
Chapter 3 Relaxation Expetation{MaximizationIn hapter 2 we noted a number of pratial diÆulties that arise in the use of the Expetation{Maximization (EM) algorithm to �nd maximum likelihood �ts of mixture models. Two among thesewere the sensitivity to initial onditions and the omputational overhead involved in arrying outmodel seletion. In this hapter we shall introdue a modi�ed EM algorithm whih addresses bothof these issues in a natural fashion. Our modi�ations will rely on the statistial mehanis notionof relaxation.3.1 Annealing and Relaxation3.1.1 Simulated annealingRelaxation methods are well known in data analysis, primarily due to the popularity of the simu-lated annealing tehnique for the solution of non-onvex optimization problems (Kirkpatrik et al :1983). This being the most ommon example, we will review it briey so as to provide a point ofdeparture for our disussion.The objetive is to �nd the global minimum of a funtion E(x). The approah taken is tosimulate the motion (in x spae) of a thermally exited partile under the inuene of a potentialenergy landsape given by E(x). In priniple, at zero temperature the partile will be found at theglobal minimum. Of ourse, in pratie, if it starts at a position far from the lowest energy pointit will most likely travel to a loal minimum and ome to rest there. At higher temperatures, thepartile will travel rapidly all over the landsape, spending relatively more time in regions wherethe funtion E(x) is minimal. The annealing proedure lowers the simulated temperature gradually.As the temperature falls, the bias towards regions of lower energy inreases, while the partile isstill able to ross barrier regions of higher energy. If the rate of ooling is suÆiently gradual, thesetwo tendenies | the attration to regions of low energy and the thermal ativation to ross energybarriers | ombine in suh a way as to inevitably leave the partile at the global minimum onethe temperature reahes 0. Cooling shedules whih guarantee this result an be shown to exist inpriniple (Geman and Geman 1984); however, they invariably take impratially long. Fortunately,less than perfet ooling shedules usually yield good results.This physial piture of the optimization proess is appealing, but it is diÆult to build intuitionfor why the trade-o� between ativation energy and attration to potential wells should work out soonveniently. Also, while it will be valuable to ontrast this view with the \deterministi annealing"



40or relaxation proedure we will disuss later, it is not the most onvenient starting point for thedevelopment of the new approah. Therefore we reexamine the algorithm from a more statistialviewpoint.3.1.2 Annealed samplingThe fundamental logi behind annealing shemes is best illustrated by the simulated annealing ofMarkov hain Monte-Carlo (MCMC) samplers (Neal 1993; Bertsimas and Tsitsiklis 1993). Theobjetive here is to sample from some ompliated target probability funtion P (x). For on-veniene, we will introdue an energy funtion given, up to an arbitrary additive onstant, byE(x) = � logP (x). The density is thus given by the Boltzmann equation P (x) = 1Z exp(�E(x)),for some normalizing onstant Z. We are able to evaluate E(x) for any point x, but the energy doesnot have a simple funtional form that makes diret sampling by analyti means tratable. TheMCMC sampling approah onstruts an ergodi Markov-hain1 over the target spae suh thatthe stationary distribution of the hain is P (x). In other words, we obtain a sheme for makingprobabilisti transitions from one point in the spae to another in a memory-less (Markov) fashion,and suh that, in the long run, the probability of visiting some point x is exatly P (x). A number ofshemes to onstrut a suitable Markov hain exist, the most prominent being the Gibbs samplingand the Metropolis algorithms. The details of the proess are unimportant for our purposes; weseek only to gain an intuitive piture of the value of annealing; the reader interested in more detailis referred to the exellent review by Neal (1993).When using an MCMC sampler, we need to begin the hain at some point in the domain,say x0. Sine we annot sample diretly from the target density, this point must be hosen froman arbitrary density, probably quite di�erent to the target one. Let us say this initial density isuniform on the domain of interest, although the argument is not ruially dependent on this hoie.The density of the next point, all it x1, is then the produt of this uniform distribution and thetransition density of the Markov hain, marginalized over x0, P1 (x1) = R dx0 P0 (x0)P (x1 j x0).(For disrete domains we an piture multiplying a vetor representing the uniform distribution bya transition matrix.) The resultant density will also be far from the target, as will the densities ofmany subsequent samples. Thus, our neessarily poor hoie of P0 (x0) results in a \burn-in" periodof inorretly distributed samples. The typial length of this period is related to the mismathbetween the initial distribution and the target (or stationary) distribution, and to the magnitude ofthe non-unit eigenvalues of the transition operator, whih set the deay rate of the non-stationarymodes in P0 (�). In general, the mixing time annot easily be alulated, but in experiments withpratial examples it is often impratially long.The diÆulty is that in many problems P0 (x0) is likely to asribe a relatively large mass to1The basi theory of Markov hains will be reviewed in setion 4.1.1.



41regions where the target funtion is vanishingly small, and furthermore, has small log-gradients.For domains of high dimensionality, the probability of falling in suh regions an approah 1. Thestruture of the usual MCMC samplers (in partiular, a feature alled detailed balane whih isneeded to guarantee ergodiity) results in the sampler exeuting an almost unbiased random walkwithin that region until it �nally emerges into a region of higher probability.How an annealing help redue this burn-in period? We reate a sequene of probability funtionsP0 (x), P1 (x), . . . , P (x) whih starts with the uniform distribution and ends in the target. In thease of the Boltzmann distribution this sequene is easily onstruted using a \inverse-temperature"parameter, �. We hoose a sequene of �i, starting with 0 and ending in 1, and write Pi (x) =1Z(�i) exp(��iE(x)), where Z(�i) is the partition funtion. By analogy with statistial physis,these densities orrespond to the anonial distributions of a system with energy E ooled througha sequene of temperatures T = 1=�. We now hoose an initial point from P0 (x) as before, butthen use the MCMC sampler orresponding to the density P1 (x), with 0 < �1 � 1, rather thanthe target sampler. The mismath between these two distributions is small by onstrution, and sothis Markov hain will soon ahieve the stationary distribution for P1 (x). One enough time haselapsed to make onvergene likely, we swith to sampling from P2 (x), where the same argumentabout quik onvergene holds. Eventually, we reah the target distribution (at � = 1). In manysituations, the total burn-in time for all of the annealing steps is muh smaller than the burn-inenountered stepping diretly to the target.What does all this have to do with the physial piture of optimization by simulated annealingthat we saw before? The Metropolis sampling algorithm used in some MCMC simulations hasits origins in the physial simulation of partile motion, and, indeed, is preisely the simulationalgorithm used by Kirkpatrik et al : (1983). If we extend to temperatures lose to 0 (� � 1) thesequene of distributions disussed above, virtually all of the probability mass beomes onentratednear the global energy minimum. Provided the MCMC sampler is maintained in equilibrium, then,samples drawn in this limit will be arbitrarily lose to the optimum. This is preisely the simulatedannealing optimization algorithm.3.1.3 RelaxationWe have examined the simulated annealing algorithm from two di�erent points of view. In the �rst,the underlying energy landsape was �xed by the funtion to be optimized, while the motion of athermally ative partile in the landsape was simulated at steadily dereasing temperatures. In theseond, the energy landsape was transformed from a at initial ondition to the target funtion andbeyond, while samples were drawn from the orresponding Boltzmann distribution. This gradualtransformation of the energy surfae is alled relaxation; for this reason, simulated annealing isalso known as stohasti relaxation.



42Optimization within a relaxation framework need not be stohasti. Let us fous on the energyfuntions themselves rather than on the implied Boltzmann densities. We an onstrut a sequeneof funtions, E0(x) : : : E(x) suh that the �rst funtion E0(x) is easily optimized | it might, forexample, have a single extremum | while the �nal funtion is the target. Our goal in onstrutingthis sequene is for the global optimum of the ith funtion Ei(x) to lie within the domain of on-vergene of the global optimum of the next funtion Ei+1(x). We then pass along the sequene offuntions, optimizing eah one by a hill-limbing (or, for minima, desending) algorithm, whih isseeded with the loation of the previous optimum. Thus, we hope to trak the global optimum fromE0(x), where it was easily found, to E(x). Unfortunately, unlike the ase of stohasti relaxation,there is no simple strategy that is guaranteed to provide a suitable sequene of funtions in thease of suh deterministi relaxation, even with exponentially long relaxation shedules, and indeedshemes devised for partiular lasses of energy (say mixture likelihoods) may not work even in allexamples of that lass. Nevertheless, in pratie, this approah often does yield good results.3.2 Deterministi AnnealingOne example of a non-stohasti relaxation proess has been alled deterministi annealing. Thisalgorithm was introdued by Rose et al : (1990) as a maximum entropy approah to lustering andvetor quantization, following earlier work on elasti net algorithms for the traveling salesmanproblem (Durbin and Willshaw 1987; Durbin et al : 1989; Simi 1990; Yuille 1990). In this form, thealgorithm is strongly motivated by physial analogy. Below, we will see that it an be generalizedbeyond its statistial physis origins, to yield a powerful proedure that an be applied to anyproblem in whih the EM algorithm is used for learning. We shall refer to the generalization asRelaxation Expetation{Maximization, reserving the term \deterministi annealing" for the originalformulation.Rose et al : view lustering as a squared-distane distortion minimization operation. Theyintrodue a ost funtion, Em(xi), desribing the distortion due to assoiation of the the ithdata point with the mth luster. We shall take this ost to be the squared Eulidean distaneEm(xi) = k�m�xik2, although other distortions may be onsidered. The ost of adopting a parti-ular set of luster parameters � = f�mg and a partiular assignment of points to lusters, representedby indiator variables Z = fzm;ig, is given byE(�;Z) =Xi Xm zm;iEm(xi) (3.1)We have hosen notation di�erent from that of Rose et al : (1990) in order to highlight the similarityto the mixture model development in hapter 2. This ost, E(�;Z), may be viewed as the energy



43of a mirostate, identi�ed by the pair (�;Z), of a physial system and we may proeed by analogyto statistial physis (as we will see below, this analogy is not vital; the results follow diretly fromthe maximum-likelihood framework and the EM algorithm). We expet the system to display adistribution over mirostates P (�;Z). For a �xed average energy, E, this distribution will maximizethe entropy under the onstraint E [E(�;Z)℄ = E (see, for example, Kittel and Kroemer (1980)).We an �nd this maximizer by the method of Lagrange multipliers, optimizing the entropy H =� R d� PZ P (�;Z) logP (�;Z) while enforing the onstraint E � R d� PZ P (�;Z)E(�;Z) = 0with the multiplier �. Doing so, we obtain the well-known Boltzmann distributionP� (�;Z) / e��E(�;Z) (3.2)The value of the multiplier � an be obtained by solving for the onstraint energy. Rose et al : argue,as we have, that the distribution of interest in the ase of modeling or predition problems is notthe joint, but rather the marginalP� (�) =XZ P (�;Z) /Yi Xm e��Em(xi) (3.3)For the ase of the squared distane ost, this is seen to be the same as the likelihood of a mixtureof Gaussians with mixing probabilities �m = 1M and ovarianes �m = 12� I .Given this \likelihood", they proeed to derive heuristially re-estimation equations similar tothose of the EM algorithm (written here for the squared error distortion metri):ri;m  e��Em(xi)=Pl e��El(xi)�m  Pi ri;mxi=Pi ri;m (3.4)We have again hosen notation to emphasize the onnetion to our previous development. Thedeterministi annealing algorithm then involves varying the value of the parameter � from 0 to a�nal value hosen either through some knowledge of the expeted �nal distortion (due, say, to aknown noise-oor), or else by a validation-based stopping riterion (or else by operator �at). Ateah step the re-estimations (3.4) are iterated to onvergene.The intuitions that underlie this algorithm an be used to obtain similar solutions to a numberof other problems (Rose et al : 1993; Buhmann and Kuhnel 1993; Miller et al : 1996; Kloppenburgand Tavan 1997; Rao et al : 1997; Rao et al : 1999). Many of these are reviewed by Rose (1998). Ingeneral, however, eah suh problem presents the need for a fresh derivation. Furthermore, it is notalways lear how best to generalize the approah to some problems. For example, Kloppenburg andTavan (1997) provide an extension to a mixture of multivariate Gaussians with arbitrary ovarianes;but they are fored to introdue multiple annealing parameters, leaving serious questions about the



44hoie of relative annealing shedules.In the next setion we will enounter a generalized relaxation method whih subsumes the variousdeterministi annealing algorithms, and allows extremely straightforward generalization.3.3 REM-1In this setion, we will develop a novel relaxation sheme within the framework of the EM algorithm,to obtain an algorithm that we all the �rst Relaxation Expetation{Maximization algorithm2(REM-1).In setion 1.7 we introdued a free-energy F , a funtion of the model parameters, �, and aprobability distribution on the latent variables, p,F (p; �) = Q(p; �) +H(p) = Ep [`X ;Y (�)℄� Ep [log p(Y)℄ (3.5)We showed that if this funtion ahieved a maximum at (��; p�) the true model likelihood (marginal-ized over the latent variables) ahieved a maximum at ��. This allowed us to interpret the EMalgorithm as an alternation of optimization steps, maximizing F �rst with respet to p, and thenwith respet to �. This view of EM forms the basis for our relaxation sheme.Let us introdue an annealing parameter � so as to onstrut a family of free-energy funtions,F�(p; �) = �Q(p; �) +H(p) (3.6)The analogy to statistial mehanis inherent in the term \free-energy" is maintained by this hoie(modulo an overall minus sign). We may view � as the inverse of a (dimensionless) temperature, inwhih ase it enters into the free-energy de�nition in the physially appropriate position. When �takes the value 1 (that is, T = 1) we reover the original free-energy, whih is the target funtionwhose maximum we seek. On the other hand, when � is 0 (T ! 1) F is equal to the entropyH(p). In general, there is a single, easy to �nd, global maximum of this entropy. For disrete latentvariables, for example, it is ahieved by the uniform distribution. For the ase of the mixture model,in whih the latent variables indiate with whih luster eah point is assoiated, and we see that F0is maximized by assoiating all of the points uniformly with all of the lusters. The � = 0 ase doesnot onstrain the parameters � at all, however it is onvenient to hoose � as before, maximizing Qwith p �xed at its maximum-entropy value.Thus, the sequene of funtions F�i(p; �); 0 = �0 < �1 < � � � < �R = 1 satis�es at least two ofthe onditions we desired for a relaxation progression: it starts with an easily maximized funtion2The same formulation has been independently proposed under the name \Deterministi Annealing ExpetationMaximization" by Ueda and Nakano (1998). A slightly di�erent development, whih we all REM-2, will appearbelow.



45and ends with the target. To be sure of �nding the global maximum of the target funtion we needanother ondition to be satis�ed: the global maximum of eah funtion in the sequene must liewithin the basin of attration of the global maximum of the next funtion. Provided that the loationof global maximum hanges ontinuously with �, this an be assured by hoosing suÆiently smallannealing steps.3 Unfortunately, we will see below that even for the partiularly simple exampleof the mixture model, the maximum does not move smoothly. In general it is not guaranteed thatREM will �nd the global maximum of the target. However, in many ommon examples it does �nda good maximum.Any hill-limbing tehnique may be used to �nd the optimum of eah sueeding free-energy inthe relaxation sequene; however, we hoose to employ the same approah as in the EM algorithm,alternately optimizing with respet to p and �, in eah ase holding the other variable �xed. Note�rst that, for �xed p, the relaxation fator � has no e�et on the optimal value of �. Thus, theM-step of the algorithm is exatly as for the normal EM algorithm. The E-step, however, doesdi�er.We showed previously (1.42) that the target free-energy is maximized with respet to p (for �xed�) by hoosing p(Y) = P� (Y j X ). In the ase of the relaxation free-energies we an proeed in thesame fashion as we did at that point. We introdue a Lagrange multiplier � enforing the onstraintR dY p(Y) = 1 and obtain0 = ��p �F�(p; �)� � Z dY p(Y)�= ��p �Z dY p(Y)(�`X ;Y (�)� log p(Y)� �)� (3.7)from whih, by the alulus of variations,0 = ��p (p(Y)(�`X ;Y (�)� log p(Y)� �))= (�`X ;Y (�)� log p�(Y)� �)� p�(Y)p�(Y) (3.8)and so p�(Y) = e���1(LX ;Y (�))� = e���1(P� (X ;Y))� (3.9)But P� (X ;Y) = P� (X j Y)P� (Y) and sop�(Y) = 1Z(�) (P� (X j Y)P� (Y))� (3.10)3This assertion an be proved by noting that a global maximum must have at least an �-sized basin of attrationand that ontinuity guarantees that there exists some Æ so that for a Æ-sized step in � the hange in global maximumis smaller than this �.



46with Z(�) and appropriate normalizing onstant.Thus we obtain the steps of the REM-1 algorithm, repeated until � = 1.R-step: Inrement � aording to the relaxation shedule.Repeat the following EM steps until onvergene:E-step: Maximize F� with respet to p holding � �xed.p(Y) 1Z(�) (P� (X j Y)P� (Y))� (3.11)M-step: Maximize F� with respet to � holding p �xed.�  argmaxEp [`X ;Y (�)℄ (3.12)Relationship to deterministi annealingThe deterministi annealing algorithm for vetor quantization desribed in setion 3.2 is easily seento arise from REM-1 applied to a simple mixture model. Consider an M-omponent model in whiheah omponent is a Gaussian with identity ovariane matrix and mean �m. We will refer to thisas a mixture of unit Gaussians. Any model in whih the all of the omponents are known to sharethe ovariane matrix � an be transformed to this anonial form by multiplying eah data vetorby the whitening matrix ��1=2. The relaxation free-energy for suh a model isF�(p; �) = �Xi Xm rm;i(log�m � 12kxi � �mk2)�Xi Xm rm;i log rm;i (3.13)where the distribution p is expressed in terms of the responsibilities rm;i. For notational simpliity wehave left out the normalization fator from the Gaussian. For a model with �xed, equal, ovarianesthis fator does not hange and areful inspetion reveals that it does not survive in any of oureventual results.The REM-1 iterations for suh a model are easily seen to be given byri;m  1Zi��me� 12�kxi��mk2�m  Pi ri;m=jX j�m  Pi ri;mxi=Pi ri;m (3.14)If we further onstrain the mixing probabilities to remain equal, that is, �m = 1=M , we obtainexatly the iterations of (3.4).Note that in the ase of the �xed mixing probabilities, the relaxation likelihoods orrespond totrue likelihoods for other models, in this ase, a mixture of Gaussians with ovariane ��1I . This



47allows us to interpret the relaxation proedure as the suessive optimization of a sequene of modelswith shrinking ovarianes. This is atually a speial ase and for the majority of models no suhequivalene holds. Given even the simple step of allowing unonstrained mixing probabilities, theiterations (3.14) do not orrespond to EM for any model.It is instrutive to note that the maximization of the free-energy with respet to p, whih ismotivated in REM entirely by the maximum likelihood onsiderations of hapter 1, may indeed beinterpreted as a maximization of the entropy of p under a \onstraint" set by the expeted jointlog-likelihood and enfored by a Lagrange multiplier. This is in aordane with the physial analogyof Rose et al : (1990), although it is obtained diretly without resort to the physis.Yuille et al : (1994) remarked on a onnetion between the heuristi optimization steps usuallyemployed within deterministi annealing solutions and the EM algorithm. However, they seem toregard EM simply as an optimization tehnique embedded within the physially motivated deter-ministi annealing framework. Notably, they appear to have failed to observe the deep onnetionbetween the free-energy formulation of EM and the relaxation proedures of deterministi anneal-ing; in partiular, they make no mention of the availability of a simple generalization of any EMalgorithm to yield a relaxation (or \annealing") proedure.3.4 Phase Transitions in REMAn important feature of deterministi annealing and relaxation EM is best illustrated in a simpleexample. We will use the mixture of unit Gaussians desribed in the preeding setion. We willwrite (r�m;i; ��m; ��m) for the optimum of the relaxation free-energy. Clearly, these values satisfy thereurrene relations r�m;i = ���m e� 12�kxi���mk2Pl ���l e� 12�kxi���l k2 (3.15)��m = Pi r�mijX j (3.16)��m = Pi r�m;ixiPi r�m;i (3.17)When � = 0 the relaxation E-step �nds the maximum entropy distribution over the latentvariables. For a mixture distribution, where the latent variables are disrete, this is the uniformdistribution and r�m;i = P (zm;i = 1 j xi) = 1M (3.18)In this limit the relaxation free-energy is independent of � and so the M-step is unonstrained.However, we an hoose it to maximize Q(�; p�) where p� is the maximum entropy distributiondesribed above, thereby preserving onsisteny with the � > 0 ase. As the responsibilities for eah
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Figure 3.1: Phase transitions in REM-1 for �xed-variane Gaussiansdata point are shared equally between all of the omponents, the maximizing �m are all idential.The solution in the � = 0 ase, then, has all the omponents loated at the overall mean of the data.A remarkable fat is that even as the temperature dereases (that is, � inreases) this solutionremains the global maximum of the likelihood for some range of temperatures. One the relaxationproess reahes a ritial temperature, the solution undergoes a phase transition and the formerstationary point (where all the omponents are idential) eases to be a maximum. A new maximumappears, usually dividing the omponents into two groups, so that all of the omponents assumeone of only two distint parameter values. As the system ools further, the optimal solution againontinues with only two distint omponent values, although the values of those omponents mayhange. Eventually, though, it undergoes another phase transition and more distint omponentsare observed.Figure 3.1 shows an example of the optimal mixtures at various stages of relaxation. We �t twodimensional data, shown by the sattered points, by a mixture of �ve unit Gaussians. Eah panelof the �gure shows the mixture at a di�erent temperature. The inner, solid, irle shows the 1�boundary of the Gaussian; the outer, dashed, irle shows the e�etive variane (��1I) boundary.In the �rst few diagrams, fewer than �ve omponents are visible due to the exat oinidene of themeans.



493.4.1 Critial temperaturesIn the ase of this simple model it is possible to alulate the ritial temperatures at whih themixture will undergo a phase transition.Suppose we were to start the EM algorithm with parameters �0 in whih two (or more) ofthe omponents were idential. Without loss of generality we shall take these two be the �rsttwo omponents, setting �01 = �02 and �01 = �02 . At eah E-step the responsibilities of these twoomponents for eah of the data points will be the same. Thus, at the M-step they will both beupdated in exatly the same way, and will remain idential. The EM algorithm will thus preservethe dupliation, and will onverge to a stationary point with ��1 = ��2 and ��1 = ��2 .Is this stationary point a maximum, or merely a saddle point? The stability of the solution ��an be evaluated by examining the value of the Hessian of the free-energy at that point. In fat,we know that for any parameter value, F� is maximized with respet to the rm;i by the relaxationE-step. Thus, we need only evaluate the Hessian within the surfae of onstraint set by the equation(3.11). With the responsibilities hosen optimally, we an redue the free-energy thus,`� (�) = F�( ��me� 12�kxi��mk2Pl ��l e� 12�kxi��lk2 ; �)= �Xi Xm rm;i log��me� 12kxi��mk2��Xi Xm rm;i log rm;i= Xi Xm rm;i log ��me� 12�kxi��mk2rm;i != Xi Xm rm;i logXl ��l e� 12�kxi��lk2= Xi logXl ��l e� 12�kxi��lk2 (3.19)where, in the last step we have used the fat that Pm rm;i = 1. This form is quite similar to thelog-likelihood of the underlying model. We refer to it as the relaxation log-likelihood. Preiselythe same relationship exists between the relaxation free-energy and the relaxation log-likelihood asdoes between the true free-energy and log-likelihood.Evaluation of the Hessian of `� (�) proves to be notationally hallenging. Rose (1998) suggestsan alternative whih is more tratable and whih we shall adopt. We onsider a perturbation �Æmapplied to eah of the means ��m respetively, with Æm = 0 for all but the idential omponents. Wethen evaluate the derivative d2d�2 `� (f��mg; f��m + �Æmg) at the point in question. This is equivalentto �nding the projetion of the Hessian on the diretion de�ned by the perturbation Æm.We begin with the �rst derivative.dd�Xi logXl ���l e� 12�kxi���l��Ælk2 = Xi Xl ���l e� 12�kxi���l��Ælk2Pk ���k e� 12�kxi���k��Ækk2 �ÆTl (xi � ��l � �Æl)



50= Xi Xl �rl;iÆTl (xi � ��l � �Æl) (3.20)with the responsibilities evaluated at the perturbed �. We note that when � = 0 we an write thisderivative as �Pl ÆTl �Pi r�l;ixi � ��l Pi r�l;i� whih is always zero by (3.17). This simply veri�esthat parameters whih satisfy the reurrene relations (3.15){(3.17) are indeed stationary points ofthe relaxation log-likelihood.The seond derivative isdd�Xi Xl �rl;iÆTl (xi � ��l � �Æl) =Xi Xl �� drl;id� ÆTl (xi � ��l � �Æl)� �rl;ikÆlk2� (3.21)with the derivative of the responsibility given bydrl;id� = dd�  ���l e� 12�kxi���l��Ælk2Pk ���k e� 12�kxi���k��Ælk2!= ���l e� 12�kxi���l��Ælk2�ÆTl (xi � ��l � �Æl)Pk ���k e� 12�kxi���k��Ælk2 ����l e� 12�kxi���l��Ælk2Pj ���j e� 12�kxi���j��Ælk2�ÆTj (xi � ��j � �Æj)�Pk ���k e� 12�kxi���k��Ælk2�2= �rl;i0�ÆTl (xi � ��l � �Æl)�Xj �ri;jÆTj (xi � ��j � �Æj)1A (3.22)Combining these equations we arrive atd2d�2 `� (��) = �2Xi Xl rl;i �ÆTl (xi � ��l � �Æl)�2 � �2Xi  Xl rl;iÆTl (xi � ��l � �Æl)!2��Xi Xl rl;ikÆlk2and so, evaluating at � = 0 and exploiting the fats that Æl = 0 for l > 2 and that the means andresponsibilities of omponents 1 and 2 are idential by onstrution.d2d�2 `� (��) = �Xl ÆTl  �Xi r�l;i(xi � ��l )(xi � ��l )T �Xi r�l;i! Æl��2Xi  r�1;i(xi � ��1)T Xl Æl!2 (3.23)The seond term in this expression, a sum of squares, is always non-negative. We an fore it to0 by hoosing the perturbations so that Pl Æl = 0. The �rst part will be negative for all hoies ofÆ as long as the matrix �Pi r�l;i(xi���l )(xi ���l )T �Pi r�l;i is negative de�nite. Let �l;s be the sth



51eigenvalue of the matrix Pi r�l;i(xi � ��l )(xi � ��l )T =Pi r�l;i. The ondition for negative de�nitenessis thus � < 1max(�l;s) ; l = f1; 2g (3.24)This ondition is both neessary and suÆient for the solution �� with omponents 1 and 2 identialto be a stable maximum. We have shown that if it holds then the derivative of (3.23) is negativefor any hoie of Æm. If it fails we an hoose Æ1 and Æ2 pointing in opposite diretions along theeigenvetor orresponding to the largest �l;s so as to obtain a positive Hessian.Thus, a ritial temperature is reahed whenever the temperature ��1 beomes smaller than theleading eigenvalue of the ovariane of the data assigned to any of the mixture's omponents. If weinterpret the parameter ��1 as the e�etive sale of the ovariane matrix of eah Gaussian, thisresult is intuitively appealing. When the observed ovariane of the data assigned to a omponentbeomes larger than the omponent an \handle", a transition to more distint omponent entersours.3.4.2 Model-sizeIt is tempting to interpret the phase transition struture of relaxation models as indiating a pro-gressive hange in the underlying model-size (for example, the number of omponents in a mixture).Take the mixture model shown in �gure 3.1, for example. Initially, only one distint set of ompo-nent parameters exists, and we might think of the mixture as ontaining only that one omponent.As the relaxation progresses, eah phase transition introdues more distint omponent values. Wewould like to view these as new omponents being added to the mixture, thus growing the underlyingmodel-size.Unfortunately, under the REM-1 algorithm (as well as the basi deterministi annealing algo-rithm), suh an interpretation does not hold up. In the ground-state (� = 1) mixture likelihood, iftwo omponents, say the �rst two, have idential parameters, so that P1 (xi) = P2 (xi), they may bereplaed by a single omponent with the same parameters and mixing proportion �1 + �2 withoutany hange in the likelihood. This is made lear by inspetion of the likelihood`X (�) =Xi logXm �mPm (xi) (3.25)In partiular, if the larger model is at a maximum in the likelihood, then the smaller one will betoo.This onvenient behaviour does not arry through to higher temperatures. Reall the form ofthe relaxation log likelihood `X ;� (�) =Xi logXm ��mPm (xi)� (3.26)
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A B 

Figure 3.2: Inequivalene of di�erent size modelsClearly, with � < 1 we annot replae the idential omponents as before, sine ��1 +��2 6= (�1+�2)� .Nor an we simply set the mixing proportion of the new omponent to (��1+��2 )1=� , sine this violatesthe normalization of P� (yi). In general, then, the relaxation likelihood hanges between the twomodels. Furthermore, a maximum in the more omplex model may not orrespond to a maximumin the simpler one, indeed the number of distint omponent values in the two models may not bethe same.Figure 3.2 illustrates the point. Panel A shows a maximum in the relaxation likelihood of athree-omponent mixture of unit Gaussians at the stage � = 0:3. Panel B shows the optimalon�guration, at the same temperature, of a four-omponent mixture, whih was onstruted byreplaing the rightmost omponent of the mixture of panel A with two idential Gaussians. Bothvisible ontours in B represent two idential omponents (indiated by the dark lines | other thanthis the representation of the omponents is as in �gure 3.1). Thus, the dupliation of one omponenthas, in e�et, driven the relaxation of the mixture in reverse, to a smaller phase.Thus, the view of the model hanging in size during the relaxation proess annot be maintainedonsistently under REM-1.A further issue emerges from this analysis. Consider the mixture of �gure 3.2B, where a fouromponent mixture is being �t, but where only two distint omponent values are visible. How dowe know how to distribute these dupliated omponents? Clearly, eah hoie will yield a di�erentintermediate solution; but the �nal result may also be a�eted sine subsequent phase transitions willbe onstrained by the availability of omponents. We would like to be able to introdue the additionalomponent wherever it is needed, but we annot \move" the omponent around without hangingthe likelihood landsape. The result is that the hoie of how to group the various omponents, ahoie that must be made at eah phase transition, will a�et the outome of the relaxation proess.Both of these issues an be reti�ed by the introdution of a variant of the basi relaxation



53algorithm, whih we all REM-2.3.5 REM-2It is instrutive to examine the struture of the relaxation free-energy of REM-1 for lues to theorigin of the inequivalene of di�erent model-sizes desribed above. Reall that the term Q(p; �)is the expeted value of the joint data log-likelihood under the distribution p. Using the fat that`X ;Y (�) = log (P� (X j Y)P� (Y)) we an write the free-energy of (3.6) asF�(p; �) = �Ep [logP� (X j Y)℄ + �Ep [logP� (Y)℄� Ep [log p℄ (3.27)If we introdue a new hidden state, we inrease the entropy of the latent variables. However, providedthe new state is idential to some old one, the ross-entropy �Ep [logP� (Y)℄ dereases by the sameamount. When � = 1, then, suh an addition has no net e�et on the free-energy. However, athigher temperatures the free-energy inreases with the introdution of the new state. The size ofthis inrease depends on both p and � and so the loation of the maxima of the free-energy may alsohange, as we saw above.This formulation suggests a resolution of the diÆulty. We introdue a slightly di�erent relaxationfree-energy whih will form the basis of our seond Relaxation Expetation{Maximization algorithm(REM-2). F 0�(p; �) = �Ep [logP� (X j Y)℄ + Ep [logP� (Y)℄� Ep [log p℄= �Q0(p; �)� KL[p(Y)kP� (Y)℄ (3.28)Here KL[fkg℄ stands for the Kullbak-Leibler divergene between the distributions f and g. Thisform no longer enjoys the analogy with the familiar free-energy of statistial physis. Nonetheless,from the point of view of optimization it provides just as valid a relaxation progression as does themore traditional form.Again, we optimize eah free-energy in the relaxation sequene using the EM approah of al-ternate optimizations with respet to p and with respet to �. The E-step is derived in the samemanner as before. We introdue a Lagrange multiplier � enforing the onstraint R dY p(Y) = 1 toobtain 0 = ��p �F 0�(p; �)� � Z dY p(Y)�= ��p �Z dY p(Y)(� logP� (X j Y) + logP� (Y)� log p(Y)� �)� (3.29)



54from whih, by the alulus of variations,0 = ��p (p(Y)(� logP� (X j Y) + logP� (Y)� log p(Y)� �))= (� logP� (X j Y) + logP� (Y)� log p�(Y) � �)� p�(Y)p�(Y) (3.30)and so p�(Y) / P� (Y) (P� (X j Y))� (3.31)The multiplier � ensures that p is orretly normalized.At �rst glane it might seem that the M-step, involving the maximization of �Ep [logP� (X j Y)℄+Ep [logP� (Y)℄ will be di�erent from standard EM and REM-1. In most models, however, the param-eters � an be partitioned into two disjoint and independent sets, one responsible for the distributionof the latent variables and the other for the onditional of the observables given the latent variables.If this is the ase, F 0� an be optimized with respet to eah of these sets separately, and learly theresulting update rules will be exatly as in standard EM.Now, when � = 0, this free-energy is optimized by any hoie of p and � for whih p(Y) = P� (Y).Although p need not be the maximum entropy distribution, the resulting parameter values are verysimilar to the initial onditions for REM-1. In partiular, the distribution p must be independentof the observations X . For the mixture model, for example, we have rm;i = �m, whih impliesthat eah omponent is �t with equal weight given to all of the data (although that weight maybe di�erent for the di�erent omponents) and so all the omponent parameters are idential. Foronsisteny with REM-1, and in the spirit of maximum entropy statistial methods where unknowndistributions are assumed to be maximally unertain, we will adopt the onvention that the initialhoie of parameters governing P� (Y) does indeed maximize the entropy of the latent variablesunder the onstraints of the model. This is merely a onvention, though. Any initial hoie ofP� (Y), provided every possible outome has non-zero probability, will produe the same results.In �gure 3.3 the REM-2 algorithm is used to �t a 5-omponent mixture to the same data aswas used in �gure 3.1. This �gure illustrates the fat that REM-2 exhibits the same type of phasetransition struture as we saw previously in REM-1. Indeed, we an follow through the analysisof setion 3.4.1 and �nd that exatly the same ondition for stability holds, exept that now theresponsibilities that appear in (3.23) are those of the new algorithmrm;i = �me� 12�kxi��mk2Pl �le� 12�kxi��lk2 (3.32)(note that the mixing probabilities �m are not raised to the power �). This results is a small hangein the atual values of the ritial temperatures between the two algorithms on the same data set;
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Figure 3.3: Phase transitions in REM-2 for �xed-variane Gaussiansan example of this is evident in a omparison of �gures 3.3 and 3.1.We an verify that the issues raised in setion 3.4.2 are resolved by REM-2 by onsideration ofthe implied relaxation likelihood for a mixture model.`� (�) = F 0�(fri;mg; �)= �Xi Xm rm;i logPm (xi) +Xi Xm rm;i log�m �Xi Xm rm;i log rm;i= Xi Xm rm;i log �mPm (xi)�rm;i= Xi Xm rm;i logXl �lPm (xi)�= Xi logXl �lPm (xi)� (3.33)Clearly, the two idential omponents an be replaed by one (with mixing probability given by thesum of the weights of the dupliate omponents) without disturbing the likelihood. Thus, we anlegitimately regard the model-size as inreasing during the relaxation proess. Furthermore, we neednot make any hoie about how to group omponents: any grouping will yield the same sequene oflikelihoods and extra omponents an be assigned as needed when a ritial temperature is reahed.



563.6 Casading Model SeletionIn our development to this point, we have taitly assumed that the size of the eventual model isknown. If we use REM-1, the model size is set at the outset and maintained throughout. If we useREM-2, the model-size grows during the relaxation, but is apped at the orret value. In pratie,however, this knowledge is often not available a priori. In using a mixture model for lustering, forexample, we may not know in advane the appropriate number of lusters. Instead, the model-sizeneeds to be learnt along with the parameters of the appropriate model.This is an example of the more general problem of model seletion. We have already visitedthis problem twie in the ourse of this dissertation. Setion 1.3 disussed the general theory anddesribed a number of likelihood-penalty tehniques that are used in pratie, as well as relatedapproahes suh as ross-validation. Setion 2.7.3 added a further tehnique, alled the Cheeseman-Stutz riterion, whih is suitable for latent variable models suh as mixtures. In this setion we willinvestigate the relationship between these tehniques and REM.3.6.1 A natural answer?It is tempting to think that in ertain situations, the phase transition struture of REM providesa natural answer to suh problems, and, indeed, a number of authors have assumed this (see, forexample, Rose (1998) or Weiss (1998)). Take the mixture of unit Gaussians that has been ourrunning example in this hapter. Suppose we were to �t by relaxation a mixture with a very largenumber of omponents. One the relaxation had run its ourse, we would �nd that only a smallnumber of distint omponent values existed in the �nal mixture. Furthermore, whether we had usedREM-1 or REM-2 to �nd that mixture, it would always be the ase that at unit temperature theequivalene between a mixture with dupliate omponents and a smaller one with all dupliationsremoved would hold. Thus, we an safely assert that the relaxation proedure has found a solutionwith limited model-size. Is this the orret model-size?Unfortunately, despite the suggestions to that e�et that appear in the literature, it is not. Thisshould be lear from the fat that ultimately, the tehnique by whih the �nal mixture was foundis not important. That mixture is simply a maximum | with luk, the global maximum | of themodel likelihood. Choosing a number of omponents in the manner suggested is thus the same ashoosing between di�erent models solely on the basis of their unpenalized likelihoods. Suh a hoieis prone to over-�t for all of the reasons that were disussed in setion 1.3. The estimate of themodel-size will be biased upwards.We an drive the point home by means of a simple example. Suppose that the data to be modeledhave atually arisen from a single Gaussian distribution with zero mean and unit ovariane matrix.We attempt to model this data with a mixture of Gaussians, eah with unit ovariane, �tting



57the mixture by REM. As we have seen, at low values of the relaxation parameter, �, all of themixture omponents oinide. However, one � reahes the inverse of the leading eigenvalue of theobserved ovariane matrix, more than one distint mean will be observed. The eigenvalues of theobserved ovariane are asymptotially symmetrially distributed about 1 (the exat density is givenby Anderson 1963). Thus, with a probability of approximately 1�2�p, where p is the dimensionalityof the Gaussian, the leading eigenvalue will be greater than 1. In this ase, the phase transitionwill our with � < 1. If relaxation were to proeed to ompletion at � = 1, we would arrive at asolution with more than one omponent.The situation is even more dire for other latent variable models. For example, if the ovarianesof the Gaussians are unknown (and perhaps unequal) the maximum likelihood solution given asuÆiently large number of omponents has eah omponent onentrated around exatly one datapoint, giving rise to as many distint omponents as data. Clearly, this is not a reasonable solution.Another suggestion is as follows. The relaxation proedure is arried out using a large numberof omponents, just as before. Now, however, a setion of the data | a validation set | is held outand the (relaxation) likelihood of the optimal model at eah temperature is evaluated on these data.After relaxation is omplete, we selet the model at whih the validation likelihood was greatest.This sheme is only meaningful in situations where the relaxation likelihood orresponds to anatual model. Even in suh situations, though, it will tend to return the wrong answer; in this asethe bias appears in the parameter estimates. Take the simple example of data from a single Gaussian.It is plausible that this sheme would orretly identify the optimal model-size as ontaining onlyone omponent. However, seleting this omponent will require hoosing a solution at a non-unittemperature. Thus, the Gaussian will have a larger variane than appropriate.The resolution would appear to be to use a model seletion sheme (validation in this example)to hoose the model-size, but then ontinue to relax the model of this size to unit temperature. Weshall disuss a loal version of this sheme in the next setion.3.6.2 Casading model seletionCareful onsideration of the nature of the relaxation likelihood has indiated that, despite the ap-pealing natural limits that appear in the �xed-variane models ommonly used in onjuntion withdeterministi annealing, to avoid bias the model-size must be hosen by a more traditional modelseletion tehnique. Nonetheless, the hierarhial \division" due to the phase transition struturethat we saw in the ase of the mixture model does still form an attrative basis for model seletion.We shall see that it is indeed possible to exploit this struture. Through a progressive develop-ment we will arrive at an eÆient method for hoosing the orret model size, within the relaxationframework, that we all asading model seletion.In what follows we shall onsider the mixture model, with the seletion of model-size being
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Figure 3.4: Shemati of model seletion using REMequivalent to hoosing the orret number of omponents. The method is, however, quite generaland an be applied with ease to any latent variable model for whih an EM algorithm an be written.The standard approah to model seletion is as follows. Using some algorithm, whih might justas well be REM, we obtain maximum likelihood �ts for a variety of models with di�ering numbersof omponents. These models are then ompared using one the methods disussed in setions 1.3or 2.7.3. Many of these methods involve a omparison of the maximal log-likelihood values of thedi�erent models, redued by a term that reets the number of free parameters in the model. It issuh penalized-likelihood methods that we shall onsider �rst.The various model seletion shemes that we will disuss are shown shematially in �gure 3.4.Panel A represents the basi proedure. The solid lines eah represent the relaxation of a model,while the irles indiate the ourrene of phase transitions. The �ve models being �t are ofdi�erent sizes, whih is why they undergo di�erent numbers of phase transitions. Roughly speaking,the total length of the lines in eah panel represents the omputational ost assoiated with eahmodel seletion strategy. The remaining panels will be desribed below.If the optimization is arried out using REM-2 then the proess of �tting the di�erent size modelsan be made onsiderably more eÆient. The relaxation proess for models with M and with M +1omponents is idential until the �nal phase transition of the larger model. Thus, there is no needto repeat the �tting proess up to that point. As a result, we �t all of the models in a lineartree struture, shown in �gure 3.4B, with a new branh emerging at eah phase transition. (Theshemati adopts the onvention that the line emerging on the right of the irle has not undergonethe phase transition, while the one that ontinues below has.) We note that this proess is not



59possible with either the onventional deterministi annealing algorithm or REM-1.We an improve further on this sheme by allowing early pruning of some branhes. This isfailitated by the following important result, whih holds for models being �t by REM-2. Supposewe have an M omponent model in whih one omponent is unstable in the sense of setion 3.4.1,that is, if additional omponents are available it would undergo a phase transition. We ompare thelikelihoods of two models: M1 has only M omponents and therefore exhibits no phase transition,whileM2 has a model-size of M +1 and thus has allowed the unstable omponent to \split". If therelaxation log-likelihood at some � < 1 ofM2 exeeds that ofM1 by �, then the �nal log-likelihoodof M2 will exeed that of the smaller model by an amount larger than �. We o�er an informalproof of this point.Reall �rst that M1 is idential in likelihood to an (M + 1)-omponent model M1� in whihthe unstable omponent is dupliated, but both opies retain the same parameters. By assumptionthe relaxation log-likelihood ofM2 exeeds that ofM1�. Reall that this log-likelihood is obtainedfrom the free-energy F 0�(p; �) = �Q0(p; �)� KL[p(Y)kP� (Y)℄ (3.28)by setting p(Y) = P� (Y j X ). Now it must be the ase that the Kullbak-Leibler term forM2 isgreater than that forM1�. If that were not true, the more omplex model would be preferred evenat � = 0, whih we know not to be the ase. Thus, it must also be true that the Q0 term in thelikelihood ofM2 exeeds that ofM1� (and thus ofM1).How will the log-likelihoods of the two models hange as relaxation progresses? Let `� (��) be theoptimal relaxation log-likelihood, that is, the value of F 0�(p; �) with � = ��, the optimal parameters,and p(Y) = P�� (Y j X ) . The maximizing value of the model parameter vetor, ��, is, of ourse, afuntion of the relaxation parameter �. Thus, we may di�erentiate the maximal log-likelihood withrespet to � using the hain ruledd� `� (��) = ��� `� (��) + ��� `� (��) d��d� (3.34)But, sine �� maximizes the log-likelihood, the gradient of `� (�) at �� for �xed � is 0. The partialwith respet to � is obtained trivially from (3.28), and thus we �nd thatdd� `� (��) = Q0(P�� (Y j X ) ; ��) (3.35)We have argued that the Q0 term for M2 is greater than that for M1. Thus, we �nd thatthe optimal log-likelihood of the larger model is growing more rapidly than that of the smaller one(if both gradients are negative, then it is shrinking less rapidly). As a result, any di�erene inlikelihoods at � < 1 an only grow as � inreases.



60Thus, it is possible to further streamline the model seletion proess. If, at any stage in therelaxation, the penalized relaxation log-likelihood of some model is exeeded by that of a largermodel (that is, the di�erene in log-likelihoods is greater than the di�erene in penalties) we animmediately neglet the smaller model, e�etively pruning that branh of the tree. This is indiatedin �gure 3.4C, where the �rst two models are pruned.Finally, we arrive at the approah that we all asading model seletion. We assume that thepenalized likelihood rises monotonially with model-size until the optimal value is reahed. Whilethis is not guaranteed to be the ase, it is an intuitively appealing assumption and the experimentsbelow suggest that, at least for simple mixture models, it is typially valid. Under these onditions,we need not even onsider a model of size M + 2 until the model with M omponents has beenrejeted in favour of one with M + 1.In our implementation of asading model seletion we think of a partiular model size as being\urrent" at all times. This is indiated by the solid line in �gure 3.4D. When a ritial temperatureis reahed, the urrent model retains its size. However, we begin to trak the optimum of a \shadow"model of larger size (and thus, whih undergoes the phase transition). If the penalized likelihoodof this shadow model exeeds that of the urrent one, we abandon the urrent model and make theshadow urrent. Sometimes, it will be the ase that the shadow model reahes a ritial temperaturewithout having replaed the urrent model. If this happens, we simple maintain the shadow model'ssize and ontinue to relax; we do not introdue the larger model.It might also be the ase that the urrent model will enounter another ritial temperature,even though it remains more likely than the shadow. In this ase we need to introdue anothershadow model, usually of the same model-size as the previous one, but resulting from a di�erentphase transition. In the ase of the mixture model, it is useful to think of a di�erent omponenthaving \split". If, as relaxation progresses, we reah a point where either of these shadow modelsbeomes more likely than the urrent one, we make that model urrent and abandon all the others.The asading model seletion proedure is apable of �nd optima that the basi REM algorithmis not. To see why, onsider the ase desribed above where a seond shadow model may be intro-dued. This shadow model is di�erent from any that might be obtained by REM; to ahieve it wehave \disallowed" one phase transition but allowed another. If this model proves to have greaterlikelihood than the �rst shadow, and also to be preferred to the urrent model aording to thepenalized likelihoods, then we will arrive at a model with greater likelihood than that obtained byREM with the same number of omponents. Intuitively, the asading model seletion prevented usfrom \wasting" a omponent due to the phase transition at the higher temperature, instead reservingit for the more advantageous split. This point will be illustrated below.Finally, we note that the ore result of asading model seletion has been obtained only fora penalized likelihood style model seletion proedure. However, to the extent that suh methods



61approximate tehniques suh as Bayesian model seletion or ross-validation, we might believe thatsuh tehniques an be used in the same way. In partiular, for mixture models the Cheeseman-Stutzriterion of setion 2.7.3 often provides good results.3.7 ExperimentsAs we �rst enountered the REM algorithm in setion 3.3, we noted that, beause the maximumof the free-energy does not, in fat, vary ontinuously with the relaxation parameter, the algorithmproess annot be guaranteed to �nd the global optimum of the likelihood. Instead, we appealed toan intuitively founded expetation that it would tend to �nd a good optimum. In this setion weexamine the results of numerial experiments to see if this is atually the ase.The experiments desribed here all involve the simple mixture of two-dimensional unit Gaussiansmodel, whih we have seen throughout this hapter. In all ases the relaxation is performed using theREM-2 algorithm. The basi outline of the experiments is as follows: we selet a random mixture ofunit Gaussians, generate data from it, and �t mixture models to these data using both the REM-2and standard EM algorithms. We then ompare the performane of the algorithms by omputingthe likelihoods of the resultant models. Any solution in whih the likelihood of the �t model isgreater than the likelihood of the true (that is, data-generating) model will be alled \good."The parameters of the generating mixture are all hosen randomly within pre-spei�ed intervals.The number of omponents, M , is hosen from the disrete uniform distribution on the values 3, 4,5 and 6. The mixing proportions are hosen by randomly partitioning the interval (0; 1) as follows:M � 1 numbers in the interval (0; 1) are hosen from a uniform distribution on the interval andthen ordered, thereby induing a partition into M subintervals; the lengths of these subintervals aretaken to be the mixing probabilities. The means are generated from the two-dimensional uniformdistribution on the retangular region bounded by �5 in both dimensions. The ovarianes are allset to the identity matrix.500 data points are generated randomly from this mixture distribution. Mixtures of the or-ret number of Gaussians are then �t both by REM-2 and by standard EM. For eah data set,the standard EM algorithm is started 10 times, from 10 randomly seleted initial onditions (seesetion 2.7.2). Both algorithms are iterated to the same onvergene riterion, whih is that therelative hange in likelihood after a omplete EM step should fall below 10�7. The likelihoods of allof the models, inluding the generating one, are then evaluated. We all a �t model \poor" if itslikelihood is less than that of the generating model on the given data.This entire proedure is repeated for 200 di�erent generating mixtures.Figure 3.5 shows the number of \poor" optima ahieved under the di�erent algorithms. The10 bars on the left show how the rate of suess of the standard EM algorithm inreases as a
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Figure 3.5: Frequeny of poor maximaprogressively larger number of restarts are used. The likelihood used in the alulation of the barlabeled n is the largest of the likelihoods obtained from the �rst n restarts. The single bar on theright indiates that, for REM-2, only a single run ahieved a poor optimum.It is instrutive to examine the single example in whih REM-2 onverged to a poor maximum.This is shown in �gure 3.6. Panel A shows the model from whih the data were generated. PanelB shows the optimum found by the REM-2 algorithm. Evidently, a phase transition that split theomponent in the middle-right was enountered before the phase transition that would orretly splitthe bottom-left omponent. In panel C we show the results of running REM-2 in onjuntion withasading model seletion (using the BIC likelihood-penalty with no orretive onstant). Whereasthe standard REM-2 algorithm ran on a model with the orret number of omponents provided apriori, with asading model seletion this number ould be determined from the data. Furthermore,it is evident that by inorporating on-line model seletion, the early phase transition was rejetedon the basis of the penalized likelihood , whereas the later, orret, one was subsequently aepted.It should be lear that without the asading property this maximum ould not have been found:had the di�erent model sizes been ompared after optimization (as is usual) then the model of size 5would have been that of panel B. Thus, we observe that | as was suggested at the end of setion 3.6| besides the obvious bene�ts of automati model size determination, the asading model seletionproess an sometimes improve the optima found by REM.
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PSfrag replaements Generating model REM-2 CMSFigure 3.6: Casading model seletion an improve optimaA word of aution needs to appear here. The data shown in �gure 3.5 suggest that, at leastin this simple ase, REM | perhaps in ombination with asading model seletion | might wellonverge reliably to the global maximum of the likelihood. This is not atually the ase. Closerinspetion reveals that for 11 of the random mixtures at least one of the standard EM runs found amodel with a likelihood more than 10�4 log-units larger than that found by REM-2. Furthermore,it is possible that even for the remaining mixtures the relaxation solution is not globally optimal,but that none of the standard EM iterations found the maximum either. Thus, REM does notalways �nd the global optimum; indeed we annot expet any algorithm of polynomial omplexityto reliably do so. Nonetheless, �gure 3.5 does suggest that it tends to �nd an optimum at least asgood as the model that atually generated the given data with remarkable regularity.


