
Chapter 3 Relaxation Expe
tation{MaximizationIn 
hapter 2 we noted a number of pra
ti
al diÆ
ulties that arise in the use of the Expe
tation{Maximization (EM) algorithm to �nd maximum likelihood �ts of mixture models. Two among thesewere the sensitivity to initial 
onditions and the 
omputational overhead involved in 
arrying outmodel sele
tion. In this 
hapter we shall introdu
e a modi�ed EM algorithm whi
h addresses bothof these issues in a natural fashion. Our modi�
ations will rely on the statisti
al me
hani
s notionof relaxation.3.1 Annealing and Relaxation3.1.1 Simulated annealingRelaxation methods are well known in data analysis, primarily due to the popularity of the simu-lated annealing te
hnique for the solution of non-
onvex optimization problems (Kirkpatri
k et al :1983). This being the most 
ommon example, we will review it brie
y so as to provide a point ofdeparture for our dis
ussion.The obje
tive is to �nd the global minimum of a fun
tion E(x). The approa
h taken is tosimulate the motion (in x spa
e) of a thermally ex
ited parti
le under the in
uen
e of a potentialenergy lands
ape given by E(x). In prin
iple, at zero temperature the parti
le will be found at theglobal minimum. Of 
ourse, in pra
ti
e, if it starts at a position far from the lowest energy pointit will most likely travel to a lo
al minimum and 
ome to rest there. At higher temperatures, theparti
le will travel rapidly all over the lands
ape, spending relatively more time in regions wherethe fun
tion E(x) is minimal. The annealing pro
edure lowers the simulated temperature gradually.As the temperature falls, the bias towards regions of lower energy in
reases, while the parti
le isstill able to 
ross barrier regions of higher energy. If the rate of 
ooling is suÆ
iently gradual, thesetwo tenden
ies | the attra
tion to regions of low energy and the thermal a
tivation to 
ross energybarriers | 
ombine in su
h a way as to inevitably leave the parti
le at the global minimum on
ethe temperature rea
hes 0. Cooling s
hedules whi
h guarantee this result 
an be shown to exist inprin
iple (Geman and Geman 1984); however, they invariably take impra
ti
ally long. Fortunately,less than perfe
t 
ooling s
hedules usually yield good results.This physi
al pi
ture of the optimization pro
ess is appealing, but it is diÆ
ult to build intuitionfor why the trade-o� between a
tivation energy and attra
tion to potential wells should work out so
onveniently. Also, while it will be valuable to 
ontrast this view with the \deterministi
 annealing"



40or relaxation pro
edure we will dis
uss later, it is not the most 
onvenient starting point for thedevelopment of the new approa
h. Therefore we reexamine the algorithm from a more statisti
alviewpoint.3.1.2 Annealed samplingThe fundamental logi
 behind annealing s
hemes is best illustrated by the simulated annealing ofMarkov 
hain Monte-Carlo (MCMC) samplers (Neal 1993; Bertsimas and Tsitsiklis 1993). Theobje
tive here is to sample from some 
ompli
ated target probability fun
tion P (x). For 
on-venien
e, we will introdu
e an energy fun
tion given, up to an arbitrary additive 
onstant, byE(x) = � logP (x). The density is thus given by the Boltzmann equation P (x) = 1Z exp(�E(x)),for some normalizing 
onstant Z. We are able to evaluate E(x) for any point x, but the energy doesnot have a simple fun
tional form that makes dire
t sampling by analyti
 means tra
table. TheMCMC sampling approa
h 
onstru
ts an ergodi
 Markov-
hain1 over the target spa
e su
h thatthe stationary distribution of the 
hain is P (x). In other words, we obtain a s
heme for makingprobabilisti
 transitions from one point in the spa
e to another in a memory-less (Markov) fashion,and su
h that, in the long run, the probability of visiting some point x is exa
tly P (x). A number ofs
hemes to 
onstru
t a suitable Markov 
hain exist, the most prominent being the Gibbs samplingand the Metropolis algorithms. The details of the pro
ess are unimportant for our purposes; weseek only to gain an intuitive pi
ture of the value of annealing; the reader interested in more detailis referred to the ex
ellent review by Neal (1993).When using an MCMC sampler, we need to begin the 
hain at some point in the domain,say x0. Sin
e we 
annot sample dire
tly from the target density, this point must be 
hosen froman arbitrary density, probably quite di�erent to the target one. Let us say this initial density isuniform on the domain of interest, although the argument is not 
ru
ially dependent on this 
hoi
e.The density of the next point, 
all it x1, is then the produ
t of this uniform distribution and thetransition density of the Markov 
hain, marginalized over x0, P1 (x1) = R dx0 P0 (x0)P (x1 j x0).(For dis
rete domains we 
an pi
ture multiplying a ve
tor representing the uniform distribution bya transition matrix.) The resultant density will also be far from the target, as will the densities ofmany subsequent samples. Thus, our ne
essarily poor 
hoi
e of P0 (x0) results in a \burn-in" periodof in
orre
tly distributed samples. The typi
al length of this period is related to the mismat
hbetween the initial distribution and the target (or stationary) distribution, and to the magnitude ofthe non-unit eigenvalues of the transition operator, whi
h set the de
ay rate of the non-stationarymodes in P0 (�). In general, the mixing time 
annot easily be 
al
ulated, but in experiments withpra
ti
al examples it is often impra
ti
ally long.The diÆ
ulty is that in many problems P0 (x0) is likely to as
ribe a relatively large mass to1The basi
 theory of Markov 
hains will be reviewed in se
tion 4.1.1.



41regions where the target fun
tion is vanishingly small, and furthermore, has small log-gradients.For domains of high dimensionality, the probability of falling in su
h regions 
an approa
h 1. Thestru
ture of the usual MCMC samplers (in parti
ular, a feature 
alled detailed balan
e whi
h isneeded to guarantee ergodi
ity) results in the sampler exe
uting an almost unbiased random walkwithin that region until it �nally emerges into a region of higher probability.How 
an annealing help redu
e this burn-in period? We 
reate a sequen
e of probability fun
tionsP0 (x), P1 (x), . . . , P (x) whi
h starts with the uniform distribution and ends in the target. In the
ase of the Boltzmann distribution this sequen
e is easily 
onstru
ted using a \inverse-temperature"parameter, �. We 
hoose a sequen
e of �i, starting with 0 and ending in 1, and write Pi (x) =1Z(�i) exp(��iE(x)), where Z(�i) is the partition fun
tion. By analogy with statisti
al physi
s,these densities 
orrespond to the 
anoni
al distributions of a system with energy E 
ooled througha sequen
e of temperatures T = 1=�. We now 
hoose an initial point from P0 (x) as before, butthen use the MCMC sampler 
orresponding to the density P1 (x), with 0 < �1 � 1, rather thanthe target sampler. The mismat
h between these two distributions is small by 
onstru
tion, and sothis Markov 
hain will soon a
hieve the stationary distribution for P1 (x). On
e enough time haselapsed to make 
onvergen
e likely, we swit
h to sampling from P2 (x), where the same argumentabout qui
k 
onvergen
e holds. Eventually, we rea
h the target distribution (at � = 1). In manysituations, the total burn-in time for all of the annealing steps is mu
h smaller than the burn-inen
ountered stepping dire
tly to the target.What does all this have to do with the physi
al pi
ture of optimization by simulated annealingthat we saw before? The Metropolis sampling algorithm used in some MCMC simulations hasits origins in the physi
al simulation of parti
le motion, and, indeed, is pre
isely the simulationalgorithm used by Kirkpatri
k et al : (1983). If we extend to temperatures 
lose to 0 (� � 1) thesequen
e of distributions dis
ussed above, virtually all of the probability mass be
omes 
on
entratednear the global energy minimum. Provided the MCMC sampler is maintained in equilibrium, then,samples drawn in this limit will be arbitrarily 
lose to the optimum. This is pre
isely the simulatedannealing optimization algorithm.3.1.3 RelaxationWe have examined the simulated annealing algorithm from two di�erent points of view. In the �rst,the underlying energy lands
ape was �xed by the fun
tion to be optimized, while the motion of athermally a
tive parti
le in the lands
ape was simulated at steadily de
reasing temperatures. In these
ond, the energy lands
ape was transformed from a 
at initial 
ondition to the target fun
tion andbeyond, while samples were drawn from the 
orresponding Boltzmann distribution. This gradualtransformation of the energy surfa
e is 
alled relaxation; for this reason, simulated annealing isalso known as sto
hasti
 relaxation.



42Optimization within a relaxation framework need not be sto
hasti
. Let us fo
us on the energyfun
tions themselves rather than on the implied Boltzmann densities. We 
an 
onstru
t a sequen
eof fun
tions, E0(x) : : : E(x) su
h that the �rst fun
tion E0(x) is easily optimized | it might, forexample, have a single extremum | while the �nal fun
tion is the target. Our goal in 
onstru
tingthis sequen
e is for the global optimum of the ith fun
tion Ei(x) to lie within the domain of 
on-vergen
e of the global optimum of the next fun
tion Ei+1(x). We then pass along the sequen
e offun
tions, optimizing ea
h one by a hill-
limbing (or, for minima, des
ending) algorithm, whi
h isseeded with the lo
ation of the previous optimum. Thus, we hope to tra
k the global optimum fromE0(x), where it was easily found, to E(x). Unfortunately, unlike the 
ase of sto
hasti
 relaxation,there is no simple strategy that is guaranteed to provide a suitable sequen
e of fun
tions in the
ase of su
h deterministi
 relaxation, even with exponentially long relaxation s
hedules, and indeeds
hemes devised for parti
ular 
lasses of energy (say mixture likelihoods) may not work even in allexamples of that 
lass. Nevertheless, in pra
ti
e, this approa
h often does yield good results.3.2 Deterministi
 AnnealingOne example of a non-sto
hasti
 relaxation pro
ess has been 
alled deterministi
 annealing. Thisalgorithm was introdu
ed by Rose et al : (1990) as a maximum entropy approa
h to 
lustering andve
tor quantization, following earlier work on elasti
 net algorithms for the traveling salesmanproblem (Durbin and Willshaw 1987; Durbin et al : 1989; Simi
 1990; Yuille 1990). In this form, thealgorithm is strongly motivated by physi
al analogy. Below, we will see that it 
an be generalizedbeyond its statisti
al physi
s origins, to yield a powerful pro
edure that 
an be applied to anyproblem in whi
h the EM algorithm is used for learning. We shall refer to the generalization asRelaxation Expe
tation{Maximization, reserving the term \deterministi
 annealing" for the originalformulation.Rose et al : view 
lustering as a squared-distan
e distortion minimization operation. Theyintrodu
e a 
ost fun
tion, Em(xi), des
ribing the distortion due to asso
iation of the the ithdata point with the mth 
luster. We shall take this 
ost to be the squared Eu
lidean distan
eEm(xi) = k�m�xik2, although other distortions may be 
onsidered. The 
ost of adopting a parti
-ular set of 
luster parameters � = f�mg and a parti
ular assignment of points to 
lusters, representedby indi
ator variables Z = fzm;ig, is given byE(�;Z) =Xi Xm zm;iEm(xi) (3.1)We have 
hosen notation di�erent from that of Rose et al : (1990) in order to highlight the similarityto the mixture model development in 
hapter 2. This 
ost, E(�;Z), may be viewed as the energy



43of a mi
rostate, identi�ed by the pair (�;Z), of a physi
al system and we may pro
eed by analogyto statisti
al physi
s (as we will see below, this analogy is not vital; the results follow dire
tly fromthe maximum-likelihood framework and the EM algorithm). We expe
t the system to display adistribution over mi
rostates P (�;Z). For a �xed average energy, E, this distribution will maximizethe entropy under the 
onstraint E [E(�;Z)℄ = E (see, for example, Kittel and Kroemer (1980)).We 
an �nd this maximizer by the method of Lagrange multipliers, optimizing the entropy H =� R d� PZ P (�;Z) logP (�;Z) while enfor
ing the 
onstraint E � R d� PZ P (�;Z)E(�;Z) = 0with the multiplier �. Doing so, we obtain the well-known Boltzmann distributionP� (�;Z) / e��E(�;Z) (3.2)The value of the multiplier � 
an be obtained by solving for the 
onstraint energy. Rose et al : argue,as we have, that the distribution of interest in the 
ase of modeling or predi
tion problems is notthe joint, but rather the marginalP� (�) =XZ P (�;Z) /Yi Xm e��Em(xi) (3.3)For the 
ase of the squared distan
e 
ost, this is seen to be the same as the likelihood of a mixtureof Gaussians with mixing probabilities �m = 1M and 
ovarian
es �m = 12� I .Given this \likelihood", they pro
eed to derive heuristi
ally re-estimation equations similar tothose of the EM algorithm (written here for the squared error distortion metri
):ri;m  e��Em(xi)=Pl e��El(xi)�m  Pi ri;mxi=Pi ri;m (3.4)We have again 
hosen notation to emphasize the 
onne
tion to our previous development. Thedeterministi
 annealing algorithm then involves varying the value of the parameter � from 0 to a�nal value 
hosen either through some knowledge of the expe
ted �nal distortion (due, say, to aknown noise-
oor), or else by a validation-based stopping 
riterion (or else by operator �at). Atea
h step the re-estimations (3.4) are iterated to 
onvergen
e.The intuitions that underlie this algorithm 
an be used to obtain similar solutions to a numberof other problems (Rose et al : 1993; Buhmann and Kuhnel 1993; Miller et al : 1996; Kloppenburgand Tavan 1997; Rao et al : 1997; Rao et al : 1999). Many of these are reviewed by Rose (1998). Ingeneral, however, ea
h su
h problem presents the need for a fresh derivation. Furthermore, it is notalways 
lear how best to generalize the approa
h to some problems. For example, Kloppenburg andTavan (1997) provide an extension to a mixture of multivariate Gaussians with arbitrary 
ovarian
es;but they are for
ed to introdu
e multiple annealing parameters, leaving serious questions about the



44
hoi
e of relative annealing s
hedules.In the next se
tion we will en
ounter a generalized relaxation method whi
h subsumes the variousdeterministi
 annealing algorithms, and allows extremely straightforward generalization.3.3 REM-1In this se
tion, we will develop a novel relaxation s
heme within the framework of the EM algorithm,to obtain an algorithm that we 
all the �rst Relaxation Expe
tation{Maximization algorithm2(REM-1).In se
tion 1.7 we introdu
ed a free-energy F , a fun
tion of the model parameters, �, and aprobability distribution on the latent variables, p,F (p; �) = Q(p; �) +H(p) = Ep [`X ;Y (�)℄� Ep [log p(Y)℄ (3.5)We showed that if this fun
tion a
hieved a maximum at (��; p�) the true model likelihood (marginal-ized over the latent variables) a
hieved a maximum at ��. This allowed us to interpret the EMalgorithm as an alternation of optimization steps, maximizing F �rst with respe
t to p, and thenwith respe
t to �. This view of EM forms the basis for our relaxation s
heme.Let us introdu
e an annealing parameter � so as to 
onstru
t a family of free-energy fun
tions,F�(p; �) = �Q(p; �) +H(p) (3.6)The analogy to statisti
al me
hani
s inherent in the term \free-energy" is maintained by this 
hoi
e(modulo an overall minus sign). We may view � as the inverse of a (dimensionless) temperature, inwhi
h 
ase it enters into the free-energy de�nition in the physi
ally appropriate position. When �takes the value 1 (that is, T = 1) we re
over the original free-energy, whi
h is the target fun
tionwhose maximum we seek. On the other hand, when � is 0 (T ! 1) F is equal to the entropyH(p). In general, there is a single, easy to �nd, global maximum of this entropy. For dis
rete latentvariables, for example, it is a
hieved by the uniform distribution. For the 
ase of the mixture model,in whi
h the latent variables indi
ate with whi
h 
luster ea
h point is asso
iated, and we see that F0is maximized by asso
iating all of the points uniformly with all of the 
lusters. The � = 0 
ase doesnot 
onstrain the parameters � at all, however it is 
onvenient to 
hoose � as before, maximizing Qwith p �xed at its maximum-entropy value.Thus, the sequen
e of fun
tions F�i(p; �); 0 = �0 < �1 < � � � < �R = 1 satis�es at least two ofthe 
onditions we desired for a relaxation progression: it starts with an easily maximized fun
tion2The same formulation has been independently proposed under the name \Deterministi
 Annealing Expe
tationMaximization" by Ueda and Nakano (1998). A slightly di�erent development, whi
h we 
all REM-2, will appearbelow.



45and ends with the target. To be sure of �nding the global maximum of the target fun
tion we needanother 
ondition to be satis�ed: the global maximum of ea
h fun
tion in the sequen
e must liewithin the basin of attra
tion of the global maximum of the next fun
tion. Provided that the lo
ationof global maximum 
hanges 
ontinuously with �, this 
an be assured by 
hoosing suÆ
iently smallannealing steps.3 Unfortunately, we will see below that even for the parti
ularly simple exampleof the mixture model, the maximum does not move smoothly. In general it is not guaranteed thatREM will �nd the global maximum of the target. However, in many 
ommon examples it does �nda good maximum.Any hill-
limbing te
hnique may be used to �nd the optimum of ea
h su

eeding free-energy inthe relaxation sequen
e; however, we 
hoose to employ the same approa
h as in the EM algorithm,alternately optimizing with respe
t to p and �, in ea
h 
ase holding the other variable �xed. Note�rst that, for �xed p, the relaxation fa
tor � has no e�e
t on the optimal value of �. Thus, theM-step of the algorithm is exa
tly as for the normal EM algorithm. The E-step, however, doesdi�er.We showed previously (1.42) that the target free-energy is maximized with respe
t to p (for �xed�) by 
hoosing p(Y) = P� (Y j X ). In the 
ase of the relaxation free-energies we 
an pro
eed in thesame fashion as we did at that point. We introdu
e a Lagrange multiplier � enfor
ing the 
onstraintR dY p(Y) = 1 and obtain0 = ��p �F�(p; �)� � Z dY p(Y)�= ��p �Z dY p(Y)(�`X ;Y (�)� log p(Y)� �)� (3.7)from whi
h, by the 
al
ulus of variations,0 = ��p (p(Y)(�`X ;Y (�)� log p(Y)� �))= (�`X ;Y (�)� log p�(Y)� �)� p�(Y)p�(Y) (3.8)and so p�(Y) = e���1(LX ;Y (�))� = e���1(P� (X ;Y))� (3.9)But P� (X ;Y) = P� (X j Y)P� (Y) and sop�(Y) = 1Z(�) (P� (X j Y)P� (Y))� (3.10)3This assertion 
an be proved by noting that a global maximum must have at least an �-sized basin of attra
tionand that 
ontinuity guarantees that there exists some Æ so that for a Æ-sized step in � the 
hange in global maximumis smaller than this �.



46with Z(�) and appropriate normalizing 
onstant.Thus we obtain the steps of the REM-1 algorithm, repeated until � = 1.R-step: In
rement � a

ording to the relaxation s
hedule.Repeat the following EM steps until 
onvergen
e:E-step: Maximize F� with respe
t to p holding � �xed.p(Y) 1Z(�) (P� (X j Y)P� (Y))� (3.11)M-step: Maximize F� with respe
t to � holding p �xed.�  argmaxEp [`X ;Y (�)℄ (3.12)Relationship to deterministi
 annealingThe deterministi
 annealing algorithm for ve
tor quantization des
ribed in se
tion 3.2 is easily seento arise from REM-1 applied to a simple mixture model. Consider an M-
omponent model in whi
hea
h 
omponent is a Gaussian with identity 
ovarian
e matrix and mean �m. We will refer to thisas a mixture of unit Gaussians. Any model in whi
h the all of the 
omponents are known to sharethe 
ovarian
e matrix � 
an be transformed to this 
anoni
al form by multiplying ea
h data ve
torby the whitening matrix ��1=2. The relaxation free-energy for su
h a model isF�(p; �) = �Xi Xm rm;i(log�m � 12kxi � �mk2)�Xi Xm rm;i log rm;i (3.13)where the distribution p is expressed in terms of the responsibilities rm;i. For notational simpli
ity wehave left out the normalization fa
tor from the Gaussian. For a model with �xed, equal, 
ovarian
esthis fa
tor does not 
hange and 
areful inspe
tion reveals that it does not survive in any of oureventual results.The REM-1 iterations for su
h a model are easily seen to be given byri;m  1Zi��me� 12�kxi��mk2�m  Pi ri;m=jX j�m  Pi ri;mxi=Pi ri;m (3.14)If we further 
onstrain the mixing probabilities to remain equal, that is, �m = 1=M , we obtainexa
tly the iterations of (3.4).Note that in the 
ase of the �xed mixing probabilities, the relaxation likelihoods 
orrespond totrue likelihoods for other models, in this 
ase, a mixture of Gaussians with 
ovarian
e ��1I . This



47allows us to interpret the relaxation pro
edure as the su

essive optimization of a sequen
e of modelswith shrinking 
ovarian
es. This is a
tually a spe
ial 
ase and for the majority of models no su
hequivalen
e holds. Given even the simple step of allowing un
onstrained mixing probabilities, theiterations (3.14) do not 
orrespond to EM for any model.It is instru
tive to note that the maximization of the free-energy with respe
t to p, whi
h ismotivated in REM entirely by the maximum likelihood 
onsiderations of 
hapter 1, may indeed beinterpreted as a maximization of the entropy of p under a \
onstraint" set by the expe
ted jointlog-likelihood and enfor
ed by a Lagrange multiplier. This is in a

ordan
e with the physi
al analogyof Rose et al : (1990), although it is obtained dire
tly without resort to the physi
s.Yuille et al : (1994) remarked on a 
onne
tion between the heuristi
 optimization steps usuallyemployed within deterministi
 annealing solutions and the EM algorithm. However, they seem toregard EM simply as an optimization te
hnique embedded within the physi
ally motivated deter-ministi
 annealing framework. Notably, they appear to have failed to observe the deep 
onne
tionbetween the free-energy formulation of EM and the relaxation pro
edures of deterministi
 anneal-ing; in parti
ular, they make no mention of the availability of a simple generalization of any EMalgorithm to yield a relaxation (or \annealing") pro
edure.3.4 Phase Transitions in REMAn important feature of deterministi
 annealing and relaxation EM is best illustrated in a simpleexample. We will use the mixture of unit Gaussians des
ribed in the pre
eding se
tion. We willwrite (r�m;i; ��m; ��m) for the optimum of the relaxation free-energy. Clearly, these values satisfy there
urren
e relations r�m;i = ���m e� 12�kxi���mk2Pl ���l e� 12�kxi���l k2 (3.15)��m = Pi r�mijX j (3.16)��m = Pi r�m;ixiPi r�m;i (3.17)When � = 0 the relaxation E-step �nds the maximum entropy distribution over the latentvariables. For a mixture distribution, where the latent variables are dis
rete, this is the uniformdistribution and r�m;i = P (zm;i = 1 j xi) = 1M (3.18)In this limit the relaxation free-energy is independent of � and so the M-step is un
onstrained.However, we 
an 
hoose it to maximize Q(�; p�) where p� is the maximum entropy distributiondes
ribed above, thereby preserving 
onsisten
y with the � > 0 
ase. As the responsibilities for ea
h
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Figure 3.1: Phase transitions in REM-1 for �xed-varian
e Gaussiansdata point are shared equally between all of the 
omponents, the maximizing �m are all identi
al.The solution in the � = 0 
ase, then, has all the 
omponents lo
ated at the overall mean of the data.A remarkable fa
t is that even as the temperature de
reases (that is, � in
reases) this solutionremains the global maximum of the likelihood for some range of temperatures. On
e the relaxationpro
ess rea
hes a 
riti
al temperature, the solution undergoes a phase transition and the formerstationary point (where all the 
omponents are identi
al) 
eases to be a maximum. A new maximumappears, usually dividing the 
omponents into two groups, so that all of the 
omponents assumeone of only two distin
t parameter values. As the system 
ools further, the optimal solution again
ontinues with only two distin
t 
omponent values, although the values of those 
omponents may
hange. Eventually, though, it undergoes another phase transition and more distin
t 
omponentsare observed.Figure 3.1 shows an example of the optimal mixtures at various stages of relaxation. We �t twodimensional data, shown by the s
attered points, by a mixture of �ve unit Gaussians. Ea
h panelof the �gure shows the mixture at a di�erent temperature. The inner, solid, 
ir
le shows the 1�boundary of the Gaussian; the outer, dashed, 
ir
le shows the e�e
tive varian
e (��1I) boundary.In the �rst few diagrams, fewer than �ve 
omponents are visible due to the exa
t 
oin
iden
e of themeans.



493.4.1 Criti
al temperaturesIn the 
ase of this simple model it is possible to 
al
ulate the 
riti
al temperatures at whi
h themixture will undergo a phase transition.Suppose we were to start the EM algorithm with parameters �0 in whi
h two (or more) ofthe 
omponents were identi
al. Without loss of generality we shall take these two be the �rsttwo 
omponents, setting �01 = �02 and �01 = �02 . At ea
h E-step the responsibilities of these two
omponents for ea
h of the data points will be the same. Thus, at the M-step they will both beupdated in exa
tly the same way, and will remain identi
al. The EM algorithm will thus preservethe dupli
ation, and will 
onverge to a stationary point with ��1 = ��2 and ��1 = ��2 .Is this stationary point a maximum, or merely a saddle point? The stability of the solution ��
an be evaluated by examining the value of the Hessian of the free-energy at that point. In fa
t,we know that for any parameter value, F� is maximized with respe
t to the rm;i by the relaxationE-step. Thus, we need only evaluate the Hessian within the surfa
e of 
onstraint set by the equation(3.11). With the responsibilities 
hosen optimally, we 
an redu
e the free-energy thus,`� (�) = F�( ��me� 12�kxi��mk2Pl ��l e� 12�kxi��lk2 ; �)= �Xi Xm rm;i log��me� 12kxi��mk2��Xi Xm rm;i log rm;i= Xi Xm rm;i log ��me� 12�kxi��mk2rm;i != Xi Xm rm;i logXl ��l e� 12�kxi��lk2= Xi logXl ��l e� 12�kxi��lk2 (3.19)where, in the last step we have used the fa
t that Pm rm;i = 1. This form is quite similar to thelog-likelihood of the underlying model. We refer to it as the relaxation log-likelihood. Pre
iselythe same relationship exists between the relaxation free-energy and the relaxation log-likelihood asdoes between the true free-energy and log-likelihood.Evaluation of the Hessian of `� (�) proves to be notationally 
hallenging. Rose (1998) suggestsan alternative whi
h is more tra
table and whi
h we shall adopt. We 
onsider a perturbation �Æmapplied to ea
h of the means ��m respe
tively, with Æm = 0 for all but the identi
al 
omponents. Wethen evaluate the derivative d2d�2 `� (f��mg; f��m + �Æmg) at the point in question. This is equivalentto �nding the proje
tion of the Hessian on the dire
tion de�ned by the perturbation Æm.We begin with the �rst derivative.dd�Xi logXl ���l e� 12�kxi���l��Ælk2 = Xi Xl ���l e� 12�kxi���l��Ælk2Pk ���k e� 12�kxi���k��Ækk2 �ÆTl (xi � ��l � �Æl)



50= Xi Xl �rl;iÆTl (xi � ��l � �Æl) (3.20)with the responsibilities evaluated at the perturbed �. We note that when � = 0 we 
an write thisderivative as �Pl ÆTl �Pi r�l;ixi � ��l Pi r�l;i� whi
h is always zero by (3.17). This simply veri�esthat parameters whi
h satisfy the re
urren
e relations (3.15){(3.17) are indeed stationary points ofthe relaxation log-likelihood.The se
ond derivative isdd�Xi Xl �rl;iÆTl (xi � ��l � �Æl) =Xi Xl �� drl;id� ÆTl (xi � ��l � �Æl)� �rl;ikÆlk2� (3.21)with the derivative of the responsibility given bydrl;id� = dd�  ���l e� 12�kxi���l��Ælk2Pk ���k e� 12�kxi���k��Ælk2!= ���l e� 12�kxi���l��Ælk2�ÆTl (xi � ��l � �Æl)Pk ���k e� 12�kxi���k��Ælk2 ����l e� 12�kxi���l��Ælk2Pj ���j e� 12�kxi���j��Ælk2�ÆTj (xi � ��j � �Æj)�Pk ���k e� 12�kxi���k��Ælk2�2= �rl;i0�ÆTl (xi � ��l � �Æl)�Xj �ri;jÆTj (xi � ��j � �Æj)1A (3.22)Combining these equations we arrive atd2d�2 `� (��) = �2Xi Xl rl;i �ÆTl (xi � ��l � �Æl)�2 � �2Xi  Xl rl;iÆTl (xi � ��l � �Æl)!2��Xi Xl rl;ikÆlk2and so, evaluating at � = 0 and exploiting the fa
ts that Æl = 0 for l > 2 and that the means andresponsibilities of 
omponents 1 and 2 are identi
al by 
onstru
tion.d2d�2 `� (��) = �Xl ÆTl  �Xi r�l;i(xi � ��l )(xi � ��l )T �Xi r�l;i! Æl��2Xi  r�1;i(xi � ��1)T Xl Æl!2 (3.23)The se
ond term in this expression, a sum of squares, is always non-negative. We 
an for
e it to0 by 
hoosing the perturbations so that Pl Æl = 0. The �rst part will be negative for all 
hoi
es ofÆ as long as the matrix �Pi r�l;i(xi���l )(xi ���l )T �Pi r�l;i is negative de�nite. Let �l;s be the sth



51eigenvalue of the matrix Pi r�l;i(xi � ��l )(xi � ��l )T =Pi r�l;i. The 
ondition for negative de�nitenessis thus � < 1max(�l;s) ; l = f1; 2g (3.24)This 
ondition is both ne
essary and suÆ
ient for the solution �� with 
omponents 1 and 2 identi
alto be a stable maximum. We have shown that if it holds then the derivative of (3.23) is negativefor any 
hoi
e of Æm. If it fails we 
an 
hoose Æ1 and Æ2 pointing in opposite dire
tions along theeigenve
tor 
orresponding to the largest �l;s so as to obtain a positive Hessian.Thus, a 
riti
al temperature is rea
hed whenever the temperature ��1 be
omes smaller than theleading eigenvalue of the 
ovarian
e of the data assigned to any of the mixture's 
omponents. If weinterpret the parameter ��1 as the e�e
tive s
ale of the 
ovarian
e matrix of ea
h Gaussian, thisresult is intuitively appealing. When the observed 
ovarian
e of the data assigned to a 
omponentbe
omes larger than the 
omponent 
an \handle", a transition to more distin
t 
omponent 
enterso

urs.3.4.2 Model-sizeIt is tempting to interpret the phase transition stru
ture of relaxation models as indi
ating a pro-gressive 
hange in the underlying model-size (for example, the number of 
omponents in a mixture).Take the mixture model shown in �gure 3.1, for example. Initially, only one distin
t set of 
ompo-nent parameters exists, and we might think of the mixture as 
ontaining only that one 
omponent.As the relaxation progresses, ea
h phase transition introdu
es more distin
t 
omponent values. Wewould like to view these as new 
omponents being added to the mixture, thus growing the underlyingmodel-size.Unfortunately, under the REM-1 algorithm (as well as the basi
 deterministi
 annealing algo-rithm), su
h an interpretation does not hold up. In the ground-state (� = 1) mixture likelihood, iftwo 
omponents, say the �rst two, have identi
al parameters, so that P1 (xi) = P2 (xi), they may berepla
ed by a single 
omponent with the same parameters and mixing proportion �1 + �2 withoutany 
hange in the likelihood. This is made 
lear by inspe
tion of the likelihood`X (�) =Xi logXm �mPm (xi) (3.25)In parti
ular, if the larger model is at a maximum in the likelihood, then the smaller one will betoo.This 
onvenient behaviour does not 
arry through to higher temperatures. Re
all the form ofthe relaxation log likelihood `X ;� (�) =Xi logXm ��mPm (xi)� (3.26)
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A B 

Figure 3.2: Inequivalen
e of di�erent size modelsClearly, with � < 1 we 
annot repla
e the identi
al 
omponents as before, sin
e ��1 +��2 6= (�1+�2)� .Nor 
an we simply set the mixing proportion of the new 
omponent to (��1+��2 )1=� , sin
e this violatesthe normalization of P� (yi). In general, then, the relaxation likelihood 
hanges between the twomodels. Furthermore, a maximum in the more 
omplex model may not 
orrespond to a maximumin the simpler one, indeed the number of distin
t 
omponent values in the two models may not bethe same.Figure 3.2 illustrates the point. Panel A shows a maximum in the relaxation likelihood of athree-
omponent mixture of unit Gaussians at the stage � = 0:3. Panel B shows the optimal
on�guration, at the same temperature, of a four-
omponent mixture, whi
h was 
onstru
ted byrepla
ing the rightmost 
omponent of the mixture of panel A with two identi
al Gaussians. Bothvisible 
ontours in B represent two identi
al 
omponents (indi
ated by the dark lines | other thanthis the representation of the 
omponents is as in �gure 3.1). Thus, the dupli
ation of one 
omponenthas, in e�e
t, driven the relaxation of the mixture in reverse, to a smaller phase.Thus, the view of the model 
hanging in size during the relaxation pro
ess 
annot be maintained
onsistently under REM-1.A further issue emerges from this analysis. Consider the mixture of �gure 3.2B, where a four
omponent mixture is being �t, but where only two distin
t 
omponent values are visible. How dowe know how to distribute these dupli
ated 
omponents? Clearly, ea
h 
hoi
e will yield a di�erentintermediate solution; but the �nal result may also be a�e
ted sin
e subsequent phase transitions willbe 
onstrained by the availability of 
omponents. We would like to be able to introdu
e the additional
omponent wherever it is needed, but we 
annot \move" the 
omponent around without 
hangingthe likelihood lands
ape. The result is that the 
hoi
e of how to group the various 
omponents, a
hoi
e that must be made at ea
h phase transition, will a�e
t the out
ome of the relaxation pro
ess.Both of these issues 
an be re
ti�ed by the introdu
tion of a variant of the basi
 relaxation



53algorithm, whi
h we 
all REM-2.3.5 REM-2It is instru
tive to examine the stru
ture of the relaxation free-energy of REM-1 for 
lues to theorigin of the inequivalen
e of di�erent model-sizes des
ribed above. Re
all that the term Q(p; �)is the expe
ted value of the joint data log-likelihood under the distribution p. Using the fa
t that`X ;Y (�) = log (P� (X j Y)P� (Y)) we 
an write the free-energy of (3.6) asF�(p; �) = �Ep [logP� (X j Y)℄ + �Ep [logP� (Y)℄� Ep [log p℄ (3.27)If we introdu
e a new hidden state, we in
rease the entropy of the latent variables. However, providedthe new state is identi
al to some old one, the 
ross-entropy �Ep [logP� (Y)℄ de
reases by the sameamount. When � = 1, then, su
h an addition has no net e�e
t on the free-energy. However, athigher temperatures the free-energy in
reases with the introdu
tion of the new state. The size ofthis in
rease depends on both p and � and so the lo
ation of the maxima of the free-energy may also
hange, as we saw above.This formulation suggests a resolution of the diÆ
ulty. We introdu
e a slightly di�erent relaxationfree-energy whi
h will form the basis of our se
ond Relaxation Expe
tation{Maximization algorithm(REM-2). F 0�(p; �) = �Ep [logP� (X j Y)℄ + Ep [logP� (Y)℄� Ep [log p℄= �Q0(p; �)� KL[p(Y)kP� (Y)℄ (3.28)Here KL[fkg℄ stands for the Kullba
k-Leibler divergen
e between the distributions f and g. Thisform no longer enjoys the analogy with the familiar free-energy of statisti
al physi
s. Nonetheless,from the point of view of optimization it provides just as valid a relaxation progression as does themore traditional form.Again, we optimize ea
h free-energy in the relaxation sequen
e using the EM approa
h of al-ternate optimizations with respe
t to p and with respe
t to �. The E-step is derived in the samemanner as before. We introdu
e a Lagrange multiplier � enfor
ing the 
onstraint R dY p(Y) = 1 toobtain 0 = ��p �F 0�(p; �)� � Z dY p(Y)�= ��p �Z dY p(Y)(� logP� (X j Y) + logP� (Y)� log p(Y)� �)� (3.29)



54from whi
h, by the 
al
ulus of variations,0 = ��p (p(Y)(� logP� (X j Y) + logP� (Y)� log p(Y)� �))= (� logP� (X j Y) + logP� (Y)� log p�(Y) � �)� p�(Y)p�(Y) (3.30)and so p�(Y) / P� (Y) (P� (X j Y))� (3.31)The multiplier � ensures that p is 
orre
tly normalized.At �rst glan
e it might seem that the M-step, involving the maximization of �Ep [logP� (X j Y)℄+Ep [logP� (Y)℄ will be di�erent from standard EM and REM-1. In most models, however, the param-eters � 
an be partitioned into two disjoint and independent sets, one responsible for the distributionof the latent variables and the other for the 
onditional of the observables given the latent variables.If this is the 
ase, F 0� 
an be optimized with respe
t to ea
h of these sets separately, and 
learly theresulting update rules will be exa
tly as in standard EM.Now, when � = 0, this free-energy is optimized by any 
hoi
e of p and � for whi
h p(Y) = P� (Y).Although p need not be the maximum entropy distribution, the resulting parameter values are verysimilar to the initial 
onditions for REM-1. In parti
ular, the distribution p must be independentof the observations X . For the mixture model, for example, we have rm;i = �m, whi
h impliesthat ea
h 
omponent is �t with equal weight given to all of the data (although that weight maybe di�erent for the di�erent 
omponents) and so all the 
omponent parameters are identi
al. For
onsisten
y with REM-1, and in the spirit of maximum entropy statisti
al methods where unknowndistributions are assumed to be maximally un
ertain, we will adopt the 
onvention that the initial
hoi
e of parameters governing P� (Y) does indeed maximize the entropy of the latent variablesunder the 
onstraints of the model. This is merely a 
onvention, though. Any initial 
hoi
e ofP� (Y), provided every possible out
ome has non-zero probability, will produ
e the same results.In �gure 3.3 the REM-2 algorithm is used to �t a 5-
omponent mixture to the same data aswas used in �gure 3.1. This �gure illustrates the fa
t that REM-2 exhibits the same type of phasetransition stru
ture as we saw previously in REM-1. Indeed, we 
an follow through the analysisof se
tion 3.4.1 and �nd that exa
tly the same 
ondition for stability holds, ex
ept that now theresponsibilities that appear in (3.23) are those of the new algorithmrm;i = �me� 12�kxi��mk2Pl �le� 12�kxi��lk2 (3.32)(note that the mixing probabilities �m are not raised to the power �). This results is a small 
hangein the a
tual values of the 
riti
al temperatures between the two algorithms on the same data set;
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Figure 3.3: Phase transitions in REM-2 for �xed-varian
e Gaussiansan example of this is evident in a 
omparison of �gures 3.3 and 3.1.We 
an verify that the issues raised in se
tion 3.4.2 are resolved by REM-2 by 
onsideration ofthe implied relaxation likelihood for a mixture model.`� (�) = F 0�(fri;mg; �)= �Xi Xm rm;i logPm (xi) +Xi Xm rm;i log�m �Xi Xm rm;i log rm;i= Xi Xm rm;i log �mPm (xi)�rm;i= Xi Xm rm;i logXl �lPm (xi)�= Xi logXl �lPm (xi)� (3.33)Clearly, the two identi
al 
omponents 
an be repla
ed by one (with mixing probability given by thesum of the weights of the dupli
ate 
omponents) without disturbing the likelihood. Thus, we 
anlegitimately regard the model-size as in
reasing during the relaxation pro
ess. Furthermore, we neednot make any 
hoi
e about how to group 
omponents: any grouping will yield the same sequen
e oflikelihoods and extra 
omponents 
an be assigned as needed when a 
riti
al temperature is rea
hed.



563.6 Cas
ading Model Sele
tionIn our development to this point, we have ta
itly assumed that the size of the eventual model isknown. If we use REM-1, the model size is set at the outset and maintained throughout. If we useREM-2, the model-size grows during the relaxation, but is 
apped at the 
orre
t value. In pra
ti
e,however, this knowledge is often not available a priori. In using a mixture model for 
lustering, forexample, we may not know in advan
e the appropriate number of 
lusters. Instead, the model-sizeneeds to be learnt along with the parameters of the appropriate model.This is an example of the more general problem of model sele
tion. We have already visitedthis problem twi
e in the 
ourse of this dissertation. Se
tion 1.3 dis
ussed the general theory anddes
ribed a number of likelihood-penalty te
hniques that are used in pra
ti
e, as well as relatedapproa
hes su
h as 
ross-validation. Se
tion 2.7.3 added a further te
hnique, 
alled the Cheeseman-Stutz 
riterion, whi
h is suitable for latent variable models su
h as mixtures. In this se
tion we willinvestigate the relationship between these te
hniques and REM.3.6.1 A natural answer?It is tempting to think that in 
ertain situations, the phase transition stru
ture of REM providesa natural answer to su
h problems, and, indeed, a number of authors have assumed this (see, forexample, Rose (1998) or Weiss (1998)). Take the mixture of unit Gaussians that has been ourrunning example in this 
hapter. Suppose we were to �t by relaxation a mixture with a very largenumber of 
omponents. On
e the relaxation had run its 
ourse, we would �nd that only a smallnumber of distin
t 
omponent values existed in the �nal mixture. Furthermore, whether we had usedREM-1 or REM-2 to �nd that mixture, it would always be the 
ase that at unit temperature theequivalen
e between a mixture with dupli
ate 
omponents and a smaller one with all dupli
ationsremoved would hold. Thus, we 
an safely assert that the relaxation pro
edure has found a solutionwith limited model-size. Is this the 
orre
t model-size?Unfortunately, despite the suggestions to that e�e
t that appear in the literature, it is not. Thisshould be 
lear from the fa
t that ultimately, the te
hnique by whi
h the �nal mixture was foundis not important. That mixture is simply a maximum | with lu
k, the global maximum | of themodel likelihood. Choosing a number of 
omponents in the manner suggested is thus the same as
hoosing between di�erent models solely on the basis of their unpenalized likelihoods. Su
h a 
hoi
eis prone to over-�t for all of the reasons that were dis
ussed in se
tion 1.3. The estimate of themodel-size will be biased upwards.We 
an drive the point home by means of a simple example. Suppose that the data to be modeledhave a
tually arisen from a single Gaussian distribution with zero mean and unit 
ovarian
e matrix.We attempt to model this data with a mixture of Gaussians, ea
h with unit 
ovarian
e, �tting



57the mixture by REM. As we have seen, at low values of the relaxation parameter, �, all of themixture 
omponents 
oin
ide. However, on
e � rea
hes the inverse of the leading eigenvalue of theobserved 
ovarian
e matrix, more than one distin
t mean will be observed. The eigenvalues of theobserved 
ovarian
e are asymptoti
ally symmetri
ally distributed about 1 (the exa
t density is givenby Anderson 1963). Thus, with a probability of approximately 1�2�p, where p is the dimensionalityof the Gaussian, the leading eigenvalue will be greater than 1. In this 
ase, the phase transitionwill o

ur with � < 1. If relaxation were to pro
eed to 
ompletion at � = 1, we would arrive at asolution with more than one 
omponent.The situation is even more dire for other latent variable models. For example, if the 
ovarian
esof the Gaussians are unknown (and perhaps unequal) the maximum likelihood solution given asuÆ
iently large number of 
omponents has ea
h 
omponent 
on
entrated around exa
tly one datapoint, giving rise to as many distin
t 
omponents as data. Clearly, this is not a reasonable solution.Another suggestion is as follows. The relaxation pro
edure is 
arried out using a large numberof 
omponents, just as before. Now, however, a se
tion of the data | a validation set | is held outand the (relaxation) likelihood of the optimal model at ea
h temperature is evaluated on these data.After relaxation is 
omplete, we sele
t the model at whi
h the validation likelihood was greatest.This s
heme is only meaningful in situations where the relaxation likelihood 
orresponds to ana
tual model. Even in su
h situations, though, it will tend to return the wrong answer; in this 
asethe bias appears in the parameter estimates. Take the simple example of data from a single Gaussian.It is plausible that this s
heme would 
orre
tly identify the optimal model-size as 
ontaining onlyone 
omponent. However, sele
ting this 
omponent will require 
hoosing a solution at a non-unittemperature. Thus, the Gaussian will have a larger varian
e than appropriate.The resolution would appear to be to use a model sele
tion s
heme (validation in this example)to 
hoose the model-size, but then 
ontinue to relax the model of this size to unit temperature. Weshall dis
uss a lo
al version of this s
heme in the next se
tion.3.6.2 Cas
ading model sele
tionCareful 
onsideration of the nature of the relaxation likelihood has indi
ated that, despite the ap-pealing natural limits that appear in the �xed-varian
e models 
ommonly used in 
onjun
tion withdeterministi
 annealing, to avoid bias the model-size must be 
hosen by a more traditional modelsele
tion te
hnique. Nonetheless, the hierar
hi
al \division" due to the phase transition stru
turethat we saw in the 
ase of the mixture model does still form an attra
tive basis for model sele
tion.We shall see that it is indeed possible to exploit this stru
ture. Through a progressive develop-ment we will arrive at an eÆ
ient method for 
hoosing the 
orre
t model size, within the relaxationframework, that we 
all 
as
ading model sele
tion.In what follows we shall 
onsider the mixture model, with the sele
tion of model-size being
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Figure 3.4: S
hemati
 of model sele
tion using REMequivalent to 
hoosing the 
orre
t number of 
omponents. The method is, however, quite generaland 
an be applied with ease to any latent variable model for whi
h an EM algorithm 
an be written.The standard approa
h to model sele
tion is as follows. Using some algorithm, whi
h might justas well be REM, we obtain maximum likelihood �ts for a variety of models with di�ering numbersof 
omponents. These models are then 
ompared using one the methods dis
ussed in se
tions 1.3or 2.7.3. Many of these methods involve a 
omparison of the maximal log-likelihood values of thedi�erent models, redu
ed by a term that re
e
ts the number of free parameters in the model. It issu
h penalized-likelihood methods that we shall 
onsider �rst.The various model sele
tion s
hemes that we will dis
uss are shown s
hemati
ally in �gure 3.4.Panel A represents the basi
 pro
edure. The solid lines ea
h represent the relaxation of a model,while the 
ir
les indi
ate the o

urren
e of phase transitions. The �ve models being �t are ofdi�erent sizes, whi
h is why they undergo di�erent numbers of phase transitions. Roughly speaking,the total length of the lines in ea
h panel represents the 
omputational 
ost asso
iated with ea
hmodel sele
tion strategy. The remaining panels will be des
ribed below.If the optimization is 
arried out using REM-2 then the pro
ess of �tting the di�erent size models
an be made 
onsiderably more eÆ
ient. The relaxation pro
ess for models with M and with M +1
omponents is identi
al until the �nal phase transition of the larger model. Thus, there is no needto repeat the �tting pro
ess up to that point. As a result, we �t all of the models in a lineartree stru
ture, shown in �gure 3.4B, with a new bran
h emerging at ea
h phase transition. (Thes
hemati
 adopts the 
onvention that the line emerging on the right of the 
ir
le has not undergonethe phase transition, while the one that 
ontinues below has.) We note that this pro
ess is not



59possible with either the 
onventional deterministi
 annealing algorithm or REM-1.We 
an improve further on this s
heme by allowing early pruning of some bran
hes. This isfa
ilitated by the following important result, whi
h holds for models being �t by REM-2. Supposewe have an M 
omponent model in whi
h one 
omponent is unstable in the sense of se
tion 3.4.1,that is, if additional 
omponents are available it would undergo a phase transition. We 
ompare thelikelihoods of two models: M1 has only M 
omponents and therefore exhibits no phase transition,whileM2 has a model-size of M +1 and thus has allowed the unstable 
omponent to \split". If therelaxation log-likelihood at some � < 1 ofM2 ex
eeds that ofM1 by �, then the �nal log-likelihoodof M2 will ex
eed that of the smaller model by an amount larger than �. We o�er an informalproof of this point.Re
all �rst that M1 is identi
al in likelihood to an (M + 1)-
omponent model M1� in whi
hthe unstable 
omponent is dupli
ated, but both 
opies retain the same parameters. By assumptionthe relaxation log-likelihood ofM2 ex
eeds that ofM1�. Re
all that this log-likelihood is obtainedfrom the free-energy F 0�(p; �) = �Q0(p; �)� KL[p(Y)kP� (Y)℄ (3.28)by setting p(Y) = P� (Y j X ). Now it must be the 
ase that the Kullba
k-Leibler term forM2 isgreater than that forM1�. If that were not true, the more 
omplex model would be preferred evenat � = 0, whi
h we know not to be the 
ase. Thus, it must also be true that the Q0 term in thelikelihood ofM2 ex
eeds that ofM1� (and thus ofM1).How will the log-likelihoods of the two models 
hange as relaxation progresses? Let `� (��) be theoptimal relaxation log-likelihood, that is, the value of F 0�(p; �) with � = ��, the optimal parameters,and p(Y) = P�� (Y j X ) . The maximizing value of the model parameter ve
tor, ��, is, of 
ourse, afun
tion of the relaxation parameter �. Thus, we may di�erentiate the maximal log-likelihood withrespe
t to � using the 
hain ruledd� `� (��) = ��� `� (��) + ��� `� (��) d��d� (3.34)But, sin
e �� maximizes the log-likelihood, the gradient of `� (�) at �� for �xed � is 0. The partialwith respe
t to � is obtained trivially from (3.28), and thus we �nd thatdd� `� (��) = Q0(P�� (Y j X ) ; ��) (3.35)We have argued that the Q0 term for M2 is greater than that for M1. Thus, we �nd thatthe optimal log-likelihood of the larger model is growing more rapidly than that of the smaller one(if both gradients are negative, then it is shrinking less rapidly). As a result, any di�eren
e inlikelihoods at � < 1 
an only grow as � in
reases.



60Thus, it is possible to further streamline the model sele
tion pro
ess. If, at any stage in therelaxation, the penalized relaxation log-likelihood of some model is ex
eeded by that of a largermodel (that is, the di�eren
e in log-likelihoods is greater than the di�eren
e in penalties) we 
animmediately negle
t the smaller model, e�e
tively pruning that bran
h of the tree. This is indi
atedin �gure 3.4C, where the �rst two models are pruned.Finally, we arrive at the approa
h that we 
all 
as
ading model sele
tion. We assume that thepenalized likelihood rises monotoni
ally with model-size until the optimal value is rea
hed. Whilethis is not guaranteed to be the 
ase, it is an intuitively appealing assumption and the experimentsbelow suggest that, at least for simple mixture models, it is typi
ally valid. Under these 
onditions,we need not even 
onsider a model of size M + 2 until the model with M 
omponents has beenreje
ted in favour of one with M + 1.In our implementation of 
as
ading model sele
tion we think of a parti
ular model size as being\
urrent" at all times. This is indi
ated by the solid line in �gure 3.4D. When a 
riti
al temperatureis rea
hed, the 
urrent model retains its size. However, we begin to tra
k the optimum of a \shadow"model of larger size (and thus, whi
h undergoes the phase transition). If the penalized likelihoodof this shadow model ex
eeds that of the 
urrent one, we abandon the 
urrent model and make theshadow 
urrent. Sometimes, it will be the 
ase that the shadow model rea
hes a 
riti
al temperaturewithout having repla
ed the 
urrent model. If this happens, we simple maintain the shadow model'ssize and 
ontinue to relax; we do not introdu
e the larger model.It might also be the 
ase that the 
urrent model will en
ounter another 
riti
al temperature,even though it remains more likely than the shadow. In this 
ase we need to introdu
e anothershadow model, usually of the same model-size as the previous one, but resulting from a di�erentphase transition. In the 
ase of the mixture model, it is useful to think of a di�erent 
omponenthaving \split". If, as relaxation progresses, we rea
h a point where either of these shadow modelsbe
omes more likely than the 
urrent one, we make that model 
urrent and abandon all the others.The 
as
ading model sele
tion pro
edure is 
apable of �nd optima that the basi
 REM algorithmis not. To see why, 
onsider the 
ase des
ribed above where a se
ond shadow model may be intro-du
ed. This shadow model is di�erent from any that might be obtained by REM; to a
hieve it wehave \disallowed" one phase transition but allowed another. If this model proves to have greaterlikelihood than the �rst shadow, and also to be preferred to the 
urrent model a

ording to thepenalized likelihoods, then we will arrive at a model with greater likelihood than that obtained byREM with the same number of 
omponents. Intuitively, the 
as
ading model sele
tion prevented usfrom \wasting" a 
omponent due to the phase transition at the higher temperature, instead reservingit for the more advantageous split. This point will be illustrated below.Finally, we note that the 
ore result of 
as
ading model sele
tion has been obtained only fora penalized likelihood style model sele
tion pro
edure. However, to the extent that su
h methods



61approximate te
hniques su
h as Bayesian model sele
tion or 
ross-validation, we might believe thatsu
h te
hniques 
an be used in the same way. In parti
ular, for mixture models the Cheeseman-Stutz
riterion of se
tion 2.7.3 often provides good results.3.7 ExperimentsAs we �rst en
ountered the REM algorithm in se
tion 3.3, we noted that, be
ause the maximumof the free-energy does not, in fa
t, vary 
ontinuously with the relaxation parameter, the algorithmpro
ess 
annot be guaranteed to �nd the global optimum of the likelihood. Instead, we appealed toan intuitively founded expe
tation that it would tend to �nd a good optimum. In this se
tion weexamine the results of numeri
al experiments to see if this is a
tually the 
ase.The experiments des
ribed here all involve the simple mixture of two-dimensional unit Gaussiansmodel, whi
h we have seen throughout this 
hapter. In all 
ases the relaxation is performed using theREM-2 algorithm. The basi
 outline of the experiments is as follows: we sele
t a random mixture ofunit Gaussians, generate data from it, and �t mixture models to these data using both the REM-2and standard EM algorithms. We then 
ompare the performan
e of the algorithms by 
omputingthe likelihoods of the resultant models. Any solution in whi
h the likelihood of the �t model isgreater than the likelihood of the true (that is, data-generating) model will be 
alled \good."The parameters of the generating mixture are all 
hosen randomly within pre-spe
i�ed intervals.The number of 
omponents, M , is 
hosen from the dis
rete uniform distribution on the values 3, 4,5 and 6. The mixing proportions are 
hosen by randomly partitioning the interval (0; 1) as follows:M � 1 numbers in the interval (0; 1) are 
hosen from a uniform distribution on the interval andthen ordered, thereby indu
ing a partition into M subintervals; the lengths of these subintervals aretaken to be the mixing probabilities. The means are generated from the two-dimensional uniformdistribution on the re
tangular region bounded by �5 in both dimensions. The 
ovarian
es are allset to the identity matrix.500 data points are generated randomly from this mixture distribution. Mixtures of the 
or-re
t number of Gaussians are then �t both by REM-2 and by standard EM. For ea
h data set,the standard EM algorithm is started 10 times, from 10 randomly sele
ted initial 
onditions (seese
tion 2.7.2). Both algorithms are iterated to the same 
onvergen
e 
riterion, whi
h is that therelative 
hange in likelihood after a 
omplete EM step should fall below 10�7. The likelihoods of allof the models, in
luding the generating one, are then evaluated. We 
all a �t model \poor" if itslikelihood is less than that of the generating model on the given data.This entire pro
edure is repeated for 200 di�erent generating mixtures.Figure 3.5 shows the number of \poor" optima a
hieved under the di�erent algorithms. The10 bars on the left show how the rate of su

ess of the standard EM algorithm in
reases as a
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Figure 3.5: Frequen
y of poor maximaprogressively larger number of restarts are used. The likelihood used in the 
al
ulation of the barlabeled n is the largest of the likelihoods obtained from the �rst n restarts. The single bar on theright indi
ates that, for REM-2, only a single run a
hieved a poor optimum.It is instru
tive to examine the single example in whi
h REM-2 
onverged to a poor maximum.This is shown in �gure 3.6. Panel A shows the model from whi
h the data were generated. PanelB shows the optimum found by the REM-2 algorithm. Evidently, a phase transition that split the
omponent in the middle-right was en
ountered before the phase transition that would 
orre
tly splitthe bottom-left 
omponent. In panel C we show the results of running REM-2 in 
onjun
tion with
as
ading model sele
tion (using the BIC likelihood-penalty with no 
orre
tive 
onstant). Whereasthe standard REM-2 algorithm ran on a model with the 
orre
t number of 
omponents provided apriori, with 
as
ading model sele
tion this number 
ould be determined from the data. Furthermore,it is evident that by in
orporating on-line model sele
tion, the early phase transition was reje
tedon the basis of the penalized likelihood , whereas the later, 
orre
t, one was subsequently a

epted.It should be 
lear that without the 
as
ading property this maximum 
ould not have been found:had the di�erent model sizes been 
ompared after optimization (as is usual) then the model of size 5would have been that of panel B. Thus, we observe that | as was suggested at the end of se
tion 3.6| besides the obvious bene�ts of automati
 model size determination, the 
as
ading model sele
tionpro
ess 
an sometimes improve the optima found by REM.
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PSfrag repla
ements Generating model REM-2 CMSFigure 3.6: Cas
ading model sele
tion 
an improve optimaA word of 
aution needs to appear here. The data shown in �gure 3.5 suggest that, at leastin this simple 
ase, REM | perhaps in 
ombination with 
as
ading model sele
tion | might well
onverge reliably to the global maximum of the likelihood. This is not a
tually the 
ase. Closerinspe
tion reveals that for 11 of the random mixtures at least one of the standard EM runs found amodel with a likelihood more than 10�4 log-units larger than that found by REM-2. Furthermore,it is possible that even for the remaining mixtures the relaxation solution is not globally optimal,but that none of the standard EM iterations found the maximum either. Thus, REM does notalways �nd the global optimum; indeed we 
annot expe
t any algorithm of polynomial 
omplexityto reliably do so. Nonetheless, �gure 3.5 does suggest that it tends to �nd an optimum at least asgood as the model that a
tually generated the given data with remarkable regularity.


