
Chapter 5 Spike Sorting5.1 IntrodutionIn this hapter we take up the �rst and most extensive of our neural data-analyti appliations oflatent variable methods. Spike sorting allows sientists and tehnologists to eÆiently and reliablymonitor the signals emitted simultaneously by many di�erent nerve ells within intat brains. Toneurosientists, interested in how the brain arries out it omplex funtions, suh multi-neuron datais essential input to improved understanding. In addition, the ability to ollet signals from largenumbers of spei� neurons brings biomedial engineers loser to the dream of prostheti deviesdriven diretly by neural output.5.1.1 Extraellular reording: the soure and nature of the signalThe ation potentialMost neurons ommuniate with eah other by means of short, loal perturbations in the eletrialpotential aross the ell membrane, alled ation potentials. The disovery of the mehanism thatgives rise to the ation potential was one of the seminal breakthroughs of early neurophysiology(Hodgkin and Huxley 1952), and the aount made at that time of ation potentials in the squidgiant axon has proven to apply quite broadly. For the purposes of this disussion, we will not needa detailed aount of the ation potential. However, a qualitative understanding of some points willbe important.Protein omplexes embedded in the membranes of neurons pump spei� ions into or out of theytoplasm so as to establish strong onentration gradients aross the membrane. The membranepossesses a baseline permeability to some of these ions, and so the system equilibrates with aneletrial potential opposing the hemial potential established by the ion pumps. This eletrialpotential, around �70 mV for most ells (the onvention is that membrane potentials are measuredinside the ell, with referene to the extraellular medium), is known as the resting potential.Cells at rest are said to be polarized. Two ions are important to the ation potential. Sodium ions(Na+) are onentrated outside the ell at rest, while potassium ions (K+) are onentrated inside.Besides the ion pumps, the membrane ontains other proteins that serve as temporary hannelsto spei� ions. These hannel proteins have two or more metastable onformations. In one of these,the open onformation, the hannel allows spei� ions to pass through it. Thus, as the number ofhannels in the open state varies, the permeability of the membrane to spei� ions hanges. Two



83types of hannel, one permeable to Na+ and the other to K+, form the basi mahinery of the ationpotential. Both hannels are voltage-sensitive, that is, the probability of �nding them in the openstate depends on the eletrial potential aross the membrane. In partiular, they are both morelikely to open as the potential inside the ell inreases.The ation potential is initiated when a path of membrane beomes slightly depolarized. Asthe interior voltage inreases, the voltage-sensitive sodium hannels are faster to open that thepotassium ones. Na+ ions are driven into the ell through these open hannels, further raising theinterior potential and establishing a rapid positive-feedbak loop. This feedbak loop is terminatedin two ways. First, one in the open state, the sodium hannels begin to transition to a third,inativated onformation. Here again the hannel is impermeable to ions, but this on�gurationis di�erent from the original, losed, one. In partiular, the probability of transition bak into theopen state, while the membrane potential remains high, is now extremely low. The return transition,alled de-inativation, happens only at potentials near or below rest, when the protein swithesdiretly to the losed state. Seond, the potassium hannels also open in response to the inreasedellular potential. The di�usion gradient for K+ is opposite to that for Na+, and so K+ ions leavethe ell, restoring its polarization. In fat, the membrane potential falls below the resting level.As it falls, the potassium hannels lose (they have no inativated state). Eventually, all of thevoltage-sensitive hannels are either inativated or losed, returning the membrane to its baselinepermeability and the resting potential.The voltage-sensitive sodium hannels are most highly onentrated on the ell body at the pointwhere the axon emerges (the axon hillok). This is the �rst piee of ell membrane to undergo anation potential, usually initiated by the passive propagation of depolarizations aused by membranehannels in the dendrite that open due to synapti input. This ation potential depolarizes a nearbypiee of membrane on the axon, thus launhing it into an ation potential too, whih, in turn,depolarizes a further piee and so on. Thus, one initiated at the hillok, the ation potential travelsdown the axon, eventually triggering the release of a neurotransmitter onto another ell.As the membrane omes out of the ation potential, a number of potassium hannels are stillopen and many sodium hannels remain inativated. Thus, for a short period of time alled theabsolute refratory period it is impossible to indue a seond ation potential in the ell. Evenafter the potassium hannels have all losed and enough sodium hannels have de-inativated to allowanother ation potential to begin, the threshold perturbation needed to seed the ation potentialwill be higher than normal. This period is alled the relative refratory period. Eventually theinativation of the sodium hannels drops to an equilibrium level and the ell returns to the reststate.In many ases a ell will �re a group of ation potentials spaed by little more than the absoluterefratory period. Suh a group is alled a burst or, sometimes, a omplex spike. In general,



84suh bursts are not driven entirely by synapti input, but rather by the biophysis of the neuronalmembrane. For example, extremely long time-onstant voltage-sensitive alium hannels are foundin some neurons. The �rst ation potential in a burst auses some number of these to open, butthey neither lose nor inativate rapidly. Ca++, whih is onentrated outside the ell by the ionpumps, ows in through these open hannels. As a result, as soon as the �rst ation potential isover and the potassium hannels losed, the depolarizing alium urrent an launh the next ationpotential. The ell is still in its relative refratory period, however, so many sodium hannels arestill inativated. As a result, the urrents that ow in this and subsequent ation potentials maynot be quite as strong as in the initial one.In many, if not most, neurons, voltage-sensitive hannels are to be found all over the ell body anddendriti surfae. Reent work in pyramidal neurons has shown that the ation potential propagatesnot only down the axon, but also from the axon hillok bak into the dendrite (Stuart and Sakmann1994; Stuart et al : 1997; Buzsaki and Kandel 1998). Further, the degree of penetration varies withthe reent ativity of the ell (Spruston et al : 1995; Svoboda et al : 1997). The later ation potentialsin a burst penetrate the dendrite to a muh lesser degree than the �rst.Extraellular reordingThe mehanism of the ation potential, as well as many other important neuronal phenomena, havebeen understood through measurements taken using an intraellular eletrode, that is, one whihpenetrates the ell. Unfortunately it is diÆult to reord with suh an eletrode in an intat animaland all but impossible in many awake ones. Fortunately, if all that is needed is the timing of ationpotentials in the ells, it is possible to aquire this information with an extraellular eletrode. Themost ommon suh eletrode is a �ne metal wire, insulated everywhere but at the tip, whih istapered to an extremely �ne point of only a few mirons diameter. The uninsulated tip aquires alayer of ions at its surfae whih form the seond plate of an extremely thin apaitor. The resistiveoupling of the eletrode to the surrounding medium is generally weak; resistanes in the hundreds ofM
 are not unommon. However, the apaitive oupling is muh stronger, with 1kHz impedanesin the hundreds or thousands of k
.The eletrial urrents assoiated with the ow of ions through the membrane are transient. Ifthe eletrode tip is near the membrane surfae during an ation potential, these urrents ouple tothe eletrode, resulting in a transient hange in the potential of the eletrode measured relative toany stable external point. Thus, if we were to make a trae of the eletrode potential over time, wewould see spikes1 in the trae orresponding to the ation potentials in the ell near the tip. The1In this hapter, \spikes" our in the eletrode voltage trae, while \ation potentials" our on the ell membrane.This sharp distintion is not entirely onventional, but it is useful, allowing us to speak, for example, of the \hangingamplitude of a spike" without any impliations about the maximal urrents that ow aross the ell membrane. Thetime of ourrene of the spike and ation potential will be taken to be the same.



85relationship between the intraellular trae of the ation potential and the extraellularly reordedspike is omplex. First, the extraellular probe reords a integral urrent from many pathes ofmembrane that may be in many di�erent stages of the propagating ation potential. Seond, the tipgeometry �lters the measured spike; for an eletrode with a smooth surfae this �lter is dominatedby a single-pole high-pass omponent, but for porous eletrode tips (plated with platinum blak, forexample) it is more ompliated (Robinson 1968).Many ells' membranes might lie lose to the eletrode tip so that spikes from many ells arereorded. Historially, the experimenter has manoeuvered the eletrode so that the tip lies verylose to one ell, and thus the spikes from this ell are far larger in amplitude than the spikes fromother ells. A simple hardware devie an then be used to reord the times of these large spikes,and thus of the ation potentials in a single ell. Even if the spike shape assoiated with the neuronvaries, its amplitude remains greater than that of any other ell's spikes. This proess is referred toas single-ell isolation. It is time-onsuming and, in an awake animal, temporary. Movement of thetissue relative to the eletrode eventually auses the experimenter to \lose" the ell.Multineuron reordingOne an only learn so muh about the brain by monitoring one neuron at a time. As a result, therehas been a great deal of reent interest in multineuron reording2.There is some reason to believe, based on the biophysis of neurons (the literature is extremelylarge, but see, for example, Softky and Koh 1993) as well as some diret experimental evidene(again a list of itations ould be very long, so we hoose a reent example: Usrey et al : 1998),that ation potentials that our simultaneously in a pair of neurons with a shared synapti targetare far more e�etive at ausing the target to �re than are two non-oinident ation potentials.It is possible, then, that oinident �ring plays a signi�ant role in the transmission of informationwithin the nervous system. A number of experimenters have argued that indeed more, or di�erent,information is available if the preise timing of ation potentials aross multiple ells is taken intoaount (e.g., Gray and Singer 1989). Furthermore, even if the exat relationship of �ring timesbetween ells is not funtionally signi�ant, this relationship an provide valuable (though indiret)lues to the miro-iruitry of the system (e.g., Alonso and Martinez 1998; Abeles et al : 1993).It is possible to ollet multineuron data by introduing many separate eletrodes into the brainand isolating a single neuron with eah one. Indeed many of the studies ited above were arriedout in this way. This approah is, however, diÆult to exeute and diÆult to sale. There are twoapproahes possible to obtaining many isolations. One an insert many individually positionable2We shall take \multineuron reording" to mean that separate (or separated) spike trains from multiple ells areavailable. This situation is sometimes alled \multiple simultaneous single-neuron reording" to distinguish it fromthe earlier use of the term \multineuron reording" whih was applied to a single spike train representing all the ationpotentials in an unknown number of ells near the eletrode tip. This earlier usage seems to be fading as tehnologyadvanes, and the term \multineuron" is less umbersome than \multiple simultaneous single-neuron".



86eletrodes and manoeuver eah to isolate a ell, or one an insert a larger number of �xed eletrodesand simply reord from those that happen to provide a deent isolation. The former approahrequires onsiderable time from the experimenter. Furthermore, sine, at least in awake animals,isolations generally last for only a short time, as the experimenter isolates ells on more and moreeletrodes he risks losing the ells isolated at the outset. The latter of the two approahes willoften lead to a more stable reording than an be obtained with manoeuverable eletrodes, in partbeause the probes an be allowed to settle within the tissue over a long time. However, the yieldof eletrodes with single-ell spike trains an be extremely low.5.1.2 Spike sortingSpike sorting provides an alternative to physial isolation for multineuron reording. In this ap-proah, the eletrode is plaed in the neuropil, with no e�ort being made to isolate a single ell.Instead, the spikes due to many ells are reorded and a data-analyti e�ort is made to sort theminto groups aording to their waveforms. Eah suh group is presumed to represent a single ell.The attrations to this approah are lear. If repositionable eletrodes are used, far less manoeu-vering is needed in order to obtain lear spike information. If �xed eletrodes are used, the yield ofreordable ells from a given array is muh inreased. Beyond suh issues of experimental eÆieny,spike sorting approahes an provide data that is extremely diÆult to obtain using one-ell-one-eletrode approahes. All the ells deteted on a single eletrode lie within some few tens of mironsof the tip, and thus of eah other. Suh ells are more likely to be funtionally and anatomiallyrelated than well-separated neurons hosen at random.Multiple-tip eletrodesSpike sorting an be made easier by use of a multi-tip eletrode suh as a stereotrode3 (MNaughtonet al : 1983) or tetrode (Ree and O'Keefe 1989). This is really a group of eletrodes whose tipslie suÆiently lose together that an ation potential in a single ell generates a spike on more thanone of the eletrodes. Eah eletrode will have a di�erent spatial relationship to the soure ell, andso experiene a slightly di�erent spike waveform. Put together, these \multiple views" of the sameation potential provide more information on whih to base the sorting of the spikes.An analogy may be drawn to stereophoni sound reording. Two instruments with similar timbreannot be distinguished in a monophoni reording. With two mirophones, the added spatialinformation allows us to hear the two di�erent soures. This analogy an only be taken so far,however. In the stereophoni reording the sale of the separation between soures and mirophonesis very muh greater than the sale of the soures and mirophones themselves. This is not the3Unfortunately, the term \stereotrode" has ome to mean a two-wire eletrode. We shall ontinue in this usage,even though a tetrode, with its four wires, is as muh a stereotrode as its two-wire predeessor.



87ase in the neurophysiologial reording. The tip size, the distane from the membrane and thesegment of membrane that ontributes to eah reorded spike are all on the order of 10 mirons.As a result, some of the simple sorting strategies suggested by the reorded musi analogy are notatually workable.5.2 Data ColletionThe algorithms that appear in this hapter are expeted to be of general appliability. Theyhave been developed, however, with referene to data taken in two preparations: parietal ortexof maaque monkey4 and loust lobula5. The methods of data olletion are desribed here.5.2.1 MonkeyData have been olleted from two adult rhesus monkeys (Maaa mulatta). A stainless steel headpost, dental aryli head ap, sleral searh oil, and stainless steel reording hamber were surgiallyimplanted in eah monkey using standard tehniques (Mountastle et al : 1975; Judge et al : 1980).During reording, the monkeys sat in a primate hair (ustom); the implanted head posts wereseured to arms attahed to the hairs, thereby immobilizing the animals' heads. Eye-positions weremonitored in two dimensions by reording the level of emf indued in the sleral oil by two externalmagneti �elds that osillated at non-reduible frequenies (Fuhs and Robinson 1966).The reording hambers in eah monkey were set over a raniotomy opened over the posteriorparietal ortex. All eletrodes were inserted in this area; in most ases they penetrated to the lateralintra-parietal area (LIP). During reording, the animals were awake and performing a \memory-saade" task in whih they remembered the loation of a ash of light and then looked towards iton a ue. The details of the task will not be relevant to the present disussion.In all ases a single tetrode was used for reording (Pezaris et al : 1997). The tetrodes wereprepared from 13�m-diameter tungsten wire (California Fine Wire), insulated along its entire length.Four strands of wire were twisted together at approximately 1 turn/mm and heated so that theinsulation fused over a length of some 10m. One end of the fused region was ut with sharp sissorsso that the tungsten ondutor was exposed in all four strands. The impedane of the eah ondutorinterfae to physiologial saline was measured to be between 0.4 and 0.7 M
at 1kHz. At the otherend the four strands remained separated and were individually stripped of their insulation with ahemial stripper and bonded with ondutive paint to eletrial onnetors.The tetrode was inserted into a onstrution of nested metal annulae whih provided mehanialsupport. The tip of the narrowest, innermost, annula was sharpened and inserted through the dura4Data olleted in ollaboration with J. S. Pezaris in Dr. R. A. Andersen's laboratory.5Data olleted in ollaboration with M. Wehr and J. S. Pezaris in Dr G. Laurent's laboratory.



88mater, with minimal penetration of the underlying neural tissue. The tetrode ould then be advanedfrom within this annula into the brain by a hydrauli mirodrive (Frederik Haer Company). Aseries of tests in another animal revealed that the tetrodes tend to travel straight one inserted intothe brain.The eletrial onnetor at the end of the tetrode was inserted into an ampli�er head-stage(ustom) with 100x gain. The animal, eletrode and head-stage ampli�er were all plaed withinan eletromagnetially shielded room. Ampli�ation was in di�erential mode, with the annulaassembly serving as the referene eletrode. Four oaxial ables fed the signals from the head-stageampli�er to the main ampli�er (ustom) with adjustable gain. Besides enhaning it, the ampli�ersalso reversed the polarity of the signal. This resulted in the peak amplitude of eah spike appearingpositive, rather than negative as is the ase at the eletrode tip. We will maintain this onventionthroughout the hapter.The ampli�ed signals were �ltered to prevent aliasing and digitized. The digitization rate atthe A/D onverters (Tuker Davis Tehnologies AD-2) varied between 12.8 and 20 kHz. The 9-pole Bessel low-pass anti-aliasing �lters (Tuker Davis Tehnologies FT5-4) had orner frequeniesof either 6.4 or 10kHz. The data were reorded to digital media and all subsequent operationsperformed o�-line, although sometimes under simulated on-line onditions.5.2.2 LoustA diÆulty ommon to almost all data sets used for the development of spike sorting tehniques isignorane of the ground truth. There is no independent way in whih to establish the number ofdistint ells whose spikes are present in the reording, nor to know whih ell �red when. Thesedata, olleted from the lobula of the loust, were olleted in an attempt to remedy at least oneof these onerns. Reordings were arried out with a single tetrode as well as two sharp pipette,intraellular, eletrodes. The intraellular eletrodes provided inontrovertible information aboutthe �ring of up to two ells in the region. Often, one or both of these ells would invoke sizablespikes on the tetrode.Experiments were arried out in vivo on adult female lousts (Shistoera ameriana). Animalswere restrained dorsal side up, the head was immobilized with beeswax, and a watertight beeswaxup was built around the head for saline superfusion. A window was opened in the utile of thehead apsule between the eyes, and air sas on the anterior surfae of the brain arefully removed.For stability, the oesophagus was setioned anterior to the brain, and the gut removed througha subsequently ligatured distal abdominal setion. The brain was treated with protease (Sigmatype, XIV), gently desheathed, and supported with a small metal platform. The head apsule wasontinuously superfused with oxygenated room-temperature physiologial saline (in mM: 140 NaCl,5 KCl, 5 CaCl2, 4 NaHCO3, 1 MgCl2, 6.3 HEPES, pH 7.0).



89Intraellular reordings were made using onventional sharp glass miroeletrodes pulled with ahorizontal puller (Sutter P-87), �lled with 0.5 M KA, for resistanes of 100{300 M
. Intraellularreordings were done in bridge mode using an Axolamp 2A ampli�er (Axon Instruments) fromthe third opti lobe (lobula). Data were olleted from 28 single neuron and 6 paired intraellularreordings, all with simultaneous tetrode reordings, from 7 animals. The tetrode was prepared asdesribed above.All signals were ampli�ed, low-pass �ltered at 10 kHz (8-pole analogue Bessel with gain, Brown-Lee Preision), digitized at 50 kHz with 16-bit resolution (Tuker Davis Tehnologies), and writtento ompat dis.5.3 A Generative Model Shema for Extraellular ReordingThe ornerstone of our approah to spike sorting will be the identi�ation of an adequate generativemodel for the observed extraellular reording data. The model has to be powerful enough to aountfor most of the variability observed in the data, while being simple enough to allow tratable androbust inferene. In fat, we will identify not one model, but a model shema, that is, a group ofmodels of similar struture. The hoie of a partiular model from within this shema will be madeon a ase-by-ase basis, using data-driven model seletion proedures.The reorded signal is dominated by the �ring of nearby ells; in general the thermal noise inthe eletrode and noise in the ampli�ation system an be negleted relative to the neural signal.For a 0.5 M
eletrode at 300K (treated as a purely apaitive impedane) the root-mean-squareamplitude of the thermal noise integrated over a 10kHz bandwidth is on the order of 5�V. As wewill see (for example, see �gure 5.2), this is generally smaller than the reorded amplitudes of neuralsignals.We divide the ells into two groups | foreground and bakground | of whih the seond ismuh the larger. The division is somewhat arbitrary. Roughly, the foreground ells are those whoseinuene on the reorded signal is large enough that we expet to be able to reognize and sortspikes that arise from them, while the bakground ells are so distant that their spikes merge intoan indistinguishable baseline. In pratie, there will be ells whose spikes are oasionally, but notalways, distinguishable. We treat these as foreground ells in the model, deteting those spikes thatrise out of the bakground, but neglet the data thus obtained as unreliable.Thus, we think of the reorded signal as the superposition of spikes from the foreground ells anda single, ontinuous bakground noise proess, whih is itself the superposition of all the spikesfrom the bakground ells, and other noise soures. Provided that the urrents do not total to a sumthat is beyond the ohmi limit of the intraellular medium, we expet eah of these superpositionsto be linear. Measurements made in the loust lobula show that at least in that preparation they
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91neural soures, along with any eletrial noise whih might be present, is gathered into a single term�(t). For the multihannel eletrode, both �(�) and Sm;� (�) are vetor valued funtions.Note the subsript � applied to the spike shape Sm. This allows for variability in the shape of thereorded ation potential from a single foreground ell, over and above that due to the addition ofthe bakground noise. Suh variability may arise due to hanges in available membrane hannels, ordue to hanges in the membrane surfae that partiipates in eah spike. The nature of this intrinsivariability will be disussed at greater length below. In any ase, it is of a quite di�erent haraterto that due to the bakground: it is potentially di�erent for eah ell, it need not be stationaryover the ourse of the spike, and while we will argue below in favour of a Gaussian distribution forthe bakground, this foreground variability is unlikely to be Gaussian in nature. The separation ofthe distribution of spike shapes from a single ell into these two parts is a ritial feature of ourapproah, and one that was laking in previous algorithms.The random variables in our shema, as we have written it, are the bakground �(t), the �ringindiators m;� and the spike shapes Sm;� . None of these are diretly observed; however, we think ofthe foreground variables, m;� and Sm;� as the only latent variables in our model. We an treat V (t)as a random variable, whose distribution onditioned on the latent variables subsumes the noise �(t).The parameters of the model an be separated into two groups �� whih governs the onditionalP (V (t) j fm;� ; Sm;�g) and, simply, � governing the distribution of Sm;� and m;� . Thus, we havefatored the underlying distribution so:P (V (t)) = P�� �V (t)�P�;m m;�Sm;� (t� �)�P� (fm;� ; Sm;�g) (5.2)We have said nothing yet about the nature of the distributions in this fatorization. This is why itis a shema and not a full blown model. We will argue that the bakground proess is approximatelyzero-mean Gaussian, and the distribution of V (t) onditioned on the latent variables will be normalin all of our instanes of the shema. The distributions of the m;� and Sm;� will vary, and indeed,in appliations will not always be the same for all foreground ells. Figure 5.1 is drawn as though allof the m;� and Sm;� were independent. This is merely for larity in the diagram, we will onsiderbelow models for whih this is not true.Our eventual goal within eah model is to infer the posterior distribution P (m;� j V (t)). Inpratie we will not arry out the marginalization over the parameters implied in that posterior;instead, we will approximate the marginal posterior by the posterior onditioned on estimated valuesof the parameters P �m;� j V (t); �̂; �̂��. The rationale behind this approximation is explained insetion setion 1.2. In the next few setions we will address the problem of �nding these estimates(that is, learning) within the various models that appear in our shema, as well as that of seletingan appropriate model from the shema. After this, we will turn to the question of eÆient inferene



92of the foreground spike ourrene times.5.4 Learning within the ShemaSeparating foreground and bakgroundThe foreground and bakground ells in our model are distinguished entirely on the basis of theamplitudes of their spikes on the reording eletrodes. It is therefore reasonable to identify thetimes of �ring of the foreground ells using a simple amplitude threshold. We take the times atwhih the signal rosses the threshold (the details of whih are disussed below) and extrat a shortsegment of the signal, orresponding to the typial length of a spike waveform, around eah one.These segments, whih we shall refer to on oasion as events, ontain the foreground spikes. Theremaining strethes of signal are presumed to be generated by the bakground noise proess.This separation of foreground and bakground allows us to divide our learning proedure intotwo stages. We examine the strethes of bakground ativity diretly to estimate the parametersof the noise. Armed with this estimate, we learn the remaining parameters from the foregroundevents. This seond stage is onsiderably more straightforward given an independent estimate of thebakground distribution. Earlier approahes, whih did not di�erentiate between bakground noiseand spike shape variability, did not enjoy this advantage. The hoie of distribution and resultingparameter estimation for the noise will be explored in detail below.Independent omponents analysisWe onsider the problem of estimating the parameters � whih govern the distributions of the latentvariables m;� and Sm;� . On the surfae, the model (5.2) is quite similar to the generative modelwhih underlies statistial signal separation algorithms suh as independent omponents analysis(ICA) (Jutten and Herault 1991; Comon 1994; Bell and Sejnowski 1995; MaKay 1999) or indepen-dent fator analysis (IFA) (Attias 1999). In these algorithms, signals from a group of independentnon-Gaussian soures (in the spike sorting ase these would be the di�erent ells) are mixed linearlyonto multiple hannels of output. The output hannels may then have noise, usually Gaussian,added. Learning algorithms in suh models have been well studied.Unfortunately, there are signi�ant di�erenes between our model and these ones. We shall notethree here: two of these might be surmountable, but the third makes it very diÆult to envisagesuh a solution in the urrent ontext.1. ICA models generally involve exatly as many soures as output hannels. If the number ofells is smaller than the number of hannels this poses no problem; the algorithm would simplyresolve some part of the noise as another \soure", whih ould subsequently be disounted



93using some heuristi. However, the number of ells may well be greater than the number ofeletrode tips that an be pratially introdued. In hippoampal reordings, for example,more than 10 ells are often reorded on a single tetrode.2. Most ICA models imply that the soures are mixed in an instantaneous manner (that is, theoutput at a point in time depends only on the soure signals at that time). In the ase ofextraellular eletrophysiologial data, where the eletrode tip properties result in �ltering ofthe reorded signal, the mixing annot be instantaneous. Reently, Attias and Shreiner (1998)have proposed a signal separation algorithm that resolves this diÆulty.3. The most severe diÆulty is posed by the extended nature of the soures and reording surfaes.While it would seem sensible to regard eah ell as a single soure, the di�erent eletrodetips will, in fat, lie losest to di�erent parts of the ell membrane, and thus reord slightlydi�erent spike waveforms. As a result, one annot treat an isolated foreground spike as a singlewaveform saled linearly (or even �ltered linearly) onto the multiple reorded hannels. Thespike waveform must itself be regarded as a fundamentally multihannel entity. This preventsthe appliation of blind soure separation tehniques to spike sorting in many preparations,notably in neoortial reordings.If we annot use these well-established signal proessing tehniques, an we hope to solve theproblem? In fat, ICA-like tehniques fail to exploit the signi�ant amount of prior knowledgeavailable about the neural signal. Nowhere in the generative model for ICA, for example, is itaknowledged that a single soure signal will always be a hain of approximately stereotypial pulses.It is this repetitive nature of the signal that we will exploit to solve the problem.Before leaving this point, we make two additional observations. First, onsider the followingsheme for appliation of ICA. We regard eah soure as produing a train of delta-funtions, withthe spike waveform on eah hannel, however it is produed, appearing as the impulse response ofa �titious linear �lter. The delta-funtion trains are onvolved with their orresponding �lters andsummed (along with noise) to produe the reorded signal. The �ltering and summing represent themixing stage of a dynami omponents analysis (DCA) model (Attias and Shreiner 1998). Thistreatment would seem to restore our faith in the appliability of an ICA-like algorithm. Even better,it would indeed inorporate our prior belief in the pulsatile nature of eah soure. The diÆulty withthis approah lies in the presene of spike waveform variability in the data. Sine, in this sheme,the waveform information is treated as part of the mixing proess rather than as a soure signal,we would require a variable mixing proess. Suh variability annot be handled within the DCAframework.Seond, it should be borne in mind that there may well be preparations in whih ICA-likealgorithms are appliable to spike sorting. For example, the form of ICA suggested in the preeding



94paragraph might be suessful in ases where there is little or no spike shape variability. Anotherexample is provided by Brown et al : (1998) who have reported suess in optial reordings ofvoltage-sensitive-die-treated Tritonia tissue. In this example, the reordings are suÆiently slowlysampled that the spread of signal aross the membrane is e�etively instantaneous (Brown, personalommuniation). As a result, the spike waveforms reorded on di�erent photodetetors may indeedbe linearly saled versions of a single waveform. Furthermore, the optial nature of the reordingensures that the signal mixing at the detetor is linear and instantaneous.Clustering algorithmsOur approah to learning the waveform parameters is based on two observations. First, all the spikesreorded from a single ell are expeted to be roughly similar. Indeed, we will speify the exat natureof the variability that we expet, by speifying the distribution of Sm;� within the generative modelshema. Seond, the probability that two foreground ells will �re so lose together in time that theirspike waveforms overlap in the reorded signal is relatively low. As a result, most of the foregroundevents gathered by the appliation of our threshold represent only a single spike waveform. Thus wemight expet to learn the shapes of the underlying waveforms (and the distributions of suh shapes)by lustering these foreground events.Consistent with our probabilisti viewpoint, we shall adopt a generative-model-based approahto lustering, as was outlined in hapter 2. To do this we need to transform the model of (5.2) intoa suitable form.Whereas (5.2) provides a model of the ontinuous waveform V (t), we now desire a model thatdesribes the set of extrated events, fVig. Eah Vi is a vetor of samples drawn from all of thehannels of V (t) around the time �i at whih the ith event ours. At all times � other than the �iwe assume that no foreground ell �red and so m;� = 0 for all m. We will employ the labels m;iand Sm;i for the latent variables at the times �i, in plae of the more umbersome forms suh asm;�i .The vetors Vi are taken to be onditionally independent, given the values of the latent variablesm;i and Sm;i. In other words, we assume that the separation between events is always greater thanthe orrelation-time of the bakground noise proess. The distribution of the ith vetor is desribedby amixture density, with one omponent for eah possible value of the indiators m;i;m = 1 : : :M .Let us onsider these omponents one by one.1. All m;i = 0. This implies that the threshold was reahed by the bakground proess alonewithout a foreground spike. In this ase the density of the vetor Vi is exatly that of thebakground noise, expressed as a vetor density, rather than as a ontinuous proess density.



95We will introdue a new indiator variable z�;i to indiate this ondition, and writeP (Vi j z�;i = 1) = P�� (Vi) = P� (Vi) (5.3)2. Only one of the m;i = 1. Suh events will make up the majority of those deteted. We useindiators zm;i;m = 1 : : :M to represent eah of these states (the zm;i are exatly the same asthe orresponding m;i, though only in this ondition). The density of the event vetor is thenP (Vi j zm;i = 1) = Z dSm;i P�� (Vi � Sm;i)P� (Sm;i j fSn;j ; n;j : j < ig; m;i = 1) (5.4)Notie the onditioning of Sm;i whih depends only on the preeding latent variables to enforeausality. We will abbreviate this set of latent variables at all times earlier than �i by �<i andwrite this density as Pm (Vi j �<i).3. More than one m;i = 1. In this ase two foreground ells �red at lose enough times that thethreshold was only rossed one by the ompound waveform. We expet suh events to ourrarely and will not expliitly model them as overlapped events at this stage. Instead, we treat allsuh waveforms as \outliers", and model them by a single, uniform density (see setion 2.7.1).We introdue a latent variable z=;i to indiate this ondition. The orresponding density issimply P (Vi j z=;i = 1) = 8<: 1kAk if Vi 2 A0 if Vi 62 A (5.5)with A some region of the vetor spae of Vi and kAk its volume. We will write this densityas P= (Vi).The omplete model for the ith vetor is thusP (Vi) = P� (z�;i = 1 j �<i)P� (Vi)+ P� (z=;i = 1 j �<i)P= (Vi)+ MXm=1P� (zm;i = 1 j �<i)Pm (Vi j �<i) (5.6)One again, the distribution of the indiator variables is onditioned only on earlier latent variablesso as to preserve ausality in the model.The latent indiator variables zm;i, m = �; =; 1 : : :M are mutually exlusive: exatly one of themtakes the value 1 for any i, while all of the rest are 0. As suh, they losely resemble the mixturelatent variables of hapter 2. In many of the models we will disuss, the indiators for eah eventwill be drawn independently from a �xed distribution. In this ase, the model is exatly a mixture



96model. Even where this is not exatly true, however, we shall all this the mixture form of thegenerative model. Fitting suh a model is what we will mean when we laim to be performing aparametri lustering of the spike events.It is worthwhile to onsider the impat of our hoie not to model the overlapped spike eventsexpliitly, but rather to sweep them into a single outlier distribution. Is it likely that this inaurayin the event model (5.6) will lead to estimates of the parameters that do not arry over to thetrue ontinuous signal model (5.2)? The mistreatment of overlaps poses two distint dangers toaurate parameter estimation. The �rst is that some overlaps will be inorretly interpreted assingle spikes, and thus bias the estimate of the spike shape distribution of the misidenti�ed ell.This possibility is slim. Overlaps need to be fortuitously exat to look anything like single spikewaveforms. Most likely, they will fall quite far from any single ell luster and be easily reognizedas outliers. Furthermore, the use of a uniform outlier distribution minimizes the expeted bias inestimates of the mean spike shapes of eah ell (robustness to outliers in the �tting of mixturemodels is disussed in setion 2.7.1). The seond danger arises from the fat that the ourrene ofan overlap \removes" an event whih would otherwise ontribute to the parameter estimation. Formodels in whih the latent variables assoiated with eah event are independent of all others (theseare the true mixture models) this e�et will be negligible, provided that the probability of overlap issmall and independent of the latent variable values. However, for models in whih the spike shapeand probability of �ring for eah ell depend on its history, this an pose a real problem. We shalladdress it when we disuss suh models.For the sake of the reader familiar with previous spike sorting tehniques it is worth emphasizinghere a point that has appeared before, and will be addressed again in setion 5.14. In the presentapproah to the problem, unlike in many (though not all) others, the lustering stage is a preliminaryto the inferene of spike arrival times. We use it as a devie to learn the parameters � that governthe distributions of m;� and Sm;� . The atual inferene of the variables m;� is done within themore aurate superposition model (5.2), without the imposition of an arti�ial threshold, nor therejetion of overlapped spikes.5.5 Event DetetionOur �rst step in the proess of learning the model parameters is to identify the times at whihforeground ells �red by omparing the reorded signal to a threshold amplitude.A short segment of data reorded from the neoortex of a maaque monkey using a tetrode isshown in �gure 5.2A (the four traes show the simultaneously reorded signals on the four wires).Large amplitude spikes are learly superimposed on a lower amplitude bakground proess. However,it is lear that the omparison of this raw signal to a �xed threshold will not ahieve the separation
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PSfrag replaements250�V 100ms raw signal �lteredFigure 5.2: A sample extraellular reording.we desire; the signal exhibits a low frequeny baseline modulation with an amplitude omparable tothat of the largest foreground spikes. This low-frequeny �eld potential signal may be of onsiderableinterest in itself, however the frequenies involved are too low to have an inuene on the shapes ofthe relatively short spike waveforms and so it an safely be removed for the purposes of spike sorting.Figure 5.2B shows the same segment of data after it has been digitally high-pass �ltered. The �lteruto� is hosen at the lowest frequeny that an ontribute to the foreground spike shapes, basedon the length of those spikes. For neoortial reordings of the type shown in �gure 5.2 the spikelength is not longer than 2 milliseonds, implying a �lter uto� of at least 500Hz.We wish to hoose a threshold whih allows us to identify the spikes that rise above the bak-ground proess. To do this we need to know the statistis of the bakground, but, of ourse, weannot measure these until we have separated bakground from foreground. We shall set the thresh-old in terms of the variane of the entire signal, foreground and bakground. In doing so, we assumethat foreground spikes are rare enough that this measurement is dominated by the bakground. Thismay not always be true: if we reord 4 foreground ells, all �ring at about 50Hz, there would be atotal of 200 spikes in one seond of reording. As the large amplitude peak of eah foreground spikean last up to half a milliseond, this would mean that one-tenth of the reording has large amplitudeforeground ontributions { enough to a�et the bakground variane estimate. As a result, a ertaindegree of user intervention is useful in setting the threshold level. A typial hoie of threshold is3{5 times the root-mean-square value of the high-pass �ltered signal.Spike waveforms are generally biphasi pulses. The strongest urrents during an ation potentialare assoiated with the inux of sodium that initiates the �ring; as a result, the �rst phase is almostalways the larger. The sodium urrent ows into the ell, away from the eletrode tip. Thus,this �rst phase is negative on the eletrode. Under the polarity onvention adopted in this hapter(introdued in setion 5.2) it will appear positive in our reordings. In order to redue the probability
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Figure 5.3: Event detetion thresholdsof false triggers, and also to ensure that eah spike auses only one threshold rossing, we apply thethreshold in a one-sided manner, aepting only rossings where the reorded potential rises abovethe positive threshold value.It is not obvious how to apply the threshold to multihannel data. We shall onsider threeshemes here, and it will be useful to ompare them graphially. This is done for a hypothetialtwo-hannel signal in �gure 5.3. The axes in panel A represent the amplitude of the signal on thetwo hannels: eah sample of the signal is represented by a point in this plane. The thresholdingshemes will be desribed by boundaries in the plane whih separate regions where the signal isbelow the threshold from regions where it is above. The various lines in this panel, and the natureof panel B, will be desribed below.The most ommonly employed approah to multihannel data is to aept an event wheneverany one hannel rises above a salar threshold. The aeptane boundary of suh a threshold for thetwo-hannel example is represented by the dash-dotted line in �gure 5.3A. The signal has rossed thissimple threshold if the point falls to the right of or above the line. We shall all this a retangularthreshold.An alternative approah would be to threshold the total instantaneous power of the signal, thatis, the sum of squares of the amplitudes on the various hannels. Given the unidiretional nature ofthe spike peaks, we hoose to half-wave retify the signal before squaring. The resultant threshold,whih we all irular, is shown by the dashed line.The dotted ellipse in �gure 5.3A shows a ovariane ontour for the bakground distribution, thatis, a line drawn at a onstant distane from 0 in the Mahanalobis metri de�ned by the distribution'sovariane. The ellipse is drawn as though the bakground on the two hannels is positively orre-lated. In fat, this is the overwhelmingly dominant ase in experimental data. It is reasonable thateletrode tips lose enough to share spikes from the same foreground ells will also share bakgroundspikes.A omparison between this elliptial noise ontour and both of the threshold boundaries desribed



99so far reveals the weakness in these approahes. Many points above and to the right of the ellipseare unlikely to arise purely from the bakground proess, and yet are not deteted as foregroundevents. A more sensible approah would seem to be to shape the boundary to math the ontour ofthe seond moment of the noise distribution. This is oneptually easiest in the noise-sphered spae,whih is obtained by an instantaneous linear transformation on the signal (if the noise ovarianeis � the sphering matrix is ��1=2). This spae is represented in �gure 5.3B. The noise ovarianematrix is now, by onstrution, spherial. The retangular and irular thresholds are shown in thedot-dashed and dashed lines, as before. The solid line represents a threshold boundary onstrutedin the same way as the irular threshold, but now in the sphered spae; the solid line in panel Ashows the shape of this boundary in the original spae. We refer to this as the elliptial threshold.By onstrution, the elliptial threshold mathes the ovariane ontour of the noise. If thatnoise is Gaussian distributed, this urve is also an iso-probability ontour, so that the probability ofthe noise alone exeeding the threshold is independent of the diretion (in the spae of �gure 5.3A)of the signal.5.6 The Bakground ProessOne the times of the foreground events have been identi�ed, we explore the statistis of the signalduring the periods between these events, with the goal of haraterizing the bakground proess. Inthe �rst instane, we are interested in the distribution P�� (Vi) whih expresses the bakground asa vetor-output proess. This distribution will be of ritial importane in what follows: not onlyis it the distribution of the noise (5.3), it also makes a signi�ant and ommon ontribution to thedistribution of spike waveforms reorded from eah ell (5.4).We estimate the distribution of the Vi diretly, by sampling the bakground proess at timeswhen no foreground spike is present. The spikes extend for some time before and after the times ofthe threshold rossings; thus, we need to extrat vetors away from these points so as not to overlapthe foreground waveforms. For the data shown here, no samples were taken within 1.6ms of eahrossing. The remaining signal is then broken up into segments whose length mathes the duration ofa foreground spike. Eah suh segment represents a single vetor sample of the bakground proess.We study the distribution of the ensemble of these vetors along the prinipal omponents.Eah of the olumns of panels in �gure 5.4 shows the density of the loadings of the noise vetorson a seletion of the ensemble prinipal omponents, for an example maaque tetrode reording. Ineah olumn the upper and lower panels show the same data; the upper panel shows the densitydiretly, while the lower panel shows the log density, thereby revealing the details of the tails ofthe distributions. The rank of the omponent on whih the loadings are taken is indiated belowthe olumn. The dots represent the density histogram of the observed vetors. The ontinuous line
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PSfrag replaements p1 p32 p64 p96 p128Figure 5.4: The distribution of bakground noiserepresents a Gaussian density with the same variane as that of the observed loadings. It is learthat a Gaussian model for the bakground proess is reasonable, although a slight exess in kurtosisis evident in the �rst omponents.In the rest of this hapter we shall take the bakground to be Gaussian distributed. While�gure 5.4 suggests that this is reasonably well supported by the data, it is not exatly true in all ases(Fee et al : 1996b). Our hoie is driven by two observations. First, the Gaussian model onsiderablyredues the omputational demands of the various approahes that we will disuss, and is quiteimportant for eÆient separation of overlapped spike waveforms. Seond, we will introdue separatemodels for intrinsi spike variability that will be non-Gaussian. Thus, it is possible for some non-Gaussian bakground noise to be subsumed by these models. In situations where omputational ostis no objet, or where the data exhibit extreme departures from normality, an alternative distributionmay be used for the bakground. Most of the generative models to be disussed will arry throughwith little modi�ation. The largest ost will ome in the �nal stages of spike-time inferene, wherethe �ltering sheme we adopt is ritially dependent on Gaussian noise.A zero-mean Gaussian density is entirely spei�ed by its ovariane matrix. Sine the bakgroundproess is stationary with respet to the duration of the spike waveform | that is, the statistisof the bakground are the same at eah point along the spike | this ovariane matrix may beonstrained to have T�oplitz (diagonally striped) struture. Thus, the only parameters of the noisedistribution are given by the autoorrelation funtion of the bakground.While the noise is almost ertain be stationary on the time-sale of a single spike waveform,



101it may well be appreiably non-stationary on time-sales of hundreds of milliseonds or more. Inpartiular, as stimulus onditions hange, the rate of �ring of both foreground and bakground ellswill hange, quite probably in a orrelated fashion. Thus, by sampling the bakground far from theloations of the foreground spikes we run the risk of measuring a bakground quite di�erent fromthat whih atually a�ets the distribution of event waveforms.We an avoid this pitfall by biasing the sample of bakground vetors so that most are drawnlose to, though not overlapping with, the foreground spikes. One simple proedure to ensure thisit to sample a �xed o�set from eah foreground spike (after making sure that this would not resultin an overlap with a di�erent event). Another is to sample exatly in-between eah pair of adjaentevents (again making sure that the pair is far enough apart that this will not ause an overlap).Furthermore, in extended reording we an re-estimate the noise ontinuously, leading to an adaptiveestimate that an trak non-stationarities on the time-sale of seonds.5.7 Foreground EventsModels within the mixture shema (5.6) desribe a multivariate density for foreground events. Inthis setion we shall examine the proedure by whih a vetor representation in onstruted for eahforeground spike. We proeed in two steps: in the �rst the vetor elements are sampled diretlyfrom the voltage trae yielding relatively high-dimensional vetors; in the seond we use a low-ranklinear transform to redue this dimensionality through a tehnique similar to prinipal omponentsanalysis.5.7.1 Extration and alignmentIn the �rst stage, eah element of the event vetor will be a sample drawn from the reorded voltagetrae near the time of the orresponding threshold rossing. The extrated samples will be separatedby the Nyquist sampling period derived from the frequeny ontent of the signal, whih in turn isontrolled by an analogue anti-aliasing �lter. We order the samples forward in time, with all of thesamples from the �rst hannel appearing together, followed by the samples from the seond hannelif there is one, and so forth. In multihannel reordings, the orresponding samples on eah hannelwill always be simultaneous.A ommon approah to seleting the vetor oordinates is to opy a �xed number of valuesfrom the digitized reording before and after the sample at whih the threshold was rossed. This,however, does not ensure that the samples are taken at the same time relative to the underlying spikewaveform. This jitter in sampling introdues arti�ial variability in the extrated set of vetors asillustrated in �gure 5.5. Panel A shows one hannel of a small number of reorded spike waveforms,all originating from a single ell. The samples extrated from the waveforms are shown by the dots;
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200�s 50�VFigure 5.5: Alignment of spike waveforms.the solid lines beneath show the Fourier reonstrution of the underlying signal, assuming the therewas no power above half the sampling frequeny. The variation in alignment of the underlyingwaveform is evident, and results in \noise" in the samples that an reah up to half of the spikeamplitude. Furthermore, if the temporal jitter of the alignment is uniformly distributed within onesample interval, this apparent \noise" will also be almost uniform (its exat shape is set by thederivative of the underlying spike shape), making it diÆult to model. Fortunately it an be mostlyeliminated.There are two soures of jitter. For the sake of argument, let us assume that the underlyingspike waveform being measured has no intrinsi variability. In that ase, there is a well de�ned timeat whih the waveform rosses the threshold, and we would like to align the samples in the eventvetor with this time. The �rst soure of jitter is the bakground noise, the addition of whih to thereorded spike waveform will result in that waveform rossing the threshold at a slightly di�erentpoint from our referene time. The seond soure omes from the sampling of the waveform, whihis unlikely to be aligned with the spike and thus the rossing-time will probably fall between twosamples, rather than on one.The jitter and its assoiated artifat an be redued onsiderably by some amount of signalproessing. The e�et of the bakground on alignment an be redued by hoosing to align to aomposite landmark, rather than a single sample level. We will use the \entre of mass" of thepeak of the waveform, that is, the quantity � = R dt tS(t)= R dt S(t) with the integrals limited to



103the peak region of the spike waveform S(t). This is estimated from sampled data Sn by a formsimilar to �̂ = P tnSn=PSn, with the range of the sum limited to samples near the peak ofthe waveform. The sum over samples redues the e�et of the bakground on the alignment time.Temporal orrelations in the bakground will interfere with this redution, and so it is preferable touse the bakground-whitened signal (see setion 5.6).We an eliminate the sample-alignment jitter by resampling the waveform to align with the esti-mated entre of mass exatly, even if that estimate falls o� the original sample grid. This resamplingis ahieved by interpolation, either with ubi splines, or \exatly" using Fourier tehniques. Theubi spline interpolation is straightforward and will not be desribed here. The Fourier tehniqueproeeds as follows. Coneptually, we �nd the disrete Fourier transform of the sampled waveformand treat the oeÆients thus obtained as the oeÆients of a �nite Fourier series. Provided that theoriginal signal was sampled at or above the Nyquist sampling frequeny for its bandwidth, this seriessums to the original, ontinuous signal (barring boundary e�ets). We draw new samples from thisexat interpolant. The Fourier proess desribed is equivalent to a kernel smoothing of the disretesequene treated as a sum of delta-funtions, where a sin-funtion is used for the kernel. As mightbe expeted from a sin-funtion kernel, the interpolant will tend to ring near the boundaries of theinterpolated segment; it is important, therefore, to use a segment suÆiently long that the region ofinterest does not fall ritially lose to a boundary.The seletion proedure for the samples to be used in alulation of the entre of mass has notyet been disussed. It proeeds as follows. First, the maximum sample within a short time after thedeteted threshold rossing is identi�ed. In the region of this sample the waveform is \upsampled"by resampling from the interpolant at a higher rate. The region used extends suÆiently far on eahside of the maximum to enompass the entire �rst peak of the spike waveform. Next the ontiguousregion of samples that enompassed the maximum and lies above a threshold value is identi�ed.This threshold is hosen lower than the trigger threshold, so as to ensure that a large number ofsamples will fall above it. The threshold-based entre of mass alulation is preferred to use ofa �xed number of samples around the maximum beause it avoids the bias towards the entre ofseleted interval that is inherent in the latter approah.The entre of mass is alulated by, �̂ = P tn(Sn � a)P(Sn � a) (5.7)where the sums range over the ontiguous samples Sn of the upsampled waveform that lie abovethe threshold a. The subtration of the threshold from the sample values ensures that samples nearthe boundary of the seleted region have little e�et on the estimate, thereby proteting it fromnoise-driven variations in that boundary. A �xed number of samples, suÆient to enompass the



104extent of the spike waveform, spaed by the Nyquist period and aligned with �̂, are extrated fromeah hannel of the reording and arranged into the event vetor.The results of this alignment proedure are shown in �gure 5.5B. Clearly, the apparent noise hasbeen redued onsiderably. Given a group of waveforms known to originate from the same ell, wean measure the e�et of the alignment proedure by alulating the trae of the ovariane matrixof the spike waveforms after alignment. These values of are shown in �gure 5.5C for a number ofdi�erent algorithms. The dashed line represents alignment to the threshold rossing, while the solidline represents alignment to entre of mass. Furthermore, eah referene point was extrated usingvarying degrees of upsampling (that is, interpolation). Two observations are lear: both tehniquesimprove at about the same rate as �ner upsampling is employed; and furthermore, the entre of massreferene point provides a onstant bene�t over the threshold rossing at all upsampling fators. Thetwo di�erent soures of jitter, along with the e�etiveness of the proposed tehniques in overomingthem, are evident.5.7.2 Dimensionality redutionThe number of samples that goes into eah vetor might be quite large. For tetrode reordings inmonkey neoortex, for example, a 10kHz signal bandwidth is suitable, spikes last over a milliseondin time, and so the vetors will ontain more than 80 elements. Suh large vetors lead to twodiÆulties. One is purely omputational: alulations on lower-dimensional objets would be muhfaster. This is a partiularly relevant onern for the ase of on-line spike sorting. The seond isperhaps more serious. As the dimensionality of the modeled spae grows so does the number ofparameters, and so the quantity of data needed to obtain good estimates an beome very large.With insuÆient data, the danger of over-�tting is onsiderable.Fortunately, it is possible to redue the dimensionality of the spae eÆiently and without anyloss of useful information. In this disussion we will only onsider linear dimensionality-reduingtransforms. That is, we will seek a retangular matrix, R, by whih we an multiply the data vetors,Vi so as to obtain the lower-dimensional produts xi = RVi. The xi must retain as far as possiblethose features of the data set Vi whih are essential to lustering.Hand-piked featuresPerhaps the most ommonly adopted approah is to derive from eah waveform a small group offeatures whih might a priori be expeted to arry muh of the relevant information. For a multi-hannel eletrode, the most natural suh features are the peak potentials attained on eah reordingsurfae. For tetrodes, then, eah xi beomes a point in IR4. Figure 5.6 shows the events extratedfrom one tetrode reording, projeted into this basis. The 4-dimensional spae is represented by the6 possible 2-dimensional axial projetions. Thus, in the topmost panel the peak value on hannel 2
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107amount of the original data variane. We expet the PCA projetion to be useful beause lusteringis likely to be easiest in those diretions in whih the data are well spread out. However, it may notbe the optimal projetion.Figure 5.7 shows the projetion into the �rst four prinipal omponents (in order) of the samedata set as was shown in �gure 5.6. In this ase, our expetation that PCA will improve theseparation of the lusters is belied. Where six di�erent groups ould be made out in �gure 5.6,only four an be learly resolved here. Furthermore, the lusters are separated in only the �rst twodimensions. This experiene is not unommon when handling tetrode data.The optimal linear projetionIt is well known that we an obtain the optimal linear projetion a posteriori, that is, given knowledgeabout whih ell eah spike originated from. The proedure, known as linear disriminant analysis(LDA), selets the linear projetion in whih the separability of the lusters is maximized, that is,the ratio of the average distane between the lusters to the average spread of the data within eahluster is greatest.We introdue two new ovariane or satter matries, the between-lass satter �B and thewithin-lass satter �W . Let us identify the vetors that fall in the mth lass by Vm;i, and write themean of all suh vetors as �Vm, with �V being the overall mean as before. The number of vetorsin the mth lass will be written Nm, and the fration of the total that this number represents, �m(these frations being equivalent to the mixing probabilities of a mixture model). The two newsatter matries are de�ned thus�B = Xm �m( �Vm � �V )( �Vm � �V )T (5.9)�W = Xm �m 1Nm Xi (Vm;i � �Vm)(Vm;i � �Vm)T (5.10)The symmetrized ratio we wish to see maximized in the projeted spae is ��1=2W �B��1=2W . Justas in PCA, we �nd the eigendeomposition of the orresponding matrix in the higher dimensionalspae and then projet onto the spae formed by the leading few eigenvetors.It would appear that we an obtain little advantage from the disriminant approah, as the sat-ter matries given by (5.9) and (5.10) annot be alulated without aess to the very informationthat we seek. However, it is possible to view the LDA proedure in a di�erent light. Consider atransformation of the vetors Vi;m by the matrix ��1=2W to obtain new vetors ~Vi;m. Diret substitu-tion into (5.10) reveals that in this transformed spae, the within-lass satter, ~�W , is the identitymatrix. We shall refer to this as the lass-whitened spae. To now perform LDA, we need onlymaximize the between-lass satter ~�B . It is straightforward to see that the subspae thus identi�ed



108is exatly the same as would be obtained by disriminant analysis in the original spae. Indeed, thiswhiten-and-diagonalize algorithm is a ommon implementation for LDA (see, for example, Ripley(1996)). We an go one step further if we note that the total ovariane in the lass-whitened spaeis simply ~�T = ~�B + ~�W = ~�B + I . Thus the overall satter matrix is diagonalized in the samebasis as the between-lass satter matrix. LDA is equivalent to PCA in the lass-whitened spae.The key point of this analysis is the simple relationship �T = �B+�W . This implies that we needonly one of the lassi�ation-dependent satter matries in order to �nd the optimal disriminantsubspae, the other an be derived from the overall variane of the data. We do not know either ofthese matries, but we do have an (under)estimate of the average within-lass satter �W , providedby the diret measurement of the bakground. Thus, we an �nd a basis quite similar to the optimalLDA basis by taking the prinipal omponents in the noise-whitened vetor spae. An exampleof this proedure will appear in �gure 5.8.Robust prinipal omponent analysisInevitably, some events within the ensemble will fall far from any lusters. These are mostly theevents that ontain overlapped spikes as desribed in setion 5.4. Sine the data ovariane matrixweights points by the square of their distane from the mean, prinipal omponents alulated fromthe entire data set are partiularly sensitive to the number and loation of these outliers. It isimportant, therefore, to obtain the omponents in a manner that is robust to outliers.We will adopt an approah to robustness similar to that disussed in the ontext of the lusteringalgorithms in setion 5.4. We an view the PCA proedure as �tting a multivariate Gaussiandistribution to the data and then seleting a projetion on the basis of the �t distribution. Thisrelationship between PCA and Gaussian modeling has been explored quite extensively in the reentpast (Tipping and Bishop 1997; Roweis 1998). Following the argument made during the disussionof the impat of outliers on lustering, we replae the single Gaussian by a mixture of a Gaussianand a uniform density (the limits of the uniform density being set by the maximum extent of thedata). Reall from the disussion of setion 5.4, that the introdution of the uniform omponent willnot, on average, bias the estimates of the eigenvetors of the ovariane of the Gaussian omponent.It is these eigenvetors whih represent the prinipal omponent basis.Figure 5.8 shows the subspae obtained when this robust PCA is applied in the noise-whitenedspae. The six lusters are now very muh in evidene, and omparison with �gure 5.6 suggests thatthey are better separated. Figure 5.9 shows the data set projeted into the �rst four dimensions of theoptimal linear disriminant spae, alulated a posteriori from a mixture �t to these data. Clearly,for this reording, the noise-whitened robust PCA tehnique has identi�ed a subspae remarkablylose to the optimal one.
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111Outlier rejetionDimensionality redution arries with it the danger of reintroduing outliers into the main body ofthe ensemble. The danger arises in the ase of outliers whih fall outside the prinipal distributionalong the diretions whih are to be suppressed, but whose projetions onto the preserved spaeare not easily distinguished from those of normal spikes. Suh outliers may bias the estimation ofwaveform parameters. Fortunately, they an be eliminated by removing from the ensemble spikeswhih exeed a data-set threshold in the suppressed diretions. If the robust prinipal omponentsanalysis is used, they may be identi�ed as points for whih the uniform outlier omponent takessigni�ant responsibility.5.8 The Simple Mixture Model5.8.1 The modelOne the ensemble of vetors has been extrated, we proeed to �t a model drawn from the shema(5.6), with the observations Vi replaed by the proessed, lower dimensionality vetors, xi. Initially,we shall examine the simplest possible suh model.We begin with two assumptions. First, eah measured event vetor is taken to be independentof all the others. This implies both that the set of indiators fz�;i; z=;i; zm;ig are independent fordi�erent i (learly, for any given i, they annot be independent as only one an take the value1) and also that the spike shape measured depends only on whih ell �red, not on the previouswaveforms emitted by that, or any other, ell. This assumption, allows us to drop the onditioningon the past latent variables (whih was written \j �<i" in (5.6)). We write �r for P� (zr;i = 1) forr = �; =; 1 : : :M .Seond, the intrinsi variability in the spike shape is taken to be negligible, so that all of theobserved variation is due to the addition of random bakground noise. In this ase, eah of the spikewaveform densities Pm (xi) is a Gaussian, whose mean is the spike shape assoiated with the mthell and whose ovariane is that of the bakground proess. For noise-whitened data, this is theidentity matrix.Combining these assumptions with the mixture model shema (5.6), and restriting to theredued-dimensionality spae of the xi, we obtain the basi modelP (xi) = �� j2�I j�1=2 e� 12kxik2 + MXm=1�m j2�I j�1=2 e� 12kxi��mk2 + �=P= (xi) (5.11)where P= (xi) is the uniform density given in (5.5).



1125.8.2 Parameter estimationSuh a model is easy to �t. We employ the well-known Expetation{Maximization (EM) algorithm(Dempster et al : 1977; see hapters 1 and 2 of this dissertation) to �nd the maximum-likelihoodparameter values. Other tehniques, suh as gradient-asent or Fisher soring may also be used foroptimization. EM, however, o�ers some advantages.1. EM is, perhaps, the most exible of the various hill-limbing tehniques, being easily extendedto the more omplex models to be disussed below. As a result, it provides a uniform approahto the �tting of the various models within the shema. Further, it is easily adapted to thesituation in whih di�erent generative distributions are used for di�erent ells, whih will bedisussed in setion 5.11.2. Inremental variants of EM are provably orret (Neal and Hinton 1998). While suh proofsare derived in the ase of stati parameter values, they an give us on�dene that similarvariants will be well-behaved in the ase of slowly drifting parameters, allowing us to traksuh drift.3. The EM algorithm is very losely linked to the maximum-entropy deterministi annealinglustering tehnique (Rose et al : 1990). Indeed, the deterministi annealing approah anbe extended to any latent variable model where EM is used by the Relaxation EM (REM)algorithm of hapter 3 (see also Ueda and Nakano (1998)). This tehnique provides a initial-ondition-independent optimum, relatively immune to loal maxima.The EM iterations for simple mixture models suh as this were derived in setion 2.4. The urrentmodel has some additional onstraints whih further simplify the �tting proedure.The bakground omponent distribution in (5.11) is �xed; only the mixing parameter �� needsto be learnt. The uniform outlier distribution has parameters that desribe the region of support,A, in (5.5). We take this region to be retangular in the transformed spae of xi (in fat, the shapeis unimportant) and so it is spei�ed by two opposite verties. Provided the omponent is initializedwith at least some responsibility for eah of the data points, it is straightforward to see that themaximum likelihood solution will be suh that A is the minimal region that ontains all of the points.Furthermore, this value will ensure that in subsequent EM steps the omponent ontinues to havenon-zero responsibility for eah point and therefore maintains this parameter value. In pratie,then, we an set the parameter diretly from the data and update only the mixing omponent �=.The remaining omponents form a mixture of Gaussians. EM update rules for this model aregiven in setion 2.6. We omit, of ourse, the update of the ovarianes as they are known in advane.



113The update rules for parameter estimates at the nth step are thusrnm;i = �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) ; m = �; =; 1 : : :M�nm = Pi rnm;ijX j ; m = �; =; 1 : : :M (5.12)�nm = Pi rnm;ixiPi rnm;i ; m = 1 : : :MThey are iterated until onvergene.It is guaranteed that this proedure will onverge to a loal maximum of the model likelihood.However, the identity of that maximum is ruially dependent on the initial parameter values usedto seed the optimization. EM shares this dependene with other hill-limbing approahes, whether�rst or seond order. We an avoid it by using a Relaxation Expetation{Maximization (REM)tehnique as desribed in hapter 3. In this simple ase REM yields an algorithm very similar to thesimple deterministi annealing example treated by Rose et al : (1990). The di�erenes are primarilyin the presene of the mixing probabilities and the single non-Gaussian omponent.The REM update rules di�er only in the update of the responsibilities, whih beome, for arelaxation parameter �, rnm;i = �n�1m (P�n�1m (xi))�Pl �n�1l (P�n�1l (xi))� (5.13)(we have given the E-step aording to the REM-2 algorithm; see setion 3.5). The parameter � isinreased gradually from near 0 to 1, with the EM iterations being run to onvergene at eah valueof �. An extensive disussion of the properties of this algorithm is given in hapter 3The number of ellsIn the absene of simultaneous high-power mirosopy, we generally do not know how many fore-ground ells are to be expeted in an extraellular reording. As a result, this quantity must beestimated from the data along with the parameters of the spike waveform distributions. In themixture model framework this is equivalent to determining the orret number of omponents.As was pointed out in setion 2.7.3, this is essentially a model seletion problem. We havealready examined at some length in setions 1.3 and 2.7.3 tehniques appropriate to arrying outthis seletion. The use of the REM algorithm for learning makes available a partiularly eÆient ande�etive framework within whih to apply these tehniques, whih we have alled asading modelseletion. This was disussed in setion 3.6.For the most part these tehniques, desribed in part I of this dissertation, an be applied withoutmodi�ation. Two omponents of the mixture, the noise model P� (�) and the overlap model P= (�)are always assumed to be present; thus, the model seletion hooses between models with three or



114more omponents.5.9 Spike Shape VariabilityThe simple mixture model assumes that the ation potential urrents in eah foreground ell are thesame eah time the ell �res, so that the only variability in the foreground spike waveform is due tothe superposition of bakground spikes. In fat, this is rarely true.Biophysially, one an imagine many reasons why the urrents owing aross the somati mem-brane might be variable. The onentrations of ions inside or outside the ell may vary. Ligandgated hannels (for example, alium-dependent potassium hannels) may open on the membrane.A varying fration, not large enough to prevent an ation potential, of the sodium hannels maybe inativated. Many of these onditions well depend on the reent ativity of the ell, and thisdependene will be examined more losely later. For the present, we will simply treat it as randomvariation.5.9.1 Ratio methodsSome authors have argued (Rebrik et al : 1998; Zhang et al : 1997; Rinberg et al : 1999) that al-though the underlying ation potential shape hanges under these onditions, the ratios of the spikewaveforms on the di�erent hannels should remain almost onstant (disturbed only by the additivebakground noise). These ratios may be between maximal spike amplitudes, or between the magni-tudes of the Fourier oeÆients in various frequeny bands. Suh arguments are based on the samemodel as the ICA-based algorithms desribed earlier. The spikes reorded on the di�erent hannelsare taken to be due to urrents at a single point soure whih have been �ltered di�erently by theextraellular medium through whih they passed and by the eletrode tip. If the soure waveform(in the Fourier domain) is S(!) the reorded signal on the nth hannel will be Rn(!) = Fn(!)S(!)where Fn is some linear �lter. As the soure hanges, then, the spike shapes also hange; but bytaking the ratio of the reorded spike shapes Rn(!)=Rm(!) = Fn(!)=Fm(!) we divide out the souresignal and obtain a stable measure.One again, the arguments advaned against the appliability of ICA-models in, at least, neo-ortial tissue, apply here. The most severe is the fat that the simple model of one-soure-multiple-detetors does not hold in preparations where the ation potential travels over signi�ant setions ofell membrane. In neoortial and hippoampal pyramidal ells, for example, ation potentials areknown to propagate over the dendrite (Stuart and Sakmann 1994; Stuart et al : 1997) and di�erenteletrode tips will reord spikes due to di�erent parts of the membrane (Buzsaki and Kandel 1998).In disussions of spike variability a further diÆulty presents itself. The spread of the ation poten-tial aross the membrane is known to be variable, depending on the reent �ring ativity of the ell



115(Spruston et al : 1995; Svoboda et al : 1997). Thus, not only are the soures reorded by the di�erenteletrode tips spatially distint, but these soures an vary in a distint manner. As a result, thereis reason to expet ratio methods to be inadequate in suh preparations.5.9.2 Models of the variabilityUnable to remove the intrinsi variability in the waveforms, we seek to model it. In this setion willwe disuss models in whih the underlying spike shapes are independent and identially distributed.Following this treatment, in setion 5.10, we will disuss models whih apture the dependene ofthe spike shape on the reent �ring history of the ell.Unonstrained GaussiansOne approah, attrative for its mathematial simpliity, is to model the underlying spike shapevariability as Gaussian. If this model were orret, eah observed spike waveform from a given ellwould be the sum of two Gaussian random variates, and thus, would itself be Gaussian distributed.We have no independent data soure from whih to establish an appropriate ovariane matrix forthe intrinsi variability, and so the ovariane must be learned along with the mean spike waveform.The measured bakground ovariane an only provide a lower bound.The general EM iterations for the arbitrary Gaussian mixture are as in (5.12), with the additionof a re-estimation rule for the mth ovariane matrix�nm = Pi rnm;i(xi � �nm)(xi � �nm)TPi rnm;i (5.14)If the bakground ovariane has been whitened, we an enfore the lower bound set by the bak-ground by diagonalizing the �nm obtained in this way, resetting any eigenvalues less than unity to1, and then rotating bak into the original spae. If V is the matrix of eigenvetors of �nm, and thebinary operator max(� ; �) is taken to at element by element�nm  V max(V T�nmV; I)V T (5.15)In the ase of the bakground proess, the superposed nature of the signal led us to expet it tobe approximately Gaussian. In ontrast, we have no reason to believe that the intrinsi variabilityshould give rise to a Gaussian proess, and so the validity of this model will rest entirely on theexperimental evidene. In pratie, ell waveform distributions in the maaque data set seemed to bewell approximated in this fashion only if they did not �re bursts of losely spaed ation potentials.The ase of the bursting ells will be disussed more thoroughly below.One issue introdued by the use of unonstrained Gaussians is the multipliity of parameters. In



116aD dimensional spae, eah omponent of the simple Gaussian model ontributes onlyD parametersto the model. In ontrast, the unonstrained Gaussian ontributes D(D+1)=2+D parameters. Asthe number of parameters inrease the dangers of over-�tting and of being trapped in loal maximainrease. The REM algorithm an alleviate the seond of these to some extent, however strategies toredue the omplexity of the model are useful. On approah is to onstrain the number of non-uniteigenvalues (in the bakground-whitened spae) in eah model. This leads (in the unwhitened spae)to a mixture model, analogous to the mixture of fator analyzers model of Ghahramani and Hinton(1996). We will not explore this any further here, turning instead to a non-Gaussian generalization.Hierarhial Gaussian mixturesAs was pointed out above, there is no a priori reason to expet the intrinsi variability to be Gaussiandistributed. While suh a model may provide a suessful approximation in ertain examples, it isinsuÆient to aount for all of the observed data. Therefore, we will now investigate a non-parametri alternative.The mixture model, whih we have taken as the basi statistial model underlying probabilis-ti luster analysis, has another rôle in the statistial literature. A mixture of relatively simpleomponents (suh as Gaussians) is often used to approximate a more ompliated density, aboutwhih little is known a priori. Suh an approah is alled \non-parametri" beause there is noexpliit generative model of the density. It is not suggested that the data are in fat generated byany sort of mixture proess. Rather, the mixture model is being used as an extremely exible sub-strate for density approximation. (Compare the use of radial basis funtion networks in the funtionapproximation literature).Our alternative, then, is to �t an hierarhial mixture model in whih the generative dis-tribution for eah ell is itself a mixture. We shall employ a mixture of Gaussians, eah with aovariane matrix equal to that of the measured bakground noise. In a sense, this approximationmay be viewed as identifying a small handful of \anonial" spike shapes, whih span the range ofpossibilities. The generative proess selets one of these shapes and then adds bakground noise toprodue the observed spike waveform. In fat, the intrinsi waveform of the spike (before additionof the bakground) is not disrete in this fashion. This problem is mitigated by the fat that theGaussian density provides signi�ant probability mass in the region in between the seleted points.We may think of the model as \tiling" the true density with a small set of identially shaped ellipses,the shape being set by the bakground ovariane.Let us write down the density that results from suh a model. Suppose there are M lusters,with mixing proportions �m. Eah luster is modeled by a mixture of P Gaussians, with mixing pro-portions �m;p, means �m;p and unit ovarianes (we assume that we have whitened the bakground



117proess). The parameter set for the model is � = f�mg [ f�m;pg [ f�m;pg. We have,P� (X ) =Xi Xm �mXp �m;p(2�)�d=2e� 12kxi��m;pk2 (5.16)If we distribute the fator �m into the sum over p and write  m;p = �m�m;p it beomes lear thatthis density is idential to that derived from a mixture of R = M � P Gaussians. Indeed, anyhierarhial mixture in whih the total number of Gaussians is R, even if there are unequal numbersof omponents used to desribe eah ell, will yield the same form of the density.This poses a serious problem from the point of view of model seletion. Conventional modelseletion proedures may indiate the orret density from among a group of andidates. But, howare we to deide whih omponents belong to whih ell? Probabilistially, any suh assignmentwould be equally valid, inluding the \at" option in whih every omponent represents a singleell. In short, from a probabilisti point of view, there is no suh thing as a hierarhial mixture!We may hoose to exploit additional information in order to group the Gaussians.One approah is as follows. Begin by �tting a mixture of a large number of Gaussians (all withunit variane) to the data. The atual number is not of great importane, provided it is signi�antlylarger than the number of ells expeted. It may be hosen arbitrarily, or by a model seletionmethod. Then, form a graph, with one node for eah Gaussian. An edge between two Gaussians isinluded if the densities exhibit a signi�ant degree of overlap, that is, if the distane between theirmeans is smaller than some hosen threshold. Eah of the onneted subgraphs that results is takento represent a single ell. Suh an approah would be similar in spirit, although di�erent in detail,to that proposed by Fee et al : (1996a) (a detailed disussion of the relationship to their method isoutlined in setion setion 5.14).Alternatively, the additional information might be enoded as a prior on the parameters withina group. For example, we might expet that the means of the omponents that desribe a single ellwill lie lose together, and will themselves be drawn from a Gaussian density of small variane.In both these approahes, one or more ontrol parameters must be hosen arbitrarily: either theoverlap threshold for the graph formation, or the form and extent of the prior. In many ases, theseparameters may be hosen anywhere within a fairly broad range of values, with idential results.However, it is in the ase when the waveforms from two or more ells are very similar, and wherethe model seletion proedure is thus most important, that the results beome most sensitive to thehoie of parameters.In setion 5.10.2 we will introdue a third approah to the resolution of the ambiguity in thehierarhial mixture likelihood, suitable for modeling variability intrinsi to bursts of ation poten-tials. There, a dynami model is proposed, in whih the omponents representing a single ell aretied together by a learnt Markov transition struture. In that view, omponents belong to the same



118ell provided that the timing of spikes that fall within them is onsistent with a simple burst model.5.10 Dynami ModelsIn the models disussed thus far eah spike waveform is generated independently of all others. Weturn now to models in whih the latent variables are dependent on eah other.5.10.1 Refratory periodOne simple feature of the �ring proess has not yet been aounted for in any of our models. Thisis the ourrene of the refratory period, a short period after eah ation potential during whihthe ell that �red will not �re again. As it stands, the mixture model has no representation of thetime of any event. We will disuss shortly a model in whih time is expliitly represented. For themoment, though, it is possible to aount for the refratory period by a simple modi�ation to thebasi mixture model. The method presented in the following may be applied to any of the variousmixture models we disussed above; for simpliity we shall develop it in the ase of the simpleGaussian mixture of setion 5.8.The joint data log-likelihood for suh a model was given in setion 2.6`X ;Z (�) =Xi Xm zm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (2.17)In the refratory ase this expression remains valid for most data and parameter values; the exeptionis provided by sequenes of zm;i that violate the refratory onstraint by assigning to the same ellevents that fall within a refratory period of eah other, for whih the log-likelihood diverges to�1. In taking the expeted value of the log-likelihood, however, the probability of suh a sequeneis 0, and so we an disount this possibility. The expeted log-likelihood under the distributionP�n�1 (Z j X ) retains the general mixture form of (2.8)Qn(�) = Xi Xm Ezm;ijxi;�n�1 [zm;i℄ log�mP�m (xi)= Xi Xm snm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (5.17)exept that, as we will see below, the expeted values of the zm;i are di�erent from before. Toremind ourselves of this di�erene we use the notation snm;i for these new responsibilities, reservingthe symbols rnm;i for the responsibilities in the non-refratory ase.To obtain the new responsibilities, onsider �rst the simple ase where only two spikes have beenobserved and the seond appears within a refratory period of the �rst. We have a joint distribution



119over zm;1 and zm0;2 with P (zm;1; zm0;2) =8<: 0 if m = m0rnm;1rnm0;2=Z otherwise (5.18)where Z = PmPm0 6=m rnm;1rnm0;2 is an appropriate normalizing onstant. The expeted values weseek are then just the marginals of this joint distribution, for example,snm;1 = Xm0 6=m rnm;1rnm0;2=Z = rnm;1(1� rnm;2)=Z (5.19)where we have used the fat that P rnm0;i = 1.This result easily generalizes to the ase of many spikessnm;i = rnm;iZi Yi;j refratory(1� rnm;j) (5.20)where Zi is the appropriate normalizer and the produt is taken over all spikes that are fall withinone refratory period (before or after) the i spike.The M-step is still a weighted Gaussian estimation as before, the weights now being the newresponsibilities snm;i.5.10.2 Sparse hidden Markov modelsBurstsThe intrinsi variability of spike waveforms is not entirely random for all ells. Many pyramidalells, both in neoortex and in the hippoampus, sometimes �re ation potentials in bursts. Ationpotentials within a burst are losely spaed (as little as 1ms apart), and the ell does not haveenough time to reover from one before the next begins. Thus, the membrane urrents assoiatedwith later ation potentials are likely to be smaller, and a smaller portion of the dendriti membranewill partiipate in suh spikes. As a result, the spike waveforms reorded later in the burst may bequite di�erent from those assoiated with isolated ation potentials.In this setion we will onstrut a statistial model to desribe the hange in ation potentialduring a burst. At �rst glane, one might think that a suÆient model would have the expetedspike waveform depend on the immediately preeding interval. In fat, the situation is onsiderablymore omplex than this. For example, the third spike in a regular burst will usually be smaller thanthe seond, even though the preeding interval is the same. At the same time, it is true that aftera longer interval the ell has had more time to reover and so the spike waveform is loser to thenormal ase.



120Faed with the omplexity of the mehanisms underlying the hange in spike waveform during aburst, we will not attempt a biophysial model. Instead, we will use a simple statistial model thatwill apture the variation empirially.A statistial modelThe statistial model that we onsider is a onstrained version of the Hidden Markov Model (HMM).Eah ell is modeled by a single HMM, whih is independent of all of the others. In pratie, it isoften useful to use HMMs to model only a subset of the ells in a reording | those that exhibitbursts | and use Gaussians or other stati distributions to desribe the others.The output symbols of the underlying Markov model are either omplete spike waveforms rep-resented as vetors (the events of the previous disussion) or a zero vetor. The vast majority ofsymbols in any string generated from the Markov model will, in fat, be zero and so these models aresparse in the sense of hapter 4. The observed vetor is the sum of the Markov model output and arandom vetor drawn from the bakground proess. Thus one may think of the output distributionsof the states of the HMM as Gaussians, entred either on zero or on a mean waveform whih is tobe learned. The output density is thus idential to that of the hierarhial Gaussian mixture modeldisussed in setion 5.9.2. The di�erene is that events are not hosen from this density indepen-dently. This hange in the model provides another approah to breaking the ambiguity inherent inthe hierarhial model.A Markov model desribes a disrete time proess. We hoose to disretize time in fairly largesteps, usually 0.5ms. The measured output symbol for any given time-bin is a spike waveform if theidenti�ed time (that is, the peak or entre of mass) of some event falls within that bin. Otherwise,the output symbol is taken to be 0.The transition matrix of the Markov model is onstrained so as to embody the struture expetedfrom a bursting ell. This onstrained struture is skethed in the left-hand part of �gure 5.10. Eahof the grey irles in this �gure represents a state of the HMM. The left olumn of states all have zerooutput symbol and represent the ell in a non-�ring state. States in the right olumn represent �ringevents in the ell and have non-zero output distributions. These distributions are indiated on thestylized event feature plot to the right. Eah state is assoiated with a Gaussian output distributionindiated by an elliptial boundary. Together, these distributions \tile" one of the elongated lustersin the data set.Eah heavy arrow in the HMM diagram represents an allowed transition: where there is no arrowthe transition probability is set to 0 and remains at this value throughout the learning proess. Thestates are arranged in a \ladder" with states lower down the ladder orresponding to greater reent�ring (and therefore greater inativation of hannels). The upper left-hand state is the \ground"state, in whih the ell will be found after a long period of inativity. Only two transitions are
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Figure 5.10: The HMM transition struturepossible from this state: the ell either �res an ation potential, making the transition to the stateon the right, or else remains in the same state. One in the �ring state, the ell makes a transitionto a non-�ring state below the ground state, thus preserving the memory of the reent �ring. Fromthis state, the ell an �re again, with a di�erent output distribution, in whih ase it subsequentlymoves further down the ladder of states; it an remain in the same state; or it an make a transitionup the ladder. This basi pattern is repeated for eah of the rungs of the ladder.Some features of this struture are worth pointing out. The only way for the ell to transitiondown the ladder is to �re. One it �res it must enter a non-�ring state and so annot spike insuessive time-bins; for 0.5ms bins this e�etively enfores a short refratory period. If the ell�nds itself some distane down the ladder, but does not subsequently �re for a number of time-steps, it will relax bak to the ground state with an exponential deay pro�le.Learning with HMMsA learning algorithm for mixtures of sparse HMMs was disussed in setion 4.4. Sparse HMMs werede�ned in that setion to produe two types of output: either a null symbol, �, or a numerial value.When onsidering mixtures of sparse HMMs we introdued a third type of output, the symbol =,whih was deteted when two or more of the omponent HMMs emitted non-null outputs in thesame time-step.In the urrent appliation an output is de�ned for eah 0.5ms time-bin as follows. If no event



122has its peak (or entre of mass) within the bin the observation is taken to be �. In most ases,if an event does peak within the bin, the observation is the redued vetor representation of thatevent. However, if the event has been lassed as an outlier, then the symbol = is observed. Outlierevents are identi�ed in three ways during our proedure. First, the waveform may exhibit a doublepeak or other heuristially exluded property during event extration. Seond, the event may falloutside the prinipal subspae during dimensionality redution. Finally, it may be assigned withhigh probability to the outlier mixture omponent. This last poses a problem, sine we annot knowbefore �tting is omplete whih events are to be lassi�ed in this way; but we also annot �t themixture of HMMs aurately without knowing whih observations are ollisions. In pratie, thisirularity is resolved by dynamially marking as a ollision any event that is assigned to the outlierluster with a probability that exeeds some set threshold on a given iteration.Given these de�nitions, the learning algorithms of setion 4.4 an be employed to optimize themixture parameters.5.11 Mixed ModelsThere is no reason to expet that all of the foreground ells present in a partiular reording willexhibit the same type or degree of variability. A single site may yield some ells that tend to �re inbursts of ation potentials; some that �re isolated, but stohastially variable spikes; and some thatexhibit no detetable intrinsi variability at all. Thus, it is often useful to be able to ombine thethree types of waveform model we have disussed in this hapter | the �xed ovariane Gaussianof the simple mixture model; the mixture of Gaussians of the hierarhial mixture model; and thesparse hidden Markov model | in a single overall mixture.The framework in whih to do so is provided by the mixture of sparse hidden Markov modelsdisussed above, and at greater length in setion 4.4. In partiular, we observe that both the single,�xed ovariane Gaussian and the mixture of �xed ovariane Gaussians may both be expressed asspeial ases of the sparse HMM, with transition matries onstrained di�erently from the \ladder"of �gure 5.10.The simple �xed-ovariane Gaussian model is equivalent to a two-state HMM. One state (say,the �rst) has null output, the other has an output distribution given by the Gaussian model. Toreprodue the basi model exatly, the olumns of the transition matrix must be idential. Theaugmented transition matrix (inluding the initial state probabilities; see setion 4.1.1) is of theform Tm = 0BBB� 0 0 01� �m 1� �m 1� �m�m �m �m 1CCCA (5.21)



123Here �m represents the �ring probability per time-step assoiated with the mth model of the overallmixture. It is related to the mixing probability �m as follows. Suppose the total number of eventsin the training data (with ollisions ounted twie) is N and the total number of HMM time-stepsis T . Given the stationarity assumption of the mixture, we expet there to be �mN spikes from themth ell in this data, and so the probability of a spike per time-step is �m = �mN=T .The transition matrix given in (5.21), allows for the ell to �re in adjaent time-bins with prob-ability �2. In fat, it is onvenient to exploit the HMM transition struture to enfore a refratoryperiod without requiring the sheme of setion 5.10.1. In setion 5.10.2 we ahieved this by requiringthat the model return to a null state after �ring. For 0.5ms time-steps, this enfored a short, butreasonable refratory period. Thus, we alter the transition matrix toTm = 0BBB� 0 0 01� �m 1� �m 1�m �m 0 1CCCA (5.22)The value of the �ring probability �m must now be orreted. The new relationship is �m =�mN=(T � �mN).The mixture of Gaussians model for a single ell is implemented similarly. For a P omponentmixture the HMM now ontains P + 1 states, one with null output (again, we take this to be �rst)and the others with output distributions orresponding to the omponents of the mixture. If themixing probabilities of the ell model are �p;m and the overall mixing probability of this ell modelwithin the hierarhial mixture is �m we de�ne densities by �p;m = �p;m�mN=(T � �p;m�mN).We write �m =Pp �p;m. Then the augmented transition matrix, orreted to enfore a refratoryperiod, is given by Tm = 0BBBBBBBBB�
0 0 0 � � � 01� �m 1� �m 1 � � � 1�1;m �1;m 0 � � � 0... ... ... . . . ...�P;m �P;m 0 � � � 0

1CCCCCCCCCA (5.23)
Having onverted eah non-Markov model into a sparse hidden Markov model whose transitionmatrix embodies the appropriate struture, we an then proeed to learn the parameters using thealgorithm desribed in setion 4.4. In general, learning in suh a model is more omputationallyexpensive than in the basi mixture models. Thus, if no ells in a given data set appear to �re inbursts, so that the ladder-struture HMMs will not be needed, it is preferable to use the mixturemodel diretly, possibly with the refratory modi�ation of setion 5.10.1. However, one the pa-rameters are learned, the orresponding SHMMs an be onstruted by the proedure given in this



124setion. These SHMMs an then be used for on-line spike reognition, as desribed in setion 5.13.5.12 On-line LearningIn many appliations of spike sorting, reognition must be arried out in lose to real time. Insienti� experiments, for example, feedbak in the form of sensory stimulus hanges or even neuralstimulation might need to be triggered within milliseonds of a partiular pattern of ation potentialsbeing reorded. In neural prostheti appliations, neural ativity needs to be transformed into a\motor" ation on a similar time sale.For the most part, suh demands onstrain the inferene, or spike reognition, stage of sorting(to be disussed below) rather than the learning. We may ollet an initial segment of data withoutthe real time demands, train on these data o�-line and then perform on-line inferene.However, it is useful to update the parameter estimates as more data are olleted. For onething, these updates will re�ne the estimates, yielding progressively more reliable data. As a result,it might be possible redue the length of the initial training segment, leading to a smaller trainingdown-time prior to on-line reognition.More important, though, is the fat that in almost all reording situations, the parameters arelikely to drift over time. Suh drift generally ours due to minute hanges in the relative positionsof the ells and eletrodes, thus hanging the reorded spike waveforms. Even without suh physialdisplaement, however, the statistis of spiking of the di�erent ells, whih enter into the models inthe form of mixing parameters or transition probabilities in the HMM, may hange. For example,ells may swith between more or less bursty modes of �ring in assoiation with varying levels ofdrowsiness (or anesthesia) in the subjet.In this setion we disuss tehniques for on-line parameter adaptation. Similar tehniques willallow both re�nement of the estimates as new data ome in, as well as traking of slow drift in theparameters. We disuss these tehniques as though the parameters are to be updated eah time anew spike is observed. In pratie this level of immediay is unneessary, and it is more eÆient toollet spikes for a short period (say 1s) and apply the updates in a bath form.5.12.1 Inremental EMWe showed in setion 1.8 (following Neal and Hinton 1998) that the free energy interpretation of EMan be used to justify some variants on the basi algorithm. One of these is an inremental versionin whih the parameters are updated one data point at a time. This approah is valid in aseswhere both the observations xi and the latent variables yi are independent and drawn from �xeddistributions, and so the onditional distribution P� (Y j X ) fatorizes over the yi. Of the modelswe have disussed here, this is true only of the mixtures.



125The iterations for the inremental EM algorithm, in the notation of setion 1.8, are as follows.IE-step: Choose some i. Maximize Fi(pi; �n�1) and leave the remaining pj ; j 6= i unhanged.pni (yi) = Pn�1 (yi j xi) (5.24)pnj (yj) = pn�1j (yj)M-step: Maximize F with respet to � holding p onstant.For a mixture model, the probability distribution pni (yi) is simply the set of responsibilities rni;m,m = 1 : : :M and the M-step involves maximizing the weighted log-likelihood Pi rni;mP�m (xi) foreah omponent.The on-line version of this algorithm is di�erent only in that there is no hoie of i. The dataare simply handled, one by one, as they arrive from an unlimited stream. The M-step update onlyinvolves, of ourse, the data olleted to this point. We shall assume that the initial parameter valueshosen are very lose to the true values, being the result of training on a separate, o�-line, data set.This assumption means that even though data are not revisited, the responsibilities assigned to themremain reasonably valid. An alternative approah is outlined in the next setion.Fortunately, for Gaussian mixtures (and indeed many other mixture models) it is not neessaryto store all of the past responsibilities and observations in order to update the parameters in theM-step. We derive the M-step update rule for a general mixture of unonstrained Gaussians; theresult for the various onstrained Gaussian models used for spike sorting will follow immediately.The usual M-step updates for a Gaussian mixture, given N data points, are�nm = PNi=1 rnm;iN (5.25)�nm = PNi=1 rnm;ixiPNi=1 rnm;i (5.26)�nm = PNi=1 rnm;i(xi � �nm)(xi � �nm)TPNi=1 rnm;i (5.27)The (N + 1)th data point, x� arrives, triggering the (n + 1)th update of the parameters. Wealulate the responsibilities, rm� of eah of the omponents for this point in the usual fashion.Aording to the inremental EM algorithm, then, the new estimate for �m is�n+1m = 1N + 1 N+1Xi=1 rn+1m;i = 1N + 1  NXi=1 rnm;i + rm�! = NN + 1�nm + 1N + 1rm� (5.28)where we have used the fat that rn+1m;i = rnm;i for all i < N + 1. Similarly, we �nd that (writing



126Rnm =PNi=1 rnm;i = N�nm)�n+1m = 1Rn+1m N+1Xi=1 rn+1m;i xi = 1Rn+1m  NXi=1 rnm;ixi + rm;�x�! = RnmRn+1m �nm + 1Rn+1m rm�x� (5.29)Finally, the orresponding result for �n+1m follows by rewriting (5.27) as�nm = PNi=1 rnm;ixixTiPNi=1 rnm;i � �nm�nmT (5.30)from whih we �nd that�n+1m = RnmRn+1m ��nm + �nm�nmT�+ 1Rn+1m rm� x� xT� � �n+1m �n+1m T (5.31)5.12.2 Parameter adaptationWhen the update algorithms desribed above are used in an on-line fashion (without revisiting anydata), the impat of eah sueeding point on the parameter estimates grows progressively smaller.If the parameters are varying slowly, this is an unfortunate state of a�airs, sine information aboutthe new values will be inorporated at an ever dereasing pae. Indeed, even if the parameters arestable, but the initial estimate of the model was far from the true value, this state of a�airs is nottoo promising. The reason (stated here in terms of the inremental EM algorithm for mixtures,although it applies equally to the HMM) is that the responsibilities that were alulated for the �rstfew data points beome inreasingly inaurate as the model is optimized. While the e�et of theseearly values on the estimate is diluted by ever more inoming data, leading to the orret result inthe limit, onvergene would be more rapid if we had a mehanism to \forget" them. (Note that theinremental EM algorithm as desribed by Neal and Hinton (1998) avoids this problem by revisitingall the data with some probability).Notie that eah of the update rules derived in the previous setion (5.28), (5.29), (5.31) has theform of a weighted sum of old information and new. The form of amnesia we seek an be ahievedby the simple measure of adjusting the weights in this sum to favour the new data.One approah is suggested by Nowlan (1991). In this view, the optimal parameter values aremaintained by a group of suÆient statistis; for the mixture of Gaussians, these statistis areRnm = Pi rnm;i, Snm = Pi rnm;ixi and SSnm = Pi rnm;ixixTi . Knowing the values of these statistisat any iteration n we an alulate the parameter values �nm = Rnm=PmRnm, �nm = Snm=Rnm and�nm = SSnm=Rnm � �nm�nmT . The update rules derived in the previous setion an then be easilyexpressed in terms of these suÆient statistisRn+1m = Rnm + rm� ; Sn+1m = Snm + rm� x� ; SSn+1m = SSnm + rm� x� xT� (5.32)



127The proposal made by Nowlan (1991) introdues a fator  < 1 to regulate the deay of olderinformation. The suÆient statisti update rules are replaed with these:Rn+1m = Rnm + rm� ; Sn+1m = Snm + rm� x� ; SSn+1m = SSnm + rm� x� xT� (5.33)We an thus derive the parameter update rules under this approah. If we write Nne for PmRnmwe obtain, �n+1m = Rn+1mPmRn+1m = Rnm + rm�Pm (Rnm + rm�) = Nne �nm + rm�Nne + 1 (5.34)and �n+1m = Sn+1mRn+1m = Rnm�nm + rm� x�Rn+1m = Nne �m�nm + rm� x�Rn+1m (5.35)with a similar result for the ovariane update. Comparison with (5.28) and (5.29) suggests thatthe term Nne plays the rôle of an e�etive number of data. Note that Nn+1e = Nne + 1. Thus ifNne = (1� )�1 then Nn+1e = Nne and otherwise Nn+1e > Nne . The e�etive number of data limbsuntil it reahes the value (1� )�1 and then remains onstant. Thus we may think of this approahas limiting the e�etive number of data used.Suh an approah is seen to be reasonable in situations where the parameters hange at a ratelinked to the number of data measured (or in the ase where suh adaptation is needed to speedon-line onvergene given poor initial parameter values). In the spike sorting example, however, weexpet the parameter variation to our at a rate onstant in time, even if the overall spike ratevaries. We would like the e�etive number Nne to be dependent on the reent �ring rate of the ellsbeing reorded.The formulation in terms of an e�etive number of data makes this easy. We replae the termNne in the above by a �ring-rate dependent term that varies in time Ne(t). The dependeny on�ring rate might set Ne(t) to the number of spikes reorded within a window. It should be borne inmind that this approah is di�erent to simply using only the last Ne(t) data points to estimate theparameter values. The estimates are based on all previous data; however, the estimate derived fromthese data is weighted as though it was derived from only Ne(t) points.5.12.3 Limited look-ahead forward{bakwardThe sheme desribed in the previous setion is appropriate for on-line adaptation of the parametersof mixture models, whether of the simple Gaussian type, or more elaborate. What about the dynamihidden Markov model, proposed in setion 5.10.2? At �rst glane, the situation appears impossible.Reall that to perform even a single E-step of the learning algorithm requires a traversal throughall of the data by the forward{bakward algorithm. It would seem, then, that we annot even beginto learn the parameters of the model until all of the data have been olleted.



128Of ourse, this is not exatly true. If the parameters were stationary we would expet thatparameter estimates derived from a moderately long sequene of data would be reasonable, anda�eted only marginally by the inorporation of additional observations. The ritial point is thatthe inuene of later observations on earlier state and transition estimates is diminished by mixingin the Markov hain. Thus, although in prinipal the bakward pass of the inferene algorithmshould begin at the very end of the data set, if it is instead begun earlier, only the immediatelypreeding state estimates (those within one mixing time) will be substantially inorret. This featureis exploited by Boyen and Koller (1999) in the ontext of general dynami probabilisti networks.For the sparse hidden Markov model the situation is further improved, beause, as was argued insetion 4.3.2, long strethes of null observations tend to \reset" the model. \Long," in this ontext,refers to the mixing time of the null-state restrited Markov hain; in the spike sorting ontext thisis the time taken for a ell to reset after a burst and thus may well be on the order of 20ms.The inremental approah to learning the HMM thus involves re-running the bakward pass ofthe forward{bakward algorithm only as far bak as the last segment of moderate silene. To beonservative, one might disount state estimates in the M-step until they beome \proteted" by astreth of nulls, although in pratie this rarely makes any di�erene. In any ase, if one realigns thenotion of the \urrent" time to the last estimate that an be trusted, we may think of this proedureas taking into aount a short sequene of data in the future. Thus the name limited look-aheadforward{bakward algorithm.As new state information beomes available it is ombined with the earlier information by aproedure analogous to (5.29) and (5.31), with the state estimates snp;m;i replaing the responsibilities.The update of the transition matrix is similar in spirit to (5.28), but di�ers slightly. We write tpq;m;�for the new transition estimate and Snq;m =PN�1i=0 snq;m;i to obtainTn+1pq;m = PN+1i=1 tn+1pq;m;iPNi=0 sn+1q;m;i = PNi=1 tnpq;m;i + tpq;m�Sn+1q;m = Snq;mSn+1q;m Tnpq;m + 1Sn+1q;m tpq;m�: (5.36)For non-stationary parameters we an implement adaptive rules by weighting the updates by ane�etive data size just as in (5.33) and following. In this ase, sine a new estimate is generated atevery time-step whether a spike ourred or not, we do not need to worry about varying the e�etivenumber of data, and we simply hoose a �xed value of the deay onstant .5.13 Spike Time DetetionGiven the model struture and parameters, the third and �nal stage of the spike sorting proess isthe inferene of the �ring times. To perform this inferene aurately, and in partiular to resolveoverlapped spikes, we will return to the full superposition model (5.2), using the distributions for



129the �ring indiators m;� and waveforms Sm;� derived from the learnt mixture model. Many, ifnot most, previous spike sorting approahes have not made this distintion: inferene is performedon extrated events using a luster assignment model and is not atively distinguished from thelearning of the model. Suh an approah leaves three issues unresolved. First, the threshold-basedevent detetion heuristi of setion 5.5 an be improved upon one the true spike shapes have beendetermined. Seond, if all events are to be lustered, the sorting proess must our o�-line, rulingout experiments in whih rapid feedbak about the ells' responses is needed. Third, the lusteringproedure has disarded the superposed events, or else olleted them into an unresolved overlapluster, rather than resolving them into their onstituent spike forms.The orret solution to the inferene problem involves a searh through all possible ombinationsof spike arrival times, and is omputationally prohibitive. Lewiki (1994) suggests that with opti-mized programming tehniques, and suitable, but severe approximations, it is possible to ompletethis searh in lose to real time on a omputer workstation. We shall not review his implementationhere; the interested reader is referred to the ited paper. Instead, we disuss an alternative setof approximations that lead to a straightforward, single-pass, greedy algorithm. This approah ispartiularly well-suited to parallel implementation on arrays of digital signal proessors (DSPs).We shall derive the proedure in the ontext of the sparse hidden Markov models of setion 5.10.2,where the output distribution of eah omponent is either null or a Gaussian of �xed ovariane (setby the bakground). As was seen in setion 5.11, other ell models that we have onsidered analso be expressed in this form, and so the detetion method we disuss will apply equally well tothe simple Gaussian model of setion 5.8 or to the hierarhial Gaussian mixture of setion 5.9.2. Itwill not, however, apply to the unonstrained Gaussian model of setion 5.9.2 without onsiderablemodi�ation.The basi struture of the sheme is as follows. At eah time-step we begin by estimating theprior probability distribution over the states of eah SHMM, based on our estimates of the statesat the preeding time-step. Using these probabilities, and the data reorded around the given pointin time, we obtain the oupany likelihoods for eah of the �ring states of eah of the models,along with the likelihood that no spike was observed. We aept the event assoiated with thelargest likelihood. If this optimal likelihood is for no spike, then we re-derive the posterior statedistribution for eah model as though a null symbol was observed. If, on the other hand, the optimallikelihood is due to one of the �ring states, we assume that the appropriate model is, in fat, tobe found in that state. The orresponding mean spike waveform is subtrated from the reordeddata; and again the likelihoods of the remaining models having �red, or of there having been noseond spike are alulated. This is repeated until no more spikes remain to be aounted for at thistime-step. The initial state probabilities for the next step are then inferred by transitions from theposterior estimates of the states at the urrent time.



130This is a reursive proedure similar to the forward step of the oupled forward{bakward al-gorithm. We will examine in detail a single step of the proedure in analogy to the treatment ofsetion 4.4.2.We assume that at the (i� 1)th time-step, the urrent state probability estimates are given byEp;m;i�16. Sine the Markov transitions are taken to be independent, these are propagated forwardto provide initial estimates of the probabilities at the ith step by the relation~Ep;m;i = TmEp;m;i�1 (5.37)We need to assess the probability of a spike being present on this time-step. However, we areno longer dealing with pre-extrated and aligned spike waveforms and so the spike, if any, may haveourred at any point within the time interval under study. We an measure the probability by themaximal output of a simple mathed �lter. Suppose that the pth omponent of the mth model has anon-null output distribution, with mean waveform (transformed into the time domain from whateversubspae was used to �t) given by Sp;m(t). We assume that the bakground has been whitened,so that the ovariane of this output distribution, and all the others, is I . The joint log-likelihoodof a spike having been generated from this partiular omponent (that is, that the state variableym;i = p) at a partiular time � , under the observed trae V (t), islogP (V (t) j ym;i = p; �)/ �12 Z dt (V (t)� Sp;m(t� �))2= Z dt V (t)Sp;m(t� �)� 12 Z dt V (t)2 � 12 Z dt Sp;m(t� �)2 (5.38)while the likelihood that there was no spike is simplylogP (V (t) j �) / �12 Z dt V (t)2 (5.39)The spike time � will be assumed to lie within the short interval under onsideration for this time-step. The integrals over t extend through all time; although we will soon drop the integral of V (t)2,and the others an be limited to the support of Sp;m(t � �). Note that the �nal term in (5.38) is,in fat, independent of the spike time � ; we will therefore write �p;m = R dt Sp;m(t)2 for the totalpower in the waveform assoiated with the distribution (p;m).We an ombine these expressions with our prior expetations of eah state given by ~Ep;m;i, anddrop the ommon term that depends only on V (t) to obtain the following weighted mathed-�lter6We adopt the same onventions for subsripts as we did in setion 4.4, so that p refers to the state, m to themodel and i� 1 to the time-step.



131outputs: Fp;m;i(�) = Z dt V (t)Sp;m(t� �) � 12�p;m + log ~Ep;m;i=Æ (5.40)F�;i(�) = log X�p;m=1 ~Ep;m;i=Æ (5.41)where Æ is the length of the time-step. The �rst of these is alulated only for non-null states, whilethe sum in the seond is over all null states. Up to a shared onstant term, these two expressionsindiate the posterior probabilities of a spike having ourred at time � from omponent (p;m) (5.40)and of no spike having ourred (5.41), respetively. The �rst of these may be seen to be result ofa mathed �lter with impulse response Sp;m(��) being applied to the data.It is here that we make our greedy step. We selet the single largest probability from among thevalues (5.40) and (5.41), over all times � within the time-step window (in fat, if this maximum liesat the boundary of the interval we extend the searh to the losest peak in the �lter value). If thisis F�;i we assume no spike ourred in the interval. In this ase the new state estimates are givenby Ep;m;i = �p;m ~Ep;m;iPp�p;m ~Ep;m;i (5.42)in agreement with (4.43).If, however, the maximum is ahieved by one of the �lter outputs, say Fp�;m�;i(��), we assumethat the orresponding spike really did our. In this ase we set Ep�;m�;i to 1 and all otherstate probabilities for the m�th model to 0. We then subtrat from the data stream the waveformSp;m(t � ��) and realulate the �lter outputs to see if perhaps another spike ourred as well. Inpratie, sine the �lters are linear, we an atually subtrat the appropriate �ltered version of thewaveform diretly from the �lter output. The proedure is then repeated, with the m�th modeldisounted. We ontinue to subtrat and repeat until no further spikes are deteted.The proedure desribed here yields reasonable results in many ases. In the ontext of non-trivial HMM transition matries, however, it an be improved upon by the use of the standard Viterbideoding algorithm of HMM theory, adapted in a manner similar to the oupled forward{bakwardalgorithm disussed in setion 4.4. In partiular, we note that the forward pass of the deoding doesnot need to be run to ompletion before the bakward pass (in whih the most probable states areidenti�ed) an begin. Instead, the optimal sequene an be determined eah time a blok of nulls ofsuÆient length is enountered (see setion 4.3.2).



1325.14 Comparison with Previous WorkSpike sorting is by no means a new problem. Extraellular reording has been a routine eletrophys-iologial method for deades, and single units have been isolated from voltage traes for many years.Nonetheless, it is only quite reently, as multiple eletrode reording has beome more widespreadand as fast omputers have beome easily available, that interest in fully automati spike sortinghas arisen, and a full statistial analysis of the problem has not, to date, been arried out.In this setion, we review some previous approahes, both manual and automati, used or pro-posed for spike sorting. The disussion of prior art has been postponed to this late stage beauseit is now, armed with the full statistial analysis of the problem, that it will be possible to prop-erly understand the tehniques proposed and their shortomings, if any. We shall �nd that mostapproahes to be disussed will address only a subset of the issues brought out in our treatment.This review of earlier work does not purport to be exhaustive. As might be expeted of a subjetso fundamental to experimental neurosiene, hundreds of papers have been published on spikesorting. The few that are mentioned below have been seleted on two bases: �rst, they are the bestexamples of the di�erent ommon lasses of algorithm; and seond, in many ases they have beenquite inuential in the reation of the urrent work. In some ases, mention of earlier work hasalready been made in the ourse of the development above, in whih ase only a note to that e�etwill appear here.5.14.1 Window disriminatorsThe most basi tool for the detetion of spikes in extra-ellular reording is a simple threshold devieknown as a Shmidt trigger. In the last few deades a slightly more sophistiated version of thisvenerable tool has ome into use, known as the window disriminator, and it is this that we shalldesribe here. The disriminator is usually a hardware devie | although the same funtionalityan easily be implemented on a omputer | designed to identify spikes from a single ell. Theampli�ed signal from the eletrode is ompared to a manually-�xed threshold applied to either thesignal voltage or to its derivative. Eah time the threshold is triggered, the subsequent waveformis displayed on an osillosope (or omputer) sreen. Observing these waveforms, the user sets anumber of time-voltage windows that braket the waveforms that he wishes to identify as foregroundspikes. Any triggered waveform that passes through all of these windows is aepted as a spike, andthe time of ourrene is logged.These devies have typially been used in onjuntion with manual isolation of a single spike,so that all that needs to be done with the windows is to distinguish this single waveform from thebakground. However, software versions of the same devie may allow multiple sets of windows tobraket spikes of di�erent shapes (or more than one hardware disriminator may be used on the



133same signal), and in some ases spikes from more than one ell an be reasonably deteted in thismanner.We an view this proedure as a speial ase of the manual lustering approah to be desribedbelow. The trigger simultaneously extrats and aligns the waveforms. As an be seen from �g-ure 5.5C, as long as the threshold rossing is deteted in the analogue signal (that is, there is no,or else only extremely fast, sampling involved) this proedure yields reasonably well-aligned spikes;alignment to a entre of mass is, however, very slightly better. The time-positions of the windowsrelative to the threshold rossing selet the dimensions of the waveform spae used to luster, andthe voltage-extents of the windows set the luster boundaries within this spae. Thus, the lusteringis onstrained to our within an axis-aligned subspae and the luster boundaries are onstrainedto be retangular. One advantage to this sheme over many standard lustering pakages is that itallows the user to selet the appropriate dimensions from among all of the axial diretions. Anotheradvantage (in terms of manual lustering) is that the high-dimensional spae of waveforms is om-patly visualized on a two-dimensional sreen. Nonetheless, the restritions on subspae dimensionsand on luster shape an be quite restritive.5.14.2 Manual lusteringThe advent of multi-wire eletrodes, and the availability of ommerial software, has popularized theuse of lustering approahes to spike sorting. The basi framework of these approahes is as follows.Event waveforms are extrated using a fairly basi threshold trigger. In general, no attempt is madeto resample or to realign the event. These waveforms are then grouped into lusters, sometimes byan ad ho lustering algorithm, but often by having the operator draw out the luster boundariesin various two-dimensional projetions. There is no separate spike-detetion phase; membership ofthe lusters, along with the reorded time of threshold rossing, fully spei�es the estimated spikeidentity and time. Examples of proedures of this sort have been desribed by Abeles and Goldstein(1974), Gray et al : (1995), Rebrik et al : (1998) and many others.In general, the lustering is arried out in a subspae of redued dimension. Above, we pointed outthat window disriminators an be viewed as seleting a subset of event oordinates for lustering.Other tehniques that have been employed are those that were desribed in setion 5.7.2; hand-piked features, often derived from the spike waveform in a non-linear fashion, are ommon (see,for example, produts from DataWave Tehnologies), while PCA has also been used (Abeles andGoldstein 1974; Gray et al : 1995). In setion 5.9.1 we also disussed some proposals to reduedimensionality in suh a way as to suppress spike-shape variability.Frequently, the luster shapes are onstrained to be retangular; we pointed out above that thisis impliit in the window disrimination approah to lustering, while in many expliit lusteringpakages it appears to be imposed as a matter of programming onveniene. Other omputer pak-



134ages allow elliptial (for example, the latest produt from DataWave Tehnologies) or more generalpolygonal (suh as the program xlust, written by M. Wilson) boundaries.In detail, these tehniques an ertainly be improved in the light of the analysis that has appearedhere. Event alignment, disussed in setion 5.7.1, would redue the apparent luster noise; projetioninto the noise-whitened robust prinipal omponent spae, disussed in setion 5.7.2, would improveseparation. On the issue of the quality of the resultant lustering, however, we expet that the humaneye is a suÆiently sophistiated pattern reognition engine to yield fairly aurate results, providedthat it is assisted by a proper presentation of the data. One of the advantages to this approah isthat it obviates the need to �nd expliit general models of the spike-shape variability. The operatoran, instead, assess the pattern of variability on a ell-by-ell basis. (Of ourse, lustering pakageswhih restrit the luster boundaries to be retangular an hamper this exibility.)The diÆulties in suh methods fall into four groups. First, if the luster assignments providethe �nal estimates of spike identity there is no way to resolve overlapped waveforms. Seond, thelak of a probabilisti underpinning redues the degree to whih the quality of the solution an beassessed. With probabilisti methods the likelihood of the optimal �t an provide some indiationof whether the data have been reasonably modeled or not. Furthermore, a probabilisti tehniqueleads to \soft" or \fuzzy" lusters, whih, in turn, lend themselves to the assessment of the degreeof on�dene with whih any given assignment an be made. Both of these features are lakingthe \hard" lustering shemes that are ommonly used. The third set of issues arises from the fatof human intervention. Spike assignments generated in this fashion may be not be reproduibleaross di�erent experimenters. Further, the need for onsiderable experimenter input limits thedegree to whih the method an be saled. As we aquire the tehnology to reord from hundredsof eletrodes at one, the need for an operator to examine waveforms from eah one beomes aprohibitive obstale. Finally, lustering shemes suh as these annot operate on-line in real time.Thus, they are inappropriate for experiments in whih immediate feedbak is needed, nor an theybe used in neural prostheti appliations.5.14.3 Automati tehniquesGaussian modelsLewiki (1994) provides an analysis of the problem that is losest in spirit to that provided here. Themodel desribed is based on a single spike waveform per ell, with added spherial Gaussian noise.While the algorithms are derived from an expliitly Bayesian point of view, the resulting steps aresimilar to those that we desribe in setion 5.8. Many of the details, however, are di�erent. Thus,Lewiki treats the alignment of the waveform within the sampled event as a latent variable and re-estimates its value on eah �tting iteration, while we attempt to eliminate the variation in alignment



135by the tehnique desribed in setion 5.7.1. His model ontains no expliit outlier omponent, andinstead low oupany models need to be inspeted and possibly rejeted by the operator.A signi�ant di�erene lies in his approah to the model seletion problem. Rather than theasading model seletion proedure that we have proposed, whih might be viewed as a form ofdivisive lustering, he initially �ts a mixture with more omponents than expeted and then fusesadjaent lusters together based on the alulation of an approximate Bayes fator.The most signi�ant shortoming in Lewiki's proposal is the lak of more sophistiated modelsfor the spike distribution from a single ell. We desribed in setion 5.9 the reasons that we mightexpet a single Gaussian to be an inadequate model. Similar onerns led Fee et al : (1996a) (seebelow) to abandon the expliitly probabilisti approah. The methods desribed in this dissertationdemonstrate that more powerful models apable of modeling the intrinsi variability in the spikewaveforms, an, indeed, be implemented within the probabilisti point of view, thereby gaining allof the advantages implied by that approah.Agglomerative lusteringIn response to Lewiki (1994), Fee et al : (1996a) argue, as we did in setion 5.9, that in many asesthe distribution of waveforms from a single ell does not appear to be Gaussian. They thereforepropose an agglomerative lustering sheme whih is ad ho in the sense of not being probabilistiallyfounded. The sheme is as follows.Events are extrated and aligned to a entre of mass alulated in a manner similar, thoughnot idential, to (5.7). The resultant vetors are �rst partitioned into small lusters by a \reursivebisetion" algorithm somewhat similar to divisive k-means. These lusters are then agglomeratedinto larger groups. Two lusters are grouped together if they exhibit a large \boundary interation";that is, roughly, if the density of points in the region of the boundary between them exeeds somethreshold.This may be viewed as an ad ho version of the hierarhial mixture model desribed in se-tion 5.9.2. The hierarhial mixture provides all the advantages, desribed above, of the \soft"probabilisti approah. Furthermore, the agglomeration proedure proposed in setion 5.9.2 is moresatisfying in that it requires expliit overlap of the omponents. This is made possible by the use of amixture model, in whih the omponent densities are able to overlap, rather than k-means lusteringin whih the lusters are ompelled to be disjoint.ART networksAnother proposal that has appeared in the literature is the use of a generi neural network lassi�er.Oghalai et al : (1994) suggest the appliation of an ART-2 network (the aronym ART omes fromthe adaptive resonane theory of Carpenter and Grossberg 1987a, 1987b, 1990). This is a neural



136network arhiteture designed for unsupervised lustering problems, and as suh appears to be alikely andidate. Closer inspetion, however, reveals some weaknesses. In partiular, ART impliesan odd distane metri in whih lusters whose enters have smaller L1 norms are favoured. Fur-thermore, as eah inoming vetor is lassi�ed, the enter is updated by taking the point-by-pointminimum of the old enter and the new point. Neither of these details seems to math the noiseharateristis we have seen. ART is also a sequential lustering sheme, in whih the order in whihthe data are presented is important. Moore (1989) has argued that it is partiularly sensitive tonoise in the data. Overall it annot be thought of as any better than any of the ad ho lusteringshemes disussed in setion 2.1.5.14.4 Spike time detetionSome authors have made the same distintion between lustering and spike time detetion that wehave. In general, they have been motivated by a desire to orretly identify overlapped spikes withinthe reording, although these tehniques may often bring with them the additional bene�ts that wedesribed in setion 5.13.Lewiki (1994) proposes that the spae of all possible waveform overlaps an be searhed by theintrodution of some approximations and the use of eÆient programming tehniques. It should benoted that in making this laim, he is addressing detetion in the ontext of a Gaussian lusteringmodel that yields a single mean waveform for eah ell. For the more omplex distributions, involvingmultiple omponents for eah ell, the omputational diÆulty is further inreased. Nonetheless, insituations where adequate omputational power is available, this is an attrative approah. However,the greedy approximation made in setion 5.13 is expeted to exhibit slightly improved saling.Roberts and Hartline (1975) (see also Roberts 1979) propose an \optimal" linear �ltering algo-rithm, similar to the standard Wiener mathed-�lter. Expressed in the frequeny domain, the �lterused to detet the mth spike shape is given by the transform of the assoiated waveform divided bythe sum of the power in the other waveforms and the noise. This �lter has the property of respondingminimally to the other waveforms (and to noise), while maintaining its output in response to thetarget waveform at a �xed level. In essene, the �lters transform the data to a basis in whih thedi�erent spike shapes are orthogonal; in this basis overlaps are easily identi�ed.In the ontext of the tetrode reordings desribed here, this approah has not proven to bevery suessful. The problem seems to be that spike shapes from di�erent ells are spetrallysimilar enough that the attempted orthogonalization is impossible. The mathed �ltering tehniquedesribed in setion 5.13 di�ers from this one in that no e�ort is made to orthogonalize the targets.Instead, the interation between the �lters is handled expliitly by subtrating the waveform withthe largest response from the data and re-�ltering. While slower, this approah yields more reliableresults.



137It should be noted that Gozani and Miller (1994) report suess with this tehnique. Theirreordings were made with multiple hook eletrodes arranged along a nerve bundle. Spike waveformsmight have di�ered in their propagation veloity along this nerve, a feature whih would havefailitated orthogonalization. For ortial tetrode data, or other data reorded within neuropil witha multi-tip eletrode, di�erenes in propagation veloity are quite unlikely to be deteted.


