
Chapter 2 Clustering and Mixture Models2.1 Clustering of DataWe have laid out our overall goal as follows: given a group of observations X = fxi j i = 1 : : :Ng,xi not neessarily univariate or independent, disover the struture of the stohasti proess fromwhih the data arose. In this hapter we will investigate one partiular form of struture: we willexamine ways to disover if the data fall naturally into distint lusters of points.Clustering has a long history of essentially ad ho tehniques (Duda and Hart 1973; Jain andDubes 1988). In reent years, however, onsiderable progress has been made with various statistiallywell-founded tehniques. In our treatment of the problem we will pass very quikly to one partiularstatistial model, the mixture, whih will be seen to be a partiularly simple example of a latentvariable model.In general, the lustering problem assumes that the observations are independent and identiallydistributed (iid), and further that some measure of dissimilarity between observations is available.This measure may be quite general; there is no need for it be symmetri, to obey the triangleinequality, or even to be always nonnegative. Many of the tehniques whih work with these weakassumptions are fundamentally agglomerative, that is they form the data into progressively largerlusters by merging together smaller groups that display signi�ant similarity. We shall not disusssuh algorithms; many examples are reviewed by Jain and Dubes (1988).Probabilisti models require well-de�ned measures in the spae of observations, whih in turnrequire a de�ned metri. Thus, we will examine lustering problems where the similarity measureobeys all the requirements of a metri. Indeed, we will go further and assume that eah of ourobservations de�nes a point in IRD , and that the similarity measure is simply the Eulidean distanebetween the points. In partiular, this assumption allows us to speak of distanes to points that werenot observed, and thus to speak quantitatively of the proess that generated the data, somethingnot always possible in the extremely general spaes.In this early treatment we shall also assume that the number of lusters, M , is known. One wehave ahieved a properly probabilisti framework, the problem of determining the number of lusterswill be redued to that of model seletion and so the tehniques of the previous hapter will beomeappliable.A partiularly straightforward riterion for the assignment of D-dimensional observations fxigto M lusters is as follows. We assoiate with eah luster a entral point �m 2 IRD ;m = 1 : : :M ,



25and then require that the sum of the squared distanes from eah point to the enter of its assignedluster be minimal. For this to be the ase, it is lear that �m must be the mean of the observationsassigned to the mth luster, hene this approah is often referred to as the k-means lusteringriterion (MQueen 1967). (The `k' in k-means refers to the number of lusters, a quantity for whihwe have hosen the symbol M .)The lustering is fully spei�ed by the loation of the �m, sine the assignments of the xi arethen determined by whih mean is losest. How are we to �nd the optimal loations of the �m?Iterative algorithms to do this have been known sine the 60's. The basi approah was providedby Forgy (1965) (this approah is also known, in the related vetor quantization literature, as theLloyd{Max algorithm). We begin with an initial, random partitioning of the data into M sets. The�m are plaed at the means of these data sets. We then iterate the following two steps1. Re-assign all data points to the losest �m.2. Move eah �m is the mean of its assigned data.This basi iteration (whih, as we will see, is quite reminisient of the EM algorithm) is what weshall all the k-means algorithm.A number of variants of this basi approah have been suggested. For ompleteness, we mentionthem here; no details will be provided and we will not enounter them again in this dissertation,preferring instead the probabilisti approah desribed below. A more omplete review is availablein Duda and Hart (1973), Jain and Dubes (1988) or Ripley (1996).The ISODATA algorithm (Hall and Ball 1965; see also Duda and Hart 1973) introdues anadditional step to the iteration above, in whih the number of lusters may be adjusted. Hartiganand Wong (1979) re-assign only one data point at a time, updating the means eah time a pointhanges hands. MQueen (1967) gives an inremental algorithm, in whih data are onsidered one-by-one in a single pass and the orresponding luster mean updated after eah assignment. Adaptiveresonane theory (ART) (Carpenter and Grossberg 1987a, 1987b, 1990) provides a similar shemewithin a \neural" framework; rather than hoosing the losest mean, the data point is omparedto eah in a set order and the assignment is made to the �rst luster for whih the data point fallswithin a distane threshold. In addition, the distortion measures involved in ART are not exatlythe squared-distane measures of the other tehniques.2.2 A Statistial InterpretationAs presented, the k-means and related algorithms appear ad ho, but in fat they an be given astatistial interpretation (Sott and Symons 1971). We note that the sum of squared distane from�m is (up to a normalization onstant) the negative log-likelihood of the model that the data are



26generated by an isotropi (that is, identity ovariane matrix) multivariate Gaussian distributionwith mean �m. Thus, we an introdue the following likelihood funtionLX (f�mg;Y) =Yi G(xi � �yi) (2.1)where Y = fyig is a set of assignment variables taking values between 1 andM , whih tell us in whihluster the eah observation falls, while G(�) denotes a standard multivariate Gaussian density withmean 0 and ovariane I . The values of f�mg and Y whih maximize this likelihood are preiselythe solutions to the k-means sum-of-squares riterion. We have therefore onverted our lusteringproblem into maximum-likelihood estimation.This viewpoint also allows us to easily generalize the sum-of-squares riterion. In plae of theisotropi Gaussian, we might hoose Gaussians with arbitrary ovariane matries, so that eahluster is ellipsoidal but an have a di�erent size and orientation. Indeed, we an in general hooseany parameterized family of densities, and require that eah luster be represented by one of them(Sott and Symons 1971; Ban�eld and Raftery 1993). The likelihood is thenLX (�;Y) =Yi P�yi (xi) (2.2)where the �m;m = 1 : : :M parameterize the densities. If we are to retain the intuitive notion of aluster being spatially ompat we would expet the densities to all be well loalized. Algorithmsto maximize these likelihoods are exatly analogous to the proedures we disussed above in whatwe now see was the isotropi Gaussian ase.In this framework we maximize the likelihood with respet to both the density parameters andthe assignment variables simultaneously. This is appropriate if our goal is to group the data at hand,as is often the ase. However, the projet we laid out was to disover the nature of the proess thatgenerated the data. The proess is haraterized only by the density parameters, along with theprobability distribution of the yi. The partiular hoies of the yi are not important, and indeed wewish to maximize not the likelihood (2.2), but its marginal taken over all the possible assignmentsY . This leads to the mixture model.2.3 Mixture ModelsThe mixture model is perhaps the simplest example of a latent variable statistial model. Itonsists of a single observed vetor variable and one disrete salar latent variable. Both observationsand latent variables are iid. This model is represented by the graph in �gure 2.1a, using all the
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Figure 2.1: A mixture model.onventions introdued in setion 1.4. The marginal density of the ith observation xi isP� (xi) =Xyi P� (yi)P� (xi j yi) (2.3)where the sum is taken over all the possible values the latent variable might assume. The hoie ofdisrete values available to yi is arbitrary, although the number of suh values is not. We will writeM for the number of distint values the latent variable an take, and will assume that these values liein the range 1 : : :M . The distribution funtion of the yi is unonstrained, and so is parameterized bythe probabilities assoiated with eah value (stritly, by the probabilities of the �rst M � 1 values).We will write �m for P� (yi = m) and P�m (xi) or even just Pm (xi) for P� (xi j yi = m). We anthen rewrite the marginal density thus,P� (xi) = MXm=1�mP�m (xi) (2.4)where the parameter set � = f�1 : : : �M ; �1 : : : �Mg.Why the name \mixture model"? The latent variable an be viewed as a gate that, for eahobservation, selets one of the densities Pm (�), from whih the xi is then drawn. Thus, the resultantset of observations is formed by mixing together sets of data drawn from eah of the omponentdensities Pm (�). The relative sizes of these sets are de�ned by the mixing parameters �m.



282.4 EM for MixturesThe EM algorithm for mixture distributions has a partiularly appealing form. The log-likelihoodfuntion for the parameters is `X (�) =Xi log MXm=1�mP�m (xi) (2.5)whih has the log-of-sum struture ommon to latent variable models. The joint data log likelihoodis `X ;Y (�) =Xi log�yiP�yi (xi) (2.6)Written in this way, it is hard to manipulate. For this reason we will �rst re-express the mixturedensity in a way more onduive to appliation of EM.In plae of the singleM -valued latent variable yi we introdue a set ofM binary-valued indiatorlatent variables zm;i. For any observation, the one of these orresponding to the value of yi takesthe value 1, while the others are all 0. This version of the model is drawn in �gure 2.1b. Thezm;i are all dependent on eah other. A random variable xm;i is drawn from the mth omponentdistribution and multiplied by the value of zm;i. All of these produts are summed to produe the�nal observation. The square nodes in the graph represent deterministi ombinations of randomvariables.Armed with the variables zm;i we an rewrite the joint data log-likelihood`X ;Z (�) =Xi Xm zm;i log�mP�m (xi) (2.7)with only one term in the inner sum being non-zero. The fat that this expression is linear in thezm;i makes the E-step of the EM algorithm quite straightforward.Qn(�) = EZjX ;�n�1 [`X ;Y (�)℄= EZjX ;�n�1 "Xi Xm zm;i log�mP�m (xi)#= Xi Xm Ezm;ijxi;�n�1 [zm;i℄ log�mP�m (xi)= Xi Xm rnm;i log�mP�m (xi) (2.8)where we have written rnm;i for Ezm;ijxi;�n�1 [zm;i℄. The variable zm;i is binary, and so its expetedvalue is just the probability that it assumes the value 1, whih it does when the gating variable yi



29is equal to m. Thus,rnm;i = Ezm;ijxi;�n�1 �zim� = P�n�1 (yi = m j xi)= P�n�1 (xi j yi = m)P�n�1 (yi = m)P�n�1 (xi)= �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) (2.9)In other words, the number rnm;i is the posterior probability that the ith observation was generatedfrommth omponent, under the (n�1)th iteration of the parameters. It is alled the responsibilityof the mth omponent for the ith observation. In lustering terms it an be thought of as the degreeto whih observation xi is assoiated with luster m.We an also say some general things about the M-step without knowing the form of the omponentdensities. Rewriting (2.8), we haveQn(�) =Xm log�mXi rnm;i +Xm Xi rnm;i logP�m (xi) (2.10)and so the maximization with respet to �m and �m an proeed separately. We an �nd the newvalues of the �m diretly. We impose the onstraint P�m = 1 using a Lagrange multiplier � anddi�erentiate to obtain���m �����nm  Xm log�mXi rnm;i � �X�m! =Xi rnm;i�nm � � = 0 (2.11)and so �nm is proportional to Pi rnm;i. The normalization onstraint then gives us�nm = Pi rnm;ijX j (2.12)where the denominator is the number of observations and we have used the fat that Pm rnm;i = 1.We annot, of ourse, solve for the �nm without knowing the forms of the omponent densities,but even here we an make a little headway. First, note that the �m (unlike the �m) are independentof eah other, and so we an maximize with respet to eah omponent separately. Furthermore,the only term in (2.10) that depends on �m is Pi rnm;i logP�m (xi). Now, if we were to �t the mthomponent density alone to all of the observations, we would �nd the parameters by maximizing thelog-likelihood Pi logP�m (xi). Thus, we an interpret the M-step as �tting eah of the omponentdistributions to all of the observations, weighting the ontribution of the ith datum to the log-likelihood by the responsibility rnm;i.Here, then, is the EM algorithm for mixture distributions:



30E-step: Calulate the responsibilities at the nth iterationrnm;i = �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) (2.13)M-step: Estimate the new mixing parameters�nm = Pi rnm;ijX j (2.14)and the new omponent distribution parameters�nm = argmax�m Xi rnm;i logP�m (xi) (2.15)2.5 Appliations of Mixture ModelsWe have introdued the mixture model from the point of view of lustering. The omponent densitiesare thus taken to represent di�erent physial proesses, the observed data being a mixture of pointsgenerated by these proesses. The mixture-model likelihood and the EM algorithm used to optimizeit, di�er in fous from the lustering likelihood of (2.2) and the k-means algorithms: the mixtureparameter estimates desribe the generating proess, while the sum-of-squares and related methods�nd the best grouping of the observed data. In general, if we onsider many sets of data thatgenerated by mixing the outputs of the same group of proesses, we expet the mixture parameterestimates to exhibit muh tighter variane than their lustering analogues. In situations where weexpet to lassify new data, or to make preditions, it is lear that the former approah is to bepreferred.The di�erene may also be viewed in another way. The likelihood of (2.2) ditates a \hard"lustering sheme | the solution involves an expliit assignment of observations into lusters. Inontrast, �tting the mixture model desribes a \soft" or \fuzzy" lustering sheme where observationsare not, in fat, lassi�ed, but are partially assoiated with lusters through the responsibilities. Wemight intuitively expet these tehniques to yield di�erent answers. Fuzzy lustering shemes havebeen proposed, without the probabilisti interpretation, within the theory of fuzzy sets (Baker 1978;Bezdek 1981).The lustering view of mixture modeling is only really meaningful in situations where the om-ponent densities are reasonably well separated. In suh ases the likelihood landsape generallyexhibits sharp maxima to whih EM onverges quikly.Mixture models an also be employed in situations where the omponent densities overlap forthe purposes of density estimation. The mixture density (2.4) an be quite omplex, even when
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Figure 2.2: Two views of a mixture model.the omponent distributions are relatively simple. As a result, ompliated densities an be \non-parametrially" �t, with mixtures of Gaussians for instane, by the EM algorithm. From thisviewpoint, there is no signi�ane to the gating variable or to the omponent distributions { thereis only one proess with a ompliated density and the mixture is just a onvenient and exible rep-resentation of the unknown density funtion. Indeed, one ould view the familiar kernel-estimationtehnique as a partiular ase of a mixture model used in this way. The two views of the mix-ture model are illustrated in �gure 2.2 where mixture models (the saled omponents are shownby the dashed lines, the resulting mixture density by the solid lines) are �t to di�erent types ofone-dimensional data (histogrammed and shown by the grey bars).We should make a short observation on our hoie of the EM algorithm for learning the mixturemodel. If the omponent distributions overlap onsiderably it has been argued (Redner and Walker1984) that the onvergene of the EM algorithm to the optimal parameters of the mixture is slow(�rst order) and that superlinear methods should be preferred. However Redner and Walker (1984)themselves point out, and Xu and Jordan (1996) later elaborate, that the onvergene of the likelihoodof the mixture model is rapid, and that the mixture density approximates the true density quitequikly under EM. Thus, when the mixture model is used for lustering and thus the estimatesof parameters are of importane, the omponents are likely to be reasonably well separated andtherefore EM will onverge well; while in the density estimation ase, the riterion of importane isthe onvergene of the density estimate, and again this is rapid under EM.2.6 Mixtures of GaussiansA partiularly fruitful mixture model, both in the ontext of lustering and of density estimation,arises when the omponents are (possibly multivariate) Gaussian densities. The parameters �m are



32then a mean vetor �m and a ovariane matrix �m. The log-likelihood of the model is`X (�) =Xi log MXm=1�m j2��mj�1=2 e� 12 (x��m)T��1m (x��m) (2.16)The joint data log-likelihood with the indiator latent variables (2.7) is then`X ;Z (�) =Xi Xm zm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (2.17)where the exhange of the logarithm and the sum has eliminated the exponentials. The E-step is asfor a generi mixture distribution (2.13), in this ase given byrnm;i / �n�1m ��2��n�1m ���1=2 e� 12 (x��n�1m )T (�n�1m )�1(x��n�1m ) (2.18)with the responsibilities normalized so as to sum to 1. In the M-step, the estimation of the mixingparameters is as for the generi mixture (2.14). The estimation of the mth omponent parametersis ahieved by maximizingQnm(�) = �Xi rnm;i�12 log j2��mj+ 12(xi � �m)T��1m (xi � �m)� (2.19)Di�erentiating and equating to 0 we obtain�Qnm��m �����nm = �Xi rnm;i(�nm)�1(xi � �nm) = 0�nm = Pi rnm;ixiPi rnm;i (2.20)and (di�erentiating with respet to Rm = ��1m )�Qnm�Rm ����Rnm = Xi rnm;i�12(Rnm)�1 � 12(xi � �nm)(xi � �nm)T� = 0�nm = Pi rnm;i(xi � �nm)(xi � �nm)TPi rnm;i (2.21)Thus the mean is updated to the responsibility-weighted mean of the observations, and the ovarianeto their responsibility-weighted ovariane. This is a partiularly elegant and fast update.2.7 Pratial IssuesWe have argued that in situations where preditive power is desired, or where the parameters ofthe generating model are to be estimated as aurately as possible, the mixture model approah



33to lustering is to be preferred. Can we then blindly �t (with the EM algorithm) a basi mixturemodel to solve all lustering problems that onfront us? Unfortunately, we will �nd that a numberof pratial issues need to be examined quite losely before we an ahieve robust and repeatableparameter estimates.We shall raise the issues one by one, disussing briey some of the possible solutions to them aswe proeed. The order is arbitrary, and some of the more basi and serious points are not disusseduntil last. In hapter 3 we will disuss in depth an elaboration of the EM algorithm whih providesa new way to address a number of these issues.2.7.1 OutliersIt is often the ase that some of the data under onsideration do not fall into any of the data lusters.These outliers may be aused by measurement errors, suh as sensor artifats or data mis-entry,or may be due to an additional data generating proess whih is di�use and for whih no model isavailable. The outliers may have a onsiderable e�et on the estimates of the luster parameters.For example, in a mixture of Gaussians lustering algorithm, the estimate of the mean for eahGaussian omponent is disproportionally sensitive to data from the tails of the distribution. Theoutliers fall far from all of the Gaussian lusters but nevertheless must be assigned to one or theother of them. As suh, they will perturb the estimates of the means.We an resolve this problem by introduing an additional generative omponent in the mixturewhih an take responsibility for the outliers1. This omponent density must be far more di�usethat the luster densities, and must perturb the omponent density estimates as little as possible.The most suitable hoie for the outlier omponent probability is found in the uniform density.More preisely, PO (xi) = 8<: 1kAk if xi 2 A0 if xi 62 A (2.22)for some region A. This hoie orretly embodies (in the Bayesian sense) our utter lak of knowl-edge of the distribution from whih the outliers are drawn. Furthermore, it tends to minimize thepertubation in the luster parameter estimates. We will make this assertion more preise in thepartiular ase of Gaussian lusters.Without loss of generality, we onsider data drawn from a single Gaussian luster, with mean� and ovariane �, orrupted by the addition of some outliers. We �t a model that has twoomponents: one Gaussian and the other uniform. For simpliity in this analysis, assume that anyoutliers fall far from the enter of the luster and, as a result, have negligible responsibility assignedto the Gaussian. Under this assumption, the outliers themselves do not disturb the estimates of1Ban�eld and Raftery (1993) take a similar approah in the ontext of hard lustering, introduing a Poissondistribution for outlier generation



34the Gaussian parameters. However, the density of the uniform omponent within the region ofthe luster is not negligible, and so responsibility for points that were, in fat, generated from theGaussian is shared between the Gaussian and the uniform omponent. How will this sharing a�etthe estimates of the parameters of the Gaussian?Consider the transform ��1=2 applied to the data spae. Both the Gaussian and the Uniformdensities enjoy the property of mapping to another member of their respetive families under alinear transformation, so that the nature of the mixture is unhanged. In this spae, the data thatbelong to the luster will be distributed aording to a unit Gaussian (one with a ovariane matrixequal to the identity). Without loss of generality, take the mean to be 0. We write ~� and ~� forthe estimated mean and ovariane, respetively, of the Gaussian omponent. Let the value of theuniform density in this spae be ~u. The mixing probabilities are �g and �u for the Gaussian anduniform omponents respetively.The following system of equations must hold at the maximum likelihood parameter values,rg;i = 1� �u~u��u~u+ �g ���2�~�����1 exp�� 12 (~xi � ~�)T ~��1(~xi � ~�)��~� = Pi rg;ixiPi rg;i (2.23)~� = Pi rg;i(xi � ~�)(xi � ~�)TPi rg;iIt is diÆult to derive expressions for the estimates ~� and ~� diretly, however we an makesome arguments based on the symmetry of the situation. The data within the luster are generatedfrom a spherially symmetri distribution. Negleting edge e�ets, the uniform density is alsoompletely symmetri. Thus, on the average, there annot be any diretional bias to the estimates.This means that the expeted value of ~� must be 0, sine any other value would break symmetry.Similarly, the expeted value of ~� must be isotropi, and will generally be slightly smaller than thetrue ovariane in the transformed spae I . These omments are about the expeted values of theestimates, partiular values of the estimates will be di�erent based on the partiular data instanesbeing �t.What do these results tell us about the estimated Gaussian in the original spae? The lineartransform �1=2 maps from the whitened spae to the original one. Sine expetations are linearfuntions, the expeted values of the parameter estimates are simply the transforms of the orre-sponding values in the whitened spae. The estimated mean is thus distributed around the truevalue of the mean. The expeted value of the ovariane estimate is slightly smaller than the trueovariane, but has the same shape in the sense of the same eigenvetors, and eigenvalue ratios.It is important to note that this invariane ame as a result of the uniform density being sub-
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Figure 2.3: Multiple maxima in the mixture likelihoodstantially symmetri under any linear transform. Any other distribution would have had to havebeen arefully rafted to be symmetri. Furthermore, we would have to know a good deal about theluster distribution to do so. With many, di�erently shaped, lusters only the uniform density willsuÆe.2.7.2 Multiple maximaThe likelihood surfae assoiated with a typial mixture model tends to exhibit multiple maxima.Trivially, given loally optimal parameters f�m; �mg, another maximum an be identi�ed by retainingthe same numerial values but permuting the omponent indies. In this ase, the di�erent maximaare equivalent in all pratial senses and any one of them provides an equally good �t. Unfortunately,the system also exhibits non-trivial multipliity.Figure 2.3 illustrates the problem. Two-dimensional data are generated from the Gaussianmixture shown in A (eah Gaussian in the mixture is represented by its 1-sigma ontour). PanelsB{F show the results of 5 separate �ts to these data. The average log likelihood per point for eahmodel (inluding the generating model) is reorded in the bottom right orner. Eah model is theresult of an EM optimization, and eah optimization has onverged. The di�erene between theresults lies in the initial values of the parameters whih are used to seed the EM proess. (As anaside note that the best optimum (C) has a larger log-likelihood than the generating model | the
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Figure 2.4: Likelihoods obtained from random restartsdata have permitted a small degree of over-�tting).How are these initial values hosen? One generi approah, that does not depend on the type ofomponent densities, is to randomly assign responsibilities for eah data point and then derive theinitial parameters using the M-step update rules. In large data sets, this approah tends to makethe initial parameter values for eah omponent virtually idential. This initial ondition is similarto that of the REM algorithm to be disussed in hapter 3, however applying it in the standard EMontext does not seem to be eÆient. Convergene from suh an initial point tends to be slow, andis no more reliable at �nding a good maximum than the other tehniques mentioned below.An alternative approah, partiularly useful in the ase of mixtures of Gaussians (or the similar,well-loalized, densities that are ommonly used for lustering), is to pik a single ovariane matrix(sale parameter) and initialize the means (loation parameters) to randomly hosen data points.This is the method that was used to generate the �ts in �gure 2.3. We an re�ne the tehniqueslightly by using these initial loations as the seed for a k-means lustering algorithm, and thenusing the output of that algorithm to provide the initial values of loation parameters of the mixturemodel. K-means algorithms are also sensitive to the seed parameter values, but often less so thanthe full mixture, and so this initial stage tends to stabilize the estimates slightly. Nevertheless,experiments (an example appears in �gure 2.4, to be desribed more ompletely below) suggest thatin many situations the improvement is only very slight.In general, optimization problems of this sort are known to be NP-hard, and so no entirelyreliable, eÆient solution an be found. Various approximate approahes are well-known in theoptimization literature, and most may be adapted to the present problem. We will not diuss most



37of these here, instead referring the reader to the books by Hertz et al : (1991), for general tehniquesand MLahlan and Krishnan (1996) for EM spei� approahes. One general method, simulatedannealing (Kirkpatrik et al : 1983), will be desribed briey in hapter 3, although we will notelaborate on the appliation of this approah to mixture models. However, the prinipal subjet ofhapter 3, relaxation EM, is extremely pertinant to this issue and appliation to mixture modelswill be disussed in some detail.For the moment, we note one quite straightforward approah, whih is often remarkably e�etive.This is simply to hoose a number of random starting onditions by one of the means desribed above,maximize the mixture likelihood starting from eah of these initial values, and then hoose the resultthat provides the largest likelihood. Figure 2.4 shows a histogram of the di�erent values of the log-likelihood per point obtain by running 100 optimizations on the data of �gure 2.3. The dark barsshow the results when the EM algorithm started diretly from randomly hosen parameter values;the lighter bars show the results obtained when a simple k-means algorithm was run �rst. On thebasis of this experiment, we onlude that approximately one-third of the random seleted onditionsyield the best maximum (given either initialization). Thus, in only 10 restarts of the algorithm, theprobability of �nding the best optimum is 0.985. Of ourse, this probability will be dependent onthe problem being examined: an appropriate number of restarts will need to be determined throughsimulation for eah new type of problem.2.7.3 The number of lustersIn general, when presented with a lustering problem we have no a priori information about howmany di�erent lusters we will enounter. This number, along with the optimal parameters todesribe eah luster, must be estimated from the available data. This is a lassi example of thegeneral problem of model seletion, whih was addressed at some length in setion 1.3. All ofthe analysis of that setion applies to the present problem, and the methods desribed there arefrequently employed.In this setion we will add another result to the battery of approximations to the marginallikelihood. This new approximation, introdued by (Cheeseman and Stutz 1996), is peuliar tomixture models and related latent variable models. In the following hapter, we shall introdue anovel framework, asading model seletion, for the eÆient appliation of these various tehniques.The Cheeseman-Stutz riterionThe marginal likelihood for a mixture model with M omponents is given byPM (X ) = Z d� PM (�) NYi=1 MXm=1�mP�m (xi)! (2.24)



38Even if the individual luster likelihood P�m (xi) an be integrated with respet to �m, the overallintegral proves to be intratable due to the MN terms that appear one the produt is distributedover the sum.On the other, hand, if the latent variable values (expressed as the indiators zm;i) were known, themarginal likelihood in this ase ould be written in a simpler form (ompare the joint log-likelihood(2.7)) PM (X ) = Z d� PM (�) NYi=1 MYm=1 (�mP�m (xi))zi;m (2.25)= Z d� PM (�) MYm=1�(�izi;m)m NYi=1 (P�m (xi))zi;m (2.26)This integral is more likely to be tratable. If the prior fators over the di�erent luster parameters�m the expression above redues to the produt of the marginal likelihoods of eah luster, givenonly the data assigned to that luster.Cheeseman and Stutz (1996) propose that we use this form, with the indiator values zm;ireplaed by their expeted values at the optimum, r�m;i, as the basis for an approximation of thetrue integral. In fat, diret substitution of the responsibilities into (2.26) will under-estimate theorret integral; however, the size of the error an be estimated from the mismath between thevalue of the approximate integrand and the true likelihood at the estimated parameter values, ��.The omplete approximation isPM (X ) � QNi=1 �PMm=1 ��mP��m (xi)�QMm=1 �R�mm QNi=1 (P�m (xi))r�i;m Z d� PM (�) MYm=1�R�mm NYi=1 (P�m (xi))r�i;m (2.27)where we have written R�m =Pi r�m;i.


