
Chapter 6 Doubly Stohasti Poisson Models6.1 IntrodutionIn this hapter we turn from the study of models of spike waveforms, to models of the arrival timesof the ation potentials invoked in response to an experimental stimulus. The work desribed herewas arried out jointly with J. Linden. The methods that will be disussed have been applied todata1 olleted from the lateral intraparietal area in two maaques during �xation and saade tasksinvolving visual and auditory targets. A detailed disussion of this appliation is presented by Linden(1999).6.1.1 Point proessesIn hapter 5 we examined a variety of statistial models that desribed the spike waveforms reordedby extraellular eletrodes. While the shape of the waveform provided us with information aboutthe identity of the neuron in whih the assoiated ation potential ourred, it is not atually usedby the nervous system to transmit information between neurons. Instead, from the point of view ofthe neuron, the ation potential is an all-or-nothing pulse: any information that needs to be relayedbetween ells is arried in the ourrene and timing of the pulses alone.Statistially, we may view a train of ation potentials or spikes2 from a single neuron as theoutome of a stohasti point proess. The theory of suh proesses has been studied extensivelyin the statistis literature (Cox and Lewis 1966; Cox and Isham 1980; Snyder and Miller 1991). Theoutome of a point proess may be represented in one of two ways: either as a sequene of N eventtimes f�i : i = 1 : : :Ng or as a sequene of T ounts fxt : t = 1 : : : Tg. The ount xt indiates thenumber of events that fall within the small interval [tÆ; (t+ 1)Æ); thus Pt xt = N and 0 � ti < TÆ.We will always take the intervals to be of the same length, given by the bin width, Æ. In thishapter we will be onerned solely with the ounting representation. It will frequently be useful toollet the ounts xt into the vetor, x.A prominent distribution, that plays a rôle in point-proess theory quite similar to that of theGaussian in ontinuous random variable theory, is the Poisson proess. In partiular, this is themaximum entropy distribution for a given density of events. Under the Poisson distribution for aounting proess eah of the ounting random variables is independent. A single parameter, �t, the1The data were olleted by J. Linden and Dr. A. Grunewald, in Dr. R. A. Andersen's laboratory.2For the purposes of this hapter we need not distinguish between the two.



139mean or rate of the proess, haraterizes the distribution of the variable xtP�t (xt) = e��t�xttxt! (6.1)Thus the probability of the ount vetor x, given a rate vetor � isP� (x) = TYt=1 e��t�xttxt! (6.2)If �t is the same for eah interval the Poisson proess is alled homogeneous. In this hapter wewill be primarily onerned with inhomogeneous proesses.6.1.2 Spike response variabilityMany neurophysiologial experiments are onduted as follows. A stimulus is presented to an an-imal subjet and the times of ation potentials in one or more neurons in the subjet's brain arereorded. The stimulus may well eliit some trained behaviour from the animal: ation potentialsare reorded for the entire duration of experimental interest around both the stimulus presentationand behavioural event, if any. The same stimulus (and, presumably, behaviour) is then repeatedover many di�erent experimental trials, often randomly interleaved with other, similar, stimuli. Oneah repetition, the times of the ation potentials that arise in the same neurons are noted. Theresult is a database of stimulus-response pairs for eah ell.The neurons of interest in a given experiment usually alter their patterns of �ring during thetrial, in a manner linked to the presentation of the stimulus or to the exeution of the behaviour (orboth). Suh neurons appear to be related to the proessing of either the stimulus or the behaviouralresponse. However, very rarely does a neuron respond to multiple trials in an exatly repeatablemanner; this is partiularly true of ells in the erebral ortex of mammals, suh as those to bemodeled here. This variability in the response of a neuron is what leads us to treat the pattern ofspikes as the output of a stohasti proess.Spike trains observed in response to the same stimulus have often been modeled as independentlydrawn from a single inhomogeneous Poisson proess (Perkel et al : 1967). In detail suh a modelmust be wrong. Both the refratory period and the presene of bursts violate the independeneassumption of the Poisson ounting proess. However, in situations where the ounting intervals aresuÆiently large, it has been thought to be a reasonable approximation.Poisson proesses, inluding those with inhomogeneous rate, have the property that the distribu-tion of ounts retains the form (6.1) whatever the hoie of the ounting interval. In partiular, wemight selet the interval [0; T ), to obtain the total spike ount during a trial. Provided the originalproess is Poisson, this ount will still be distributed aording to (6.1). That distribution has the



140property that its variane is equal to its mean.In pratie, the variane in spike ount from aross repeated, experimentally idential, trials isoften larger than an be aounted for by the simple Poisson model (Tolhurst et al : 1981; Dean 1981;Tolhurst et al : 1983; Vogels et al : 1989; Softky and Koh 1993; Gershon et al : 1998; Shadlen andNewsome 1998). This same result is apparent in the data to be modeled here (Linden 1999), wherethe ratio between variane and mean (known as the Fano fator) appears to be loser to 1.5 than to1. One possible soure of this additional variane aross trials might be slow hanges in the overallexitability of neurons or of the ortial area. A number of reent reports have provided diret orindiret evidene for this idea (Brody 1998; Oram et al : 1998; also see Tomko and Crapper 1974;Rose et al : 1990; Tolhurst et al : 1981; Arieli et al : 1996). Suh slow variation in neuronal exitabilitymight result in an apparently stohasti saling of the underlying inhomogeneous Poisson rate. Thishypothesis will form the basis of the model to be disussed here.6.2 The Generative ModelThe generative model for a spike train x, output by a given ell in response to given experimentalonditions, is as follows. The ell-stimulus pair is taken to speify a non-negative intensity pro�le,�, that desribes the time-ourse of the ell's response to the stimulus. This pro�le is saled by alatent variable, s, whih is drawn from a gamma distribution with unit mean, and whih is meantto represent the exitability of the neuron on a given trial. The ation potential times are thengenerated by an inhomogeneous Poisson proess with rate vetor � = s�.This model is known in the point proess literature as an inhomogeneous Polya proess (seeSnyder and Miller 1991). It is a speial ase of the doubly stohasti Poisson proess: \doublystohasti" beause the Poisson rate is itself a random variable (Cox 1955; Snyder and Miller 1991).Clearly, any suh proess is a latent variable model. Other examples of doubly stohasti Poissonproesses have also been used to model neural spike data by other investigators; for example, someauthors have taken the rate to be a pieewise onstant funtion generated from a Markov hain(Radons et al : 1994; Abeles et al : 1993; Seidemann et al : 1996; Gat et al : 1997). The present hoieis, in part, appealing for its simpliity and relative tratability. As an be seen from the appliationsdisussed by Linden (1999), it an produe useful results.The standard form of the gamma density (for the sale s) depends on two parameters � and �.It is given by P�;� (s) = 1�(�)�� s��1e�s=� (6.3)It may be easily veri�ed that the mean of this distribution is ��. Thus, our requirement that thedistribution have unit mean onstrains the parameters suh that � = 1=�, and we obtain instead



141the single parameter density P� (s) = ���(�)s��1e�s� (6.4)We will refer to the parameter � as the stability, sine as it grows the variability in spike ountdrops.Combining this with the expression for the inhomogeneous Poisson proess probability (6.2), weobtain the joint density of a spike train x being observed along with a sale fator s.P�;� (x; s) =  TYt=1 e�s�t(s�t)xtxt! !� ���(�)s��1e�s�� (6.5)The sale, s, is not diretly observable, making this a latent variable model. While we mayapproah learning in this model by the EM algorithm that we have used before, in this ase it provesto be useful to obtain a losed form for the marginal distribution funtion of x, by integrating thejoint density of (6.5) with respet to s. The resultant marginal isP�;� (x) =  TYt=1 �xttxt!!��(X + �)�(�) ���(� + �)�(X+�) (6.6)Here, � and X are the sums of the elements in the orresponding vetors: � = PTt=1 �t andX =PTt=1 xt.We assume that a set of spike trains, X = fx1 : : : xNg, olleted from the same ell under identialtrial onditions, is obtained by drawing eah one independently from this distribution. We use thesubsript n to identify the spike train and write Xn for the orresponding total spike ount. Thus,we obtain the log-likelihood of the parameters � and � under the set of observations X ,`X (�; �) = logZ+ NXn=1 TXt=1 xnt log�t + log��(Xn + �)�(�) �+ � log�� (Xn + �) log(� + �)! (6.7)where the normalizing onstant Z absorbs terms independent of the parameters.As it stands, this model has a large number of independent degrees of freedom in its parameters.In partiular, for small ounting intervals and reasonable experimental durations, the vetor � mayhave hundreds of elements. It is impratial to expet reasonable parameter estimates from thesmall amounts of data that an usually be olleted. Therefore, we impose a prior density onthe parameters. The prior introdues inter-dependenies between the elements of �, reduing thee�etive number of degrees of freedom.The stability parameter, � is taken to be independent of the intensity funtion and is distributedaording to the density e�1=�. As a result, small values of � are subjet to a slight penalty. Inpratie, this prior is vague enough to have little e�et on the parameter estimates and is inluded



142only for ompleteness.The prior distribution of the intensity funtion is a stationary Gaussian proess with zero meanand ovariane matrix C. The stationarity indiates that we have no prior belief about the ourseof the intensity funtion during the experiment. In mathematial terms, it requires that the matrixC be T�oplitz (that is, diagonally striped).The resultant log posterior an be written:logP (�; � j x1; : : : ; xN ) = logZ � 12�TC�1�� 1�+ NXn=1�xTn log�� (Xn + �) log(� + �) + � log�+ log��(Xn + �)�(�) �� (6.8)where Z has now absorbed, in addition, the normalization term of the Gaussian.The redution in degrees of freedom is ahieved by hoie of a suitable prior. We selet a matrixwhih is based on an auto-ovariane funtion that is Gaussian3 in shape: that is, the ovarianebetween two elements of the intensity vetor �s and �t under the prior is of the formCst = exp�� (s� t)22�2 � (6.9)The quantity �, whih is hosen a priori, reets the expeted time-sale of hanges in the intensityfuntion, expressed in terms of the ounting interval length Æ. Thus, this hoie of prior ovarianeexpresses a belief in the smoothness of the underlying intensity funtion.If � is fairly large, the matrix C will be ill-onditioned. As suh, the inverse that appears in (6.8)reates a numerial instability. This an be resolved by diagonalizing the ovariane matrix. Reallthat the eigenvetors of any T�oplitz matrix are the basis vetors of the disrete Fourier transform(DFT), and so C is diagonalized by the DFT matrix F�st = 1pT exp(�2�i(s�1)(t�1)=T ). Rather thanuse this omplex form, it will be onvenient to introdue a real transform matrix whih separatesthe real and imaginary parts. Suh a matrix is given byF̂st = 1pT �8>>><>>>: 1 if s = 1os(2� s2 (t�1)T ) if s > 1 and is evensin(2� (s�1)2 (t�1)T ) if s > 1 and is odd (6.10)We have assumed that T , the total number of ounting intervals, is even.Thus, the matrix F̂CF̂T is diagonal, representing the independene of the Fourier omponents ofa stationary proess. The ill-onditioning now reveals itself in the presene of one or more diagonalelements that are very lose to zero. Thus, in the frequeny domain, the ill-onditioning of C is3It is important to distinguish between the Gaussian distribution of the prior and the Gaussian shape of theauto-ovariane. One does not imply the other.



143easy to interpret; it reets the fat that in ertain frequenies very little power is expeted underthe prior. In e�et, the prior imposes a band-limitation on the intensity funtion. The partiularhoie of Gaussian auto-ovariane funtion, for example, leads to a half-Gaussian shaped fall-o� inexpeted power as frequeny inreases from 0, with the highest frequenies e�etively exluded. It isimportant to realize, however, that the imposition of this prior is not equivalent to simply �lteringthe intensity funtion by the expeted frequeny pro�le.We now restrit the transform matrix to a retangular form F in whih rows orresponding to theeigenvalues of C that fall below some low threshold have been eliminated. Thus the matrix FCFT isalso diagonal, but is of order less than T and is well-onditioned. We will also apply this restritedtransform to the intensity funtion. In doing so, we fore the power of the intensity funtion to zeroat those frequenies at whih the expeted power is vanishingly small.We proeed to rewrite the posterior (6.8) in terms of this transformed intensity funtion. Inpratie, it proves to be useful to represent the intensity funtion by the transformed logarithm� = F log� (where the logarithm is taken to apply element by element). The introdution of thelogarithm enfores the requirement that the intensity be positive; this would otherwise be diÆultto ensure when working in the frequeny domain. The log-posterior now beomeslogP (�; � j x1; : : : ; xN ) = logZ � 12e�TFReFT� � 1� + hxiT FT��(hxiT 1+N�) log(e�TF1+ �) +N� log�+ NXn=1 log��(Xn + �)�(�) � (6.11)where hxi represents the sum of the di�erent observations, 1 is a vetor of T ones introdued toindiate summation of elements, and R = FT(FCFT)�1F. Exponentiation of a vetor term is takento apply element by element.6.3 OptimizationWe have presented a latent variable model for spike generation. In priniple, we might employthe EM algorithm to �nd the maximum-likelihood | or, given the prior, maximum a posteriori| parameter estimates, as we have done with the other latent variable models disussed in thisdissertation. Inspetion of the joint probability (6.5), however, suggests that this may not be aseasy as in our earlier examples. The latent variable, s, will enter into the joint log-likelihood in thelogarithm. Thus, alulation of the expeted value of this likelihood requires not only the �rst one ortwo moments of the latent variable posterior, as in our previous examples, but also the expetationof log s.To avoid this, we optimize the marginalized posterior (6.11) diretly by numerial gradient-basedmethods. Coneptually, this may be thought of as a simple gradient asent algorithm, although, in



144pratie, better results are obtained by use of a quasi-seond order method (see, for example, Presset al : 1993). Suh optimizations an be eÆiently exeuted using numerial methods software suhas the MATLAB pakage.6.4 Goodness of FitWhile the basi struture of the statistial model desribed in this hapter has been hosen toembody our beliefs about the origin of neuronal variability, the exat densities used (that is, thegamma and Poisson) have by and large been seleted arbitrarily. Both are high entropy distributions,whih is appropriate in situations where little onstraining knowledge is available, but it must beadmitted that, to a signi�ant extent, the hoie has been driven by mathematial expedieny. Insome details, we must expet the model to be inorret. As was already pointed out, both therefratory period and the tendeny of some ells to �re in bursts, violate the independene of ountsassumption inherent in the Poisson proess. Similarly, we have no guarantee that the saling willbe gamma distributed, nor even that the variability due to exitability an be expressed entirely asmultipliative saling (on this last point see Linden 1999).In this setion we will investigate through Monte-Carlo means the degree to whih the model isappropriate to desribe a given set of spike trains reorded in mammalian ortex. These data wereolleted by J. Linden and A. Grunewald from area LIP of 2 maaque monkeys. For data olletionproedures and further information the reader is referred to Linden (1999).In general, suh goodness of �t testing is a diÆult problem. We have enountered the issueof model seletion repeatedly in this dissertation, where the best of a group of ompeting modelsneeds to be seleted. In this ase, though, there is no lear alternative. Based solely on the singlemodel and the available data, we would like to deide whether or not the model is aeptable;that is, whether it is plausible that the data are indeed distributed in the manner spei�ed. Thegeneral framework for making suh deisions falls within the Neyman-Pearson signi�ane testingliterature that is fundamental to traditional developments of statistial theory (see, for example,Hoel et al : 1971). Many spei� tests have been developed for partiular simple distributions (someexamples may be found in Zar 1998). For one dimensional data a general tehnique, known as theKolmogorov-Smirnov test, is available to assess the validity of an arbitrary distribution (see, forexample, Press et al : 1993). This an be extended into a small number of dimensions (Fasano andFraneshini 1987), but for more ompliated models, desribing higher dimensional data, as in theurrent instane, suh straightforward tehniques are not available.Instead, we approah the problem by a novel Monte-Carlo tehnique, asking whether the obtainedlikelihood of the best �t model for the observed data mathes orresponding values obtained forsimulated data known to be generated from the distribution. The steps of the proedure are as



145follows.� Given a set of observed spike trains X o = fxo1 : : : xoNg, �nd the MAP parameter estimates �oand �o.� Calulate the likelihood on the observed data`o = `X o (�o; �o) (6.12)� Repeat for s = 1 : : : S:{ Generate a set of simulated spike trains from the optimized modelX s = fxs1 : : : xsNg � iid P�o;�o (x) (6.13){ Re-�t the model to the simulated data X s to obtain new MAP estimates �s; �s.{ Obtain the optimal likelihood on the simulated data`s = `X s (�s; �s) (6.14)� Find the rank of the observed likelihood within the set of simulated likelihoodsro = jfs : `s < `ogj (6.15)If this proedure is repeated a number of times | eah time starting with a di�erent set ofobserved spike trains, perhaps derived from a di�erent ell | and if the model represents the orretfamily of distributions, we would expet the resultant ranks to be uniformly distributed between 0and S.Two points about the proess might require eluidation. First, the simulated data are generatedusing the MAP parameter values so that the likelihoods measured in the simulations are drawn fromthe same region of the parameter spae as the true likelihoods. Likelihoods under simulated datataken in an an entirely di�erent parameter regime might be quite di�erent. Seond, the likelihoodsunder the simulated data need to be evaluated at the re-�t parameter values so as to avoid a biasdue to over-�tting. If this were not done, we would expet the observed likelihoods `o to be largerthan the simulated values, as the parameters would be perfetly tailored to the observed data alone.In priniple, we may now test for uniformity of the ranks by a Kolmogorov-Smirnov or other,more speialized, hypothesis test. In pratie it is obvious from inspetion that, in this ase, theranks are not uniformly distributed. Figure 6.1 shows the ranks obtained using di�erent groups of
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Figure 6.1: Distributions of likelihood ranksells under di�erent stimulus onditions. Eah panel represents a set of spike trains olleted underidential experimental onditions. Only spike trains from ells that appeared to be responsive underthe spei� onditions were used (the number of these is given by the quoted value of N in eahpanel), and a single set was taken from eah suh ell. In eah ase, the number of simulations, S,was 100.It is lear from the distributions in �gure 6.1 that the ranks are far from uniformly distributed.This suggests that the model we have developed in this hapter is not, in fat, an aurate desriptionof the reorded data. However, had the model been entirely o� base, we might have expeted thesimulated data to almost always have yielded higher best-�t likelihoods than the real observations.For example, if the smoothing invoked by the prior were too severe then the derived intensity funtionwould be greatly inaurate for the real data, leading to muh lower probabilities. Clearly, this is notthe ase either; almost half the time `s is smaller than `o. Thus, we onlude that while the model



147is not orret, it is reasonably apable of desribing the data. In partiular, it would be diÆult totell, simply by looking at the optimal likelihood, whether a given set of spike trains were genuineneural data or simply simulations.A further point of interest in �gure 6.1 is that the distributions of ranks obtained for the fourdi�erent experimental onditions | and frequently, from di�erent ells | are extremely similar.We might take this as evidene that the statistis of the spike trains from these di�erent ells andunder these di�erent experimental onditions are atually the same. Thus, while our urrent modelis inadequate, we might hope that by some re�nement we an, in fat, �nd an appropriate model.6.5 Clustering Spike TrainsIt is often a matter of sienti� interest to ask whether the ells within a given area of the brain fallinto lusters based on the time-ourses of their responses to a given stimulus. If suh lusters areapparent, they may indiate the presene of distint sub-populations of neurons that play di�erentrôles in the neural omputation.A ommon diÆulty enountered when attempting to apply traditional lustering tehniquessuh as the k-means algorithm or its variants, to spike trains, is the problem of �nding a suitablemetri. Suh algorithms require a notion of distane between two spike trains, but how is suha distane to be de�ned? One approah has been to smooth the spike trains, by binning or byonvolving with a Gaussian kernel, and then to sample eah suh smoothed spike train to obtaina vetor representation (see, for example, Rihmond and Optian 1987; Optian and Rihmond1987; MClurkin et al : 1991). These vetors are then treated as though they were embedded inthe standard Eulidean inner-produt spae. There is, however, no a priori reason to expet suha distane to be an appropriate metri for spike train lustering. This point is disussed at somelength by Vitor and Purpura (1997), who propose an alternative metri, though also on an ad hobasis.Fortunately, we an avoid this problem. In hapter 2 we saw that, in many ases, the generativemodeling approah to lustering is to be preferred. In partiular, this is true if we are interested inidentifying the proess from whih the observed data arose, rather than simply grouping the datathemselves. The appropriate generative model in suh situations is the mixture model given by theweighted sum of M omponent distributions:P� (x) = MXm=1�mP�m (x) (6.16)The parameters of the mixture deompose into independent and disjoint sets � = (�1 : : :�M ; �1 : : : �M ),where the parameters �m desribe the mth omponent or luster. Learning algorithms for suh mix-



148tures were disussed at length in hapters 2 and 3.Suh an approah e�etively sidesteps the issue of identifying a suitable metri within the spaeof spike trains. The lusters are no longer desribed within the observation spae; instead, theyare desribed by the parameters �m whih live in a di�erent spae altogether. We no longer needto ompute the separation between two spike trains: we need only �nd the \distane" between aspike train and the luster parameters. A natural andidate for suh a distane is obvious: theprobability of the spike train under the luster model. Thus, the probabilisti treatment espousedthroughout this dissertation allows us to rigourously arrive at a unique lustering solution from onlya few expliitly stated assumptions about the distributions of spike trains.To this point, we have regarded eah spike train xn as a separate observation; now, we will insteadtreat all of the spike trains olleted from the same ell under the same experimental onditions asa single outome of the generative model. For the ith ell-experiment pair we an ollet the Niindividual ount vetors into a matrix Xi, in whih eah ount vetor appears as a olumn. Carefulinspetion of the probability (6.7) reveals that, in fat, we are only interested in the marginal sumsof this matrix. Thus, we ompute and store the following suÆient statistis: the sum of the ountvetors Xi1, the vetor of total spike ounts XTi 1, and the total of all the elements 1TXi1. In theseexpressions the vetor 1 should be taken to ontain either T or Ni ones as appropriate.We an then write the form of the mth omponent probability distribution, written in terms ofthe Fourier domain intensity �m and the stability �m,Pm (Xi) / e�TmFXi1�Ni�mm (e�TmF1+ �m)�(1TXi1+Ni�m) exp �1T log��(XTi 1+ �m1)�(�m) �� (6.17)In the �nal fator, the gamma funtion and the logarithm should be taken to apply element byelement. We have left out a fator given by the produt of the fatorials of eah of the elements inXi. This fator is idential aross all of the omponent distributions and thus has no impat on anyof the optimization algorithms and need never be omputed.We then �t a mixture model for the entire ensemble of reordings taken aross multiple ellsX = fXig, given by P� (X ) = QiPm Pm (Xi). In doing so, we assume that a \luster" of spiketrains are suh that they may have arisen from exatly the same intensity funtion, although withpossibly di�erent salings. The \extent" of the luster is de�ned by the model, as well as by thelearned value of the stability parameter.For the single omponent model, the introdution of the prior was important to ahieve regular-ized estimation. In the mixture, this regularization is, if anything, more important as the omplexityof the model has inreased. We hoose the prior on the parameter set f�mg [ f�mg to fator overthe di�erent omponents; that is, the intensity funtion and stability for one omponent are a prioriindependent of those of any other omponent distribution. For any one omponent we hoose the



149priors on �m and �m to be exatly as before. The ovariane matrix C is taken to be ommon toall of the lusters. The mixing parameters �m are subjet to a uniform prior: this does not a�etthe results of the estimation and will be not be written expliitly.The basi EM algorithm suitable for learning in suh models was desribed in setion 2.4. Wereall that the E-step involves omputation of responsibilities aording to (2.9)rm;i = �mPm (xi)Pl �lPl (xi) (6.18)where, the omponent distributions are given by (6.17). The M-step update of the mixing probabil-ities is ommon to all mixture models (2.12)�m  Pi rm;ijX j (6.19)The update of the omponent parameters in the maximum likelihood ontext of hapter 2 was givenby (2.15) �m  argmax�m Xi rm;i logP�m (Xi) (6.20)where �m stands for the parameters of the mth omponent. In the present example, however, wehave a non-trivial prior distribution on the omponent parameters. Given our assumption that theprior fatorizes over the di�erent models, we an orret (6.20) by the addition of the log-prior forthe mth model to the right hand side. The updated parameters of the mth omponent are thusobtained by optimizing the expressionQ(�m; �m) = logZ � 12e�TmFReFT�m � 1�m+Xi rm;i h�TmFXi1� (1TXi1+N�m) log(e�TmF1+ �m)+N�m log�m + 1T log��(XTi 1+ �m)�(�m) �� (6.21)As before, this optimization must be performed numerially, and thus, the omputational ost ofthe M-step is onsiderably greater than that of the E-step. It is useful to reall the Generalized EM(GEM) algorithm, mentioned briey in setion 1.8, in whih the M-step is only partially ompleted;that is, the free energy is inreased by the update of the parameters, but not neessarily maximized.This generalization shares the guaranteed onvergene with the standard EM algorithm, but is moreeÆient. In the present ase, this partial ompletion is equivalent to exeuting only a limited numberof steps of the numerial optimization at eah M-step.The GEM algorithm desribed above was run on a subset of the data desribed previously, thatwas olleted from di�erent ells under the same experimental onditions. The results are shown
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Figure 6.2: Clusters of spike trains
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Figure 6.3: Responsibilities of the di�erent models.in �gure 6.2. The size of the model was determined by the BIC penalized likelihood proedure(see setion 1.3), whih yielded a mixture of �ve omponents. The intensity funtion learned foreah of these omponents is shown by the heavy blak line in eah panel of the �gure. The mixingprobabilities are indiated by the perentage �gures above eah panel. Cells have been assigned tothe most likely luster (that is, the one with the largest responsibility for the data from the ell),and the orresponding spike trains then shown in the bakground of the appropriate panel. Therepresentation is similar to the onventional spike raster diagram: eah row of dots represents asingle trial; the presene of a dot time indiates that at least one spike was ounted in a 5ms windowaround that time; the size of the dot indiates the number of spikes. The horizontal blak linesseparate spike trains from di�erent ells.Do the spike trains lassi�ed in �gure 6.2 really fall into �ve distint lusters? The fat thatBIC model seletion rejeted the option of more omponents in the mixture suggests that this maywell be the ase. As a further reassurane we an examine the posterior assignment probabilities,or responsibilities (6.18), under the maximum likelihood solution. These values indiate the suretywith whih eah data point is assigned to eah luster. If the omponents tended to share theresponsibility for eah spike train it would suggest that the lusters were not well separated. Theresponsibilities of eah of the �ve omponent models are shown in �gure 6.3. Eah line shows theassignment probabilities of one model, indiated by the number above the line, for all of data; thedata have been reordered to group spike trains assigned to the same luster together. In all ases,only one model has high responsibility, very lose to 1. This suggests that the lusters shown in�gure 6.2 really are well separated.6.6 SummaryIn this hapter we have introdued a latent variable model to desribe spike trains generated by aneuron under onstant experimental onditions. The model is designed to apture ertain reentobservations about the statistis of neural responses: in partiular, the fat that the variability in



152ortial spike trains is often greater than that predited by the Poisson proess assumption, andthat in many ases this greater variability might result from hanges in the overall exitability ofthe neuron or ortial area. Although the EM algorithm involves a diÆult E-step, it proves to bepossible to �t the model by diret numerial optimization.Using a Monte-Carlo goodness of �t proedure, we saw that the model does not desribe thestatistis of spiking exatly. However, the maximal likelihood values for the best-�t model underreal neural data are quite similar to the values under simulated data generated from the model itself.Thus, we onlude that model is a reasonable, but not exat desription.The statistial model provides a rigorous foundation on whih to base two analyses of neuraldata. First, maximum a posteriori optimization of the model with a suitable prior imposed on theparameters, leads to a smoothed estimate of the underlying spike-rate intensity. This tehniqueprovides a solid statistial basis for the smoothing, as well as orretly aounting for biases thatmight be introdued by any variable exitability. Seond, by use of a mixture of suh models, we areable to identify lusters of ells whose spike trains in response to the same stimuli are similar. Adho methods for lustering spike trains su�er from the serious diÆulty of the absene of a naturalmetri. In ontrast, the probabilisti proedure avoids the issue of a distane measure entirely, andleads to a natural lustering algorithm.


