Chapter 3 Relaxation Expectation—Maximization

In chapter 2 we noted a number of practical difficulties that arise in the use of the Expectation—
Maximization (EM) algorithm to find maximum likelihood fits of mixture models. Two among these
were the sensitivity to initial conditions and the computational overhead involved in carrying out
model selection. In this chapter we shall introduce a modified EM algorithm which addresses both
of these issues in a natural fashion. Our modifications will rely on the statistical mechanics notion

of relaxation.

3.1 Annealing and Relaxation

3.1.1 Simulated annealing

Relaxation methods are well known in data analysis, primarily due to the popularity of the simu-
lated annealing technique for the solution of non-convex optimization problems (Kirkpatrick et al.
1983). This being the most common example, we will review it briefly so as to provide a point of
departure for our discussion.

The objective is to find the global minimum of a function E(z). The approach taken is to
simulate the motion (in z space) of a thermally excited particle under the influence of a potential
energy landscape given by E(x). In principle, at zero temperature the particle will be found at the
global minimum. Of course, in practice, if it starts at a position far from the lowest energy point
it will most likely travel to a local minimum and come to rest there. At higher temperatures, the
particle will travel rapidly all over the landscape, spending relatively more time in regions where
the function E(z) is minimal. The annealing procedure lowers the simulated temperature gradually.
As the temperature falls, the bias towards regions of lower energy increases, while the particle is
still able to cross barrier regions of higher energy. If the rate of cooling is sufficiently gradual, these
two tendencies  the attraction to regions of low energy and the thermal activation to cross energy
barriers — combine in such a way as to inevitably leave the particle at the global minimum once
the temperature reaches 0. Cooling schedules which guarantee this result can be shown to exist in
principle (Geman and Geman 1984); however, they invariably take impractically long. Fortunately,
less than perfect cooling schedules usually yield good results.

This physical picture of the optimization process is appealing, but it is difficult to build intuition
for why the trade-off between activation energy and attraction to potential wells should work out so

conveniently. Also, while it will be valuable to contrast this view with the “deterministic annealing”
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or relaxation procedure we will discuss later, it is not the most convenient starting point for the
development of the new approach. Therefore we reexamine the algorithm from a more statistical

viewpoint.

3.1.2 Annealed sampling

The fundamental logic behind annealing schemes is best illustrated by the simulated annealing of
Markov chain Monte-Carlo (MCMC) samplers (Neal 1993; Bertsimas and Tsitsiklis 1993). The
objective here is to sample from some complicated target probability function P (z). For con-
venience, we will introduce an energy function given, up to an arbitrary additive constant, by
E(z) = —logP (z). The density is thus given by the Boltzmann equation P (z) = L exp(—FE(x)),
for some normalizing constant Z. We are able to evaluate E(x) for any point x, but the energy does
not have a simple functional form that makes direct sampling by analytic means tractable. The

MCMC sampling approach constructs an ergodic Markov-chain?

over the target space such that
the stationary distribution of the chain is P (x). In other words, we obtain a scheme for making
probabilistic transitions from one point in the space to another in a memory-less (Markov) fashion,
and such that, in the long run, the probability of visiting some point z is exactly P (z). A number of
schemes to construct a suitable Markov chain exist, the most prominent being the Gibbs sampling
and the Metropolis algorithms. The details of the process are unimportant for our purposes; we
seek only to gain an intuitive picture of the value of annealing; the reader interested in more detail
is referred to the excellent review by Neal (1993).

When using an MCMC sampler, we need to begin the chain at some point in the domain,
say zg. Since we cannot sample directly from the target density, this point must be chosen from
an arbitrary density, probably quite different to the target one. Let us say this initial density is
uniform on the domain of interest, although the argument is not crucially dependent on this choice.
The density of the next point, call it x1, is then the product of this uniform distribution and the
transition density of the Markov chain, marginalized over zo, Py (z1) = [dzo Po (z0) P (21 | z0).
(For discrete domains we can picture multiplying a vector representing the uniform distribution by
a transition matrix.) The resultant density will also be far from the target, as will the densities of
many subsequent samples. Thus, our necessarily poor choice of Pg (xq) results in a “burn-in” period
of incorrectly distributed samples. The typical length of this period is related to the mismatch
between the initial distribution and the target (or stationary) distribution, and to the magnitude of
the non-unit eigenvalues of the transition operator, which set the decay rate of the non-stationary
modes in Pq (-). In general, the mixing time cannot easily be calculated, but in experiments with
practical examples it is often impractically long.

The difficulty is that in many problems Py (zg) is likely to ascribe a relatively large mass to

IThe basic theory of Markov chains will be reviewed in section 4.1.1.
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regions where the target function is vanishingly small, and furthermore, has small log-gradients.
For domains of high dimensionality, the probability of falling in such regions can approach 1. The
structure of the usual MCMC samplers (in particular, a feature called detailed balance which is
needed to guarantee ergodicity) results in the sampler executing an almost unbiased random walk
within that region until it finally emerges into a region of higher probability.

How can annealing help reduce this burn-in period? We create a sequence of probability functions
Po (), P1(x), ..., P (z) which starts with the uniform distribution and ends in the target. In the
case of the Boltzmann distribution this sequence is easily constructed using a “inverse-temperature”
parameter, 5. We choose a sequence of §3;, starting with 0 and ending in 1, and write P; (z) =
%exp(fﬂiE(m)), where Z(f;) is the partition function. By analogy with statistical physics,
these densities correspond to the canonical distributions of a system with energy F cooled through
a sequence of temperatures ' = 1/8. We now choose an initial point from Pq (x) as before, but
then use the MCMC sampler corresponding to the density Py (z), with 0 < ; < 1, rather than
the target sampler. The mismatch between these two distributions is small by construction, and so
this Markov chain will soon achieve the stationary distribution for P; (). Once enough time has
elapsed to make convergence likely, we switch to sampling from P, (x), where the same argument
about quick convergence holds. Eventually, we reach the target distribution (at # = 1). In many
situations, the total burn-in time for all of the annealing steps is much smaller than the burn-in
encountered stepping directly to the target.

What does all this have to do with the physical picture of optimization by simulated annealing
that we saw before? The Metropolis sampling algorithm used in some MCMC simulations has
its origins in the physical simulation of particle motion, and, indeed, is precisely the simulation
algorithm used by Kirkpatrick et al. (1983). If we extend to temperatures close to 0 (8 > 1) the
sequence of distributions discussed above, virtually all of the probability mass becomes concentrated
near the global energy minimum. Provided the MCMC sampler is maintained in equilibrium, then,
samples drawn in this limit will be arbitrarily close to the optimum. This is precisely the simulated

annealing optimization algorithm.

3.1.3 Relaxation

We have examined the simulated annealing algorithm from two different points of view. In the first,
the underlying energy landscape was fixed by the function to be optimized, while the motion of a
thermally active particle in the landscape was simulated at steadily decreasing temperatures. In the
second, the energy landscape was transformed from a flat initial condition to the target function and
beyond, while samples were drawn from the corresponding Boltzmann distribution. This gradual
transformation of the energy surface is called relaxation; for this reason, simulated annealing is

also known as stochastic relaxation.
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Optimization within a relaxation framework need not be stochastic. Let us focus on the energy
functions themselves rather than on the implied Boltzmann densities. We can construct a sequence
of functions, Eg(x)...E(x) such that the first function Eq(z) is easily optimized it might, for
example, have a single extremum — while the final function is the target. Our goal in constructing
this sequence is for the global optimum of the ith function E;(z) to lie within the domain of con-
vergence of the global optimum of the next function E;;;(z). We then pass along the sequence of
functions, optimizing each one by a hill-climbing (or, for minima, descending) algorithm, which is
seeded with the location of the previous optimum. Thus, we hope to track the global optimum from
Ey(x), where it was easily found, to E(z). Unfortunately, unlike the case of stochastic relaxation,
there is no simple strategy that is guaranteed to provide a suitable sequence of functions in the
case of such deterministic relaxation, even with exponentially long relaxation schedules, and indeed
schemes devised for particular classes of energy (say mixture likelihoods) may not work even in all

examples of that class. Nevertheless, in practice, this approach often does yield good results.

3.2 Deterministic Annealing

One example of a non-stochastic relaxation process has been called deterministic annealing. This
algorithm was introduced by Rose et al. (1990) as a maximum entropy approach to clustering and
vector quantization, following earlier work on elastic net algorithms for the traveling salesman
problem (Durbin and Willshaw 1987; Durbin et al. 1989; Simic 1990; Yuille 1990). In this form, the
algorithm is strongly motivated by physical analogy. Below, we will see that it can be generalized
beyond its statistical physics origins, to yield a powerful procedure that can be applied to any
problem in which the EM algorithm is used for learning. We shall refer to the generalization as
Relaxation Expectation—-Maximization, reserving the term “deterministic annealing” for the original
formulation.

Rose et al. view clustering as a squared-distance distortion minimization operation. They
introduce a cost function, E,,(z;), describing the distortion due to association of the the ith
data point with the mth cluster. We shall take this cost to be the squared Euclidean distance
Ep(2;) = || — 24|, although other distortions may be considered. The cost of adopting a partic-
ular set of cluster parameters § = {u,,} and a particular assignment of points to clusters, represented

by indicator variables Z = {z,,;}, is given by

E(QZ) = ZzszEm(wi) (31)

We have chosen notation different from that of Rose et al. (1990) in order to highlight the similarity

to the mixture model development in chapter 2. This cost, E(f, Z), may be viewed as the energy

3
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of a microstate, identified by the pair (6, Z), of a physical system and we may proceed by analogy
to statistical physics (as we will see below, this analogy is not vital; the results follow directly from
the maximum-likelihood framework and the EM algorithm). We expect the system to display a
distribution over microstates P (6, Z). For a fixed average energy, E, this distribution will maximize
the entropy under the constraint E[E(6, Z)] = E (see, for example, Kittel and Kroemer (1980)).
We can find this maximizer by the method of Lagrange multipliers, optimizing the entropy H =
—[df Y ;P (6,2)logP (6, Z) while enforcing the constraint E — [df Y., P (0,Z)E(0,Z) =0

with the multiplier 3. Doing so, we obtain the well-known Boltzmann distribution
Ps (8, Z) o e PE(0:2) (3.2)

The value of the multiplier 8 can be obtained by solving for the constraint energy. Rose et al. argue,
as we have, that the distribution of interest in the case of modeling or prediction problems is not

the joint, but rather the marginal

P (9) =S P (6,2) x [[ Yo et (3.3)

For the case of the squared distance cost, this is seen to be the same as the likelihood of a mixture
of Gaussians with mixing probabilities 7, = % and covariances Y, = %I.
Given this “likelihood”, they proceed to derive heuristically re-estimation equations similar to

those of the EM algorithm (written here for the squared error distortion metric):

Tim e 9Bm@) /S~ o=OEi(z:)

M < D2 TimTif 32 Tim

(3.4)

We have again chosen notation to emphasize the connection to our previous development. The
deterministic annealing algorithm then involves varying the value of the parameter 3 from 0 to a
final value chosen either through some knowledge of the expected final distortion (due, say, to a
known noise-floor), or else by a validation-based stopping criterion (or else by operator fiat). At
each step the re-estimations (3.4) are iterated to convergence.

The intuitions that underlie this algorithm can be used to obtain similar solutions to a number
of other problems (Rose et al. 1993; Buhmann and Kuhnel 1993; Miller et al. 1996; Kloppenburg
and Tavan 1997; Rao et al. 1997; Rao et al. 1999). Many of these are reviewed by Rose (1998). In
general, however, each such problem presents the need for a fresh derivation. Furthermore, it is not
always clear how best to generalize the approach to some problems. For example, Kloppenburg and
Tavan (1997) provide an extension to a mixture of multivariate Gaussians with arbitrary covariances;

but they are forced to introduce multiple annealing parameters, leaving serious questions about the
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choice of relative annealing schedules.
In the next section we will encounter a generalized relaxation method which subsumes the various

deterministic annealing algorithms, and allows extremely straightforward generalization.

3.3 REM-1

In this section, we will develop a novel relaxation scheme within the framework of the EM algorithm,
to obtain an algorithm that we call the first Relaxation Expectation—Maximization algorithm?
(REM-1).

In section 1.7 we introduced a free-energy F', a function of the model parameters, 6, and a

probability distribution on the latent variables, p,

F(p,0) = Q(p,0) + H(p) = & [lxy (0)] — & [log p(V)] (3.5)

We showed that if this function achieved a maximum at (6*, p*) the true model likelihood (marginal-
ized over the latent variables) achieved a maximum at 6*. This allowed us to interpret the EM
algorithm as an alternation of optimization steps, maximizing F' first with respect to p, and then
with respect to §. This view of EM forms the basis for our relaxation scheme.

Let us introduce an annealing parameter § so as to construct a family of free-energy functions,

Fs(p,0) = BQ(p,0) + H(p) (3.6)

The analogy to statistical mechanics inherent in the term “free-energy” is maintained by this choice
(modulo an overall minus sign). We may view [ as the inverse of a (dimensionless) temperature, in
which case it enters into the free-energy definition in the physically appropriate position. When (3
takes the value 1 (that is, T' = 1) we recover the original free-energy, which is the target function
whose maximum we seek. On the other hand, when 8 is 0 (T — oo) F is equal to the entropy
H(p). In general, there is a single, easy to find, global maximum of this entropy. For discrete latent
variables, for example, it is achieved by the uniform distribution. For the case of the mixture model,
in which the latent variables indicate with which cluster each point is associated, and we see that Fj
is maximized by associating all of the points uniformly with all of the clusters. The 8 = 0 case does
not constrain the parameters 6 at all, however it is convenient to choose 6 as before, maximizing @
with p fixed at its maximum-entropy value.

Thus, the sequence of functions Fg,(p,0), 0 = fo < f1 < --- < Br = 1 satisfies at least two of

the conditions we desired for a relaxation progression: it starts with an easily maximized function

2The same formulation has been independently proposed under the name “Deterministic Annealing Expectation
Maximization” by Ueda and Nakano (1998). A slightly different development, which we call REM-2, will appear
below.
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and ends with the target. To be sure of finding the global maximum of the target function we need
another condition to be satisfied: the global maximum of each function in the sequence must lie
within the basin of attraction of the global maximum of the next function. Provided that the location
of global maximum changes continuously with 3, this can be assured by choosing sufficiently small

3 Unfortunately, we will see below that even for the particularly simple example

annealing steps.
of the mixture model, the maximum does not move smoothly. In general it is not guaranteed that
REM will find the global maximum of the target. However, in many common examples it does find
a good maximum.

Any hill-climbing technique may be used to find the optimum of each succeeding free-energy in
the relaxation sequence; however, we choose to employ the same approach as in the EM algorithm,
alternately optimizing with respect to p and 6, in each case holding the other variable fixed. Note
first that, for fixed p, the relaxation factor 8 has no effect on the optimal value of #. Thus, the
M-step of the algorithm is exactly as for the normal EM algorithm. The E-step, however, does
differ.

We showed previously (1.42) that the target free-energy is maximized with respect to p (for fixed
#) by choosing p(Y) = Py (V| X). In the case of the relaxation free-energies we can proceed in the

same fashion as we did at that point. We introduce a Lagrange multiplier A enforcing the constraint

JdY p(¥) =1 and obtain

0 = a%(m(p,e)—A/dyp(y))

0

= </ dy p(¥)(Blx.y () —logp(Y) — A)) (3.7)

from which, by the calculus of variations,

0 = 2 () (Bly (6) ~ logp(y) - N)
/4
— (Btay®) gy )N - L) 8)
and so
PY) = e Ly (0) = e Py (X, ) (3.9)
But Py (X,y) =Py (X ‘ y) Py (y) and so
p(Y) = ﬁ(m (X V) Py ())° (3.10)

3This assertion can be proved by noting that a global maximum must have at least an e-sized basin of attraction
and that continuity guarantees that there exists some ¢ so that for a J-sized step in 8 the change in global maximum
is smaller than this e.
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with Z () and appropriate normalizing constant.

Thus we obtain the steps of the REM-1 algorithm, repeated until g = 1.
R-step: Increment 8 according to the relaxation schedule.
Repeat the following EM steps until convergence:

E-step: Maximize Fjg with respect to p holding 6 fixed.

1
p(Y) « M(Ps (X ] Y) Py ())? (3.11)

M-step: Maximize Fj with respect to 6 holding p fixed.

0 « argmax &, [(xy (6)] (3.12)

Relationship to deterministic annealing

The deterministic annealing algorithm for vector quantization described in section 3.2 is easily seen
to arise from REM-1 applied to a simple mixture model. Consider an M-component model in which
each component is a Gaussian with identity covariance matrix and mean pu,,. We will refer to this
as a mixture of unit Gaussians. Any model in which the all of the components are known to share
the covariance matrix ¥ can be transformed to this canonical form by multiplying each data vector
1/2

by the whitening matrix ¥~ '/%. The relaxation free-energy for such a model is

1 .
Fa(.0) =8 rmi(logmm = Sllzi = pmll*) = D rmilogrm.i (3.13)
i m i m

where the distribution p is expressed in terms of the responsibilities r, ;. For notational simplicity we
have left out the normalization factor from the Gaussian. For a model with fixed, equal, covariances
this factor does not change and careful inspection reveals that it does not survive in any of our
eventual results.

The REM-1 iterations for such a model are easily seen to be given by

Ti,m
T 2 Tim/|X] (3.14)
Hm — Zz 7'i,mxi/ Zz Ti,m

A B —iBllzi—pml?
— gmpe> Il I

If we further constrain the mixing probabilities to remain equal, that is, m,, = 1/M, we obtain
exactly the iterations of (3.4).
Note that in the case of the fixed mixing probabilities, the relaxation likelihoods correspond to

true likelihoods for other models, in this case, a mixture of Gaussians with covariance 8~'I. This
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allows us to interpret the relaxation procedure as the successive optimization of a sequence of models
with shrinking covariances. This is actually a special case and for the majority of models no such
equivalence holds. Given even the simple step of allowing unconstrained mixing probabilities, the
iterations (3.14) do not correspond to EM for any model.

It is instructive to note that the maximization of the free-energy with respect to p, which is
motivated in REM entirely by the maximum likelihood considerations of chapter 1, may indeed be
interpreted as a maximization of the entropy of p under a “constraint” set by the expected joint
log-likelihood and enforced by a Lagrange multiplier. This is in accordance with the physical analogy
of Rose et al. (1990), although it is obtained directly without resort to the physics.

Yuille et al. (1994) remarked on a connection between the heuristic optimization steps usually
employed within deterministic annealing solutions and the EM algorithm. However, they seem to
regard EM simply as an optimization technique embedded within the physically motivated deter-
ministic annealing framework. Notably, they appear to have failed to observe the deep connection
between the free-energy formulation of EM and the relaxation procedures of deterministic anneal-
ing; in particular, they make no mention of the availability of a simple generalization of any EM

algorithm to yield a relaxation (or “annealing”) procedure.

3.4 Phase Transitions in REM

An important feature of deterministic annealing and relaxation EM is best illustrated in a simple

example. We will use the mixture of unit Gaussians described in the preceding section. We will

*
m,i’

write (rk, ,, 7%, k) for the optimum of the relaxation free-energy. Clearly, these values satisfy the

recurrence relations

* 2
nrBe—Blei—ur

* = 3.15
Tm,z Zl ﬂ'l*ﬁei%ﬁ‘lziiu;(lw ( )
Ty

T = |TX|ml (3.16)

* i T, iTi
W, = mit (3.17)

" Zz Tm7i
When 8 = 0 the relaxation E-step finds the maximum entropy distribution over the latent

variables. For a mixture distribution, where the latent variables are discrete, this is the uniform
distribution and
1

Tmi =P (Zmi=1]|z;) = i (3.18)

In this limit the relaxation free-energy is independent of 6 and so the M-step is unconstrained.
However, we can choose it to maximize (6, p*) where p* is the maximum entropy distribution

described above, thereby preserving consistency with the 8 > 0 case. As the responsibilities for each
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Figure 3.1: Phase transitions in REM-1 for fixed-variance Gaussians

data point are shared equally between all of the components, the maximizing u,, are all identical.
The solution in the § = 0 case, then, has all the components located at the overall mean of the data.

A remarkable fact is that even as the temperature decreases (that is, § increases) this solution
remains the global maximum of the likelihood for some range of temperatures. Once the relaxation
process reaches a critical temperature, the solution undergoes a phase transition and the former
stationary point (where all the components are identical) ceases to be a maximum. A new maximum
appears, usually dividing the components into two groups, so that all of the components assume
one of only two distinct parameter values. As the system cools further, the optimal solution again
continues with only two distinct component values, although the values of those components may
change. Eventually, though, it undergoes another phase transition and more distinct components
are observed.

Figure 3.1 shows an example of the optimal mixtures at various stages of relaxation. We fit two
dimensional data, shown by the scattered points, by a mixture of five unit Gaussians. Each panel
of the figure shows the mixture at a different temperature. The inner, solid, circle shows the 1o
boundary of the Gaussian; the outer, dashed, circle shows the effective variance (8~'I) boundary.
In the first few diagrams, fewer than five components are visible due to the exact coincidence of the

means.
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3.4.1 Critical temperatures

In the case of this simple model it is possible to calculate the critical temperatures at which the
mixture will undergo a phase transition.

Suppose we were to start the EM algorithm with parameters #° in which two (or more) of
the components were identical. Without loss of generality we shall take these two be the first
two components, setting ¢ = p9 and 79 = 7. At each E-step the responsibilities of these two
components for each of the data points will be the same. Thus, at the M-step they will both be
updated in exactly the same way, and will remain identical. The EM algorithm will thus preserve
the duplication, and will converge to a stationary point with pj = u3 and 77 = 73.

Is this stationary point a maximum, or merely a saddle point? The stability of the solution 6*
can be evaluated by examining the value of the Hessian of the free-energy at that point. In fact,
we know that for any parameter value, Fj3 is maximized with respect to the 7, ; by the relaxation

E-step. Thus, we need only evaluate the Hessian within the surface of constraint set by the equation

(3.11). With the responsibilities chosen optimally, we can reduce the free-energy thus,

B o= 3Bllwi—pm |I?
7B e 2Pllzimpm

ls(0) = - -0
o (6) IS wBe 3Bl

= /BZZTmVi log (ﬁm67%‘|$i*1—¢m“2) B ZZTmyi logrm’i
i om i om
B o= Bzl
3o )

T'm,i

D23 rmilog Y mle #ole
i om l

D log D aj'e e ml’ (3.19)
i l

where, in the last step we have used the fact that )  r, ; = 1. This form is quite similar to the
log-likelihood of the underlying model. We refer to it as the relaxation log-likelihood. Precisely
the same relationship exists between the relaxation free-energy and the relaxation log-likelihood as
does between the true free-energy and log-likelihood.

Evaluation of the Hessian of ¢3 (6) proves to be notationally challenging. Rose (1998) suggests
an alternative which is more tractable and which we shall adopt. We consider a perturbation €d,,
applied to each of the means p, respectively, with J,, = 0 for all but the identical components. We
then evaluate the derivative dd—:Qég ({mr ), {ps, + €0,,}) at the point in question. This is equivalent
to finding the projection of the Hessian on the direction defined by the perturbation d,,.

We begin with the first derivative.

1B o= 5 Bllwi—u —ed|?

d 1 * 2
E : § : #B — 5Bz —p; —edi| — § § l T _ % _
de &~ log 1 e l | - E:k Wzﬁ€7%@‘|zi*l‘2*66k“2 ﬂ(sl (ml e €5l)
1

i l




a0

YD Briad] (@i — pi —ed) (3.20)
7 l

with the responsibilities evaluated at the perturbed 6. We note that when € = 0 we can write this
derivative as 8,9, (Z T — erl*l) which is always zero by (3.17). This simply verifies
that parameters which satisfy the recurrence relations (3.15) (3.17) are indeed stationary points of
the relaxation log-likelihood.

The second derivative is

d . dr is .
D> Bt (wi — i — edy) = ZZ ( = —p —€by) - ﬁmnélnz) (3.21)
S l

with the derivative of the responsibility given by

dr d [ wPe tBlei—ui-ca?
de— de \ 'y, miPe30lm—ni—chlP
ﬁ e—3Bllzi—u;—edi|? B! (i — puf — €8))

58|z —puy—edi||?

2k 7Tk 2 k

B o= 5 Bl|wi—u; —edi|? *B = 5Bllzi—u} —edill® gsT (4. * :
e I [ e ijj e 2 J B6; (i — pj — €dj)

2
B o= Bl —py —edi[|?
(Zk T €2 *

= Brii | 6 (xi — ) —€dy) — 257‘”5}’(“ — p; — €dj) (3.22)
J

Combining these equations we arrive at

2
2
525 () = sz 8 (i — pf — €dy)) —622<Zr”6l ,ul*—eél)>
—ﬂzzrzz||5z||

and so, evaluating at € = 0 and exploiting the facts that §; = 0 for I > 2 and that the means and

responsibilities of components 1 and 2 are identical by construction.
d2 * T * * *\T *
@fﬁ %) = 5251 ﬂZTu(mi =) (@i — )" — ZTl,i o
I i
2
-8 (qi(zi -y 6;) (3.23)
i

The second term in this expression, a sum of squares, is always non-negative. We can force it to
0 by choosing the perturbations so that ), 6; = 0. The first part will be negative for all choices of
d as long as the matrix 8, ), (@i — p]) (w; — u)t =3, 7 ; is negative definite. Let oy s be the sth
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eigenvalue of the matrix ), r}';(z; — pj) (2 — w)t S, 7y ;- The condition for negative definiteness

is thus
1

max(0y,s)

B < 1=1{1,2) (3.24)

This condition is both necessary and sufficient for the solution #* with components 1 and 2 identical
to be a stable maximum. We have shown that if it holds then the derivative of (3.23) is negative
for any choice of §,,. If it fails we can choose §; and &, pointing in opposite directions along the
eigenvector corresponding to the largest o; 5 so as to obtain a positive Hessian.

Thus, a critical temperature is reached whenever the temperature 3! becomes smaller than the
leading eigenvalue of the covariance of the data assigned to any of the mixture’s components. If we
interpret the parameter 8! as the effective scale of the covariance matrix of each Gaussian, this
result is intuitively appealing. When the observed covariance of the data assigned to a component
becomes larger than the component can “handle”, a transition to more distinct component centers

occurs.

3.4.2 Model-size

It is tempting to interpret the phase transition structure of relaxation models as indicating a pro-
gressive change in the underlying model-size (for example, the number of components in a mixture).
Take the mixture model shown in figure 3.1, for example. Initially, only one distinct set of compo-
nent parameters exists, and we might think of the mixture as containing only that one component.
As the relaxation progresses, each phase transition introduces more distinct component values. We
would like to view these as new components being added to the mixture, thus growing the underlying
model-size.

Unfortunately, under the REM-1 algorithm (as well as the basic deterministic annealing algo-
rithm), such an interpretation does not hold up. In the ground-state (8 = 1) mixture likelihood, if
two components, say the first two, have identical parameters, so that Py (z;) = P2 (x;), they may be
replaced by a single component with the same parameters and mixing proportion m; + w2 without

any change in the likelihood. This is made clear by inspection of the likelihood
Lx (0) =) log» TP () (3.25)

In particular, if the larger model is at a maximum in the likelihood, then the smaller one will be
too.
This convenient behaviour does not carry through to higher temperatures. Recall the form of

the relaxation log likelihood

lx,(0) =3 log y miPm ()" (3.26)
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Figure 3.2: Inequivalence of different size models

Clearly, with 8 < 1 we cannot replace the identical components as before, since Wf +7r§ # (m +ms)5.
Nor can we simply set the mixing proportion of the new component to (Wf+7r§)1/ﬁ, since this violates
the normalization of Py (y;). In general, then, the relaxation likelihood changes between the two
models. Furthermore, a maximum in the more complex model may not correspond to a maximum
in the simpler one, indeed the number of distinct component values in the two models may not be
the same.

Figure 3.2 illustrates the point. Panel A shows a maximum in the relaxation likelihood of a
three-component mixture of unit Gaussians at the stage § = 0.3. Panel B shows the optimal
configuration, at the same temperature, of a four-component mixture, which was constructed by
replacing the rightmost component of the mixture of panel A with two identical Gaussians. Both
visible contours in B represent two identical components (indicated by the dark lines — other than
this the representation of the components is as in figure 3.1). Thus, the duplication of one component
has, in effect, driven the relaxation of the mixture in reverse, to a smaller phase.

Thus, the view of the model changing in size during the relaxation process cannot be maintained
consistently under REM-1.

A further issue emerges from this analysis. Consider the mixture of figure 3.2B, where a four
component mixture is being fit, but where only two distinct component values are visible. How do
we know how to distribute these duplicated components? Clearly, each choice will yield a different
intermediate solution; but the final result may also be affected since subsequent phase transitions will
be constrained by the availability of components. We would like to be able to introduce the additional
component wherever it is needed, but we cannot “move” the component around without changing
the likelihood landscape. The result is that the choice of how to group the various components, a
choice that must be made at each phase transition, will affect the outcome of the relaxation process.

Both of these issues can be rectified by the introduction of a variant of the basic relaxation
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algorithm, which we call REM-2.

3.5 REM-2

It is instructive to examine the structure of the relaxation free-energy of REM-1 for clues to the
origin of the inequivalence of different model-sizes described above. Recall that the term Q(p,0)
is the expected value of the joint data log-likelihood under the distribution p. Using the fact that
Lx.y(0) =log(Pe (X | Y)Ps(Y)) we can write the free-energy of (3.6) as

F5(p,0) = BE, [log Py (X | V)] + BE, [log Py (V)] — &, [log p (3.27)

If we introduce a new hidden state, we increase the entropy of the latent variables. However, provided
the new state is identical to some old one, the cross-entropy —&, [log Py ())] decreases by the same
amount. When § = 1, then, such an addition has no net effect on the free-energy. However, at
higher temperatures the free-energy increases with the introduction of the new state. The size of
this increase depends on both p and 6 and so the location of the maxima of the free-energy may also
change, as we saw above.

This formulation suggests a resolution of the difficulty. We introduce a slightly different relaxation
free-energy which will form the basis of our second Relaxation Expectation Maximization algorithm

(REM-2).

F(p.0) BEp [log Py (X | V)] + & [log Py (V)] = &, [log p]

= BQ(p.6) — KLp)IPs (I)] (3.28)

Here KL[f||g] stands for the Kullback-Leibler divergence between the distributions f and g. This
form no longer enjoys the analogy with the familiar free-energy of statistical physics. Nonetheless,
from the point of view of optimization it provides just as valid a relaxation progression as does the
more traditional form.

Again, we optimize each free-energy in the relaxation sequence using the EM approach of al-
ternate optimizations with respect to p and with respect to . The E-step is derived in the same
manner as before. We introduce a Lagrange multiplier A enforcing the constraint [dY p(Y) =1 to

obtain

(Fé(p,ﬂ) - /\/ 0y p(y>>

9
P
0 ( [ @ @)(B10gPy (¥ | 3) +10gPy () ~ oga(y) - A)) (3.29)

0
0

=
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from which, by the calculus of variations,

0 = 2 O)Bl0gPs (X | Y) +logPy (¥) ~ logp() ~ V)
= (BlogPy (X | V) +log Py (V) — logp* (V) — ) — p: (V) (3.30)
p* (V)
and so
p*(Y) Py (¥) (Po (X | V))” (3.31)

The multiplier A ensures that p is correctly normalized.

At first glance it might seem that the M-step, involving the maximization of 8&, [log Py (X | V)] +
Ep [log Py (V)] will be different from standard EM and REM-1. In most models, however, the param-
eters 6 can be partitioned into two disjoint and independent sets, one responsible for the distribution
of the latent variables and the other for the conditional of the observables given the latent variables.
If this is the case, Fé can be optimized with respect to each of these sets separately, and clearly the
resulting update rules will be exactly as in standard EM.

Now, when 8 = 0, this free-energy is optimized by any choice of p and 8 for which p(}) = Py ()).
Although p need not be the maximum entropy distribution, the resulting parameter values are very
similar to the initial conditions for REM-1. In particular, the distribution p must be independent
of the observations X. For the mixture model, for example, we have r,, ; = 7, which implies
that each component is fit with equal weight given to all of the data (although that weight may
be different for the different components) and so all the component parameters are identical. For
consistency with REM-1, and in the spirit of maximum entropy statistical methods where unknown
distributions are assumed to be maximally uncertain, we will adopt the convention that the initial
choice of parameters governing Py ())) does indeed maximize the entropy of the latent variables
under the constraints of the model. This is merely a convention, though. Any initial choice of
Py (), provided every possible outcome has non-zero probability, will produce the same results.

In figure 3.3 the REM-2 algorithm is used to fit a 5-component mixture to the same data as
was used in figure 3.1. This figure illustrates the fact that REM-2 exhibits the same type of phase
transition structure as we saw previously in REM-1. Indeed, we can follow through the analysis
of section 3.4.1 and find that exactly the same condition for stability holds, except that now the

responsibilities that appear in (3.23) are those of the new algorithm

=30l i—tim

- Zl me*%ﬁ“%‘*m 12

(3.32)

T'm,i

(note that the mixing probabilities 7, are not raised to the power 3). This results is a small change

in the actual values of the critical temperatures between the two algorithms on the same data set;
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Figure 3.3: Phase transitions in REM-2 for fixed-variance Gaussians

an example of this is evident in a comparison of figures 3.3 and 3.1.

We can verify that the issues raised in section 3.4.2 are resolved by REM-2 by consideration of

the implied relaxation likelihood for a mixture model.

s (6)

FL’?({ri7m}7 0)
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(3.33)

Clearly, the two identical components can be replaced by one (with mixing probability given by the

sum of the weights of the duplicate components) without disturbing the likelihood. Thus, we can

legitimately regard the model-size as increasing during the relaxation process. Furthermore, we need

not make any choice about how to group components: any grouping will yield the same sequence of

likelihoods and extra components can be assigned as needed when a critical temperature is reached.
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3.6 Cascading Model Selection

In our development to this point, we have tacitly assumed that the size of the eventual model is
known. If we use REM-1, the model size is set at the outset and maintained throughout. If we use
REM-2, the model-size grows during the relaxation, but is capped at the correct value. In practice,
however, this knowledge is often not available a priori. In using a mixture model for clustering, for
example, we may not know in advance the appropriate number of clusters. Instead, the model-size
needs to be learnt along with the parameters of the appropriate model.

This is an example of the more general problem of model selection. We have already visited
this problem twice in the course of this dissertation. Section 1.3 discussed the general theory and
described a number of likelihood-penalty techniques that are used in practice, as well as related
approaches such as cross-validation. Section 2.7.3 added a further technique, called the Cheeseman-
Stutz criterion, which is suitable for latent variable models such as mixtures. In this section we will

investigate the relationship between these techniques and REM.

3.6.1 A natural answer?

It is tempting to think that in certain situations, the phase transition structure of REM provides
a natural answer to such problems, and, indeed, a number of authors have assumed this (see, for
example, Rose (1998) or Weiss (1998)). Take the mixture of unit Gaussians that has been our
running example in this chapter. Suppose we were to fit by relaxation a mixture with a very large
number of components. Once the relaxation had run its course, we would find that only a small
number of distinct component values existed in the final mixture. Furthermore, whether we had used
REM-1 or REM-2 to find that mixture, it would always be the case that at unit temperature the
equivalence between a mixture with duplicate components and a smaller one with all duplications
removed would hold. Thus, we can safely assert that the relaxation procedure has found a solution
with limited model-size. Is this the correct model-size?

Unfortunately, despite the suggestions to that effect that appear in the literature, it is not. This
should be clear from the fact that ultimately, the technique by which the final mixture was found
is not important. That mixture is simply a maximum — with luck, the global maximum — of the
model likelihood. Choosing a number of components in the manner suggested is thus the same as
choosing between different models solely on the basis of their unpenalized likelihoods. Such a choice
is prone to over-fit for all of the reasons that were discussed in section 1.3. The estimate of the
model-size will be biased upwards.

We can drive the point home by means of a simple example. Suppose that the data to be modeled
have actually arisen from a single Gaussian distribution with zero mean and unit covariance matrix.

We attempt to model this data with a mixture of Gaussians, each with unit covariance, fitting
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the mixture by REM. As we have seen, at low values of the relaxation parameter, 3, all of the
mixture components coincide. However, once 3 reaches the inverse of the leading eigenvalue of the
observed covariance matrix, more than one distinct mean will be observed. The eigenvalues of the
observed covariance are asymptotically symmetrically distributed about 1 (the exact density is given
by Anderson 1963). Thus, with a probability of approximately 1 —27?  where p is the dimensionality
of the Gaussian, the leading eigenvalue will be greater than 1. In this case, the phase transition
will occur with 3 < 1. If relaxation were to proceed to completion at # = 1, we would arrive at a
solution with more than one component.

The situation is even more dire for other latent variable models. For example, if the covariances
of the Gaussians are unknown (and perhaps unequal) the maximum likelihood solution given a
sufficiently large number of components has each component concentrated around exactly one data
point, giving rise to as many distinct components as data. Clearly, this is not a reasonable solution.

Another suggestion is as follows. The relaxation procedure is carried out using a large number
of components, just as before. Now, however, a section of the data — a validation set — is held out
and the (relaxation) likelihood of the optimal model at each temperature is evaluated on these data.
After relaxation is complete, we select the model at which the validation likelihood was greatest.

This scheme is only meaningful in situations where the relaxation likelihood corresponds to an
actual model. Even in such situations, though, it will tend to return the wrong answer; in this case
the bias appears in the parameter estimates. Take the simple example of data from a single Gaussian.
It is plausible that this scheme would correctly identify the optimal model-size as containing only
one component. However, selecting this component will require choosing a solution at a non-unit
temperature. Thus, the Gaussian will have a larger variance than appropriate.

The resolution would appear to be to use a model selection scheme (validation in this example)
to choose the model-size, but then continue to relax the model of this size to unit temperature. We

shall discuss a local version of this scheme in the next section.

3.6.2 Cascading model selection

Careful consideration of the nature of the relaxation likelihood has indicated that, despite the ap-
pealing natural limits that appear in the fixed-variance models commonly used in conjunction with
deterministic annealing, to avoid bias the model-size must be chosen by a more traditional model
selection technique. Nonetheless, the hierarchical “division” due to the phase transition structure
that we saw in the case of the mixture model does still form an attractive basis for model selection.
We shall see that it is indeed possible to exploit this structure. Through a progressive develop-
ment we will arrive at an efficient method for choosing the correct model size, within the relaxation
framework, that we call cascading model selection.

In what follows we shall consider the mixture model, with the selection of model-size being
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Figure 3.4: Schematic of model selection using REM

equivalent to choosing the correct number of components. The method is, however, quite general
and can be applied with ease to any latent variable model for which an EM algorithm can be written.

The standard approach to model selection is as follows. Using some algorithm, which might just
as well be REM, we obtain maximum likelihood fits for a variety of models with differing numbers
of components. These models are then compared using one the methods discussed in sections 1.3
or 2.7.3. Many of these methods involve a comparison of the maximal log-likelihood values of the
different models, reduced by a term that reflects the number of free parameters in the model. It is
such penalized-likelihood methods that we shall consider first.

The various model selection schemes that we will discuss are shown schematically in figure 3.4.
Panel A represents the basic procedure. The solid lines each represent the relaxation of a model,
while the circles indicate the occurrence of phase transitions. The five models being fit are of
different sizes, which is why they undergo different numbers of phase transitions. Roughly speaking,
the total length of the lines in each panel represents the computational cost associated with each
model selection strategy. The remaining panels will be described below.

If the optimization is carried out using REM-2 then the process of fitting the different size models
can be made considerably more efficient. The relaxation process for models with M and with M + 1
components is identical until the final phase transition of the larger model. Thus, there is no need
to repeat the fitting process up to that point. As a result, we fit all of the models in a linear
tree structure, shown in figure 3.4B, with a new branch emerging at each phase transition. (The
schematic adopts the convention that the line emerging on the right of the circle has not undergone

the phase transition, while the one that continues below has.) We note that this process is not
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possible with either the conventional deterministic annealing algorithm or REM-1.

We can improve further on this scheme by allowing early pruning of some branches. This is
facilitated by the following important result, which holds for models being fit by REM-2. Suppose
we have an M component model in which one component is unstable in the sense of section 3.4.1,
that is, if additional components are available it would undergo a phase transition. We compare the
likelihoods of two models: M; has only M components and therefore exhibits no phase transition,
while M5 has a model-size of M + 1 and thus has allowed the unstable component to “split”. If the
relaxation log-likelihood at some 8 < 1 of My exceeds that of M7 by A, then the final log-likelihood
of My will exceed that of the smaller model by an amount larger than A. We offer an informal
proof of this point.

Recall first that M, is identical in likelihood to an (M + 1)-component model M, in which
the unstable component is duplicated, but both copies retain the same parameters. By assumption
the relaxation log-likelihood of My exceeds that of M. Recall that this log-likelihood is obtained

from the free-energy

F5(p,0) = BQ' (p,6) — KL[p(Y)[[Pg (V)] (3.28)

by setting p()) = Py (Y | X). Now it must be the case that the Kullback-Leibler term for M, is

greater than that for M;,. If that were not true, the more complex model would be preferred even
at 8 = 0, which we know not to be the case. Thus, it must also be true that the ' term in the
likelihood of M exceeds that of M, (and thus of M,).

How will the log-likelihoods of the two models change as relaxation progresses? Let £g (6*) be the
optimal relaxation log-likelihood, that is, the value of F(p,#) with 6§ = 6*, the optimal parameters,
and p(Y) = Py« (¥ | X) . The maximizing value of the model parameter vector, 8*, is, of course, a
function of the relaxation parameter 8. Thus, we may differentiate the maximal log-likelihood with

respect to 3 using the chain rule

d 0 0 de*
—=lg (07) = %Kﬁ () + %E@ (67) 3

(3.34)

But, since #* maximizes the log-likelihood, the gradient of £z (#) at §* for fixed 3 is 0. The partial

with respect to [ is obtained trivially from (3.28), and thus we find that

d

50 6 = QP (V] ). 67) (3.35)

We have argued that the Q' term for M is greater than that for M;. Thus, we find that
the optimal log-likelihood of the larger model is growing more rapidly than that of the smaller one
(if both gradients are negative, then it is shrinking less rapidly). As a result, any difference in

likelihoods at 8 < 1 can only grow as (3 increases.
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Thus, it is possible to further streamline the model selection process. If, at any stage in the
relaxation, the penalized relaxation log-likelihood of some model is exceeded by that of a larger
model (that is, the difference in log-likelihoods is greater than the difference in penalties) we can
immediately neglect the smaller model, effectively pruning that branch of the tree. This is indicated
in figure 3.4C, where the first two models are pruned.

Finally, we arrive at the approach that we call cascading model selection. We assume that the
penalized likelihood rises monotonically with model-size until the optimal value is reached. While
this is not guaranteed to be the case, it is an intuitively appealing assumption and the experiments
below suggest that, at least for simple mixture models, it is typically valid. Under these conditions,
we need not even consider a model of size M + 2 until the model with M components has been
rejected in favour of one with M + 1.

In our implementation of cascading model selection we think of a particular model size as being
“current” at all times. This is indicated by the solid line in figure 3.4D. When a critical temperature
is reached, the current model retains its size. However, we begin to track the optimum of a “shadow”
model of larger size (and thus, which undergoes the phase transition). If the penalized likelihood
of this shadow model exceeds that of the current one, we abandon the current model and make the
shadow current. Sometimes, it will be the case that the shadow model reaches a critical temperature
without having replaced the current model. If this happens, we simple maintain the shadow model’s
size and continue to relax; we do not introduce the larger model.

It might also be the case that the current model will encounter another critical temperature,
even though it remains more likely than the shadow. In this case we need to introduce another
shadow model, usually of the same model-size as the previous one, but resulting from a different
phase transition. In the case of the mixture model, it is useful to think of a different component
having “split”. If, as relaxation progresses, we reach a point where either of these shadow models
becomes more likely than the current one, we make that model current and abandon all the others.

The cascading model selection procedure is capable of find optima that the basic REM algorithm
is not. To see why, consider the case described above where a second shadow model may be intro-
duced. This shadow model is different from any that might be obtained by REM; to achieve it we
have “disallowed” one phase transition but allowed another. If this model proves to have greater
likelihood than the first shadow, and also to be preferred to the current model according to the
penalized likelihoods, then we will arrive at a model with greater likelihood than that obtained by
REM with the same number of components. Intuitively, the cascading model selection prevented us
from “wasting” a component due to the phase transition at the higher temperature, instead reserving
it for the more advantageous split. This point will be illustrated below.

Finally, we note that the core result of cascading model selection has been obtained only for

a penalized likelihood style model selection procedure. However, to the extent that such methods
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approximate techniques such as Bayesian model selection or cross-validation, we might believe that
such techniques can be used in the same way. In particular, for mixture models the Cheeseman-Stutz

criterion of section 2.7.3 often provides good results.

3.7 Experiments

As we first encountered the REM algorithm in section 3.3, we noted that, because the maximum
of the free-energy does not, in fact, vary continuously with the relaxation parameter, the algorithm
process cannot be guaranteed to find the global optimum of the likelihood. Instead, we appealed to
an intuitively founded expectation that it would tend to find a good optimum. In this section we
examine the results of numerical experiments to see if this is actually the case.

The experiments described here all involve the simple mixture of two-dimensional unit Gaussians
model, which we have seen throughout this chapter. In all cases the relaxation is performed using the
REM-2 algorithm. The basic outline of the experiments is as follows: we select a random mixture of
unit Gaussians, generate data from it, and fit mixture models to these data using both the REM-2
and standard EM algorithms. We then compare the performance of the algorithms by computing
the likelihoods of the resultant models. Any solution in which the likelihood of the fit model is
greater than the likelihood of the true (that is, data-generating) model will be called “good.”

The parameters of the generating mixture are all chosen randomly within pre-specified intervals.
The number of components, M, is chosen from the discrete uniform distribution on the values 3, 4,
5 and 6. The mixing proportions are chosen by randomly partitioning the interval (0,1) as follows:
M — 1 numbers in the interval (0,1) are chosen from a uniform distribution on the interval and
then ordered, thereby inducing a partition into M subintervals; the lengths of these subintervals are
taken to be the mixing probabilities. The means are generated from the two-dimensional uniform
distribution on the rectangular region bounded by +5 in both dimensions. The covariances are all
set to the identity matrix.

500 data points are generated randomly from this mixture distribution. Mixtures of the cor-
rect number of Gaussians are then fit both by REM-2 and by standard EM. For each data set,
the standard EM algorithm is started 10 times, from 10 randomly selected initial conditions (see
section 2.7.2). Both algorithms are iterated to the same convergence criterion, which is that the
relative change in likelihood after a complete EM step should fall below 10~7. The likelihoods of all
of the models, including the generating one, are then evaluated. We call a fit model “poor” if its
likelihood is less than that of the generating model on the given data.

This entire procedure is repeated for 200 different generating mixtures.

Figure 3.5 shows the number of “poor” optima achieved under the different algorithms. The

10 bars on the left show how the rate of success of the standard EM algorithm increases as a
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Figure 3.5: Frequency of poor maxima

progressively larger number of restarts are used. The likelihood used in the calculation of the bar
labeled n is the largest of the likelihoods obtained from the first n restarts. The single bar on the
right indicates that, for REM-2, only a single run achieved a poor optimum.

It is instructive to examine the single example in which REM-2 converged to a poor maximum.
This is shown in figure 3.6. Panel A shows the model from which the data were generated. Panel
B shows the optimum found by the REM-2 algorithm. Evidently, a phase transition that split the
component in the middle-right was encountered before the phase transition that would correctly split
the bottom-left component. In panel C we show the results of running REM-2 in conjunction with
cascading model selection (using the BIC likelihood-penalty with no corrective constant). Whereas
the standard REM-2 algorithm ran on a model with the correct number of components provided a
priori, with cascading model selection this number could be determined from the data. Furthermore,
it is evident that by incorporating on-line model selection, the early phase transition was rejected
on the basis of the penalized likelihood , whereas the later, correct, one was subsequently accepted.
It should be clear that without the cascading property this maximum could not have been found:
had the different model sizes been compared after optimization (as is usual) then the model of size 5
would have been that of panel B. Thus, we observe that — as was suggested at the end of section 3.6

besides the obvious benefits of automatic model size determination, the cascading model selection

process can sometimes improve the optima found by REM.
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Figure 3.6: Cascading model selection can improve optima

A word of caution needs to appear here. The data shown in figure 3.5 suggest that, at least
in this simple case, REM  perhaps in combination with cascading model selection = might well
converge reliably to the global maximum of the likelihood. This is not actually the case. Closer
inspection reveals that for 11 of the random mixtures at least one of the standard EM runs found a
model with a likelihood more than 10~* log-units larger than that found by REM-2. Furthermore,
it is possible that even for the remaining mixtures the relaxation solution is not globally optimal,
but that none of the standard EM iterations found the maximum either. Thus, REM does not
always find the global optimum; indeed we cannot expect any algorithm of polynomial complexity
to reliably do so. Nonetheless, figure 3.5 does suggest that it tends to find an optimum at least as

good as the model that actually generated the given data with remarkable regularity.



