for the outliers1. This 
omponent density must be far more di�usethat the 
luster densities, and must perturb the 
omponent density estimates as little as possible.The most suitable 
hoi
e for the outlier 
omponent probability is found in the uniform density.More pre
isely, PO (xi) = 8<: 1kAk if xi 2 A0 if xi 62 A (2.22)for some region A. This 
hoi
e 
orre
tly embodies (in the Bayesian sense) our utter la
k of knowl-edge of the distribution from whi
h the outliers are drawn. Furthermore, it tends to minimize thepertubation in the 
luster parameter estimates. We will make this assertion more pre
ise in theparti
ular 
ase of Gaussian 
lusters.Without loss of generality, we 
onsider data drawn from a single Gaussian 
luster, with mean� and 
ovarian
e �, 
orrupted by the addition of some outliers. We �t a model that has two
omponents: one Gaussian and the other uniform. For simpli
ity in this analysis, assume that anyoutliers fall far from the 
enter of the 
luster and, as a result, have negligible responsibility assignedto the Gaussian. Under this assumption, the outliers themselves do not disturb the estimates of1Ban�eld and Raftery (1993) take a similar approa
h in the 
ontext of hard 
lustering, introdu
ing a Poissondistribution for outlier generation



34the Gaussian parameters. However, the density of the uniform 
omponent within the region ofthe 
luster is not negligible, and so responsibility for points that were, in fa
t, generated from theGaussian is shared between the Gaussian and the uniform 
omponent. How will this sharing a�e
tthe estimates of the parameters of the Gaussian?Consider the transform ��1=2 applied to the data spa
e. Both the Gaussian and the Uniformdensities enjoy the property of mapping to another member of their respe
tive families under alinear transformation, so that the nature of the mixture is un
hanged. In this spa
e, the data thatbelong to the 
luster will be distributed a

ording to a unit Gaussian (one with a 
ovarian
e matrixequal to the identity). Without loss of generality, take the mean to be 0. We write ~� and ~� forthe estimated mean and 
ovarian
e, respe
tively, of the Gaussian 
omponent. Let the value of theuniform density in this spa
e be ~u. The mixing probabilities are �g and �u for the Gaussian anduniform 
omponents respe
tively.The following system of equations must hold at the maximum likelihood parameter values,rg;i = 1� �u~u��u~u+ �g ���2�~�����1 exp�� 12 (~xi � ~�)T ~��1(~xi � ~�)��~� = Pi rg;ixiPi rg;i (2.23)~� = Pi rg;i(xi � ~�)(xi � ~�)TPi rg;iIt is diÆ
ult to derive expressions for the estimates ~� and ~� dire
tly, however we 
an makesome arguments based on the symmetry of the situation. The data within the 
luster are generatedfrom a spheri
ally symmetri
 distribution. Negle
ting edge e�e
ts, the uniform density is also
ompletely symmetri
. Thus, on the average, there 
annot be any dire
tional bias to the estimates.This means that the expe
ted value of ~� must be 0, sin
e any other value would break symmetry.Similarly, the expe
ted value of ~� must be isotropi
, and will generally be slightly smaller than thetrue 
ovarian
e in the transformed spa
e I . These 
omments are about the expe
ted values of theestimates, parti
ular values of the estimates will be di�erent based on the parti
ular data instan
esbeing �t.What do these results tell us about the estimated Gaussian in the original spa
e? The lineartransform �1=2 maps from the whitened spa
e to the original one. Sin
e expe
tations are linearfun
tions, the expe
ted values of the parameter estimates are simply the transforms of the 
orre-sponding values in the whitened spa
e. The estimated mean is thus distributed around the truevalue of the mean. The expe
ted value of the 
ovarian
e estimate is slightly smaller than the true
ovarian
e, but has the same shape in the sense of the same eigenve
tors, and eigenvalue ratios.It is important to note that this invarian
e 
ame as a result of the uniform density being sub-
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Figure 2.3: Multiple maxima in the mixture likelihoodstantially symmetri
 under any linear transform. Any other distribution would have had to havebeen 
arefully 
rafted to be symmetri
. Furthermore, we would have to know a good deal about the
luster distribution to do so. With many, di�erently shaped, 
lusters only the uniform density willsuÆ
e.2.7.2 Multiple maximaThe likelihood surfa
e asso
iated with a typi
al mixture model tends to exhibit multiple maxima.Trivially, given lo
ally optimal parameters f�m; �mg, another maximum 
an be identi�ed by retainingthe same numeri
al values but permuting the 
omponent indi
es. In this 
ase, the di�erent maximaare equivalent in all pra
ti
al senses and any one of them provides an equally good �t. Unfortunately,the system also exhibits non-trivial multipli
ity.Figure 2.3 illustrates the problem. Two-dimensional data are generated from the Gaussianmixture shown in A (ea
h Gaussian in the mixture is represented by its 1-sigma 
ontour). PanelsB{F show the results of 5 separate �ts to these data. The average log likelihood per point for ea
hmodel (in
luding the generating model) is re
orded in the bottom right 
orner. Ea
h model is theresult of an EM optimization, and ea
h optimization has 
onverged. The di�eren
e between theresults lies in the initial values of the parameters whi
h are used to seed the EM pro
ess. (As anaside note that the best optimum (C) has a larger log-likelihood than the generating model | the
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Figure 2.4: Likelihoods obtained from random restartsdata have permitted a small degree of over-�tting).How are these initial values 
hosen? One generi
 approa
h, that does not depend on the type of
omponent densities, is to randomly assign responsibilities for ea
h data point and then derive theinitial parameters using the M-step update rules. In large data sets, this approa
h tends to makethe initial parameter values for ea
h 
omponent virtually identi
al. This initial 
ondition is similarto that of the REM algorithm to be dis
ussed in 
hapter 3, however applying it in the standard EM
ontext does not seem to be eÆ
ient. Convergen
e from su
h an initial point tends to be slow, andis no more reliable at �nding a good maximum than the other te
hniques mentioned below.An alternative approa
h, parti
ularly useful in the 
ase of mixtures of Gaussians (or the similar,well-lo
alized, densities that are 
ommonly used for 
lustering), is to pi
k a single 
ovarian
e matrix(s
ale parameter) and initialize the means (lo
ation parameters) to randomly 
hosen data points.This is the method that was used to generate the �ts in �gure 2.3. We 
an re�ne the te
hniqueslightly by using these initial lo
ations as the seed for a k-means 
lustering algorithm, and thenusing the output of that algorithm to provide the initial values of lo
ation parameters of the mixturemodel. K-means algorithms are also sensitive to the seed parameter values, but often less so thanthe full mixture, and so this initial stage tends to stabilize the estimates slightly. Nevertheless,experiments (an example appears in �gure 2.4, to be des
ribed more 
ompletely below) suggest thatin many situations the improvement is only very slight.In general, optimization problems of this sort are known to be NP-hard, and so no entirelyreliable, eÆ
ient solution 
an be found. Various approximate approa
hes are well-known in theoptimization literature, and most may be adapted to the present problem. We will not di
uss most



37of these here, instead referring the reader to the books by Hertz et al : (1991), for general te
hniquesand M
La
hlan and Krishnan (1996) for EM spe
i�
 approa
hes. One general method, simulatedannealing (Kirkpatri
k et al : 1983), will be des
ribed brie
y in 
hapter 3, although we will notelaborate on the appli
ation of this approa
h to mixture models. However, the prin
ipal subje
t of
hapter 3, relaxation EM, is extremely pertinant to this issue and appli
ation to mixture modelswill be dis
ussed in some detail.For the moment, we note one quite straightforward approa
h, whi
h is often remarkably e�e
tive.This is simply to 
hoose a number of random starting 
onditions by one of the means des
ribed above,maximize the mixture likelihood starting from ea
h of these initial values, and then 
hoose the resultthat provides the largest likelihood. Figure 2.4 shows a histogram of the di�erent values of the log-likelihood per point obtain by running 100 optimizations on the data of �gure 2.3. The dark barsshow the results when the EM algorithm started dire
tly from randomly 
hosen parameter values;the lighter bars show the results obtained when a simple k-means algorithm was run �rst. On thebasis of this experiment, we 
on
lude that approximately one-third of the random sele
ted 
onditionsyield the best maximum (given either initialization). Thus, in only 10 restarts of the algorithm, theprobability of �nding the best optimum is 0.985. Of 
ourse, this probability will be dependent onthe problem being examined: an appropriate number of restarts will need to be determined throughsimulation for ea
h new type of problem.2.7.3 The number of 
lustersIn general, when presented with a 
lustering problem we have no a priori information about howmany di�erent 
lusters we will en
ounter. This number, along with the optimal parameters todes
ribe ea
h 
luster, must be estimated from the available data. This is a 
lassi
 example of thegeneral problem of model sele
tion, whi
h was addressed at some length in se
tion 1.3. All ofthe analysis of that se
tion applies to the present problem, and the methods des
ribed there arefrequently employed.In this se
tion we will add another result to the battery of approximations to the marginallikelihood. This new approximation, introdu
ed by (Cheeseman and Stutz 1996), is pe
uliar tomixture models and related latent variable models. In the following 
hapter, we shall introdu
e anovel framework, 
as
ading model sele
tion, for the eÆ
ient appli
ation of these various te
hniques.The Cheeseman-Stutz 
riterionThe marginal likelihood for a mixture model with M 
omponents is given byPM (X ) = Z d� PM (�) NYi=1 MXm=1�mP�m (xi)! (2.24)



38Even if the individual 
luster likelihood P�m (xi) 
an be integrated with respe
t to �m, the overallintegral proves to be intra
table due to the MN terms that appear on
e the produ
t is distributedover the sum.On the other, hand, if the latent variable values (expressed as the indi
ators zm;i) were known, themarginal likelihood in this 
ase 
ould be written in a simpler form (
ompare the joint log-likelihood(2.7)) PM (X ) = Z d� PM (�) NYi=1 MYm=1 (�mP�m (xi))zi;m (2.25)= Z d� PM (�) MYm=1�(�izi;m)m NYi=1 (P�m (xi))zi;m (2.26)This integral is more likely to be tra
table. If the prior fa
tors over the di�erent 
luster parameters�m the expression above redu
es to the produ
t of the marginal likelihoods of ea
h 
luster, givenonly the data assigned to that 
luster.Cheeseman and Stutz (1996) propose that we use this form, with the indi
ator values zm;irepla
ed by their expe
ted values at the optimum, r�m;i, as the basis for an approximation of thetrue integral. In fa
t, dire
t substitution of the responsibilities into (2.26) will under-estimate the
orre
t integral; however, the size of the error 
an be estimated from the mismat
h between thevalue of the approximate integrand and the true likelihood at the estimated parameter values, ��.The 
omplete approximation isPM (X ) � QNi=1 �PMm=1 ��mP��m (xi)�QMm=1 �R�mm QNi=1 (P�m (xi))r�i;m Z d� PM (�) MYm=1�R�mm NYi=1 (P�m (xi))r�i;m (2.27)where we have written R�m =Pi r�m;i.


