Chapter 6 Doubly Stochastic Poisson Models

6.1 Introduction

In this chapter we turn from the study of models of spike waveforms, to models of the arrival times
of the action potentials invoked in response to an experimental stimulus. The work described here
was carried out jointly with J. Linden. The methods that will be discussed have been applied to
data® collected from the lateral intraparietal area in two macaques during fixation and saccade tasks
involving visual and auditory targets. A detailed discussion of this application is presented by Linden

(1999).

6.1.1 Point processes

In chapter 5 we examined a variety of statistical models that described the spike waveforms recorded
by extracellular electrodes. While the shape of the waveform provided us with information about
the identity of the neuron in which the associated action potential occurred, it is not actually used
by the nervous system to transmit information between neurons. Instead, from the point of view of
the neuron, the action potential is an all-or-nothing pulse: any information that needs to be relayed
between cells is carried in the occurrence and timing of the pulses alone.

Statistically, we may view a train of action potentials or spikes? from a single neuron as the
outcome of a stochastic point process. The theory of such processes has been studied extensively
in the statistics literature (Cox and Lewis 1966; Cox and Isham 1980; Snyder and Miller 1991). The
outcome of a point process may be represented in one of two ways: either as a sequence of N event
times {7; : i = 1...N} or as a sequence of T' counts {z; : t = 1...T}. The count z; indicates the
number of events that fall within the small interval [¢§, (t 4 1)); thus >°, 2, = N and 0 < t; < T'6.
We will always take the intervals to be of the same length, given by the bin width, §. In this
chapter we will be concerned solely with the counting representation. It will frequently be useful to
collect the counts z; into the vector, x.

A prominent distribution, that plays a réle in point-process theory quite similar to that of the
Gaussian in continuous random variable theory, is the Poisson process. In particular, this is the
maximum entropy distribution for a given density of events. Under the Poisson distribution for a

counting process each of the counting random variables is independent. A single parameter, p;, the

IThe data were collected by J. Linden and Dr. A. Grunewald, in Dr. R. A. Andersen’s laboratory.
2For the purposes of this chapter we need not distinguish between the two.
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mean or rate of the process, characterizes the distribution of the variable x;

e Ptpft
Pﬂt (wt) = |t (61)
Tt
Thus the probability of the count vector x, given a rate vector p is
T o, =
e Ptpt
o0 = T4 ©2
el

If p; is the same for each interval the Poisson process is called homogeneous. In this chapter we

will be primarily concerned with inhomogeneous processes.

6.1.2 Spike response variability

Many neurophysiological experiments are conducted as follows. A stimulus is presented to an an-
imal subject and the times of action potentials in one or more neurons in the subject’s brain are
recorded. The stimulus may well elicit some trained behaviour from the animal: action potentials
are recorded for the entire duration of experimental interest around both the stimulus presentation
and behavioural event, if any. The same stimulus (and, presumably, behaviour) is then repeated
over many different experimental trials, often randomly interleaved with other, similar, stimuli. On
each repetition, the times of the action potentials that arise in the same neurons are noted. The
result is a database of stimulus-response pairs for each cell.

The neurons of interest in a given experiment usually alter their patterns of firing during the
trial, in a manner linked to the presentation of the stimulus or to the execution of the behaviour (or
both). Such neurons appear to be related to the processing of either the stimulus or the behavioural
response. However, very rarely does a neuron respond to multiple trials in an exactly repeatable
manner; this is particularly true of cells in the cerebral cortex of mammals, such as those to be
modeled here. This variability in the response of a neuron is what leads us to treat the pattern of
spikes as the output of a stochastic process.

Spike trains observed in response to the same stimulus have often been modeled as independently
drawn from a single inhomogeneous Poisson process (Perkel et al. 1967). In detail such a model
must be wrong. Both the refractory period and the presence of bursts violate the independence
assumption of the Poisson counting process. However, in situations where the counting intervals are
sufficiently large, it has been thought to be a reasonable approximation.

Poisson processes, including those with inhomogeneous rate, have the property that the distribu-
tion of counts retains the form (6.1) whatever the choice of the counting interval. In particular, we
might select the interval [0,7), to obtain the total spike count during a trial. Provided the original

process is Poisson, this count will still be distributed according to (6.1). That distribution has the
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property that its variance is equal to its mean.

In practice, the variance in spike count from across repeated, experimentally identical, trials is
often larger than can be accounted for by the simple Poisson model (Tolhurst et al. 1981; Dean 1981;
Tolhurst et al. 1983; Vogels et al. 1989; Softky and Koch 1993; Gershon et al. 1998; Shadlen and
Newsome 1998). This same result is apparent in the data to be modeled here (Linden 1999), where
the ratio between variance and mean (known as the Fano factor) appears to be closer to 1.5 than to
1. One possible source of this additional variance across trials might be slow changes in the overall
excitability of neurons or of the cortical area. A number of recent reports have provided direct or
indirect evidence for this idea (Brody 1998; Oram et al. 1998; also see Tomko and Crapper 1974;
Rose et al. 1990; Tolhurst et al. 1981; Arieli et al. 1996). Such slow variation in neuronal excitability
might result in an apparently stochastic scaling of the underlying inhomogeneous Poisson rate. This

hypothesis will form the basis of the model to be discussed here.

6.2 The Generative Model

The generative model for a spike train x, output by a given cell in response to given experimental
conditions, is as follows. The cell-stimulus pair is taken to specify a non-negative intensity profile,
A, that describes the time-course of the cell’s response to the stimulus. This profile is scaled by a
latent variable, s, which is drawn from a gamma distribution with unit mean, and which is meant
to represent the excitability of the neuron on a given trial. The action potential times are then
generated by an inhomogeneous Poisson process with rate vector p = sA.

This model is known in the point process literature as an inhomogeneous Polya process (see
Snyder and Miller 1991). It is a special case of the doubly stochastic Poisson process: “doubly
stochastic” because the Poisson rate is itself a random variable (Cox 1955; Snyder and Miller 1991).
Clearly, any such process is a latent variable model. Other examples of doubly stochastic Poisson
processes have also been used to model neural spike data by other investigators; for example, some
authors have taken the rate to be a piecewise constant function generated from a Markov chain
(Radons et al. 1994; Abeles et al. 1993; Seidemann et al. 1996; Gat et al. 1997). The present choice
is, in part, appealing for its simplicity and relative tractability. As can be seen from the applications
discussed by Linden (1999), it can produce useful results.

The standard form of the gamma density (for the scale s) depends on two parameters a and .

It is given by
1
Paﬂ (S) = F(a)ﬁa

s@les/0 (6.3)

It may be easily verified that the mean of this distribution is af. Thus, our requirement that the

distribution have unit mean constrains the parameters such that = 1/a, and we obtain instead
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the single parameter density

Po(s) = ——s"Te ™ (6.4)

We will refer to the parameter a as the stability, since as it grows the variability in spike count
drops.
Combining this with the expression for the inhomogeneous Poisson process probability (6.2), we

obtain the joint density of a spike train x being observed along with a scale factor s.

Pra (x,8) = ﬁ eis/\t(s,/\t)wt 07 ga1gsa (6.5)
2 (o)

t=1

The scale, s, is not directly observable, making this a latent variable model. While we may
approach learning in this model by the EM algorithm that we have used before, in this case it proves
to be useful to obtain a closed form for the marginal distribution function of x, by integrating the

joint density of (6.5) with respect to s. The resultant marginal is

Pra (x) = (H ii:') <%) a®(A + @) (X+0) (6.6)

t=1

Here, A and X are the sums of the elements in the corresponding vectors: A = Z;‘le A+ and
X = Zthl Tt

We assume that a set of spike trains, X = {x; ...xy}, collected from the same cell under identical
trial conditions, is obtained by drawing each one independently from this distribution. We use the
subscript n to identify the spike train and write X,, for the corresponding total spike count. Thus,

we obtain the log-likelihood of the parameters A and « under the set of observations A,

lx (A o) =log Z+> (Z Zns log Ay + log <%) +aloga — (X, + a)log(A + a)> (6.7)

n=1

where the normalizing constant Z absorbs terms independent of the parameters.

As it stands, this model has a large number of independent degrees of freedom in its parameters.
In particular, for small counting intervals and reasonable experimental durations, the vector A may
have hundreds of elements. It is impractical to expect reasonable parameter estimates from the
small amounts of data that can usually be collected. Therefore, we impose a prior density on
the parameters. The prior introduces inter-dependencies between the elements of A, reducing the
effective number of degrees of freedom.

The stability parameter, a is taken to be independent of the intensity function and is distributed

1/«

according to the density e”/¢. As a result, small values of a are subject to a slight penalty. In

practice, this prior is vague enough to have little effect on the parameter estimates and is included
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only for completeness.

The prior distribution of the intensity function is a stationary Gaussian process with zero mean
and covariance matrix C. The stationarity indicates that we have no prior belief about the course
of the intensity function during the experiment. In mathematical terms, it requires that the matrix
C be Toplitz (that is, diagonally striped).

The resultant log posterior can be written:

1 1
logP (A | x1,...,xN) =log Z — iAchl)\f —
e
N
r'x,
+ ngzl <xl log A — (X, + a)log(A + a) + aloga + log (%)) (6.8)

where Z has now absorbed, in addition, the normalization term of the Gaussian.
The reduction in degrees of freedom is achieved by choice of a suitable prior. We select a matrix

3

which is based on an auto-covariance function that is Gaussian® in shape: that is, the covariance

between two elements of the intensity vector A; and A; under the prior is of the form

oz 030) »

The quantity A, which is chosen a priori, reflects the expected time-scale of changes in the intensity
function, expressed in terms of the counting interval length d. Thus, this choice of prior covariance
expresses a belief in the smoothness of the underlying intensity function.

If A is fairly large, the matrix C will be ill-conditioned. As such, the inverse that appears in (6.8)
creates a numerical instability. This can be resolved by diagonalizing the covariance matrix. Recall
that the eigenvectors of any Toplitz matrix are the basis vectors of the discrete Fourier transform
(DFT), and so C is diagonalized by the DFT matrix F*, = ﬁ exp(—2mi(s—1)(t—1)/T). Rather than

use this complex form, it will be convenient to introduce a real transform matrix which separates

the real and imaginary parts. Such a matrix is given by

1 if s=1

<

1
Fo = — X cos (273 1) if s>1andiseven (6.10)
VT .

sin(2r O D) if s> 1 and s odd

—~

We have assumed that T', the total number of counting intervals, is even.
Thus, the matrix FCFT is diagonal, representing the independence of the Fourier components of
a stationary process. The ill-conditioning now reveals itself in the presence of one or more diagonal

elements that are very close to zero. Thus, in the frequency domain, the ill-conditioning of C is

31t is important to distinguish between the Gaussian distribution of the prior and the Gaussian shape of the
auto-covariance. One does not imply the other.
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easy to interpret; it reflects the fact that in certain frequencies very little power is expected under
the prior. In effect, the prior imposes a band-limitation on the intensity function. The particular
choice of Gaussian auto-covariance function, for example, leads to a half-Gaussian shaped fall-off in
expected power as frequency increases from 0, with the highest frequencies effectively excluded. It is
important to realize, however, that the imposition of this prior is not equivalent to simply filtering
the intensity function by the expected frequency profile.

We now restrict the transform matrix to a rectangular form F in which rows corresponding to the
eigenvalues of C that fall below some low threshold have been eliminated. Thus the matrix FCFT is
also diagonal, but is of order less than 7" and is well-conditioned. We will also apply this restricted
transform to the intensity function. In doing so, we force the power of the intensity function to zero
at those frequencies at which the expected power is vanishingly small.

We proceed to rewrite the posterior (6.8) in terms of this transformed intensity function. In
practice, it proves to be useful to represent the intensity function by the transformed logarithm
¢ = Flog A (where the logarithm is taken to apply element by element). The introduction of the
logarithm enforces the requirement that the intensity be positive; this would otherwise be difficult

to ensure when working in the frequency domain. The log-posterior now becomes

1 1
logP (¢, | x1,...,xy) =log Z — §e¢TFReFT¢ 4+ X FTe
a

: al I(X,+a
—((x)" 1+ Na)log(e? F1+a) + Naloga + Z log <%> (6.11)

n=1

where (x) represents the sum of the different observations, 1 is a vector of T ones introduced to
indicate summation of elements, and R = FT(FCFT)~!F. Exponentiation of a vector term is taken

to apply element by element.

6.3 Optimization

We have presented a latent variable model for spike generation. In principle, we might employ
the EM algorithm to find the maximum-likelihood or, given the prior, maximum a posteriori
— parameter estimates, as we have done with the other latent variable models discussed in this
dissertation. Inspection of the joint probability (6.5), however, suggests that this may not be as
easy as in our earlier examples. The latent variable, s, will enter into the joint log-likelihood in the
logarithm. Thus, calculation of the expected value of this likelihood requires not only the first one or
two moments of the latent variable posterior, as in our previous examples, but also the expectation
of log s.

To avoid this, we optimize the marginalized posterior (6.11) directly by numerical gradient-based

methods. Conceptually, this may be thought of as a simple gradient ascent algorithm, although, in
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practice, better results are obtained by use of a quasi-second order method (see, for example, Press
et al. 1993). Such optimizations can be efficiently executed using numerical methods software such

as the MATLAB package.

6.4 Goodness of Fit

While the basic structure of the statistical model described in this chapter has been chosen to
embody our beliefs about the origin of neuronal variability, the exact densities used (that is, the
gamma and Poisson) have by and large been selected arbitrarily. Both are high entropy distributions,
which is appropriate in situations where little constraining knowledge is available, but it must be
admitted that, to a significant extent, the choice has been driven by mathematical expediency. In
some details, we must expect the model to be incorrect. As was already pointed out, both the
refractory period and the tendency of some cells to fire in bursts, violate the independence of counts
assumption inherent in the Poisson process. Similarly, we have no guarantee that the scaling will
be gamma distributed, nor even that the variability due to excitability can be expressed entirely as
multiplicative scaling (on this last point see Linden 1999).

In this section we will investigate through Monte-Carlo means the degree to which the model is
appropriate to describe a given set of spike trains recorded in mammalian cortex. These data were
collected by J. Linden and A. Grunewald from area LIP of 2 macaque monkeys. For data collection
procedures and further information the reader is referred to Linden (1999).

In general, such goodness of fit testing is a difficult problem. We have encountered the issue
of model selection repeatedly in this dissertation, where the best of a group of competing models
needs to be selected. In this case, though, there is no clear alternative. Based solely on the single
model and the available data, we would like to decide whether or not the model is acceptable;
that is, whether it is plausible that the data are indeed distributed in the manner specified. The
general framework for making such decisions falls within the Neyman-Pearson significance testing
literature that is fundamental to traditional developments of statistical theory (see, for example,
Hoel et al. 1971). Many specific tests have been developed for particular simple distributions (some
examples may be found in Zar 1998). For one dimensional data a general technique, known as the
Kolmogorov-Smirnov test, is available to assess the validity of an arbitrary distribution (see, for
example, Press et al. 1993). This can be extended into a small number of dimensions (Fasano and
Franceschini 1987), but for more complicated models, describing higher dimensional data, as in the
current instance, such straightforward techniques are not available.

Instead, we approach the problem by a novel Monte-Carlo technique, asking whether the obtained
likelihood of the best fit model for the observed data matches corresponding values obtained for

simulated data known to be generated from the distribution. The steps of the procedure are as
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follows.

e Given a set of observed spike trains X° = {x{...x%/}, find the MAP parameter estimates A°

and «a°.

e (Calculate the likelihood on the observed data

0% = lxo (X%, 0°) (6.12)

e Repeat for s=1...85:

— Generate a set of simulated spike trains from the optimized model

X% ={x] ... xy} ~ iid Pxe g0 (X) (6.13)

— Re-fit the model to the simulated data X'° to obtain new MAP estimates A®, a®.

— Obtain the optimal likelihood on the simulated data

0 = lye (A%, 0°) (6.14)

e Find the rank of the observed likelihood within the set of simulated likelihoods

o =[{s: £ <’} (6.15)

If this procedure is repeated a number of times — each time starting with a different set of
observed spike trains, perhaps derived from a different cell ~ and if the model represents the correct
family of distributions, we would expect the resultant ranks to be uniformly distributed between 0
and S.

Two points about the process might require elucidation. First, the simulated data are generated
using the MAP parameter values so that the likelihoods measured in the simulations are drawn from
the same region of the parameter space as the true likelihoods. Likelihoods under simulated data
taken in an an entirely different parameter regime might be quite different. Second, the likelihoods
under the simulated data need to be evaluated at the re-fit parameter values so as to avoid a bias
due to over-fitting. If this were not done, we would expect the observed likelihoods ¢° to be larger
than the simulated values, as the parameters would be perfectly tailored to the observed data alone.

In principle, we may now test for uniformity of the ranks by a Kolmogorov-Smirnov or other,
more specialized, hypothesis test. In practice it is obvious from inspection that, in this case, the

ranks are not uniformly distributed. Figure 6.1 shows the ranks obtained using different groups of
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Figure 6.1: Distributions of likelihood ranks

cells under different stimulus conditions. Each panel represents a set of spike trains collected under
identical experimental conditions. Only spike trains from cells that appeared to be responsive under
the specific conditions were used (the number of these is given by the quoted value of N in each
panel), and a single set was taken from each such cell. In each case, the number of simulations, S,
was 100.

It is clear from the distributions in figure 6.1 that the ranks are far from uniformly distributed.
This suggests that the model we have developed in this chapter is not, in fact, an accurate description
of the recorded data. However, had the model been entirely off base, we might have expected the
simulated data to almost always have yielded higher best-fit likelihoods than the real observations.
For example, if the smoothing invoked by the prior were too severe then the derived intensity function
would be greatly inaccurate for the real data, leading to much lower probabilities. Clearly, this is not

the case either; almost half the time ¢° is smaller than £°. Thus, we conclude that while the model
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is not correct, it is reasonably capable of describing the data. In particular, it would be difficult to
tell, simply by looking at the optimal likelihood, whether a given set of spike trains were genuine
neural data or simply simulations.

A further point of interest in figure 6.1 is that the distributions of ranks obtained for the four
different experimental conditions and frequently, from different cells are extremely similar.
We might take this as evidence that the statistics of the spike trains from these different cells and
under these different experimental conditions are actually the same. Thus, while our current model

is inadequate, we might hope that by some refinement we can, in fact, find an appropriate model.

6.5 Clustering Spike Trains

It is often a matter of scientific interest to ask whether the cells within a given area of the brain fall
into clusters based on the time-courses of their responses to a given stimulus. If such clusters are
apparent, they may indicate the presence of distinct sub-populations of neurons that play different
roles in the neural computation.

A common difficulty encountered when attempting to apply traditional clustering techniques
such as the k-means algorithm or its variants, to spike trains, is the problem of finding a suitable
metric. Such algorithms require a notion of distance between two spike trains, but how is such
a distance to be defined? One approach has been to smooth the spike trains, by binning or by
convolving with a Gaussian kernel, and then to sample each such smoothed spike train to obtain
a vector representation (see, for example, Richmond and Optican 1987; Optican and Richmond
1987; McClurkin et al. 1991). These vectors are then treated as though they were embedded in
the standard Euclidean inner-product space. There is, however, no a priori reason to expect such
a distance to be an appropriate metric for spike train clustering. This point is discussed at some
length by Victor and Purpura (1997), who propose an alternative metric, though also on an ad hoc
basis.

Fortunately, we can avoid this problem. In chapter 2 we saw that, in many cases, the generative
modeling approach to clustering is to be preferred. In particular, this is true if we are interested in
identifying the process from which the observed data arose, rather than simply grouping the data
themselves. The appropriate generative model in such situations is the mixture model given by the

weighted sum of M component distributions:

M
Po(x) = > mmPs,, (x) (6.16)

The parameters of the mixture decompose into independent and disjoint sets @ = (61 ...60y, 71 ... 7pr),

where the parameters 8,, describe the mth component or cluster. Learning algorithms for such mix-
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tures were discussed at length in chapters 2 and 3.

Such an approach effectively sidesteps the issue of identifying a suitable metric within the space
of spike trains. The clusters are no longer described within the observation space; instead, they
are described by the parameters 6,, which live in a different space altogether. We no longer need
to compute the separation between two spike trains: we need only find the “distance” between a
spike train and the cluster parameters. A natural candidate for such a distance is obvious: the
probability of the spike train under the cluster model. Thus, the probabilistic treatment espoused
throughout this dissertation allows us to rigourously arrive at a unique clustering solution from only
a few explicitly stated assumptions about the distributions of spike trains.

To this point, we have regarded each spike train x,, as a separate observation; now, we will instead
treat all of the spike trains collected from the same cell under the same experimental conditions as
a single outcome of the generative model. For the ith cell-experiment pair we can collect the IV;
individual count vectors into a matrix X;, in which each count vector appears as a column. Careful
inspection of the probability (6.7) reveals that, in fact, we are only interested in the marginal sums
of this matrix. Thus, we compute and store the following sufficient statistics: the sum of the count
vectors X;1, the vector of total spike counts X] 1, and the total of all the elements 17X;1. In these
expressions the vector 1 should be taken to contain either 7' or IN; ones as appropriate.

We can then write the form of the mth component probability distribution, written in terms of

the Fourier domain intensity ¢,, and the stability a,,,

(6.17)

r(xXT1 ml
P (X;) o 6¢I"inlazm"‘ (ed’InFl +am)*(lTXil+Ni“m)exp [IT 10g< (Xi1+a ))}

[(am)

In the final factor, the gamma function and the logarithm should be taken to apply element by
element. We have left out a factor given by the product of the factorials of each of the elements in
X;. This factor is identical across all of the component distributions and thus has no impact on any
of the optimization algorithms and need never be computed.

We then fit a mixture model for the entire ensemble of recordings taken across multiple cells
X = {X;}, given by Pg (X) = [],>,,Pm (X;). In doing so, we assume that a “cluster” of spike
trains are such that they may have arisen from exactly the same intensity function, although with
possibly different scalings. The “extent” of the cluster is defined by the model, as well as by the
learned value of the stability parameter.

For the single component model, the introduction of the prior was important to achieve regular-
ized estimation. In the mixture, this regularization is, if anything, more important as the complexity
of the model has increased. We choose the prior on the parameter set {¢,,} U {an} to factor over
the different components; that is, the intensity function and stability for one component are a priori

independent of those of any other component distribution. For any one component we choose the
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priors on ¢,, and a,, to be exactly as before. The covariance matrix C is taken to be common to
all of the clusters. The mixing parameters m,, are subject to a uniform prior: this does not affect
the results of the estimation and will be not be written explicitly.

The basic EM algorithm suitable for learning in such models was described in section 2.4. We

recall that the E-step involves computation of responsibilities according to (2.9)

TTm Pm (Tz)

T'm,i = m (6.18)

where, the component distributions are given by (6.17). The M-step update of the mixing probabil-

ities is common to all mixture models (2.12)

Zi Tm,i

F
A

(6.19)

The update of the component parameters in the maximum likelihood context of chapter 2 was given

by (2.15)
0, < argmaxz Tm,i log Py, (X;) (6.20)
0 -

m 1
where 6,,, stands for the parameters of the mth component. In the present example, however, we
have a non-trivial prior distribution on the component parameters. Given our assumption that the
prior factorizes over the different models, we can correct (6.20) by the addition of the log-prior for
the mth model to the right hand side. The updated parameters of the mth component are thus

obtained by optimizing the expression

1 1
Q(¢m,am) == IOgZ — §€¢LFR€FT¢m s
am

+ Zrm,i [qﬁ;FXil — (1™X;1 + Nay,,) log(e‘l’I"Fl + ap)
i

(6.21)

r(xr
+Na,, loga,, +1"log (M)}

F(am)

As before, this optimization must be performed numerically, and thus, the computational cost of
the M-step is considerably greater than that of the E-step. It is useful to recall the Generalized EM
(GEM) algorithm, mentioned briefly in section 1.8, in which the M-step is only partially completed;
that is, the free energy is increased by the update of the parameters, but not necessarily maximized.
This generalization shares the guaranteed convergence with the standard EM algorithm, but is more
efficient. In the present case, this partial completion is equivalent to executing only a limited number
of steps of the numerical optimization at each M-step.

The GEM algorithm described above was run on a subset of the data described previously, that

was collected from different cells under the same experimental conditions. The results are shown
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in figure 6.2. The size of the model was determined by the BIC penalized likelihood procedure
(see section 1.3), which yielded a mixture of five components. The intensity function learned for
each of these components is shown by the heavy black line in each panel of the figure. The mixing
probabilities are indicated by the percentage figures above each panel. Cells have been assigned to
the most likely cluster (that is, the one with the largest responsibility for the data from the cell),
and the corresponding spike trains then shown in the background of the appropriate panel. The
representation is similar to the conventional spike raster diagram: each row of dots represents a
single trial; the presence of a dot time indicates that at least one spike was counted in a 5ms window
around that time; the size of the dot indicates the number of spikes. The horizontal black lines
separate spike trains from different cells.

Do the spike trains classified in figure 6.2 really fall into five distinct clusters? The fact that
BIC model selection rejected the option of more components in the mixture suggests that this may
well be the case. As a further reassurance we can examine the posterior assignment probabilities,
or responsibilities (6.18), under the maximum likelihood solution. These values indicate the surety
with which each data point is assigned to each cluster. If the components tended to share the
responsibility for each spike train it would suggest that the clusters were not well separated. The
responsibilities of each of the five component models are shown in figure 6.3. Each line shows the
assignment probabilities of one model, indicated by the number above the line, for all of data; the
data have been reordered to group spike trains assigned to the same cluster together. In all cases,
only one model has high responsibility, very close to 1. This suggests that the clusters shown in

figure 6.2 really are well separated.

6.6 Summary

In this chapter we have introduced a latent variable model to describe spike trains generated by a
neuron under constant experimental conditions. The model is designed to capture certain recent

observations about the statistics of neural responses: in particular, the fact that the variability in
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cortical spike trains is often greater than that predicted by the Poisson process assumption, and
that in many cases this greater variability might result from changes in the overall excitability of
the neuron or cortical area. Although the EM algorithm involves a difficult E-step, it proves to be
possible to fit the model by direct numerical optimization.

Using a Monte-Carlo goodness of fit procedure, we saw that the model does not describe the
statistics of spiking exactly. However, the maximal likelihood values for the best-fit model under
real neural data are quite similar to the values under simulated data generated from the model itself.
Thus, we conclude that model is a reasonable, but not exact description.

The statistical model provides a rigorous foundation on which to base two analyses of neural
data. First, maximum a posteriori optimization of the model with a suitable prior imposed on the
parameters, leads to a smoothed estimate of the underlying spike-rate intensity. This technique
provides a solid statistical basis for the smoothing, as well as correctly accounting for biases that
might be introduced by any variable excitability. Second, by use of a mixture of such models, we are
able to identify clusters of cells whose spike trains in response to the same stimuli are similar. Ad
hoc methods for clustering spike trains suffer from the serious difficulty of the absence of a natural
metric. In contrast, the probabilistic procedure avoids the issue of a distance measure entirely, and

leads to a natural clustering algorithm.



