
Chapter 5 Spike Sorting5.1 Introdu
tionIn this 
hapter we take up the �rst and most extensive of our neural data-analyti
 appli
ations oflatent variable methods. Spike sorting allows s
ientists and te
hnologists to eÆ
iently and reliablymonitor the signals emitted simultaneously by many di�erent nerve 
ells within inta
t brains. Toneuros
ientists, interested in how the brain 
arries out it 
omplex fun
tions, su
h multi-neuron datais essential input to improved understanding. In addition, the ability to 
olle
t signals from largenumbers of spe
i�
 neurons brings biomedi
al engineers 
loser to the dream of prostheti
 devi
esdriven dire
tly by neural output.5.1.1 Extra
ellular re
ording: the sour
e and nature of the signalThe a
tion potentialMost neurons 
ommuni
ate with ea
h other by means of short, lo
al perturbations in the ele
tri
alpotential a
ross the 
ell membrane, 
alled a
tion potentials. The dis
overy of the me
hanism thatgives rise to the a
tion potential was one of the seminal breakthroughs of early neurophysiology(Hodgkin and Huxley 1952), and the a

ount made at that time of a
tion potentials in the squidgiant axon has proven to apply quite broadly. For the purposes of this dis
ussion, we will not needa detailed a

ount of the a
tion potential. However, a qualitative understanding of some points willbe important.Protein 
omplexes embedded in the membranes of neurons pump spe
i�
 ions into or out of the
ytoplasm so as to establish strong 
on
entration gradients a
ross the membrane. The membranepossesses a baseline permeability to some of these ions, and so the system equilibrates with anele
tri
al potential opposing the 
hemi
al potential established by the ion pumps. This ele
tri
alpotential, around �70 mV for most 
ells (the 
onvention is that membrane potentials are measuredinside the 
ell, with referen
e to the extra
ellular medium), is known as the resting potential.Cells at rest are said to be polarized. Two ions are important to the a
tion potential. Sodium ions(Na+) are 
on
entrated outside the 
ell at rest, while potassium ions (K+) are 
on
entrated inside.Besides the ion pumps, the membrane 
ontains other proteins that serve as temporary 
hannelsto spe
i�
 ions. These 
hannel proteins have two or more metastable 
onformations. In one of these,the open 
onformation, the 
hannel allows spe
i�
 ions to pass through it. Thus, as the number of
hannels in the open state varies, the permeability of the membrane to spe
i�
 ions 
hanges. Two
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hannel, one permeable to Na+ and the other to K+, form the basi
 ma
hinery of the a
tionpotential. Both 
hannels are voltage-sensitive, that is, the probability of �nding them in the openstate depends on the ele
tri
al potential a
ross the membrane. In parti
ular, they are both morelikely to open as the potential inside the 
ell in
reases.The a
tion potential is initiated when a pat
h of membrane be
omes slightly depolarized. Asthe interior voltage in
reases, the voltage-sensitive sodium 
hannels are faster to open that thepotassium ones. Na+ ions are driven into the 
ell through these open 
hannels, further raising theinterior potential and establishing a rapid positive-feedba
k loop. This feedba
k loop is terminatedin two ways. First, on
e in the open state, the sodium 
hannels begin to transition to a third,ina
tivated 
onformation. Here again the 
hannel is impermeable to ions, but this 
on�gurationis di�erent from the original, 
losed, one. In parti
ular, the probability of transition ba
k into theopen state, while the membrane potential remains high, is now extremely low. The return transition,
alled de-ina
tivation, happens only at potentials near or below rest, when the protein swit
hesdire
tly to the 
losed state. Se
ond, the potassium 
hannels also open in response to the in
reased
ellular potential. The di�usion gradient for K+ is opposite to that for Na+, and so K+ ions leavethe 
ell, restoring its polarization. In fa
t, the membrane potential falls below the resting level.As it falls, the potassium 
hannels 
lose (they have no ina
tivated state). Eventually, all of thevoltage-sensitive 
hannels are either ina
tivated or 
losed, returning the membrane to its baselinepermeability and the resting potential.The voltage-sensitive sodium 
hannels are most highly 
on
entrated on the 
ell body at the pointwhere the axon emerges (the axon hillo
k). This is the �rst pie
e of 
ell membrane to undergo ana
tion potential, usually initiated by the passive propagation of depolarizations 
aused by membrane
hannels in the dendrite that open due to synapti
 input. This a
tion potential depolarizes a nearbypie
e of membrane on the axon, thus laun
hing it into an a
tion potential too, whi
h, in turn,depolarizes a further pie
e and so on. Thus, on
e initiated at the hillo
k, the a
tion potential travelsdown the axon, eventually triggering the release of a neurotransmitter onto another 
ell.As the membrane 
omes out of the a
tion potential, a number of potassium 
hannels are stillopen and many sodium 
hannels remain ina
tivated. Thus, for a short period of time 
alled theabsolute refra
tory period it is impossible to indu
e a se
ond a
tion potential in the 
ell. Evenafter the potassium 
hannels have all 
losed and enough sodium 
hannels have de-ina
tivated to allowanother a
tion potential to begin, the threshold perturbation needed to seed the a
tion potentialwill be higher than normal. This period is 
alled the relative refra
tory period. Eventually theina
tivation of the sodium 
hannels drops to an equilibrium level and the 
ell returns to the reststate.In many 
ases a 
ell will �re a group of a
tion potentials spa
ed by little more than the absoluterefra
tory period. Su
h a group is 
alled a burst or, sometimes, a 
omplex spike. In general,
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h bursts are not driven entirely by synapti
 input, but rather by the biophysi
s of the neuronalmembrane. For example, extremely long time-
onstant voltage-sensitive 
al
ium 
hannels are foundin some neurons. The �rst a
tion potential in a burst 
auses some number of these to open, butthey neither 
lose nor ina
tivate rapidly. Ca++, whi
h is 
on
entrated outside the 
ell by the ionpumps, 
ows in through these open 
hannels. As a result, as soon as the �rst a
tion potential isover and the potassium 
hannels 
losed, the depolarizing 
al
ium 
urrent 
an laun
h the next a
tionpotential. The 
ell is still in its relative refra
tory period, however, so many sodium 
hannels arestill ina
tivated. As a result, the 
urrents that 
ow in this and subsequent a
tion potentials maynot be quite as strong as in the initial one.In many, if not most, neurons, voltage-sensitive 
hannels are to be found all over the 
ell body anddendriti
 surfa
e. Re
ent work in pyramidal neurons has shown that the a
tion potential propagatesnot only down the axon, but also from the axon hillo
k ba
k into the dendrite (Stuart and Sakmann1994; Stuart et al : 1997; Buzsaki and Kandel 1998). Further, the degree of penetration varies withthe re
ent a
tivity of the 
ell (Spruston et al : 1995; Svoboda et al : 1997). The later a
tion potentialsin a burst penetrate the dendrite to a mu
h lesser degree than the �rst.Extra
ellular re
ordingThe me
hanism of the a
tion potential, as well as many other important neuronal phenomena, havebeen understood through measurements taken using an intra
ellular ele
trode, that is, one whi
hpenetrates the 
ell. Unfortunately it is diÆ
ult to re
ord with su
h an ele
trode in an inta
t animaland all but impossible in many awake ones. Fortunately, if all that is needed is the timing of a
tionpotentials in the 
ells, it is possible to a
quire this information with an extra
ellular ele
trode. Themost 
ommon su
h ele
trode is a �ne metal wire, insulated everywhere but at the tip, whi
h istapered to an extremely �ne point of only a few mi
rons diameter. The uninsulated tip a
quires alayer of ions at its surfa
e whi
h form the se
ond plate of an extremely thin 
apa
itor. The resistive
oupling of the ele
trode to the surrounding medium is generally weak; resistan
es in the hundreds ofM
 are not un
ommon. However, the 
apa
itive 
oupling is mu
h stronger, with 1kHz impedan
esin the hundreds or thousands of k
.The ele
tri
al 
urrents asso
iated with the 
ow of ions through the membrane are transient. Ifthe ele
trode tip is near the membrane surfa
e during an a
tion potential, these 
urrents 
ouple tothe ele
trode, resulting in a transient 
hange in the potential of the ele
trode measured relative toany stable external point. Thus, if we were to make a tra
e of the ele
trode potential over time, wewould see spikes1 in the tra
e 
orresponding to the a
tion potentials in the 
ell near the tip. The1In this 
hapter, \spikes" o

ur in the ele
trode voltage tra
e, while \a
tion potentials" o

ur on the 
ell membrane.This sharp distin
tion is not entirely 
onventional, but it is useful, allowing us to speak, for example, of the \
hangingamplitude of a spike" without any impli
ations about the maximal 
urrents that 
ow a
ross the 
ell membrane. Thetime of o

urren
e of the spike and a
tion potential will be taken to be the same.



85relationship between the intra
ellular tra
e of the a
tion potential and the extra
ellularly re
ordedspike is 
omplex. First, the extra
ellular probe re
ords a integral 
urrent from many pat
hes ofmembrane that may be in many di�erent stages of the propagating a
tion potential. Se
ond, the tipgeometry �lters the measured spike; for an ele
trode with a smooth surfa
e this �lter is dominatedby a single-pole high-pass 
omponent, but for porous ele
trode tips (plated with platinum bla
k, forexample) it is more 
ompli
ated (Robinson 1968).Many 
ells' membranes might lie 
lose to the ele
trode tip so that spikes from many 
ells arere
orded. Histori
ally, the experimenter has manoeuvered the ele
trode so that the tip lies very
lose to one 
ell, and thus the spikes from this 
ell are far larger in amplitude than the spikes fromother 
ells. A simple hardware devi
e 
an then be used to re
ord the times of these large spikes,and thus of the a
tion potentials in a single 
ell. Even if the spike shape asso
iated with the neuronvaries, its amplitude remains greater than that of any other 
ell's spikes. This pro
ess is referred toas single-
ell isolation. It is time-
onsuming and, in an awake animal, temporary. Movement of thetissue relative to the ele
trode eventually 
auses the experimenter to \lose" the 
ell.Multineuron re
ordingOne 
an only learn so mu
h about the brain by monitoring one neuron at a time. As a result, therehas been a great deal of re
ent interest in multineuron re
ording2.There is some reason to believe, based on the biophysi
s of neurons (the literature is extremelylarge, but see, for example, Softky and Ko
h 1993) as well as some dire
t experimental eviden
e(again a list of 
itations 
ould be very long, so we 
hoose a re
ent example: Usrey et al : 1998),that a
tion potentials that o

ur simultaneously in a pair of neurons with a shared synapti
 targetare far more e�e
tive at 
ausing the target to �re than are two non-
oin
ident a
tion potentials.It is possible, then, that 
oin
ident �ring plays a signi�
ant role in the transmission of informationwithin the nervous system. A number of experimenters have argued that indeed more, or di�erent,information is available if the pre
ise timing of a
tion potentials a
ross multiple 
ells is taken intoa

ount (e.g., Gray and Singer 1989). Furthermore, even if the exa
t relationship of �ring timesbetween 
ells is not fun
tionally signi�
ant, this relationship 
an provide valuable (though indire
t)
lues to the mi
ro-
ir
uitry of the system (e.g., Alonso and Martinez 1998; Abeles et al : 1993).It is possible to 
olle
t multineuron data by introdu
ing many separate ele
trodes into the brainand isolating a single neuron with ea
h one. Indeed many of the studies 
ited above were 
arriedout in this way. This approa
h is, however, diÆ
ult to exe
ute and diÆ
ult to s
ale. There are twoapproa
hes possible to obtaining many isolations. One 
an insert many individually positionable2We shall take \multineuron re
ording" to mean that separate (or separated) spike trains from multiple 
ells areavailable. This situation is sometimes 
alled \multiple simultaneous single-neuron re
ording" to distinguish it fromthe earlier use of the term \multineuron re
ording" whi
h was applied to a single spike train representing all the a
tionpotentials in an unknown number of 
ells near the ele
trode tip. This earlier usage seems to be fading as te
hnologyadvan
es, and the term \multineuron" is less 
umbersome than \multiple simultaneous single-neuron".



86ele
trodes and manoeuver ea
h to isolate a 
ell, or one 
an insert a larger number of �xed ele
trodesand simply re
ord from those that happen to provide a de
ent isolation. The former approa
hrequires 
onsiderable time from the experimenter. Furthermore, sin
e, at least in awake animals,isolations generally last for only a short time, as the experimenter isolates 
ells on more and moreele
trodes he risks losing the 
ells isolated at the outset. The latter of the two approa
hes willoften lead to a more stable re
ording than 
an be obtained with manoeuverable ele
trodes, in partbe
ause the probes 
an be allowed to settle within the tissue over a long time. However, the yieldof ele
trodes with single-
ell spike trains 
an be extremely low.5.1.2 Spike sortingSpike sorting provides an alternative to physi
al isolation for multineuron re
ording. In this ap-proa
h, the ele
trode is pla
ed in the neuropil, with no e�ort being made to isolate a single 
ell.Instead, the spikes due to many 
ells are re
orded and a data-analyti
 e�ort is made to sort theminto groups a

ording to their waveforms. Ea
h su
h group is presumed to represent a single 
ell.The attra
tions to this approa
h are 
lear. If repositionable ele
trodes are used, far less manoeu-vering is needed in order to obtain 
lear spike information. If �xed ele
trodes are used, the yield ofre
ordable 
ells from a given array is mu
h in
reased. Beyond su
h issues of experimental eÆ
ien
y,spike sorting approa
hes 
an provide data that is extremely diÆ
ult to obtain using one-
ell-one-ele
trode approa
hes. All the 
ells dete
ted on a single ele
trode lie within some few tens of mi
ronsof the tip, and thus of ea
h other. Su
h 
ells are more likely to be fun
tionally and anatomi
allyrelated than well-separated neurons 
hosen at random.Multiple-tip ele
trodesSpike sorting 
an be made easier by use of a multi-tip ele
trode su
h as a stereotrode3 (M
Naughtonet al : 1983) or tetrode (Re

e and O'Keefe 1989). This is really a group of ele
trodes whose tipslie suÆ
iently 
lose together that an a
tion potential in a single 
ell generates a spike on more thanone of the ele
trodes. Ea
h ele
trode will have a di�erent spatial relationship to the sour
e 
ell, andso experien
e a slightly di�erent spike waveform. Put together, these \multiple views" of the samea
tion potential provide more information on whi
h to base the sorting of the spikes.An analogy may be drawn to stereophoni
 sound re
ording. Two instruments with similar timbre
annot be distinguished in a monophoni
 re
ording. With two mi
rophones, the added spatialinformation allows us to hear the two di�erent sour
es. This analogy 
an only be taken so far,however. In the stereophoni
 re
ording the s
ale of the separation between sour
es and mi
rophonesis very mu
h greater than the s
ale of the sour
es and mi
rophones themselves. This is not the3Unfortunately, the term \stereotrode" has 
ome to mean a two-wire ele
trode. We shall 
ontinue in this usage,even though a tetrode, with its four wires, is as mu
h a stereotrode as its two-wire prede
essor.
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ase in the neurophysiologi
al re
ording. The tip size, the distan
e from the membrane and thesegment of membrane that 
ontributes to ea
h re
orded spike are all on the order of 10 mi
rons.As a result, some of the simple sorting strategies suggested by the re
orded musi
 analogy are nota
tually workable.5.2 Data Colle
tionThe algorithms that appear in this 
hapter are expe
ted to be of general appli
ability. Theyhave been developed, however, with referen
e to data taken in two preparations: parietal 
ortexof ma
aque monkey4 and lo
ust lobula5. The methods of data 
olle
tion are des
ribed here.5.2.1 MonkeyData have been 
olle
ted from two adult rhesus monkeys (Ma
a
a mulatta). A stainless steel headpost, dental a
ryli
 head 
ap, s
leral sear
h 
oil, and stainless steel re
ording 
hamber were surgi
allyimplanted in ea
h monkey using standard te
hniques (Mount
astle et al : 1975; Judge et al : 1980).During re
ording, the monkeys sat in a primate 
hair (
ustom); the implanted head posts werese
ured to arms atta
hed to the 
hairs, thereby immobilizing the animals' heads. Eye-positions weremonitored in two dimensions by re
ording the level of emf indu
ed in the s
leral 
oil by two externalmagneti
 �elds that os
illated at non-redu
ible frequen
ies (Fu
hs and Robinson 1966).The re
ording 
hambers in ea
h monkey were set over a 
raniotomy opened over the posteriorparietal 
ortex. All ele
trodes were inserted in this area; in most 
ases they penetrated to the lateralintra-parietal area (LIP). During re
ording, the animals were awake and performing a \memory-sa

ade" task in whi
h they remembered the lo
ation of a 
ash of light and then looked towards iton a 
ue. The details of the task will not be relevant to the present dis
ussion.In all 
ases a single tetrode was used for re
ording (Pezaris et al : 1997). The tetrodes wereprepared from 13�m-diameter tungsten wire (California Fine Wire), insulated along its entire length.Four strands of wire were twisted together at approximately 1 turn/mm and heated so that theinsulation fused over a length of some 10
m. One end of the fused region was 
ut with sharp s
issorsso that the tungsten 
ondu
tor was exposed in all four strands. The impedan
e of the ea
h 
ondu
torinterfa
e to physiologi
al saline was measured to be between 0.4 and 0.7 M
at 1kHz. At the otherend the four strands remained separated and were individually stripped of their insulation with a
hemi
al stripper and bonded with 
ondu
tive paint to ele
tri
al 
onne
tors.The tetrode was inserted into a 
onstru
tion of nested metal 
annulae whi
h provided me
hani
alsupport. The tip of the narrowest, innermost, 
annula was sharpened and inserted through the dura4Data 
olle
ted in 
ollaboration with J. S. Pezaris in Dr. R. A. Andersen's laboratory.5Data 
olle
ted in 
ollaboration with M. Wehr and J. S. Pezaris in Dr G. Laurent's laboratory.



88mater, with minimal penetration of the underlying neural tissue. The tetrode 
ould then be advan
edfrom within this 
annula into the brain by a hydrauli
 mi
rodrive (Frederi
k Haer Company). Aseries of tests in another animal revealed that the tetrodes tend to travel straight on
e inserted intothe brain.The ele
tri
al 
onne
tor at the end of the tetrode was inserted into an ampli�er head-stage(
ustom) with 100x gain. The animal, ele
trode and head-stage ampli�er were all pla
ed withinan ele
tromagneti
ally shielded room. Ampli�
ation was in di�erential mode, with the 
annulaassembly serving as the referen
e ele
trode. Four 
oaxial 
ables fed the signals from the head-stageampli�er to the main ampli�er (
ustom) with adjustable gain. Besides enhan
ing it, the ampli�ersalso reversed the polarity of the signal. This resulted in the peak amplitude of ea
h spike appearingpositive, rather than negative as is the 
ase at the ele
trode tip. We will maintain this 
onventionthroughout the 
hapter.The ampli�ed signals were �ltered to prevent aliasing and digitized. The digitization rate atthe A/D 
onverters (Tu
ker Davis Te
hnologies AD-2) varied between 12.8 and 20 kHz. The 9-pole Bessel low-pass anti-aliasing �lters (Tu
ker Davis Te
hnologies FT5-4) had 
orner frequen
iesof either 6.4 or 10kHz. The data were re
orded to digital media and all subsequent operationsperformed o�-line, although sometimes under simulated on-line 
onditions.5.2.2 Lo
ustA diÆ
ulty 
ommon to almost all data sets used for the development of spike sorting te
hniques isignoran
e of the ground truth. There is no independent way in whi
h to establish the number ofdistin
t 
ells whose spikes are present in the re
ording, nor to know whi
h 
ell �red when. Thesedata, 
olle
ted from the lobula of the lo
ust, were 
olle
ted in an attempt to remedy at least oneof these 
on
erns. Re
ordings were 
arried out with a single tetrode as well as two sharp pipette,intra
ellular, ele
trodes. The intra
ellular ele
trodes provided in
ontrovertible information aboutthe �ring of up to two 
ells in the region. Often, one or both of these 
ells would invoke sizablespikes on the tetrode.Experiments were 
arried out in vivo on adult female lo
usts (S
histo
er
a ameri
ana). Animalswere restrained dorsal side up, the head was immobilized with beeswax, and a watertight beeswax
up was built around the head for saline superfusion. A window was opened in the 
uti
le of thehead 
apsule between the eyes, and air sa
s on the anterior surfa
e of the brain 
arefully removed.For stability, the oesophagus was se
tioned anterior to the brain, and the gut removed througha subsequently ligatured distal abdominal se
tion. The brain was treated with protease (Sigmatype, XIV), gently desheathed, and supported with a small metal platform. The head 
apsule was
ontinuously superfused with oxygenated room-temperature physiologi
al saline (in mM: 140 NaCl,5 KCl, 5 CaCl2, 4 NaHCO3, 1 MgCl2, 6.3 HEPES, pH 7.0).



89Intra
ellular re
ordings were made using 
onventional sharp glass mi
roele
trodes pulled with ahorizontal puller (Sutter P-87), �lled with 0.5 M KA
, for resistan
es of 100{300 M
. Intra
ellularre
ordings were done in bridge mode using an Axo
lamp 2A ampli�er (Axon Instruments) fromthe third opti
 lobe (lobula). Data were 
olle
ted from 28 single neuron and 6 paired intra
ellularre
ordings, all with simultaneous tetrode re
ordings, from 7 animals. The tetrode was prepared asdes
ribed above.All signals were ampli�ed, low-pass �ltered at 10 kHz (8-pole analogue Bessel with gain, Brown-Lee Pre
ision), digitized at 50 kHz with 16-bit resolution (Tu
ker Davis Te
hnologies), and writtento 
ompa
t dis
.5.3 A Generative Model S
hema for Extra
ellular Re
ordingThe 
ornerstone of our approa
h to spike sorting will be the identi�
ation of an adequate generativemodel for the observed extra
ellular re
ording data. The model has to be powerful enough to a

ountfor most of the variability observed in the data, while being simple enough to allow tra
table androbust inferen
e. In fa
t, we will identify not one model, but a model s
hema, that is, a group ofmodels of similar stru
ture. The 
hoi
e of a parti
ular model from within this s
hema will be madeon a 
ase-by-
ase basis, using data-driven model sele
tion pro
edures.The re
orded signal is dominated by the �ring of nearby 
ells; in general the thermal noise inthe ele
trode and noise in the ampli�
ation system 
an be negle
ted relative to the neural signal.For a 0.5 M
ele
trode at 300K (treated as a purely 
apa
itive impedan
e) the root-mean-squareamplitude of the thermal noise integrated over a 10kHz bandwidth is on the order of 5�V. As wewill see (for example, see �gure 5.2), this is generally smaller than the re
orded amplitudes of neuralsignals.We divide the 
ells into two groups | foreground and ba
kground | of whi
h the se
ond ismu
h the larger. The division is somewhat arbitrary. Roughly, the foreground 
ells are those whosein
uen
e on the re
orded signal is large enough that we expe
t to be able to re
ognize and sortspikes that arise from them, while the ba
kground 
ells are so distant that their spikes merge intoan indistinguishable baseline. In pra
ti
e, there will be 
ells whose spikes are o

asionally, but notalways, distinguishable. We treat these as foreground 
ells in the model, dete
ting those spikes thatrise out of the ba
kground, but negle
t the data thus obtained as unreliable.Thus, we think of the re
orded signal as the superposition of spikes from the foreground 
ells anda single, 
ontinuous ba
kground noise pro
ess, whi
h is itself the superposition of all the spikesfrom the ba
kground 
ells, and other noise sour
es. Provided that the 
urrents do not total to a sumthat is beyond the ohmi
 limit of the intra
ellular medium, we expe
t ea
h of these superpositionsto be linear. Measurements made in the lo
ust lobula show that at least in that preparation they



90

PSfrag repla
ements

�
S1;� 
1;�

S1;�
1;�
S2;� 
2;�

S2;�
2;�
S3;� 
3;�

S3;�
3;�

�� �(t) V (t)
time �

time tFigure 5.1: Spike sorting model s
hemaare indeed linear (Wehr et al : 1999), however we will take this fa
t on trust in other preparations.The model is sket
hed in �gure 5.1. We write V (t) for the re
orded potential, the only observedvariable in the model. If a multi
hannel ele
trode, with tips whose listening spheres overlap (forinstan
e, a tetrode) is used, this is a ve
tor-valued fun
tion of time. If the multiple ele
trode tips arefar enough apart that they 
annot 
olle
t signals from the same 
ells (more than about 100 mi
rons)we treat ea
h as an independent pro
ess and model the re
orded voltage tra
es one at a time. Ourmodel 
an be written asV (t) =X� (
1;�S1;� (t� �) + 
2;�S2;� (t� �) + � � �) + �(t) (5.1)Here, 
m;� is an indi
ator variable that takes the value 1 if the mth foreground 
ell �res at time �and 0 otherwise. If 
ell m �res at � it adds a de
e
tion of shape Sm;� (t��) to the re
orded potential.The fun
tions Sm;� have limited support, all of whi
h is around 0. The e�e
t of all the ba
kground



91neural sour
es, along with any ele
tri
al noise whi
h might be present, is gathered into a single term�(t). For the multi
hannel ele
trode, both �(�) and Sm;� (�) are ve
tor valued fun
tions.Note the subs
ript � applied to the spike shape Sm. This allows for variability in the shape of there
orded a
tion potential from a single foreground 
ell, over and above that due to the addition ofthe ba
kground noise. Su
h variability may arise due to 
hanges in available membrane 
hannels, ordue to 
hanges in the membrane surfa
e that parti
ipates in ea
h spike. The nature of this intrinsi
variability will be dis
ussed at greater length below. In any 
ase, it is of a quite di�erent 
hara
terto that due to the ba
kground: it is potentially di�erent for ea
h 
ell, it need not be stationaryover the 
ourse of the spike, and while we will argue below in favour of a Gaussian distribution forthe ba
kground, this foreground variability is unlikely to be Gaussian in nature. The separation ofthe distribution of spike shapes from a single 
ell into these two parts is a 
riti
al feature of ourapproa
h, and one that was la
king in previous algorithms.The random variables in our s
hema, as we have written it, are the ba
kground �(t), the �ringindi
ators 
m;� and the spike shapes Sm;� . None of these are dire
tly observed; however, we think ofthe foreground variables, 
m;� and Sm;� as the only latent variables in our model. We 
an treat V (t)as a random variable, whose distribution 
onditioned on the latent variables subsumes the noise �(t).The parameters of the model 
an be separated into two groups �� whi
h governs the 
onditionalP (V (t) j f
m;� ; Sm;�g) and, simply, � governing the distribution of Sm;� and 
m;� . Thus, we havefa
tored the underlying distribution so:P (V (t)) = P�� �V (t)�P�;m 
m;�Sm;� (t� �)�P� (f
m;� ; Sm;�g) (5.2)We have said nothing yet about the nature of the distributions in this fa
torization. This is why itis a s
hema and not a full blown model. We will argue that the ba
kground pro
ess is approximatelyzero-mean Gaussian, and the distribution of V (t) 
onditioned on the latent variables will be normalin all of our instan
es of the s
hema. The distributions of the 
m;� and Sm;� will vary, and indeed,in appli
ations will not always be the same for all foreground 
ells. Figure 5.1 is drawn as though allof the 
m;� and Sm;� were independent. This is merely for 
larity in the diagram, we will 
onsiderbelow models for whi
h this is not true.Our eventual goal within ea
h model is to infer the posterior distribution P (
m;� j V (t)). Inpra
ti
e we will not 
arry out the marginalization over the parameters implied in that posterior;instead, we will approximate the marginal posterior by the posterior 
onditioned on estimated valuesof the parameters P �
m;� j V (t); �̂; �̂��. The rationale behind this approximation is explained inse
tion se
tion 1.2. In the next few se
tions we will address the problem of �nding these estimates(that is, learning) within the various models that appear in our s
hema, as well as that of sele
tingan appropriate model from the s
hema. After this, we will turn to the question of eÆ
ient inferen
e



92of the foreground spike o

urren
e times.5.4 Learning within the S
hemaSeparating foreground and ba
kgroundThe foreground and ba
kground 
ells in our model are distinguished entirely on the basis of theamplitudes of their spikes on the re
ording ele
trodes. It is therefore reasonable to identify thetimes of �ring of the foreground 
ells using a simple amplitude threshold. We take the times atwhi
h the signal 
rosses the threshold (the details of whi
h are dis
ussed below) and extra
t a shortsegment of the signal, 
orresponding to the typi
al length of a spike waveform, around ea
h one.These segments, whi
h we shall refer to on o

asion as events, 
ontain the foreground spikes. Theremaining stret
hes of signal are presumed to be generated by the ba
kground noise pro
ess.This separation of foreground and ba
kground allows us to divide our learning pro
edure intotwo stages. We examine the stret
hes of ba
kground a
tivity dire
tly to estimate the parametersof the noise. Armed with this estimate, we learn the remaining parameters from the foregroundevents. This se
ond stage is 
onsiderably more straightforward given an independent estimate of theba
kground distribution. Earlier approa
hes, whi
h did not di�erentiate between ba
kground noiseand spike shape variability, did not enjoy this advantage. The 
hoi
e of distribution and resultingparameter estimation for the noise will be explored in detail below.Independent 
omponents analysisWe 
onsider the problem of estimating the parameters � whi
h govern the distributions of the latentvariables 
m;� and Sm;� . On the surfa
e, the model (5.2) is quite similar to the generative modelwhi
h underlies statisti
al signal separation algorithms su
h as independent 
omponents analysis(ICA) (Jutten and Herault 1991; Comon 1994; Bell and Sejnowski 1995; Ma
Kay 1999) or indepen-dent fa
tor analysis (IFA) (Attias 1999). In these algorithms, signals from a group of independentnon-Gaussian sour
es (in the spike sorting 
ase these would be the di�erent 
ells) are mixed linearlyonto multiple 
hannels of output. The output 
hannels may then have noise, usually Gaussian,added. Learning algorithms in su
h models have been well studied.Unfortunately, there are signi�
ant di�eren
es between our model and these ones. We shall notethree here: two of these might be surmountable, but the third makes it very diÆ
ult to envisagesu
h a solution in the 
urrent 
ontext.1. ICA models generally involve exa
tly as many sour
es as output 
hannels. If the number of
ells is smaller than the number of 
hannels this poses no problem; the algorithm would simplyresolve some part of the noise as another \sour
e", whi
h 
ould subsequently be dis
ounted



93using some heuristi
. However, the number of 
ells may well be greater than the number ofele
trode tips that 
an be pra
ti
ally introdu
ed. In hippo
ampal re
ordings, for example,more than 10 
ells are often re
orded on a single tetrode.2. Most ICA models imply that the sour
es are mixed in an instantaneous manner (that is, theoutput at a point in time depends only on the sour
e signals at that time). In the 
ase ofextra
ellular ele
trophysiologi
al data, where the ele
trode tip properties result in �ltering ofthe re
orded signal, the mixing 
annot be instantaneous. Re
ently, Attias and S
hreiner (1998)have proposed a signal separation algorithm that resolves this diÆ
ulty.3. The most severe diÆ
ulty is posed by the extended nature of the sour
es and re
ording surfa
es.While it would seem sensible to regard ea
h 
ell as a single sour
e, the di�erent ele
trodetips will, in fa
t, lie 
losest to di�erent parts of the 
ell membrane, and thus re
ord slightlydi�erent spike waveforms. As a result, one 
annot treat an isolated foreground spike as a singlewaveform s
aled linearly (or even �ltered linearly) onto the multiple re
orded 
hannels. Thespike waveform must itself be regarded as a fundamentally multi
hannel entity. This preventsthe appli
ation of blind sour
e separation te
hniques to spike sorting in many preparations,notably in neo
orti
al re
ordings.If we 
annot use these well-established signal pro
essing te
hniques, 
an we hope to solve theproblem? In fa
t, ICA-like te
hniques fail to exploit the signi�
ant amount of prior knowledgeavailable about the neural signal. Nowhere in the generative model for ICA, for example, is ita
knowledged that a single sour
e signal will always be a 
hain of approximately stereotypi
al pulses.It is this repetitive nature of the signal that we will exploit to solve the problem.Before leaving this point, we make two additional observations. First, 
onsider the followings
heme for appli
ation of ICA. We regard ea
h sour
e as produ
ing a train of delta-fun
tions, withthe spike waveform on ea
h 
hannel, however it is produ
ed, appearing as the impulse response ofa �
titious linear �lter. The delta-fun
tion trains are 
onvolved with their 
orresponding �lters andsummed (along with noise) to produ
e the re
orded signal. The �ltering and summing represent themixing stage of a dynami
 
omponents analysis (DCA) model (Attias and S
hreiner 1998). Thistreatment would seem to restore our faith in the appli
ability of an ICA-like algorithm. Even better,it would indeed in
orporate our prior belief in the pulsatile nature of ea
h sour
e. The diÆ
ulty withthis approa
h lies in the presen
e of spike waveform variability in the data. Sin
e, in this s
heme,the waveform information is treated as part of the mixing pro
ess rather than as a sour
e signal,we would require a variable mixing pro
ess. Su
h variability 
annot be handled within the DCAframework.Se
ond, it should be borne in mind that there may well be preparations in whi
h ICA-likealgorithms are appli
able to spike sorting. For example, the form of ICA suggested in the pre
eding



94paragraph might be su

essful in 
ases where there is little or no spike shape variability. Anotherexample is provided by Brown et al : (1998) who have reported su

ess in opti
al re
ordings ofvoltage-sensitive-die-treated Tritonia tissue. In this example, the re
ordings are suÆ
iently slowlysampled that the spread of signal a
ross the membrane is e�e
tively instantaneous (Brown, personal
ommuni
ation). As a result, the spike waveforms re
orded on di�erent photodete
tors may indeedbe linearly s
aled versions of a single waveform. Furthermore, the opti
al nature of the re
ordingensures that the signal mixing at the dete
tor is linear and instantaneous.Clustering algorithmsOur approa
h to learning the waveform parameters is based on two observations. First, all the spikesre
orded from a single 
ell are expe
ted to be roughly similar. Indeed, we will spe
ify the exa
t natureof the variability that we expe
t, by spe
ifying the distribution of Sm;� within the generative models
hema. Se
ond, the probability that two foreground 
ells will �re so 
lose together in time that theirspike waveforms overlap in the re
orded signal is relatively low. As a result, most of the foregroundevents gathered by the appli
ation of our threshold represent only a single spike waveform. Thus wemight expe
t to learn the shapes of the underlying waveforms (and the distributions of su
h shapes)by 
lustering these foreground events.Consistent with our probabilisti
 viewpoint, we shall adopt a generative-model-based approa
hto 
lustering, as was outlined in 
hapter 2. To do this we need to transform the model of (5.2) intoa suitable form.Whereas (5.2) provides a model of the 
ontinuous waveform V (t), we now desire a model thatdes
ribes the set of extra
ted events, fVig. Ea
h Vi is a ve
tor of samples drawn from all of the
hannels of V (t) around the time �i at whi
h the ith event o

urs. At all times � other than the �iwe assume that no foreground 
ell �red and so 
m;� = 0 for all m. We will employ the labels 
m;iand Sm;i for the latent variables at the times �i, in pla
e of the more 
umbersome forms su
h as
m;�i .The ve
tors Vi are taken to be 
onditionally independent, given the values of the latent variables
m;i and Sm;i. In other words, we assume that the separation between events is always greater thanthe 
orrelation-time of the ba
kground noise pro
ess. The distribution of the ith ve
tor is des
ribedby amixture density, with one 
omponent for ea
h possible value of the indi
ators 
m;i;m = 1 : : :M .Let us 
onsider these 
omponents one by one.1. All 
m;i = 0. This implies that the threshold was rea
hed by the ba
kground pro
ess alonewithout a foreground spike. In this 
ase the density of the ve
tor Vi is exa
tly that of theba
kground noise, expressed as a ve
tor density, rather than as a 
ontinuous pro
ess density.



95We will introdu
e a new indi
ator variable z�;i to indi
ate this 
ondition, and writeP (Vi j z�;i = 1) = P�� (Vi) = P� (Vi) (5.3)2. Only one of the 
m;i = 1. Su
h events will make up the majority of those dete
ted. We useindi
ators zm;i;m = 1 : : :M to represent ea
h of these states (the zm;i are exa
tly the same asthe 
orresponding 
m;i, though only in this 
ondition). The density of the event ve
tor is thenP (Vi j zm;i = 1) = Z dSm;i P�� (Vi � Sm;i)P� (Sm;i j fSn;j ; 
n;j : j < ig; 
m;i = 1) (5.4)Noti
e the 
onditioning of Sm;i whi
h depends only on the pre
eding latent variables to enfor
e
ausality. We will abbreviate this set of latent variables at all times earlier than �i by �<i andwrite this density as Pm (Vi j �<i).3. More than one 
m;i = 1. In this 
ase two foreground 
ells �red at 
lose enough times that thethreshold was only 
rossed on
e by the 
ompound waveform. We expe
t su
h events to o

urrarely and will not expli
itly model them as overlapped events at this stage. Instead, we treat allsu
h waveforms as \outliers", and model them by a single, uniform density (see se
tion 2.7.1).We introdu
e a latent variable z
=;i to indi
ate this 
ondition. The 
orresponding density issimply P (Vi j z
=;i = 1) = 8<: 1kAk if Vi 2 A0 if Vi 62 A (5.5)with A some region of the ve
tor spa
e of Vi and kAk its volume. We will write this densityas P
= (Vi).The 
omplete model for the ith ve
tor is thusP (Vi) = P� (z�;i = 1 j �<i)P� (Vi)+ P� (z
=;i = 1 j �<i)P
= (Vi)+ MXm=1P� (zm;i = 1 j �<i)Pm (Vi j �<i) (5.6)On
e again, the distribution of the indi
ator variables is 
onditioned only on earlier latent variablesso as to preserve 
ausality in the model.The latent indi
ator variables zm;i, m = �; 
=; 1 : : :M are mutually ex
lusive: exa
tly one of themtakes the value 1 for any i, while all of the rest are 0. As su
h, they 
losely resemble the mixturelatent variables of 
hapter 2. In many of the models we will dis
uss, the indi
ators for ea
h eventwill be drawn independently from a �xed distribution. In this 
ase, the model is exa
tly a mixture



96model. Even where this is not exa
tly true, however, we shall 
all this the mixture form of thegenerative model. Fitting su
h a model is what we will mean when we 
laim to be performing aparametri
 
lustering of the spike events.It is worthwhile to 
onsider the impa
t of our 
hoi
e not to model the overlapped spike eventsexpli
itly, but rather to sweep them into a single outlier distribution. Is it likely that this ina

ura
yin the event model (5.6) will lead to estimates of the parameters that do not 
arry over to thetrue 
ontinuous signal model (5.2)? The mistreatment of overlaps poses two distin
t dangers toa

urate parameter estimation. The �rst is that some overlaps will be in
orre
tly interpreted assingle spikes, and thus bias the estimate of the spike shape distribution of the misidenti�ed 
ell.This possibility is slim. Overlaps need to be fortuitously exa
t to look anything like single spikewaveforms. Most likely, they will fall quite far from any single 
ell 
luster and be easily re
ognizedas outliers. Furthermore, the use of a uniform outlier distribution minimizes the expe
ted bias inestimates of the mean spike shapes of ea
h 
ell (robustness to outliers in the �tting of mixturemodels is dis
ussed in se
tion 2.7.1). The se
ond danger arises from the fa
t that the o

urren
e ofan overlap \removes" an event whi
h would otherwise 
ontribute to the parameter estimation. Formodels in whi
h the latent variables asso
iated with ea
h event are independent of all others (theseare the true mixture models) this e�e
t will be negligible, provided that the probability of overlap issmall and independent of the latent variable values. However, for models in whi
h the spike shapeand probability of �ring for ea
h 
ell depend on its history, this 
an pose a real problem. We shalladdress it when we dis
uss su
h models.For the sake of the reader familiar with previous spike sorting te
hniques it is worth emphasizinghere a point that has appeared before, and will be addressed again in se
tion 5.14. In the presentapproa
h to the problem, unlike in many (though not all) others, the 
lustering stage is a preliminaryto the inferen
e of spike arrival times. We use it as a devi
e to learn the parameters � that governthe distributions of 
m;� and Sm;� . The a
tual inferen
e of the variables 
m;� is done within themore a

urate superposition model (5.2), without the imposition of an arti�
ial threshold, nor thereje
tion of overlapped spikes.5.5 Event Dete
tionOur �rst step in the pro
ess of learning the model parameters is to identify the times at whi
hforeground 
ells �red by 
omparing the re
orded signal to a threshold amplitude.A short segment of data re
orded from the neo
ortex of a ma
aque monkey using a tetrode isshown in �gure 5.2A (the four tra
es show the simultaneously re
orded signals on the four wires).Large amplitude spikes are 
learly superimposed on a lower amplitude ba
kground pro
ess. However,it is 
lear that the 
omparison of this raw signal to a �xed threshold will not a
hieve the separation
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PSfrag repla
ements250�V 100ms raw signal �lteredFigure 5.2: A sample extra
ellular re
ording.we desire; the signal exhibits a low frequen
y baseline modulation with an amplitude 
omparable tothat of the largest foreground spikes. This low-frequen
y �eld potential signal may be of 
onsiderableinterest in itself, however the frequen
ies involved are too low to have an in
uen
e on the shapes ofthe relatively short spike waveforms and so it 
an safely be removed for the purposes of spike sorting.Figure 5.2B shows the same segment of data after it has been digitally high-pass �ltered. The �lter
uto� is 
hosen at the lowest frequen
y that 
an 
ontribute to the foreground spike shapes, basedon the length of those spikes. For neo
orti
al re
ordings of the type shown in �gure 5.2 the spikelength is not longer than 2 millise
onds, implying a �lter 
uto� of at least 500Hz.We wish to 
hoose a threshold whi
h allows us to identify the spikes that rise above the ba
k-ground pro
ess. To do this we need to know the statisti
s of the ba
kground, but, of 
ourse, we
annot measure these until we have separated ba
kground from foreground. We shall set the thresh-old in terms of the varian
e of the entire signal, foreground and ba
kground. In doing so, we assumethat foreground spikes are rare enough that this measurement is dominated by the ba
kground. Thismay not always be true: if we re
ord 4 foreground 
ells, all �ring at about 50Hz, there would be atotal of 200 spikes in one se
ond of re
ording. As the large amplitude peak of ea
h foreground spike
an last up to half a millise
ond, this would mean that one-tenth of the re
ording has large amplitudeforeground 
ontributions { enough to a�e
t the ba
kground varian
e estimate. As a result, a 
ertaindegree of user intervention is useful in setting the threshold level. A typi
al 
hoi
e of threshold is3{5 times the root-mean-square value of the high-pass �ltered signal.Spike waveforms are generally biphasi
 pulses. The strongest 
urrents during an a
tion potentialare asso
iated with the in
ux of sodium that initiates the �ring; as a result, the �rst phase is almostalways the larger. The sodium 
urrent 
ows into the 
ell, away from the ele
trode tip. Thus,this �rst phase is negative on the ele
trode. Under the polarity 
onvention adopted in this 
hapter(introdu
ed in se
tion 5.2) it will appear positive in our re
ordings. In order to redu
e the probability
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Figure 5.3: Event dete
tion thresholdsof false triggers, and also to ensure that ea
h spike 
auses only one threshold 
rossing, we apply thethreshold in a one-sided manner, a

epting only 
rossings where the re
orded potential rises abovethe positive threshold value.It is not obvious how to apply the threshold to multi
hannel data. We shall 
onsider threes
hemes here, and it will be useful to 
ompare them graphi
ally. This is done for a hypotheti
altwo-
hannel signal in �gure 5.3. The axes in panel A represent the amplitude of the signal on thetwo 
hannels: ea
h sample of the signal is represented by a point in this plane. The thresholdings
hemes will be des
ribed by boundaries in the plane whi
h separate regions where the signal isbelow the threshold from regions where it is above. The various lines in this panel, and the natureof panel B, will be des
ribed below.The most 
ommonly employed approa
h to multi
hannel data is to a

ept an event wheneverany one 
hannel rises above a s
alar threshold. The a

eptan
e boundary of su
h a threshold for thetwo-
hannel example is represented by the dash-dotted line in �gure 5.3A. The signal has 
rossed thissimple threshold if the point falls to the right of or above the line. We shall 
all this a re
tangularthreshold.An alternative approa
h would be to threshold the total instantaneous power of the signal, thatis, the sum of squares of the amplitudes on the various 
hannels. Given the unidire
tional nature ofthe spike peaks, we 
hoose to half-wave re
tify the signal before squaring. The resultant threshold,whi
h we 
all 
ir
ular, is shown by the dashed line.The dotted ellipse in �gure 5.3A shows a 
ovarian
e 
ontour for the ba
kground distribution, thatis, a line drawn at a 
onstant distan
e from 0 in the Mahanalobis metri
 de�ned by the distribution's
ovarian
e. The ellipse is drawn as though the ba
kground on the two 
hannels is positively 
orre-lated. In fa
t, this is the overwhelmingly dominant 
ase in experimental data. It is reasonable thatele
trode tips 
lose enough to share spikes from the same foreground 
ells will also share ba
kgroundspikes.A 
omparison between this ellipti
al noise 
ontour and both of the threshold boundaries des
ribed



99so far reveals the weakness in these approa
hes. Many points above and to the right of the ellipseare unlikely to arise purely from the ba
kground pro
ess, and yet are not dete
ted as foregroundevents. A more sensible approa
h would seem to be to shape the boundary to mat
h the 
ontour ofthe se
ond moment of the noise distribution. This is 
on
eptually easiest in the noise-sphered spa
e,whi
h is obtained by an instantaneous linear transformation on the signal (if the noise 
ovarian
eis � the sphering matrix is ��1=2). This spa
e is represented in �gure 5.3B. The noise 
ovarian
ematrix is now, by 
onstru
tion, spheri
al. The re
tangular and 
ir
ular thresholds are shown in thedot-dashed and dashed lines, as before. The solid line represents a threshold boundary 
onstru
tedin the same way as the 
ir
ular threshold, but now in the sphered spa
e; the solid line in panel Ashows the shape of this boundary in the original spa
e. We refer to this as the ellipti
al threshold.By 
onstru
tion, the ellipti
al threshold mat
hes the 
ovarian
e 
ontour of the noise. If thatnoise is Gaussian distributed, this 
urve is also an iso-probability 
ontour, so that the probability ofthe noise alone ex
eeding the threshold is independent of the dire
tion (in the spa
e of �gure 5.3A)of the signal.5.6 The Ba
kground Pro
essOn
e the times of the foreground events have been identi�ed, we explore the statisti
s of the signalduring the periods between these events, with the goal of 
hara
terizing the ba
kground pro
ess. Inthe �rst instan
e, we are interested in the distribution P�� (Vi) whi
h expresses the ba
kground asa ve
tor-output pro
ess. This distribution will be of 
riti
al importan
e in what follows: not onlyis it the distribution of the noise (5.3), it also makes a signi�
ant and 
ommon 
ontribution to thedistribution of spike waveforms re
orded from ea
h 
ell (5.4).We estimate the distribution of the Vi dire
tly, by sampling the ba
kground pro
ess at timeswhen no foreground spike is present. The spikes extend for some time before and after the times ofthe threshold 
rossings; thus, we need to extra
t ve
tors away from these points so as not to overlapthe foreground waveforms. For the data shown here, no samples were taken within 1.6ms of ea
h
rossing. The remaining signal is then broken up into segments whose length mat
hes the duration ofa foreground spike. Ea
h su
h segment represents a single ve
tor sample of the ba
kground pro
ess.We study the distribution of the ensemble of these ve
tors along the prin
ipal 
omponents.Ea
h of the 
olumns of panels in �gure 5.4 shows the density of the loadings of the noise ve
torson a sele
tion of the ensemble prin
ipal 
omponents, for an example ma
aque tetrode re
ording. Inea
h 
olumn the upper and lower panels show the same data; the upper panel shows the densitydire
tly, while the lower panel shows the log density, thereby revealing the details of the tails ofthe distributions. The rank of the 
omponent on whi
h the loadings are taken is indi
ated belowthe 
olumn. The dots represent the density histogram of the observed ve
tors. The 
ontinuous line
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128Figure 5.4: The distribution of ba
kground noiserepresents a Gaussian density with the same varian
e as that of the observed loadings. It is 
learthat a Gaussian model for the ba
kground pro
ess is reasonable, although a slight ex
ess in kurtosisis evident in the �rst 
omponents.In the rest of this 
hapter we shall take the ba
kground to be Gaussian distributed. While�gure 5.4 suggests that this is reasonably well supported by the data, it is not exa
tly true in all 
ases(Fee et al : 1996b). Our 
hoi
e is driven by two observations. First, the Gaussian model 
onsiderablyredu
es the 
omputational demands of the various approa
hes that we will dis
uss, and is quiteimportant for eÆ
ient separation of overlapped spike waveforms. Se
ond, we will introdu
e separatemodels for intrinsi
 spike variability that will be non-Gaussian. Thus, it is possible for some non-Gaussian ba
kground noise to be subsumed by these models. In situations where 
omputational 
ostis no obje
t, or where the data exhibit extreme departures from normality, an alternative distributionmay be used for the ba
kground. Most of the generative models to be dis
ussed will 
arry throughwith little modi�
ation. The largest 
ost will 
ome in the �nal stages of spike-time inferen
e, wherethe �ltering s
heme we adopt is 
riti
ally dependent on Gaussian noise.A zero-mean Gaussian density is entirely spe
i�ed by its 
ovarian
e matrix. Sin
e the ba
kgroundpro
ess is stationary with respe
t to the duration of the spike waveform | that is, the statisti
sof the ba
kground are the same at ea
h point along the spike | this 
ovarian
e matrix may be
onstrained to have T�oplitz (diagonally striped) stru
ture. Thus, the only parameters of the noisedistribution are given by the auto
orrelation fun
tion of the ba
kground.While the noise is almost 
ertain be stationary on the time-s
ale of a single spike waveform,



101it may well be appre
iably non-stationary on time-s
ales of hundreds of millise
onds or more. Inparti
ular, as stimulus 
onditions 
hange, the rate of �ring of both foreground and ba
kground 
ellswill 
hange, quite probably in a 
orrelated fashion. Thus, by sampling the ba
kground far from thelo
ations of the foreground spikes we run the risk of measuring a ba
kground quite di�erent fromthat whi
h a
tually a�e
ts the distribution of event waveforms.We 
an avoid this pitfall by biasing the sample of ba
kground ve
tors so that most are drawn
lose to, though not overlapping with, the foreground spikes. One simple pro
edure to ensure thisit to sample a �xed o�set from ea
h foreground spike (after making sure that this would not resultin an overlap with a di�erent event). Another is to sample exa
tly in-between ea
h pair of adja
entevents (again making sure that the pair is far enough apart that this will not 
ause an overlap).Furthermore, in extended re
ording we 
an re-estimate the noise 
ontinuously, leading to an adaptiveestimate that 
an tra
k non-stationarities on the time-s
ale of se
onds.5.7 Foreground EventsModels within the mixture s
hema (5.6) des
ribe a multivariate density for foreground events. Inthis se
tion we shall examine the pro
edure by whi
h a ve
tor representation in 
onstru
ted for ea
hforeground spike. We pro
eed in two steps: in the �rst the ve
tor elements are sampled dire
tlyfrom the voltage tra
e yielding relatively high-dimensional ve
tors; in the se
ond we use a low-ranklinear transform to redu
e this dimensionality through a te
hnique similar to prin
ipal 
omponentsanalysis.5.7.1 Extra
tion and alignmentIn the �rst stage, ea
h element of the event ve
tor will be a sample drawn from the re
orded voltagetra
e near the time of the 
orresponding threshold 
rossing. The extra
ted samples will be separatedby the Nyquist sampling period derived from the frequen
y 
ontent of the signal, whi
h in turn is
ontrolled by an analogue anti-aliasing �lter. We order the samples forward in time, with all of thesamples from the �rst 
hannel appearing together, followed by the samples from the se
ond 
hannelif there is one, and so forth. In multi
hannel re
ordings, the 
orresponding samples on ea
h 
hannelwill always be simultaneous.A 
ommon approa
h to sele
ting the ve
tor 
oordinates is to 
opy a �xed number of valuesfrom the digitized re
ording before and after the sample at whi
h the threshold was 
rossed. This,however, does not ensure that the samples are taken at the same time relative to the underlying spikewaveform. This jitter in sampling introdu
es arti�
ial variability in the extra
ted set of ve
tors asillustrated in �gure 5.5. Panel A shows one 
hannel of a small number of re
orded spike waveforms,all originating from a single 
ell. The samples extra
ted from the waveforms are shown by the dots;
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onstru
tion of the underlying signal, assuming the therewas no power above half the sampling frequen
y. The variation in alignment of the underlyingwaveform is evident, and results in \noise" in the samples that 
an rea
h up to half of the spikeamplitude. Furthermore, if the temporal jitter of the alignment is uniformly distributed within onesample interval, this apparent \noise" will also be almost uniform (its exa
t shape is set by thederivative of the underlying spike shape), making it diÆ
ult to model. Fortunately it 
an be mostlyeliminated.There are two sour
es of jitter. For the sake of argument, let us assume that the underlyingspike waveform being measured has no intrinsi
 variability. In that 
ase, there is a well de�ned timeat whi
h the waveform 
rosses the threshold, and we would like to align the samples in the eventve
tor with this time. The �rst sour
e of jitter is the ba
kground noise, the addition of whi
h to there
orded spike waveform will result in that waveform 
rossing the threshold at a slightly di�erentpoint from our referen
e time. The se
ond sour
e 
omes from the sampling of the waveform, whi
his unlikely to be aligned with the spike and thus the 
rossing-time will probably fall between twosamples, rather than on one.The jitter and its asso
iated artifa
t 
an be redu
ed 
onsiderably by some amount of signalpro
essing. The e�e
t of the ba
kground on alignment 
an be redu
ed by 
hoosing to align to a
omposite landmark, rather than a single sample level. We will use the \
entre of mass" of thepeak of the waveform, that is, the quantity �
 = R dt tS(t)= R dt S(t) with the integrals limited to



103the peak region of the spike waveform S(t). This is estimated from sampled data Sn by a formsimilar to �̂
 = P tnSn=PSn, with the range of the sum limited to samples near the peak ofthe waveform. The sum over samples redu
es the e�e
t of the ba
kground on the alignment time.Temporal 
orrelations in the ba
kground will interfere with this redu
tion, and so it is preferable touse the ba
kground-whitened signal (see se
tion 5.6).We 
an eliminate the sample-alignment jitter by resampling the waveform to align with the esti-mated 
entre of mass exa
tly, even if that estimate falls o� the original sample grid. This resamplingis a
hieved by interpolation, either with 
ubi
 splines, or \exa
tly" using Fourier te
hniques. The
ubi
 spline interpolation is straightforward and will not be des
ribed here. The Fourier te
hniquepro
eeds as follows. Con
eptually, we �nd the dis
rete Fourier transform of the sampled waveformand treat the 
oeÆ
ients thus obtained as the 
oeÆ
ients of a �nite Fourier series. Provided that theoriginal signal was sampled at or above the Nyquist sampling frequen
y for its bandwidth, this seriessums to the original, 
ontinuous signal (barring boundary e�e
ts). We draw new samples from thisexa
t interpolant. The Fourier pro
ess des
ribed is equivalent to a kernel smoothing of the dis
retesequen
e treated as a sum of delta-fun
tions, where a sin
-fun
tion is used for the kernel. As mightbe expe
ted from a sin
-fun
tion kernel, the interpolant will tend to ring near the boundaries of theinterpolated segment; it is important, therefore, to use a segment suÆ
iently long that the region ofinterest does not fall 
riti
ally 
lose to a boundary.The sele
tion pro
edure for the samples to be used in 
al
ulation of the 
entre of mass has notyet been dis
ussed. It pro
eeds as follows. First, the maximum sample within a short time after thedete
ted threshold 
rossing is identi�ed. In the region of this sample the waveform is \upsampled"by resampling from the interpolant at a higher rate. The region used extends suÆ
iently far on ea
hside of the maximum to en
ompass the entire �rst peak of the spike waveform. Next the 
ontiguousregion of samples that en
ompassed the maximum and lies above a threshold value is identi�ed.This threshold is 
hosen lower than the trigger threshold, so as to ensure that a large number ofsamples will fall above it. The threshold-based 
entre of mass 
al
ulation is preferred to use ofa �xed number of samples around the maximum be
ause it avoids the bias towards the 
entre ofsele
ted interval that is inherent in the latter approa
h.The 
entre of mass is 
al
ulated by, �̂
 = P tn(Sn � a)P(Sn � a) (5.7)where the sums range over the 
ontiguous samples Sn of the upsampled waveform that lie abovethe threshold a. The subtra
tion of the threshold from the sample values ensures that samples nearthe boundary of the sele
ted region have little e�e
t on the estimate, thereby prote
ting it fromnoise-driven variations in that boundary. A �xed number of samples, suÆ
ient to en
ompass the



104extent of the spike waveform, spa
ed by the Nyquist period and aligned with �̂
, are extra
ted fromea
h 
hannel of the re
ording and arranged into the event ve
tor.The results of this alignment pro
edure are shown in �gure 5.5B. Clearly, the apparent noise hasbeen redu
ed 
onsiderably. Given a group of waveforms known to originate from the same 
ell, we
an measure the e�e
t of the alignment pro
edure by 
al
ulating the tra
e of the 
ovarian
e matrixof the spike waveforms after alignment. These values of are shown in �gure 5.5C for a number ofdi�erent algorithms. The dashed line represents alignment to the threshold 
rossing, while the solidline represents alignment to 
entre of mass. Furthermore, ea
h referen
e point was extra
ted usingvarying degrees of upsampling (that is, interpolation). Two observations are 
lear: both te
hniquesimprove at about the same rate as �ner upsampling is employed; and furthermore, the 
entre of massreferen
e point provides a 
onstant bene�t over the threshold 
rossing at all upsampling fa
tors. Thetwo di�erent sour
es of jitter, along with the e�e
tiveness of the proposed te
hniques in over
omingthem, are evident.5.7.2 Dimensionality redu
tionThe number of samples that goes into ea
h ve
tor might be quite large. For tetrode re
ordings inmonkey neo
ortex, for example, a 10kHz signal bandwidth is suitable, spikes last over a millise
ondin time, and so the ve
tors will 
ontain more than 80 elements. Su
h large ve
tors lead to twodiÆ
ulties. One is purely 
omputational: 
al
ulations on lower-dimensional obje
ts would be mu
hfaster. This is a parti
ularly relevant 
on
ern for the 
ase of on-line spike sorting. The se
ond isperhaps more serious. As the dimensionality of the modeled spa
e grows so does the number ofparameters, and so the quantity of data needed to obtain good estimates 
an be
ome very large.With insuÆ
ient data, the danger of over-�tting is 
onsiderable.Fortunately, it is possible to redu
e the dimensionality of the spa
e eÆ
iently and without anyloss of useful information. In this dis
ussion we will only 
onsider linear dimensionality-redu
ingtransforms. That is, we will seek a re
tangular matrix, R, by whi
h we 
an multiply the data ve
tors,Vi so as to obtain the lower-dimensional produ
ts xi = RVi. The xi must retain as far as possiblethose features of the data set Vi whi
h are essential to 
lustering.Hand-pi
ked featuresPerhaps the most 
ommonly adopted approa
h is to derive from ea
h waveform a small group offeatures whi
h might a priori be expe
ted to 
arry mu
h of the relevant information. For a multi-
hannel ele
trode, the most natural su
h features are the peak potentials attained on ea
h re
ordingsurfa
e. For tetrodes, then, ea
h xi be
omes a point in IR4. Figure 5.6 shows the events extra
tedfrom one tetrode re
ording, proje
ted into this basis. The 4-dimensional spa
e is represented by the6 possible 2-dimensional axial proje
tions. Thus, in the topmost panel the peak value on 
hannel 2
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3Figure 5.6: Events represented by peak voltage on four 
hannels.is plotted against the peak value on 
hannel 1; in the panel immediately below, the peak on 
hannel3 is plotted against the peak on 
hannel 1; to the right of this panel, the peak on 
hannel 3 is plottedagainst that on 
hannel 2 and so forth. A similar representation will be used many times in thefollowing pages. While in �gure 5.6 the numbers that appear below and to the left of the panelsrepresent 
hannels numbers, in many of the later diagrams they will indi
ate arbitrary basis ve
torsin the spa
e of the events Vi.Six distin
t 
lusters are visible to the observed in the data of �gure 5.6. However, the three
losest to the origin, 
ontaining relatively low-amplitude spikes, are somewhat diÆ
ult to distinguish.Nevertheless, in this 
ase, �tting a mixture model in this restri
ted subspa
e is likely to be quitee�e
tive.In many 
ases we 
an reasonably de�ne the \peak" on a given 
hannel to be the value of aparti
ular sample in the suitably aligned event waveform. In this 
ase, the feature subspa
e 
anbe obtained by a linear proje
tion with a matrix R that 
ontains mostly 0s, with a single 1 perrow sele
ting the appropriate sample. This was the de�nition used to generate �gure 5.6. Someother features in general use (su
h as the peak-to-trough amplitude) may also be extra
ted by linearproje
tions. However, others, su
h as the width of the waveform peak, 
an not.
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ipal 
omponent subspa
e.The attra
tion of linear dimensionality redu
tion is not simply a matter of algorithmi
 simpli
ity.A key feature of the model s
hema of se
tion 5.3 is the single, 
onsistent model for the 
ontributionof the ba
kground pro
ess to the variability in the re
orded waveforms. This simple fa
t remainstrue under any linear transformation of the spa
e, indeed, the ba
kground model remains Gaussianto the extent des
ribed in se
tion 5.6. Under a non-linear transformation su
h as spike-width, notonly do we lose the Gaussian representation for the ba
kground 
ontribution, but the 
ontributionto the variability of this feature will be di�erent for di�erent underlying waveforms. This wouldviolate the mixture s
hema of (5.6), making the task of statisti
al modeling far more diÆ
ult.Prin
ipal 
omponents analysisA linear approa
h, 
ommonly used in situations su
h as this, is known as prin
ipal 
omponentsanalysis (PCA). PCA sele
ts a subspa
e spanned by a small number of eigenve
tors of the observed(total) 
ovarian
e matrix �T = 1N X(Vi � �V )(Vi � �V )T (5.8)The eigenve
tors 
hosen are those with the largest asso
iated eigenvalues. The resultant proje
tionhas the property that, among all the linear proje
tions of the same rank, it retains the greatest



107amount of the original data varian
e. We expe
t the PCA proje
tion to be useful be
ause 
lusteringis likely to be easiest in those dire
tions in whi
h the data are well spread out. However, it may notbe the optimal proje
tion.Figure 5.7 shows the proje
tion into the �rst four prin
ipal 
omponents (in order) of the samedata set as was shown in �gure 5.6. In this 
ase, our expe
tation that PCA will improve theseparation of the 
lusters is belied. Where six di�erent groups 
ould be made out in �gure 5.6,only four 
an be 
learly resolved here. Furthermore, the 
lusters are separated in only the �rst twodimensions. This experien
e is not un
ommon when handling tetrode data.The optimal linear proje
tionIt is well known that we 
an obtain the optimal linear proje
tion a posteriori, that is, given knowledgeabout whi
h 
ell ea
h spike originated from. The pro
edure, known as linear dis
riminant analysis(LDA), sele
ts the linear proje
tion in whi
h the separability of the 
lusters is maximized, that is,the ratio of the average distan
e between the 
lusters to the average spread of the data within ea
h
luster is greatest.We introdu
e two new 
ovarian
e or s
atter matri
es, the between-
lass s
atter �B and thewithin-
lass s
atter �W . Let us identify the ve
tors that fall in the mth 
lass by Vm;i, and write themean of all su
h ve
tors as �Vm, with �V being the overall mean as before. The number of ve
torsin the mth 
lass will be written Nm, and the fra
tion of the total that this number represents, �m(these fra
tions being equivalent to the mixing probabilities of a mixture model). The two news
atter matri
es are de�ned thus�B = Xm �m( �Vm � �V )( �Vm � �V )T (5.9)�W = Xm �m 1Nm Xi (Vm;i � �Vm)(Vm;i � �Vm)T (5.10)The symmetrized ratio we wish to see maximized in the proje
ted spa
e is ��1=2W �B��1=2W . Justas in PCA, we �nd the eigende
omposition of the 
orresponding matrix in the higher dimensionalspa
e and then proje
t onto the spa
e formed by the leading few eigenve
tors.It would appear that we 
an obtain little advantage from the dis
riminant approa
h, as the s
at-ter matri
es given by (5.9) and (5.10) 
annot be 
al
ulated without a

ess to the very informationthat we seek. However, it is possible to view the LDA pro
edure in a di�erent light. Consider atransformation of the ve
tors Vi;m by the matrix ��1=2W to obtain new ve
tors ~Vi;m. Dire
t substitu-tion into (5.10) reveals that in this transformed spa
e, the within-
lass s
atter, ~�W , is the identitymatrix. We shall refer to this as the 
lass-whitened spa
e. To now perform LDA, we need onlymaximize the between-
lass s
atter ~�B . It is straightforward to see that the subspa
e thus identi�ed



108is exa
tly the same as would be obtained by dis
riminant analysis in the original spa
e. Indeed, thiswhiten-and-diagonalize algorithm is a 
ommon implementation for LDA (see, for example, Ripley(1996)). We 
an go one step further if we note that the total 
ovarian
e in the 
lass-whitened spa
eis simply ~�T = ~�B + ~�W = ~�B + I . Thus the overall s
atter matrix is diagonalized in the samebasis as the between-
lass s
atter matrix. LDA is equivalent to PCA in the 
lass-whitened spa
e.The key point of this analysis is the simple relationship �T = �B+�W . This implies that we needonly one of the 
lassi�
ation-dependent s
atter matri
es in order to �nd the optimal dis
riminantsubspa
e, the other 
an be derived from the overall varian
e of the data. We do not know either ofthese matri
es, but we do have an (under)estimate of the average within-
lass s
atter �W , providedby the dire
t measurement of the ba
kground. Thus, we 
an �nd a basis quite similar to the optimalLDA basis by taking the prin
ipal 
omponents in the noise-whitened ve
tor spa
e. An exampleof this pro
edure will appear in �gure 5.8.Robust prin
ipal 
omponent analysisInevitably, some events within the ensemble will fall far from any 
lusters. These are mostly theevents that 
ontain overlapped spikes as des
ribed in se
tion 5.4. Sin
e the data 
ovarian
e matrixweights points by the square of their distan
e from the mean, prin
ipal 
omponents 
al
ulated fromthe entire data set are parti
ularly sensitive to the number and lo
ation of these outliers. It isimportant, therefore, to obtain the 
omponents in a manner that is robust to outliers.We will adopt an approa
h to robustness similar to that dis
ussed in the 
ontext of the 
lusteringalgorithms in se
tion 5.4. We 
an view the PCA pro
edure as �tting a multivariate Gaussiandistribution to the data and then sele
ting a proje
tion on the basis of the �t distribution. Thisrelationship between PCA and Gaussian modeling has been explored quite extensively in the re
entpast (Tipping and Bishop 1997; Roweis 1998). Following the argument made during the dis
ussionof the impa
t of outliers on 
lustering, we repla
e the single Gaussian by a mixture of a Gaussianand a uniform density (the limits of the uniform density being set by the maximum extent of thedata). Re
all from the dis
ussion of se
tion 5.4, that the introdu
tion of the uniform 
omponent willnot, on average, bias the estimates of the eigenve
tors of the 
ovarian
e of the Gaussian 
omponent.It is these eigenve
tors whi
h represent the prin
ipal 
omponent basis.Figure 5.8 shows the subspa
e obtained when this robust PCA is applied in the noise-whitenedspa
e. The six 
lusters are now very mu
h in eviden
e, and 
omparison with �gure 5.6 suggests thatthey are better separated. Figure 5.9 shows the data set proje
ted into the �rst four dimensions of theoptimal linear dis
riminant spa
e, 
al
ulated a posteriori from a mixture �t to these data. Clearly,for this re
ording, the noise-whitened robust PCA te
hnique has identi�ed a subspa
e remarkably
lose to the optimal one.
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111Outlier reje
tionDimensionality redu
tion 
arries with it the danger of reintrodu
ing outliers into the main body ofthe ensemble. The danger arises in the 
ase of outliers whi
h fall outside the prin
ipal distributionalong the dire
tions whi
h are to be suppressed, but whose proje
tions onto the preserved spa
eare not easily distinguished from those of normal spikes. Su
h outliers may bias the estimation ofwaveform parameters. Fortunately, they 
an be eliminated by removing from the ensemble spikeswhi
h ex
eed a data-set threshold in the suppressed dire
tions. If the robust prin
ipal 
omponentsanalysis is used, they may be identi�ed as points for whi
h the uniform outlier 
omponent takessigni�
ant responsibility.5.8 The Simple Mixture Model5.8.1 The modelOn
e the ensemble of ve
tors has been extra
ted, we pro
eed to �t a model drawn from the s
hema(5.6), with the observations Vi repla
ed by the pro
essed, lower dimensionality ve
tors, xi. Initially,we shall examine the simplest possible su
h model.We begin with two assumptions. First, ea
h measured event ve
tor is taken to be independentof all the others. This implies both that the set of indi
ators fz�;i; z
=;i; zm;ig are independent fordi�erent i (
learly, for any given i, they 
annot be independent as only one 
an take the value1) and also that the spike shape measured depends only on whi
h 
ell �red, not on the previouswaveforms emitted by that, or any other, 
ell. This assumption, allows us to drop the 
onditioningon the past latent variables (whi
h was written \j �<i" in (5.6)). We write �r for P� (zr;i = 1) forr = �; 
=; 1 : : :M .Se
ond, the intrinsi
 variability in the spike shape is taken to be negligible, so that all of theobserved variation is due to the addition of random ba
kground noise. In this 
ase, ea
h of the spikewaveform densities Pm (xi) is a Gaussian, whose mean is the spike shape asso
iated with the mth
ell and whose 
ovarian
e is that of the ba
kground pro
ess. For noise-whitened data, this is theidentity matrix.Combining these assumptions with the mixture model s
hema (5.6), and restri
ting to theredu
ed-dimensionality spa
e of the xi, we obtain the basi
 modelP (xi) = �� j2�I j�1=2 e� 12kxik2 + MXm=1�m j2�I j�1=2 e� 12kxi��mk2 + �
=P
= (xi) (5.11)where P
= (xi) is the uniform density given in (5.5).



1125.8.2 Parameter estimationSu
h a model is easy to �t. We employ the well-known Expe
tation{Maximization (EM) algorithm(Dempster et al : 1977; see 
hapters 1 and 2 of this dissertation) to �nd the maximum-likelihoodparameter values. Other te
hniques, su
h as gradient-as
ent or Fisher s
oring may also be used foroptimization. EM, however, o�ers some advantages.1. EM is, perhaps, the most 
exible of the various hill-
limbing te
hniques, being easily extendedto the more 
omplex models to be dis
ussed below. As a result, it provides a uniform approa
hto the �tting of the various models within the s
hema. Further, it is easily adapted to thesituation in whi
h di�erent generative distributions are used for di�erent 
ells, whi
h will bedis
ussed in se
tion 5.11.2. In
remental variants of EM are provably 
orre
t (Neal and Hinton 1998). While su
h proofsare derived in the 
ase of stati
 parameter values, they 
an give us 
on�den
e that similarvariants will be well-behaved in the 
ase of slowly drifting parameters, allowing us to tra
ksu
h drift.3. The EM algorithm is very 
losely linked to the maximum-entropy deterministi
 annealing
lustering te
hnique (Rose et al : 1990). Indeed, the deterministi
 annealing approa
h 
anbe extended to any latent variable model where EM is used by the Relaxation EM (REM)algorithm of 
hapter 3 (see also Ueda and Nakano (1998)). This te
hnique provides a initial-
ondition-independent optimum, relatively immune to lo
al maxima.The EM iterations for simple mixture models su
h as this were derived in se
tion 2.4. The 
urrentmodel has some additional 
onstraints whi
h further simplify the �tting pro
edure.The ba
kground 
omponent distribution in (5.11) is �xed; only the mixing parameter �� needsto be learnt. The uniform outlier distribution has parameters that des
ribe the region of support,A, in (5.5). We take this region to be re
tangular in the transformed spa
e of xi (in fa
t, the shapeis unimportant) and so it is spe
i�ed by two opposite verti
es. Provided the 
omponent is initializedwith at least some responsibility for ea
h of the data points, it is straightforward to see that themaximum likelihood solution will be su
h that A is the minimal region that 
ontains all of the points.Furthermore, this value will ensure that in subsequent EM steps the 
omponent 
ontinues to havenon-zero responsibility for ea
h point and therefore maintains this parameter value. In pra
ti
e,then, we 
an set the parameter dire
tly from the data and update only the mixing 
omponent �
=.The remaining 
omponents form a mixture of Gaussians. EM update rules for this model aregiven in se
tion 2.6. We omit, of 
ourse, the update of the 
ovarian
es as they are known in advan
e.



113The update rules for parameter estimates at the nth step are thusrnm;i = �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) ; m = �; 
=; 1 : : :M�nm = Pi rnm;ijX j ; m = �; 
=; 1 : : :M (5.12)�nm = Pi rnm;ixiPi rnm;i ; m = 1 : : :MThey are iterated until 
onvergen
e.It is guaranteed that this pro
edure will 
onverge to a lo
al maximum of the model likelihood.However, the identity of that maximum is 
ru
ially dependent on the initial parameter values usedto seed the optimization. EM shares this dependen
e with other hill-
limbing approa
hes, whether�rst or se
ond order. We 
an avoid it by using a Relaxation Expe
tation{Maximization (REM)te
hnique as des
ribed in 
hapter 3. In this simple 
ase REM yields an algorithm very similar to thesimple deterministi
 annealing example treated by Rose et al : (1990). The di�eren
es are primarilyin the presen
e of the mixing probabilities and the single non-Gaussian 
omponent.The REM update rules di�er only in the update of the responsibilities, whi
h be
ome, for arelaxation parameter �, rnm;i = �n�1m (P�n�1m (xi))�Pl �n�1l (P�n�1l (xi))� (5.13)(we have given the E-step a

ording to the REM-2 algorithm; see se
tion 3.5). The parameter � isin
reased gradually from near 0 to 1, with the EM iterations being run to 
onvergen
e at ea
h valueof �. An extensive dis
ussion of the properties of this algorithm is given in 
hapter 3The number of 
ellsIn the absen
e of simultaneous high-power mi
ros
opy, we generally do not know how many fore-ground 
ells are to be expe
ted in an extra
ellular re
ording. As a result, this quantity must beestimated from the data along with the parameters of the spike waveform distributions. In themixture model framework this is equivalent to determining the 
orre
t number of 
omponents.As was pointed out in se
tion 2.7.3, this is essentially a model sele
tion problem. We havealready examined at some length in se
tions 1.3 and 2.7.3 te
hniques appropriate to 
arrying outthis sele
tion. The use of the REM algorithm for learning makes available a parti
ularly eÆ
ient ande�e
tive framework within whi
h to apply these te
hniques, whi
h we have 
alled 
as
ading modelsele
tion. This was dis
ussed in se
tion 3.6.For the most part these te
hniques, des
ribed in part I of this dissertation, 
an be applied withoutmodi�
ation. Two 
omponents of the mixture, the noise model P� (�) and the overlap model P
= (�)are always assumed to be present; thus, the model sele
tion 
hooses between models with three or



114more 
omponents.5.9 Spike Shape VariabilityThe simple mixture model assumes that the a
tion potential 
urrents in ea
h foreground 
ell are thesame ea
h time the 
ell �res, so that the only variability in the foreground spike waveform is due tothe superposition of ba
kground spikes. In fa
t, this is rarely true.Biophysi
ally, one 
an imagine many reasons why the 
urrents 
owing a
ross the somati
 mem-brane might be variable. The 
on
entrations of ions inside or outside the 
ell may vary. Ligandgated 
hannels (for example, 
al
ium-dependent potassium 
hannels) may open on the membrane.A varying fra
tion, not large enough to prevent an a
tion potential, of the sodium 
hannels maybe ina
tivated. Many of these 
onditions well depend on the re
ent a
tivity of the 
ell, and thisdependen
e will be examined more 
losely later. For the present, we will simply treat it as randomvariation.5.9.1 Ratio methodsSome authors have argued (Rebrik et al : 1998; Zhang et al : 1997; Rinberg et al : 1999) that al-though the underlying a
tion potential shape 
hanges under these 
onditions, the ratios of the spikewaveforms on the di�erent 
hannels should remain almost 
onstant (disturbed only by the additiveba
kground noise). These ratios may be between maximal spike amplitudes, or between the magni-tudes of the Fourier 
oeÆ
ients in various frequen
y bands. Su
h arguments are based on the samemodel as the ICA-based algorithms des
ribed earlier. The spikes re
orded on the di�erent 
hannelsare taken to be due to 
urrents at a single point sour
e whi
h have been �ltered di�erently by theextra
ellular medium through whi
h they passed and by the ele
trode tip. If the sour
e waveform(in the Fourier domain) is S(!) the re
orded signal on the nth 
hannel will be Rn(!) = Fn(!)S(!)where Fn is some linear �lter. As the sour
e 
hanges, then, the spike shapes also 
hange; but bytaking the ratio of the re
orded spike shapes Rn(!)=Rm(!) = Fn(!)=Fm(!) we divide out the sour
esignal and obtain a stable measure.On
e again, the arguments advan
ed against the appli
ability of ICA-models in, at least, neo-
orti
al tissue, apply here. The most severe is the fa
t that the simple model of one-sour
e-multiple-dete
tors does not hold in preparations where the a
tion potential travels over signi�
ant se
tions of
ell membrane. In neo
orti
al and hippo
ampal pyramidal 
ells, for example, a
tion potentials areknown to propagate over the dendrite (Stuart and Sakmann 1994; Stuart et al : 1997) and di�erentele
trode tips will re
ord spikes due to di�erent parts of the membrane (Buzsaki and Kandel 1998).In dis
ussions of spike variability a further diÆ
ulty presents itself. The spread of the a
tion poten-tial a
ross the membrane is known to be variable, depending on the re
ent �ring a
tivity of the 
ell



115(Spruston et al : 1995; Svoboda et al : 1997). Thus, not only are the sour
es re
orded by the di�erentele
trode tips spatially distin
t, but these sour
es 
an vary in a distin
t manner. As a result, thereis reason to expe
t ratio methods to be inadequate in su
h preparations.5.9.2 Models of the variabilityUnable to remove the intrinsi
 variability in the waveforms, we seek to model it. In this se
tion willwe dis
uss models in whi
h the underlying spike shapes are independent and identi
ally distributed.Following this treatment, in se
tion 5.10, we will dis
uss models whi
h 
apture the dependen
e ofthe spike shape on the re
ent �ring history of the 
ell.Un
onstrained GaussiansOne approa
h, attra
tive for its mathemati
al simpli
ity, is to model the underlying spike shapevariability as Gaussian. If this model were 
orre
t, ea
h observed spike waveform from a given 
ellwould be the sum of two Gaussian random variates, and thus, would itself be Gaussian distributed.We have no independent data sour
e from whi
h to establish an appropriate 
ovarian
e matrix forthe intrinsi
 variability, and so the 
ovarian
e must be learned along with the mean spike waveform.The measured ba
kground 
ovarian
e 
an only provide a lower bound.The general EM iterations for the arbitrary Gaussian mixture are as in (5.12), with the additionof a re-estimation rule for the mth 
ovarian
e matrix�nm = Pi rnm;i(xi � �nm)(xi � �nm)TPi rnm;i (5.14)If the ba
kground 
ovarian
e has been whitened, we 
an enfor
e the lower bound set by the ba
k-ground by diagonalizing the �nm obtained in this way, resetting any eigenvalues less than unity to1, and then rotating ba
k into the original spa
e. If V is the matrix of eigenve
tors of �nm, and thebinary operator max(� ; �) is taken to a
t element by element�nm  V max(V T�nmV; I)V T (5.15)In the 
ase of the ba
kground pro
ess, the superposed nature of the signal led us to expe
t it tobe approximately Gaussian. In 
ontrast, we have no reason to believe that the intrinsi
 variabilityshould give rise to a Gaussian pro
ess, and so the validity of this model will rest entirely on theexperimental eviden
e. In pra
ti
e, 
ell waveform distributions in the ma
aque data set seemed to bewell approximated in this fashion only if they did not �re bursts of 
losely spa
ed a
tion potentials.The 
ase of the bursting 
ells will be dis
ussed more thoroughly below.One issue introdu
ed by the use of un
onstrained Gaussians is the multipli
ity of parameters. In



116aD dimensional spa
e, ea
h 
omponent of the simple Gaussian model 
ontributes onlyD parametersto the model. In 
ontrast, the un
onstrained Gaussian 
ontributes D(D+1)=2+D parameters. Asthe number of parameters in
rease the dangers of over-�tting and of being trapped in lo
al maximain
rease. The REM algorithm 
an alleviate the se
ond of these to some extent, however strategies toredu
e the 
omplexity of the model are useful. On approa
h is to 
onstrain the number of non-uniteigenvalues (in the ba
kground-whitened spa
e) in ea
h model. This leads (in the unwhitened spa
e)to a mixture model, analogous to the mixture of fa
tor analyzers model of Ghahramani and Hinton(1996). We will not explore this any further here, turning instead to a non-Gaussian generalization.Hierar
hi
al Gaussian mixturesAs was pointed out above, there is no a priori reason to expe
t the intrinsi
 variability to be Gaussiandistributed. While su
h a model may provide a su

essful approximation in 
ertain examples, it isinsuÆ
ient to a

ount for all of the observed data. Therefore, we will now investigate a non-parametri
 alternative.The mixture model, whi
h we have taken as the basi
 statisti
al model underlying probabilis-ti
 
luster analysis, has another rôle in the statisti
al literature. A mixture of relatively simple
omponents (su
h as Gaussians) is often used to approximate a more 
ompli
ated density, aboutwhi
h little is known a priori. Su
h an approa
h is 
alled \non-parametri
" be
ause there is noexpli
it generative model of the density. It is not suggested that the data are in fa
t generated byany sort of mixture pro
ess. Rather, the mixture model is being used as an extremely 
exible sub-strate for density approximation. (Compare the use of radial basis fun
tion networks in the fun
tionapproximation literature).Our alternative, then, is to �t an hierar
hi
al mixture model in whi
h the generative dis-tribution for ea
h 
ell is itself a mixture. We shall employ a mixture of Gaussians, ea
h with a
ovarian
e matrix equal to that of the measured ba
kground noise. In a sense, this approximationmay be viewed as identifying a small handful of \
anoni
al" spike shapes, whi
h span the range ofpossibilities. The generative pro
ess sele
ts one of these shapes and then adds ba
kground noise toprodu
e the observed spike waveform. In fa
t, the intrinsi
 waveform of the spike (before additionof the ba
kground) is not dis
rete in this fashion. This problem is mitigated by the fa
t that theGaussian density provides signi�
ant probability mass in the region in between the sele
ted points.We may think of the model as \tiling" the true density with a small set of identi
ally shaped ellipses,the shape being set by the ba
kground 
ovarian
e.Let us write down the density that results from su
h a model. Suppose there are M 
lusters,with mixing proportions �m. Ea
h 
luster is modeled by a mixture of P Gaussians, with mixing pro-portions �m;p, means �m;p and unit 
ovarian
es (we assume that we have whitened the ba
kground



117pro
ess). The parameter set for the model is � = f�mg [ f�m;pg [ f�m;pg. We have,P� (X ) =Xi Xm �mXp �m;p(2�)�d=2e� 12kxi��m;pk2 (5.16)If we distribute the fa
tor �m into the sum over p and write  m;p = �m�m;p it be
omes 
lear thatthis density is identi
al to that derived from a mixture of R = M � P Gaussians. Indeed, anyhierar
hi
al mixture in whi
h the total number of Gaussians is R, even if there are unequal numbersof 
omponents used to des
ribe ea
h 
ell, will yield the same form of the density.This poses a serious problem from the point of view of model sele
tion. Conventional modelsele
tion pro
edures may indi
ate the 
orre
t density from among a group of 
andidates. But, howare we to de
ide whi
h 
omponents belong to whi
h 
ell? Probabilisti
ally, any su
h assignmentwould be equally valid, in
luding the \
at" option in whi
h every 
omponent represents a single
ell. In short, from a probabilisti
 point of view, there is no su
h thing as a hierar
hi
al mixture!We may 
hoose to exploit additional information in order to group the Gaussians.One approa
h is as follows. Begin by �tting a mixture of a large number of Gaussians (all withunit varian
e) to the data. The a
tual number is not of great importan
e, provided it is signi�
antlylarger than the number of 
ells expe
ted. It may be 
hosen arbitrarily, or by a model sele
tionmethod. Then, form a graph, with one node for ea
h Gaussian. An edge between two Gaussians isin
luded if the densities exhibit a signi�
ant degree of overlap, that is, if the distan
e between theirmeans is smaller than some 
hosen threshold. Ea
h of the 
onne
ted subgraphs that results is takento represent a single 
ell. Su
h an approa
h would be similar in spirit, although di�erent in detail,to that proposed by Fee et al : (1996a) (a detailed dis
ussion of the relationship to their method isoutlined in se
tion se
tion 5.14).Alternatively, the additional information might be en
oded as a prior on the parameters withina group. For example, we might expe
t that the means of the 
omponents that des
ribe a single 
ellwill lie 
lose together, and will themselves be drawn from a Gaussian density of small varian
e.In both these approa
hes, one or more 
ontrol parameters must be 
hosen arbitrarily: either theoverlap threshold for the graph formation, or the form and extent of the prior. In many 
ases, theseparameters may be 
hosen anywhere within a fairly broad range of values, with identi
al results.However, it is in the 
ase when the waveforms from two or more 
ells are very similar, and wherethe model sele
tion pro
edure is thus most important, that the results be
ome most sensitive to the
hoi
e of parameters.In se
tion 5.10.2 we will introdu
e a third approa
h to the resolution of the ambiguity in thehierar
hi
al mixture likelihood, suitable for modeling variability intrinsi
 to bursts of a
tion poten-tials. There, a dynami
 model is proposed, in whi
h the 
omponents representing a single 
ell aretied together by a learnt Markov transition stru
ture. In that view, 
omponents belong to the same
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ell provided that the timing of spikes that fall within them is 
onsistent with a simple burst model.5.10 Dynami
 ModelsIn the models dis
ussed thus far ea
h spike waveform is generated independently of all others. Weturn now to models in whi
h the latent variables are dependent on ea
h other.5.10.1 Refra
tory periodOne simple feature of the �ring pro
ess has not yet been a

ounted for in any of our models. Thisis the o

urren
e of the refra
tory period, a short period after ea
h a
tion potential during whi
hthe 
ell that �red will not �re again. As it stands, the mixture model has no representation of thetime of any event. We will dis
uss shortly a model in whi
h time is expli
itly represented. For themoment, though, it is possible to a

ount for the refra
tory period by a simple modi�
ation to thebasi
 mixture model. The method presented in the following may be applied to any of the variousmixture models we dis
ussed above; for simpli
ity we shall develop it in the 
ase of the simpleGaussian mixture of se
tion 5.8.The joint data log-likelihood for su
h a model was given in se
tion 2.6`X ;Z (�) =Xi Xm zm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (2.17)In the refra
tory 
ase this expression remains valid for most data and parameter values; the ex
eptionis provided by sequen
es of zm;i that violate the refra
tory 
onstraint by assigning to the same 
ellevents that fall within a refra
tory period of ea
h other, for whi
h the log-likelihood diverges to�1. In taking the expe
ted value of the log-likelihood, however, the probability of su
h a sequen
eis 0, and so we 
an dis
ount this possibility. The expe
ted log-likelihood under the distributionP�n�1 (Z j X ) retains the general mixture form of (2.8)Qn(�) = Xi Xm Ezm;ijxi;�n�1 [zm;i℄ log�mP�m (xi)= Xi Xm snm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (5.17)ex
ept that, as we will see below, the expe
ted values of the zm;i are di�erent from before. Toremind ourselves of this di�eren
e we use the notation snm;i for these new responsibilities, reservingthe symbols rnm;i for the responsibilities in the non-refra
tory 
ase.To obtain the new responsibilities, 
onsider �rst the simple 
ase where only two spikes have beenobserved and the se
ond appears within a refra
tory period of the �rst. We have a joint distribution



119over zm;1 and zm0;2 with P (zm;1; zm0;2) =8<: 0 if m = m0rnm;1rnm0;2=Z otherwise (5.18)where Z = PmPm0 6=m rnm;1rnm0;2 is an appropriate normalizing 
onstant. The expe
ted values weseek are then just the marginals of this joint distribution, for example,snm;1 = Xm0 6=m rnm;1rnm0;2=Z = rnm;1(1� rnm;2)=Z (5.19)where we have used the fa
t that P rnm0;i = 1.This result easily generalizes to the 
ase of many spikessnm;i = rnm;iZi Yi;j refra
tory(1� rnm;j) (5.20)where Zi is the appropriate normalizer and the produ
t is taken over all spikes that are fall withinone refra
tory period (before or after) the i spike.The M-step is still a weighted Gaussian estimation as before, the weights now being the newresponsibilities snm;i.5.10.2 Sparse hidden Markov modelsBurstsThe intrinsi
 variability of spike waveforms is not entirely random for all 
ells. Many pyramidal
ells, both in neo
ortex and in the hippo
ampus, sometimes �re a
tion potentials in bursts. A
tionpotentials within a burst are 
losely spa
ed (as little as 1ms apart), and the 
ell does not haveenough time to re
over from one before the next begins. Thus, the membrane 
urrents asso
iatedwith later a
tion potentials are likely to be smaller, and a smaller portion of the dendriti
 membranewill parti
ipate in su
h spikes. As a result, the spike waveforms re
orded later in the burst may bequite di�erent from those asso
iated with isolated a
tion potentials.In this se
tion we will 
onstru
t a statisti
al model to des
ribe the 
hange in a
tion potentialduring a burst. At �rst glan
e, one might think that a suÆ
ient model would have the expe
tedspike waveform depend on the immediately pre
eding interval. In fa
t, the situation is 
onsiderablymore 
omplex than this. For example, the third spike in a regular burst will usually be smaller thanthe se
ond, even though the pre
eding interval is the same. At the same time, it is true that aftera longer interval the 
ell has had more time to re
over and so the spike waveform is 
loser to thenormal 
ase.



120Fa
ed with the 
omplexity of the me
hanisms underlying the 
hange in spike waveform during aburst, we will not attempt a biophysi
al model. Instead, we will use a simple statisti
al model thatwill 
apture the variation empiri
ally.A statisti
al modelThe statisti
al model that we 
onsider is a 
onstrained version of the Hidden Markov Model (HMM).Ea
h 
ell is modeled by a single HMM, whi
h is independent of all of the others. In pra
ti
e, it isoften useful to use HMMs to model only a subset of the 
ells in a re
ording | those that exhibitbursts | and use Gaussians or other stati
 distributions to des
ribe the others.The output symbols of the underlying Markov model are either 
omplete spike waveforms rep-resented as ve
tors (the events of the previous dis
ussion) or a zero ve
tor. The vast majority ofsymbols in any string generated from the Markov model will, in fa
t, be zero and so these models aresparse in the sense of 
hapter 4. The observed ve
tor is the sum of the Markov model output and arandom ve
tor drawn from the ba
kground pro
ess. Thus one may think of the output distributionsof the states of the HMM as Gaussians, 
entred either on zero or on a mean waveform whi
h is tobe learned. The output density is thus identi
al to that of the hierar
hi
al Gaussian mixture modeldis
ussed in se
tion 5.9.2. The di�eren
e is that events are not 
hosen from this density indepen-dently. This 
hange in the model provides another approa
h to breaking the ambiguity inherent inthe hierar
hi
al model.A Markov model des
ribes a dis
rete time pro
ess. We 
hoose to dis
retize time in fairly largesteps, usually 0.5ms. The measured output symbol for any given time-bin is a spike waveform if theidenti�ed time (that is, the peak or 
entre of mass) of some event falls within that bin. Otherwise,the output symbol is taken to be 0.The transition matrix of the Markov model is 
onstrained so as to embody the stru
ture expe
tedfrom a bursting 
ell. This 
onstrained stru
ture is sket
hed in the left-hand part of �gure 5.10. Ea
hof the grey 
ir
les in this �gure represents a state of the HMM. The left 
olumn of states all have zerooutput symbol and represent the 
ell in a non-�ring state. States in the right 
olumn represent �ringevents in the 
ell and have non-zero output distributions. These distributions are indi
ated on thestylized event feature plot to the right. Ea
h state is asso
iated with a Gaussian output distributionindi
ated by an ellipti
al boundary. Together, these distributions \tile" one of the elongated 
lustersin the data set.Ea
h heavy arrow in the HMM diagram represents an allowed transition: where there is no arrowthe transition probability is set to 0 and remains at this value throughout the learning pro
ess. Thestates are arranged in a \ladder" with states lower down the ladder 
orresponding to greater re
ent�ring (and therefore greater ina
tivation of 
hannels). The upper left-hand state is the \ground"state, in whi
h the 
ell will be found after a long period of ina
tivity. Only two transitions are
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Figure 5.10: The HMM transition stru
turepossible from this state: the 
ell either �res an a
tion potential, making the transition to the stateon the right, or else remains in the same state. On
e in the �ring state, the 
ell makes a transitionto a non-�ring state below the ground state, thus preserving the memory of the re
ent �ring. Fromthis state, the 
ell 
an �re again, with a di�erent output distribution, in whi
h 
ase it subsequentlymoves further down the ladder of states; it 
an remain in the same state; or it 
an make a transitionup the ladder. This basi
 pattern is repeated for ea
h of the rungs of the ladder.Some features of this stru
ture are worth pointing out. The only way for the 
ell to transitiondown the ladder is to �re. On
e it �res it must enter a non-�ring state and so 
annot spike insu

essive time-bins; for 0.5ms bins this e�e
tively enfor
es a short refra
tory period. If the 
ell�nds itself some distan
e down the ladder, but does not subsequently �re for a number of time-steps, it will relax ba
k to the ground state with an exponential de
ay pro�le.Learning with HMMsA learning algorithm for mixtures of sparse HMMs was dis
ussed in se
tion 4.4. Sparse HMMs werede�ned in that se
tion to produ
e two types of output: either a null symbol, �, or a numeri
al value.When 
onsidering mixtures of sparse HMMs we introdu
ed a third type of output, the symbol 
=,whi
h was dete
ted when two or more of the 
omponent HMMs emitted non-null outputs in thesame time-step.In the 
urrent appli
ation an output is de�ned for ea
h 0.5ms time-bin as follows. If no event



122has its peak (or 
entre of mass) within the bin the observation is taken to be �. In most 
ases,if an event does peak within the bin, the observation is the redu
ed ve
tor representation of thatevent. However, if the event has been 
lassed as an outlier, then the symbol 
= is observed. Outlierevents are identi�ed in three ways during our pro
edure. First, the waveform may exhibit a doublepeak or other heuristi
ally ex
luded property during event extra
tion. Se
ond, the event may falloutside the prin
ipal subspa
e during dimensionality redu
tion. Finally, it may be assigned withhigh probability to the outlier mixture 
omponent. This last poses a problem, sin
e we 
annot knowbefore �tting is 
omplete whi
h events are to be 
lassi�ed in this way; but we also 
annot �t themixture of HMMs a

urately without knowing whi
h observations are 
ollisions. In pra
ti
e, this
ir
ularity is resolved by dynami
ally marking as a 
ollision any event that is assigned to the outlier
luster with a probability that ex
eeds some set threshold on a given iteration.Given these de�nitions, the learning algorithms of se
tion 4.4 
an be employed to optimize themixture parameters.5.11 Mixed ModelsThere is no reason to expe
t that all of the foreground 
ells present in a parti
ular re
ording willexhibit the same type or degree of variability. A single site may yield some 
ells that tend to �re inbursts of a
tion potentials; some that �re isolated, but sto
hasti
ally variable spikes; and some thatexhibit no dete
table intrinsi
 variability at all. Thus, it is often useful to be able to 
ombine thethree types of waveform model we have dis
ussed in this 
hapter | the �xed 
ovarian
e Gaussianof the simple mixture model; the mixture of Gaussians of the hierar
hi
al mixture model; and thesparse hidden Markov model | in a single overall mixture.The framework in whi
h to do so is provided by the mixture of sparse hidden Markov modelsdis
ussed above, and at greater length in se
tion 4.4. In parti
ular, we observe that both the single,�xed 
ovarian
e Gaussian and the mixture of �xed 
ovarian
e Gaussians may both be expressed asspe
ial 
ases of the sparse HMM, with transition matri
es 
onstrained di�erently from the \ladder"of �gure 5.10.The simple �xed-
ovarian
e Gaussian model is equivalent to a two-state HMM. One state (say,the �rst) has null output, the other has an output distribution given by the Gaussian model. Toreprodu
e the basi
 model exa
tly, the 
olumns of the transition matrix must be identi
al. Theaugmented transition matrix (in
luding the initial state probabilities; see se
tion 4.1.1) is of theform Tm = 0BBB� 0 0 01� �m 1� �m 1� �m�m �m �m 1CCCA (5.21)



123Here �m represents the �ring probability per time-step asso
iated with the mth model of the overallmixture. It is related to the mixing probability �m as follows. Suppose the total number of eventsin the training data (with 
ollisions 
ounted twi
e) is N and the total number of HMM time-stepsis T . Given the stationarity assumption of the mixture, we expe
t there to be �mN spikes from themth 
ell in this data, and so the probability of a spike per time-step is �m = �mN=T .The transition matrix given in (5.21), allows for the 
ell to �re in adja
ent time-bins with prob-ability �2. In fa
t, it is 
onvenient to exploit the HMM transition stru
ture to enfor
e a refra
toryperiod without requiring the s
heme of se
tion 5.10.1. In se
tion 5.10.2 we a
hieved this by requiringthat the model return to a null state after �ring. For 0.5ms time-steps, this enfor
ed a short, butreasonable refra
tory period. Thus, we alter the transition matrix toTm = 0BBB� 0 0 01� �m 1� �m 1�m �m 0 1CCCA (5.22)The value of the �ring probability �m must now be 
orre
ted. The new relationship is �m =�mN=(T � �mN).The mixture of Gaussians model for a single 
ell is implemented similarly. For a P 
omponentmixture the HMM now 
ontains P + 1 states, one with null output (again, we take this to be �rst)and the others with output distributions 
orresponding to the 
omponents of the mixture. If themixing probabilities of the 
ell model are �p;m and the overall mixing probability of this 
ell modelwithin the hierar
hi
al mixture is �m we de�ne densities by �p;m = �p;m�mN=(T � �p;m�mN).We write �m =Pp �p;m. Then the augmented transition matrix, 
orre
ted to enfor
e a refra
toryperiod, is given by Tm = 0BBBBBBBBB�
0 0 0 � � � 01� �m 1� �m 1 � � � 1�1;m �1;m 0 � � � 0... ... ... . . . ...�P;m �P;m 0 � � � 0

1CCCCCCCCCA (5.23)
Having 
onverted ea
h non-Markov model into a sparse hidden Markov model whose transitionmatrix embodies the appropriate stru
ture, we 
an then pro
eed to learn the parameters using thealgorithm des
ribed in se
tion 4.4. In general, learning in su
h a model is more 
omputationallyexpensive than in the basi
 mixture models. Thus, if no 
ells in a given data set appear to �re inbursts, so that the ladder-stru
ture HMMs will not be needed, it is preferable to use the mixturemodel dire
tly, possibly with the refra
tory modi�
ation of se
tion 5.10.1. However, on
e the pa-rameters are learned, the 
orresponding SHMMs 
an be 
onstru
ted by the pro
edure given in this



124se
tion. These SHMMs 
an then be used for on-line spike re
ognition, as des
ribed in se
tion 5.13.5.12 On-line LearningIn many appli
ations of spike sorting, re
ognition must be 
arried out in 
lose to real time. Ins
ienti�
 experiments, for example, feedba
k in the form of sensory stimulus 
hanges or even neuralstimulation might need to be triggered within millise
onds of a parti
ular pattern of a
tion potentialsbeing re
orded. In neural prostheti
 appli
ations, neural a
tivity needs to be transformed into a\motor" a
tion on a similar time s
ale.For the most part, su
h demands 
onstrain the inferen
e, or spike re
ognition, stage of sorting(to be dis
ussed below) rather than the learning. We may 
olle
t an initial segment of data withoutthe real time demands, train on these data o�-line and then perform on-line inferen
e.However, it is useful to update the parameter estimates as more data are 
olle
ted. For onething, these updates will re�ne the estimates, yielding progressively more reliable data. As a result,it might be possible redu
e the length of the initial training segment, leading to a smaller trainingdown-time prior to on-line re
ognition.More important, though, is the fa
t that in almost all re
ording situations, the parameters arelikely to drift over time. Su
h drift generally o

urs due to minute 
hanges in the relative positionsof the 
ells and ele
trodes, thus 
hanging the re
orded spike waveforms. Even without su
h physi
aldispla
ement, however, the statisti
s of spiking of the di�erent 
ells, whi
h enter into the models inthe form of mixing parameters or transition probabilities in the HMM, may 
hange. For example,
ells may swit
h between more or less bursty modes of �ring in asso
iation with varying levels ofdrowsiness (or anesthesia) in the subje
t.In this se
tion we dis
uss te
hniques for on-line parameter adaptation. Similar te
hniques willallow both re�nement of the estimates as new data 
ome in, as well as tra
king of slow drift in theparameters. We dis
uss these te
hniques as though the parameters are to be updated ea
h time anew spike is observed. In pra
ti
e this level of immedia
y is unne
essary, and it is more eÆ
ient to
olle
t spikes for a short period (say 1s) and apply the updates in a bat
h form.5.12.1 In
remental EMWe showed in se
tion 1.8 (following Neal and Hinton 1998) that the free energy interpretation of EM
an be used to justify some variants on the basi
 algorithm. One of these is an in
remental versionin whi
h the parameters are updated one data point at a time. This approa
h is valid in 
aseswhere both the observations xi and the latent variables yi are independent and drawn from �xeddistributions, and so the 
onditional distribution P� (Y j X ) fa
torizes over the yi. Of the modelswe have dis
ussed here, this is true only of the mixtures.



125The iterations for the in
remental EM algorithm, in the notation of se
tion 1.8, are as follows.IE-step: Choose some i. Maximize Fi(pi; �n�1) and leave the remaining pj ; j 6= i un
hanged.pni (yi) = Pn�1 (yi j xi) (5.24)pnj (yj) = pn�1j (yj)M-step: Maximize F with respe
t to � holding p 
onstant.For a mixture model, the probability distribution pni (yi) is simply the set of responsibilities rni;m,m = 1 : : :M and the M-step involves maximizing the weighted log-likelihood Pi rni;mP�m (xi) forea
h 
omponent.The on-line version of this algorithm is di�erent only in that there is no 
hoi
e of i. The dataare simply handled, one by one, as they arrive from an unlimited stream. The M-step update onlyinvolves, of 
ourse, the data 
olle
ted to this point. We shall assume that the initial parameter values
hosen are very 
lose to the true values, being the result of training on a separate, o�-line, data set.This assumption means that even though data are not revisited, the responsibilities assigned to themremain reasonably valid. An alternative approa
h is outlined in the next se
tion.Fortunately, for Gaussian mixtures (and indeed many other mixture models) it is not ne
essaryto store all of the past responsibilities and observations in order to update the parameters in theM-step. We derive the M-step update rule for a general mixture of un
onstrained Gaussians; theresult for the various 
onstrained Gaussian models used for spike sorting will follow immediately.The usual M-step updates for a Gaussian mixture, given N data points, are�nm = PNi=1 rnm;iN (5.25)�nm = PNi=1 rnm;ixiPNi=1 rnm;i (5.26)�nm = PNi=1 rnm;i(xi � �nm)(xi � �nm)TPNi=1 rnm;i (5.27)The (N + 1)th data point, x� arrives, triggering the (n + 1)th update of the parameters. We
al
ulate the responsibilities, rm� of ea
h of the 
omponents for this point in the usual fashion.A

ording to the in
remental EM algorithm, then, the new estimate for �m is�n+1m = 1N + 1 N+1Xi=1 rn+1m;i = 1N + 1  NXi=1 rnm;i + rm�! = NN + 1�nm + 1N + 1rm� (5.28)where we have used the fa
t that rn+1m;i = rnm;i for all i < N + 1. Similarly, we �nd that (writing



126Rnm =PNi=1 rnm;i = N�nm)�n+1m = 1Rn+1m N+1Xi=1 rn+1m;i xi = 1Rn+1m  NXi=1 rnm;ixi + rm;�x�! = RnmRn+1m �nm + 1Rn+1m rm�x� (5.29)Finally, the 
orresponding result for �n+1m follows by rewriting (5.27) as�nm = PNi=1 rnm;ixixTiPNi=1 rnm;i � �nm�nmT (5.30)from whi
h we �nd that�n+1m = RnmRn+1m ��nm + �nm�nmT�+ 1Rn+1m rm� x� xT� � �n+1m �n+1m T (5.31)5.12.2 Parameter adaptationWhen the update algorithms des
ribed above are used in an on-line fashion (without revisiting anydata), the impa
t of ea
h su

eeding point on the parameter estimates grows progressively smaller.If the parameters are varying slowly, this is an unfortunate state of a�airs, sin
e information aboutthe new values will be in
orporated at an ever de
reasing pa
e. Indeed, even if the parameters arestable, but the initial estimate of the model was far from the true value, this state of a�airs is nottoo promising. The reason (stated here in terms of the in
remental EM algorithm for mixtures,although it applies equally to the HMM) is that the responsibilities that were 
al
ulated for the �rstfew data points be
ome in
reasingly ina

urate as the model is optimized. While the e�e
t of theseearly values on the estimate is diluted by ever more in
oming data, leading to the 
orre
t result inthe limit, 
onvergen
e would be more rapid if we had a me
hanism to \forget" them. (Note that thein
remental EM algorithm as des
ribed by Neal and Hinton (1998) avoids this problem by revisitingall the data with some probability).Noti
e that ea
h of the update rules derived in the previous se
tion (5.28), (5.29), (5.31) has theform of a weighted sum of old information and new. The form of amnesia we seek 
an be a
hievedby the simple measure of adjusting the weights in this sum to favour the new data.One approa
h is suggested by Nowlan (1991). In this view, the optimal parameter values aremaintained by a group of suÆ
ient statisti
s; for the mixture of Gaussians, these statisti
s areRnm = Pi rnm;i, Snm = Pi rnm;ixi and SSnm = Pi rnm;ixixTi . Knowing the values of these statisti
sat any iteration n we 
an 
al
ulate the parameter values �nm = Rnm=PmRnm, �nm = Snm=Rnm and�nm = SSnm=Rnm � �nm�nmT . The update rules derived in the previous se
tion 
an then be easilyexpressed in terms of these suÆ
ient statisti
sRn+1m = Rnm + rm� ; Sn+1m = Snm + rm� x� ; SSn+1m = SSnm + rm� x� xT� (5.32)



127The proposal made by Nowlan (1991) introdu
es a fa
tor 
 < 1 to regulate the de
ay of olderinformation. The suÆ
ient statisti
 update rules are repla
ed with these:Rn+1m = 
Rnm + rm� ; Sn+1m = 
Snm + rm� x� ; SSn+1m = 
SSnm + rm� x� xT� (5.33)We 
an thus derive the parameter update rules under this approa
h. If we write Nne for 
PmRnmwe obtain, �n+1m = Rn+1mPmRn+1m = 
Rnm + rm�Pm (
Rnm + rm�) = Nne �nm + rm�Nne + 1 (5.34)and �n+1m = Sn+1mRn+1m = 
Rnm�nm + rm� x�Rn+1m = Nne �m�nm + rm� x�Rn+1m (5.35)with a similar result for the 
ovarian
e update. Comparison with (5.28) and (5.29) suggests thatthe term Nne plays the rôle of an e�e
tive number of data. Note that Nn+1e = 
Nne + 1. Thus ifNne = (1� 
)�1 then Nn+1e = Nne and otherwise Nn+1e > Nne . The e�e
tive number of data 
limbsuntil it rea
hes the value (1� 
)�1 and then remains 
onstant. Thus we may think of this approa
has limiting the e�e
tive number of data used.Su
h an approa
h is seen to be reasonable in situations where the parameters 
hange at a ratelinked to the number of data measured (or in the 
ase where su
h adaptation is needed to speedon-line 
onvergen
e given poor initial parameter values). In the spike sorting example, however, weexpe
t the parameter variation to o

ur at a rate 
onstant in time, even if the overall spike ratevaries. We would like the e�e
tive number Nne to be dependent on the re
ent �ring rate of the 
ellsbeing re
orded.The formulation in terms of an e�e
tive number of data makes this easy. We repla
e the termNne in the above by a �ring-rate dependent term that varies in time Ne(t). The dependen
y on�ring rate might set Ne(t) to the number of spikes re
orded within a window. It should be borne inmind that this approa
h is di�erent to simply using only the last Ne(t) data points to estimate theparameter values. The estimates are based on all previous data; however, the estimate derived fromthese data is weighted as though it was derived from only Ne(t) points.5.12.3 Limited look-ahead forward{ba
kwardThe s
heme des
ribed in the previous se
tion is appropriate for on-line adaptation of the parametersof mixture models, whether of the simple Gaussian type, or more elaborate. What about the dynami
hidden Markov model, proposed in se
tion 5.10.2? At �rst glan
e, the situation appears impossible.Re
all that to perform even a single E-step of the learning algorithm requires a traversal throughall of the data by the forward{ba
kward algorithm. It would seem, then, that we 
annot even beginto learn the parameters of the model until all of the data have been 
olle
ted.



128Of 
ourse, this is not exa
tly true. If the parameters were stationary we would expe
t thatparameter estimates derived from a moderately long sequen
e of data would be reasonable, anda�e
ted only marginally by the in
orporation of additional observations. The 
riti
al point is thatthe in
uen
e of later observations on earlier state and transition estimates is diminished by mixingin the Markov 
hain. Thus, although in prin
ipal the ba
kward pass of the inferen
e algorithmshould begin at the very end of the data set, if it is instead begun earlier, only the immediatelypre
eding state estimates (those within one mixing time) will be substantially in
orre
t. This featureis exploited by Boyen and Koller (1999) in the 
ontext of general dynami
 probabilisti
 networks.For the sparse hidden Markov model the situation is further improved, be
ause, as was argued inse
tion 4.3.2, long stret
hes of null observations tend to \reset" the model. \Long," in this 
ontext,refers to the mixing time of the null-state restri
ted Markov 
hain; in the spike sorting 
ontext thisis the time taken for a 
ell to reset after a burst and thus may well be on the order of 20ms.The in
remental approa
h to learning the HMM thus involves re-running the ba
kward pass ofthe forward{ba
kward algorithm only as far ba
k as the last segment of moderate silen
e. To be
onservative, one might dis
ount state estimates in the M-step until they be
ome \prote
ted" by astret
h of nulls, although in pra
ti
e this rarely makes any di�eren
e. In any 
ase, if one realigns thenotion of the \
urrent" time to the last estimate that 
an be trusted, we may think of this pro
edureas taking into a

ount a short sequen
e of data in the future. Thus the name limited look-aheadforward{ba
kward algorithm.As new state information be
omes available it is 
ombined with the earlier information by apro
edure analogous to (5.29) and (5.31), with the state estimates snp;m;i repla
ing the responsibilities.The update of the transition matrix is similar in spirit to (5.28), but di�ers slightly. We write tpq;m;�for the new transition estimate and Snq;m =PN�1i=0 snq;m;i to obtainTn+1pq;m = PN+1i=1 tn+1pq;m;iPNi=0 sn+1q;m;i = PNi=1 tnpq;m;i + tpq;m�Sn+1q;m = Snq;mSn+1q;m Tnpq;m + 1Sn+1q;m tpq;m�: (5.36)For non-stationary parameters we 
an implement adaptive rules by weighting the updates by ane�e
tive data size just as in (5.33) and following. In this 
ase, sin
e a new estimate is generated atevery time-step whether a spike o

urred or not, we do not need to worry about varying the e�e
tivenumber of data, and we simply 
hoose a �xed value of the de
ay 
onstant 
.5.13 Spike Time Dete
tionGiven the model stru
ture and parameters, the third and �nal stage of the spike sorting pro
ess isthe inferen
e of the �ring times. To perform this inferen
e a

urately, and in parti
ular to resolveoverlapped spikes, we will return to the full superposition model (5.2), using the distributions for



129the �ring indi
ators 
m;� and waveforms Sm;� derived from the learnt mixture model. Many, ifnot most, previous spike sorting approa
hes have not made this distin
tion: inferen
e is performedon extra
ted events using a 
luster assignment model and is not a
tively distinguished from thelearning of the model. Su
h an approa
h leaves three issues unresolved. First, the threshold-basedevent dete
tion heuristi
 of se
tion 5.5 
an be improved upon on
e the true spike shapes have beendetermined. Se
ond, if all events are to be 
lustered, the sorting pro
ess must o

ur o�-line, rulingout experiments in whi
h rapid feedba
k about the 
ells' responses is needed. Third, the 
lusteringpro
edure has dis
arded the superposed events, or else 
olle
ted them into an unresolved overlap
luster, rather than resolving them into their 
onstituent spike forms.The 
orre
t solution to the inferen
e problem involves a sear
h through all possible 
ombinationsof spike arrival times, and is 
omputationally prohibitive. Lewi
ki (1994) suggests that with opti-mized programming te
hniques, and suitable, but severe approximations, it is possible to 
ompletethis sear
h in 
lose to real time on a 
omputer workstation. We shall not review his implementationhere; the interested reader is referred to the 
ited paper. Instead, we dis
uss an alternative setof approximations that lead to a straightforward, single-pass, greedy algorithm. This approa
h isparti
ularly well-suited to parallel implementation on arrays of digital signal pro
essors (DSPs).We shall derive the pro
edure in the 
ontext of the sparse hidden Markov models of se
tion 5.10.2,where the output distribution of ea
h 
omponent is either null or a Gaussian of �xed 
ovarian
e (setby the ba
kground). As was seen in se
tion 5.11, other 
ell models that we have 
onsidered 
analso be expressed in this form, and so the dete
tion method we dis
uss will apply equally well tothe simple Gaussian model of se
tion 5.8 or to the hierar
hi
al Gaussian mixture of se
tion 5.9.2. Itwill not, however, apply to the un
onstrained Gaussian model of se
tion 5.9.2 without 
onsiderablemodi�
ation.The basi
 stru
ture of the s
heme is as follows. At ea
h time-step we begin by estimating theprior probability distribution over the states of ea
h SHMM, based on our estimates of the statesat the pre
eding time-step. Using these probabilities, and the data re
orded around the given pointin time, we obtain the o

upan
y likelihoods for ea
h of the �ring states of ea
h of the models,along with the likelihood that no spike was observed. We a

ept the event asso
iated with thelargest likelihood. If this optimal likelihood is for no spike, then we re-derive the posterior statedistribution for ea
h model as though a null symbol was observed. If, on the other hand, the optimallikelihood is due to one of the �ring states, we assume that the appropriate model is, in fa
t, tobe found in that state. The 
orresponding mean spike waveform is subtra
ted from the re
ordeddata; and again the likelihoods of the remaining models having �red, or of there having been nose
ond spike are 
al
ulated. This is repeated until no more spikes remain to be a

ounted for at thistime-step. The initial state probabilities for the next step are then inferred by transitions from theposterior estimates of the states at the 
urrent time.



130This is a re
ursive pro
edure similar to the forward step of the 
oupled forward{ba
kward al-gorithm. We will examine in detail a single step of the pro
edure in analogy to the treatment ofse
tion 4.4.2.We assume that at the (i� 1)th time-step, the 
urrent state probability estimates are given byEp;m;i�16. Sin
e the Markov transitions are taken to be independent, these are propagated forwardto provide initial estimates of the probabilities at the ith step by the relation~Ep;m;i = TmEp;m;i�1 (5.37)We need to assess the probability of a spike being present on this time-step. However, we areno longer dealing with pre-extra
ted and aligned spike waveforms and so the spike, if any, may haveo

urred at any point within the time interval under study. We 
an measure the probability by themaximal output of a simple mat
hed �lter. Suppose that the pth 
omponent of the mth model has anon-null output distribution, with mean waveform (transformed into the time domain from whateversubspa
e was used to �t) given by Sp;m(t). We assume that the ba
kground has been whitened,so that the 
ovarian
e of this output distribution, and all the others, is I . The joint log-likelihoodof a spike having been generated from this parti
ular 
omponent (that is, that the state variableym;i = p) at a parti
ular time � , under the observed tra
e V (t), islogP (V (t) j ym;i = p; �)/ �12 Z dt (V (t)� Sp;m(t� �))2= Z dt V (t)Sp;m(t� �)� 12 Z dt V (t)2 � 12 Z dt Sp;m(t� �)2 (5.38)while the likelihood that there was no spike is simplylogP (V (t) j �) / �12 Z dt V (t)2 (5.39)The spike time � will be assumed to lie within the short interval under 
onsideration for this time-step. The integrals over t extend through all time; although we will soon drop the integral of V (t)2,and the others 
an be limited to the support of Sp;m(t � �). Note that the �nal term in (5.38) is,in fa
t, independent of the spike time � ; we will therefore write �p;m = R dt Sp;m(t)2 for the totalpower in the waveform asso
iated with the distribution (p;m).We 
an 
ombine these expressions with our prior expe
tations of ea
h state given by ~Ep;m;i, anddrop the 
ommon term that depends only on V (t) to obtain the following weighted mat
hed-�lter6We adopt the same 
onventions for subs
ripts as we did in se
tion 4.4, so that p refers to the state, m to themodel and i� 1 to the time-step.



131outputs: Fp;m;i(�) = Z dt V (t)Sp;m(t� �) � 12�p;m + log ~Ep;m;i=Æ (5.40)F�;i(�) = log X�p;m=1 ~Ep;m;i=Æ (5.41)where Æ is the length of the time-step. The �rst of these is 
al
ulated only for non-null states, whilethe sum in the se
ond is over all null states. Up to a shared 
onstant term, these two expressionsindi
ate the posterior probabilities of a spike having o

urred at time � from 
omponent (p;m) (5.40)and of no spike having o

urred (5.41), respe
tively. The �rst of these may be seen to be result ofa mat
hed �lter with impulse response Sp;m(��) being applied to the data.It is here that we make our greedy step. We sele
t the single largest probability from among thevalues (5.40) and (5.41), over all times � within the time-step window (in fa
t, if this maximum liesat the boundary of the interval we extend the sear
h to the 
losest peak in the �lter value). If thisis F�;i we assume no spike o

urred in the interval. In this 
ase the new state estimates are givenby Ep;m;i = �p;m ~Ep;m;iPp�p;m ~Ep;m;i (5.42)in agreement with (4.43).If, however, the maximum is a
hieved by one of the �lter outputs, say Fp�;m�;i(��), we assumethat the 
orresponding spike really did o

ur. In this 
ase we set Ep�;m�;i to 1 and all otherstate probabilities for the m�th model to 0. We then subtra
t from the data stream the waveformSp;m(t � ��) and re
al
ulate the �lter outputs to see if perhaps another spike o

urred as well. Inpra
ti
e, sin
e the �lters are linear, we 
an a
tually subtra
t the appropriate �ltered version of thewaveform dire
tly from the �lter output. The pro
edure is then repeated, with the m�th modeldis
ounted. We 
ontinue to subtra
t and repeat until no further spikes are dete
ted.The pro
edure des
ribed here yields reasonable results in many 
ases. In the 
ontext of non-trivial HMM transition matri
es, however, it 
an be improved upon by the use of the standard Viterbide
oding algorithm of HMM theory, adapted in a manner similar to the 
oupled forward{ba
kwardalgorithm dis
ussed in se
tion 4.4. In parti
ular, we note that the forward pass of the de
oding doesnot need to be run to 
ompletion before the ba
kward pass (in whi
h the most probable states areidenti�ed) 
an begin. Instead, the optimal sequen
e 
an be determined ea
h time a blo
k of nulls ofsuÆ
ient length is en
ountered (see se
tion 4.3.2).



1325.14 Comparison with Previous WorkSpike sorting is by no means a new problem. Extra
ellular re
ording has been a routine ele
trophys-iologi
al method for de
ades, and single units have been isolated from voltage tra
es for many years.Nonetheless, it is only quite re
ently, as multiple ele
trode re
ording has be
ome more widespreadand as fast 
omputers have be
ome easily available, that interest in fully automati
 spike sortinghas arisen, and a full statisti
al analysis of the problem has not, to date, been 
arried out.In this se
tion, we review some previous approa
hes, both manual and automati
, used or pro-posed for spike sorting. The dis
ussion of prior art has been postponed to this late stage be
auseit is now, armed with the full statisti
al analysis of the problem, that it will be possible to prop-erly understand the te
hniques proposed and their short
omings, if any. We shall �nd that mostapproa
hes to be dis
ussed will address only a subset of the issues brought out in our treatment.This review of earlier work does not purport to be exhaustive. As might be expe
ted of a subje
tso fundamental to experimental neuros
ien
e, hundreds of papers have been published on spikesorting. The few that are mentioned below have been sele
ted on two bases: �rst, they are the bestexamples of the di�erent 
ommon 
lasses of algorithm; and se
ond, in many 
ases they have beenquite in
uential in the 
reation of the 
urrent work. In some 
ases, mention of earlier work hasalready been made in the 
ourse of the development above, in whi
h 
ase only a note to that e�e
twill appear here.5.14.1 Window dis
riminatorsThe most basi
 tool for the dete
tion of spikes in extra-
ellular re
ording is a simple threshold devi
eknown as a S
hmidt trigger. In the last few de
ades a slightly more sophisti
ated version of thisvenerable tool has 
ome into use, known as the window dis
riminator, and it is this that we shalldes
ribe here. The dis
riminator is usually a hardware devi
e | although the same fun
tionality
an easily be implemented on a 
omputer | designed to identify spikes from a single 
ell. Theampli�ed signal from the ele
trode is 
ompared to a manually-�xed threshold applied to either thesignal voltage or to its derivative. Ea
h time the threshold is triggered, the subsequent waveformis displayed on an os
illos
ope (or 
omputer) s
reen. Observing these waveforms, the user sets anumber of time-voltage windows that bra
ket the waveforms that he wishes to identify as foregroundspikes. Any triggered waveform that passes through all of these windows is a

epted as a spike, andthe time of o

urren
e is logged.These devi
es have typi
ally been used in 
onjun
tion with manual isolation of a single spike,so that all that needs to be done with the windows is to distinguish this single waveform from theba
kground. However, software versions of the same devi
e may allow multiple sets of windows tobra
ket spikes of di�erent shapes (or more than one hardware dis
riminator may be used on the



133same signal), and in some 
ases spikes from more than one 
ell 
an be reasonably dete
ted in thismanner.We 
an view this pro
edure as a spe
ial 
ase of the manual 
lustering approa
h to be des
ribedbelow. The trigger simultaneously extra
ts and aligns the waveforms. As 
an be seen from �g-ure 5.5C, as long as the threshold 
rossing is dete
ted in the analogue signal (that is, there is no,or else only extremely fast, sampling involved) this pro
edure yields reasonably well-aligned spikes;alignment to a 
entre of mass is, however, very slightly better. The time-positions of the windowsrelative to the threshold 
rossing sele
t the dimensions of the waveform spa
e used to 
luster, andthe voltage-extents of the windows set the 
luster boundaries within this spa
e. Thus, the 
lusteringis 
onstrained to o

ur within an axis-aligned subspa
e and the 
luster boundaries are 
onstrainedto be re
tangular. One advantage to this s
heme over many standard 
lustering pa
kages is that itallows the user to sele
t the appropriate dimensions from among all of the axial dire
tions. Anotheradvantage (in terms of manual 
lustering) is that the high-dimensional spa
e of waveforms is 
om-pa
tly visualized on a two-dimensional s
reen. Nonetheless, the restri
tions on subspa
e dimensionsand on 
luster shape 
an be quite restri
tive.5.14.2 Manual 
lusteringThe advent of multi-wire ele
trodes, and the availability of 
ommer
ial software, has popularized theuse of 
lustering approa
hes to spike sorting. The basi
 framework of these approa
hes is as follows.Event waveforms are extra
ted using a fairly basi
 threshold trigger. In general, no attempt is madeto resample or to realign the event. These waveforms are then grouped into 
lusters, sometimes byan ad ho
 
lustering algorithm, but often by having the operator draw out the 
luster boundariesin various two-dimensional proje
tions. There is no separate spike-dete
tion phase; membership ofthe 
lusters, along with the re
orded time of threshold 
rossing, fully spe
i�es the estimated spikeidentity and time. Examples of pro
edures of this sort have been des
ribed by Abeles and Goldstein(1974), Gray et al : (1995), Rebrik et al : (1998) and many others.In general, the 
lustering is 
arried out in a subspa
e of redu
ed dimension. Above, we pointed outthat window dis
riminators 
an be viewed as sele
ting a subset of event 
oordinates for 
lustering.Other te
hniques that have been employed are those that were des
ribed in se
tion 5.7.2; hand-pi
ked features, often derived from the spike waveform in a non-linear fashion, are 
ommon (see,for example, produ
ts from DataWave Te
hnologies), while PCA has also been used (Abeles andGoldstein 1974; Gray et al : 1995). In se
tion 5.9.1 we also dis
ussed some proposals to redu
edimensionality in su
h a way as to suppress spike-shape variability.Frequently, the 
luster shapes are 
onstrained to be re
tangular; we pointed out above that thisis impli
it in the window dis
rimination approa
h to 
lustering, while in many expli
it 
lusteringpa
kages it appears to be imposed as a matter of programming 
onvenien
e. Other 
omputer pa
k-



134ages allow ellipti
al (for example, the latest produ
t from DataWave Te
hnologies) or more generalpolygonal (su
h as the program x
lust, written by M. Wilson) boundaries.In detail, these te
hniques 
an 
ertainly be improved in the light of the analysis that has appearedhere. Event alignment, dis
ussed in se
tion 5.7.1, would redu
e the apparent 
luster noise; proje
tioninto the noise-whitened robust prin
ipal 
omponent spa
e, dis
ussed in se
tion 5.7.2, would improveseparation. On the issue of the quality of the resultant 
lustering, however, we expe
t that the humaneye is a suÆ
iently sophisti
ated pattern re
ognition engine to yield fairly a

urate results, providedthat it is assisted by a proper presentation of the data. One of the advantages to this approa
h isthat it obviates the need to �nd expli
it general models of the spike-shape variability. The operator
an, instead, assess the pattern of variability on a 
ell-by-
ell basis. (Of 
ourse, 
lustering pa
kageswhi
h restri
t the 
luster boundaries to be re
tangular 
an hamper this 
exibility.)The diÆ
ulties in su
h methods fall into four groups. First, if the 
luster assignments providethe �nal estimates of spike identity there is no way to resolve overlapped waveforms. Se
ond, thela
k of a probabilisti
 underpinning redu
es the degree to whi
h the quality of the solution 
an beassessed. With probabilisti
 methods the likelihood of the optimal �t 
an provide some indi
ationof whether the data have been reasonably modeled or not. Furthermore, a probabilisti
 te
hniqueleads to \soft" or \fuzzy" 
lusters, whi
h, in turn, lend themselves to the assessment of the degreeof 
on�den
e with whi
h any given assignment 
an be made. Both of these features are la
kingthe \hard" 
lustering s
hemes that are 
ommonly used. The third set of issues arises from the fa
tof human intervention. Spike assignments generated in this fashion may be not be reprodu
iblea
ross di�erent experimenters. Further, the need for 
onsiderable experimenter input limits thedegree to whi
h the method 
an be s
aled. As we a
quire the te
hnology to re
ord from hundredsof ele
trodes at on
e, the need for an operator to examine waveforms from ea
h one be
omes aprohibitive obsta
le. Finally, 
lustering s
hemes su
h as these 
annot operate on-line in real time.Thus, they are inappropriate for experiments in whi
h immediate feedba
k is needed, nor 
an theybe used in neural prostheti
 appli
ations.5.14.3 Automati
 te
hniquesGaussian modelsLewi
ki (1994) provides an analysis of the problem that is 
losest in spirit to that provided here. Themodel des
ribed is based on a single spike waveform per 
ell, with added spheri
al Gaussian noise.While the algorithms are derived from an expli
itly Bayesian point of view, the resulting steps aresimilar to those that we des
ribe in se
tion 5.8. Many of the details, however, are di�erent. Thus,Lewi
ki treats the alignment of the waveform within the sampled event as a latent variable and re-estimates its value on ea
h �tting iteration, while we attempt to eliminate the variation in alignment



135by the te
hnique des
ribed in se
tion 5.7.1. His model 
ontains no expli
it outlier 
omponent, andinstead low o

upan
y models need to be inspe
ted and possibly reje
ted by the operator.A signi�
ant di�eren
e lies in his approa
h to the model sele
tion problem. Rather than the
as
ading model sele
tion pro
edure that we have proposed, whi
h might be viewed as a form ofdivisive 
lustering, he initially �ts a mixture with more 
omponents than expe
ted and then fusesadja
ent 
lusters together based on the 
al
ulation of an approximate Bayes fa
tor.The most signi�
ant short
oming in Lewi
ki's proposal is the la
k of more sophisti
ated modelsfor the spike distribution from a single 
ell. We des
ribed in se
tion 5.9 the reasons that we mightexpe
t a single Gaussian to be an inadequate model. Similar 
on
erns led Fee et al : (1996a) (seebelow) to abandon the expli
itly probabilisti
 approa
h. The methods des
ribed in this dissertationdemonstrate that more powerful models 
apable of modeling the intrinsi
 variability in the spikewaveforms, 
an, indeed, be implemented within the probabilisti
 point of view, thereby gaining allof the advantages implied by that approa
h.Agglomerative 
lusteringIn response to Lewi
ki (1994), Fee et al : (1996a) argue, as we did in se
tion 5.9, that in many 
asesthe distribution of waveforms from a single 
ell does not appear to be Gaussian. They thereforepropose an agglomerative 
lustering s
heme whi
h is ad ho
 in the sense of not being probabilisti
allyfounded. The s
heme is as follows.Events are extra
ted and aligned to a 
entre of mass 
al
ulated in a manner similar, thoughnot identi
al, to (5.7). The resultant ve
tors are �rst partitioned into small 
lusters by a \re
ursivebise
tion" algorithm somewhat similar to divisive k-means. These 
lusters are then agglomeratedinto larger groups. Two 
lusters are grouped together if they exhibit a large \boundary intera
tion";that is, roughly, if the density of points in the region of the boundary between them ex
eeds somethreshold.This may be viewed as an ad ho
 version of the hierar
hi
al mixture model des
ribed in se
-tion 5.9.2. The hierar
hi
al mixture provides all the advantages, des
ribed above, of the \soft"probabilisti
 approa
h. Furthermore, the agglomeration pro
edure proposed in se
tion 5.9.2 is moresatisfying in that it requires expli
it overlap of the 
omponents. This is made possible by the use of amixture model, in whi
h the 
omponent densities are able to overlap, rather than k-means 
lusteringin whi
h the 
lusters are 
ompelled to be disjoint.ART networksAnother proposal that has appeared in the literature is the use of a generi
 neural network 
lassi�er.Oghalai et al : (1994) suggest the appli
ation of an ART-2 network (the a
ronym ART 
omes fromthe adaptive resonan
e theory of Carpenter and Grossberg 1987a, 1987b, 1990). This is a neural



136network ar
hite
ture designed for unsupervised 
lustering problems, and as su
h appears to be alikely 
andidate. Closer inspe
tion, however, reveals some weaknesses. In parti
ular, ART impliesan odd distan
e metri
 in whi
h 
lusters whose 
enters have smaller L1 norms are favoured. Fur-thermore, as ea
h in
oming ve
tor is 
lassi�ed, the 
enter is updated by taking the point-by-pointminimum of the old 
enter and the new point. Neither of these details seems to mat
h the noise
hara
teristi
s we have seen. ART is also a sequential 
lustering s
heme, in whi
h the order in whi
hthe data are presented is important. Moore (1989) has argued that it is parti
ularly sensitive tonoise in the data. Overall it 
annot be thought of as any better than any of the ad ho
 
lusterings
hemes dis
ussed in se
tion 2.1.5.14.4 Spike time dete
tionSome authors have made the same distin
tion between 
lustering and spike time dete
tion that wehave. In general, they have been motivated by a desire to 
orre
tly identify overlapped spikes withinthe re
ording, although these te
hniques may often bring with them the additional bene�ts that wedes
ribed in se
tion 5.13.Lewi
ki (1994) proposes that the spa
e of all possible waveform overlaps 
an be sear
hed by theintrodu
tion of some approximations and the use of eÆ
ient programming te
hniques. It should benoted that in making this 
laim, he is addressing dete
tion in the 
ontext of a Gaussian 
lusteringmodel that yields a single mean waveform for ea
h 
ell. For the more 
omplex distributions, involvingmultiple 
omponents for ea
h 
ell, the 
omputational diÆ
ulty is further in
reased. Nonetheless, insituations where adequate 
omputational power is available, this is an attra
tive approa
h. However,the greedy approximation made in se
tion 5.13 is expe
ted to exhibit slightly improved s
aling.Roberts and Hartline (1975) (see also Roberts 1979) propose an \optimal" linear �ltering algo-rithm, similar to the standard Wiener mat
hed-�lter. Expressed in the frequen
y domain, the �lterused to dete
t the mth spike shape is given by the transform of the asso
iated waveform divided bythe sum of the power in the other waveforms and the noise. This �lter has the property of respondingminimally to the other waveforms (and to noise), while maintaining its output in response to thetarget waveform at a �xed level. In essen
e, the �lters transform the data to a basis in whi
h thedi�erent spike shapes are orthogonal; in this basis overlaps are easily identi�ed.In the 
ontext of the tetrode re
ordings des
ribed here, this approa
h has not proven to bevery su

essful. The problem seems to be that spike shapes from di�erent 
ells are spe
trallysimilar enough that the attempted orthogonalization is impossible. The mat
hed �ltering te
hniquedes
ribed in se
tion 5.13 di�ers from this one in that no e�ort is made to orthogonalize the targets.Instead, the intera
tion between the �lters is handled expli
itly by subtra
ting the waveform withthe largest response from the data and re-�ltering. While slower, this approa
h yields more reliableresults.



137It should be noted that Gozani and Miller (1994) report su

ess with this te
hnique. Theirre
ordings were made with multiple hook ele
trodes arranged along a nerve bundle. Spike waveformsmight have di�ered in their propagation velo
ity along this nerve, a feature whi
h would havefa
ilitated orthogonalization. For 
orti
al tetrode data, or other data re
orded within neuropil witha multi-tip ele
trode, di�eren
es in propagation velo
ity are quite unlikely to be dete
ted.


