
Chapter 6 Doubly Sto
hasti
 Poisson Models6.1 Introdu
tionIn this 
hapter we turn from the study of models of spike waveforms, to models of the arrival timesof the a
tion potentials invoked in response to an experimental stimulus. The work des
ribed herewas 
arried out jointly with J. Linden. The methods that will be dis
ussed have been applied todata1 
olle
ted from the lateral intraparietal area in two ma
aques during �xation and sa

ade tasksinvolving visual and auditory targets. A detailed dis
ussion of this appli
ation is presented by Linden(1999).6.1.1 Point pro
essesIn 
hapter 5 we examined a variety of statisti
al models that des
ribed the spike waveforms re
ordedby extra
ellular ele
trodes. While the shape of the waveform provided us with information aboutthe identity of the neuron in whi
h the asso
iated a
tion potential o

urred, it is not a
tually usedby the nervous system to transmit information between neurons. Instead, from the point of view ofthe neuron, the a
tion potential is an all-or-nothing pulse: any information that needs to be relayedbetween 
ells is 
arried in the o

urren
e and timing of the pulses alone.Statisti
ally, we may view a train of a
tion potentials or spikes2 from a single neuron as theout
ome of a sto
hasti
 point pro
ess. The theory of su
h pro
esses has been studied extensivelyin the statisti
s literature (Cox and Lewis 1966; Cox and Isham 1980; Snyder and Miller 1991). Theout
ome of a point pro
ess may be represented in one of two ways: either as a sequen
e of N eventtimes f�i : i = 1 : : :Ng or as a sequen
e of T 
ounts fxt : t = 1 : : : Tg. The 
ount xt indi
ates thenumber of events that fall within the small interval [tÆ; (t+ 1)Æ); thus Pt xt = N and 0 � ti < TÆ.We will always take the intervals to be of the same length, given by the bin width, Æ. In this
hapter we will be 
on
erned solely with the 
ounting representation. It will frequently be useful to
olle
t the 
ounts xt into the ve
tor, x.A prominent distribution, that plays a rôle in point-pro
ess theory quite similar to that of theGaussian in 
ontinuous random variable theory, is the Poisson pro
ess. In parti
ular, this is themaximum entropy distribution for a given density of events. Under the Poisson distribution for a
ounting pro
ess ea
h of the 
ounting random variables is independent. A single parameter, �t, the1The data were 
olle
ted by J. Linden and Dr. A. Grunewald, in Dr. R. A. Andersen's laboratory.2For the purposes of this 
hapter we need not distinguish between the two.



139mean or rate of the pro
ess, 
hara
terizes the distribution of the variable xtP�t (xt) = e��t�xttxt! (6.1)Thus the probability of the 
ount ve
tor x, given a rate ve
tor � isP� (x) = TYt=1 e��t�xttxt! (6.2)If �t is the same for ea
h interval the Poisson pro
ess is 
alled homogeneous. In this 
hapter wewill be primarily 
on
erned with inhomogeneous pro
esses.6.1.2 Spike response variabilityMany neurophysiologi
al experiments are 
ondu
ted as follows. A stimulus is presented to an an-imal subje
t and the times of a
tion potentials in one or more neurons in the subje
t's brain arere
orded. The stimulus may well eli
it some trained behaviour from the animal: a
tion potentialsare re
orded for the entire duration of experimental interest around both the stimulus presentationand behavioural event, if any. The same stimulus (and, presumably, behaviour) is then repeatedover many di�erent experimental trials, often randomly interleaved with other, similar, stimuli. Onea
h repetition, the times of the a
tion potentials that arise in the same neurons are noted. Theresult is a database of stimulus-response pairs for ea
h 
ell.The neurons of interest in a given experiment usually alter their patterns of �ring during thetrial, in a manner linked to the presentation of the stimulus or to the exe
ution of the behaviour (orboth). Su
h neurons appear to be related to the pro
essing of either the stimulus or the behaviouralresponse. However, very rarely does a neuron respond to multiple trials in an exa
tly repeatablemanner; this is parti
ularly true of 
ells in the 
erebral 
ortex of mammals, su
h as those to bemodeled here. This variability in the response of a neuron is what leads us to treat the pattern ofspikes as the output of a sto
hasti
 pro
ess.Spike trains observed in response to the same stimulus have often been modeled as independentlydrawn from a single inhomogeneous Poisson pro
ess (Perkel et al : 1967). In detail su
h a modelmust be wrong. Both the refra
tory period and the presen
e of bursts violate the independen
eassumption of the Poisson 
ounting pro
ess. However, in situations where the 
ounting intervals aresuÆ
iently large, it has been thought to be a reasonable approximation.Poisson pro
esses, in
luding those with inhomogeneous rate, have the property that the distribu-tion of 
ounts retains the form (6.1) whatever the 
hoi
e of the 
ounting interval. In parti
ular, wemight sele
t the interval [0; T ), to obtain the total spike 
ount during a trial. Provided the originalpro
ess is Poisson, this 
ount will still be distributed a

ording to (6.1). That distribution has the



140property that its varian
e is equal to its mean.In pra
ti
e, the varian
e in spike 
ount from a
ross repeated, experimentally identi
al, trials isoften larger than 
an be a

ounted for by the simple Poisson model (Tolhurst et al : 1981; Dean 1981;Tolhurst et al : 1983; Vogels et al : 1989; Softky and Ko
h 1993; Gershon et al : 1998; Shadlen andNewsome 1998). This same result is apparent in the data to be modeled here (Linden 1999), wherethe ratio between varian
e and mean (known as the Fano fa
tor) appears to be 
loser to 1.5 than to1. One possible sour
e of this additional varian
e a
ross trials might be slow 
hanges in the overallex
itability of neurons or of the 
orti
al area. A number of re
ent reports have provided dire
t orindire
t eviden
e for this idea (Brody 1998; Oram et al : 1998; also see Tomko and Crapper 1974;Rose et al : 1990; Tolhurst et al : 1981; Arieli et al : 1996). Su
h slow variation in neuronal ex
itabilitymight result in an apparently sto
hasti
 s
aling of the underlying inhomogeneous Poisson rate. Thishypothesis will form the basis of the model to be dis
ussed here.6.2 The Generative ModelThe generative model for a spike train x, output by a given 
ell in response to given experimental
onditions, is as follows. The 
ell-stimulus pair is taken to spe
ify a non-negative intensity pro�le,�, that des
ribes the time-
ourse of the 
ell's response to the stimulus. This pro�le is s
aled by alatent variable, s, whi
h is drawn from a gamma distribution with unit mean, and whi
h is meantto represent the ex
itability of the neuron on a given trial. The a
tion potential times are thengenerated by an inhomogeneous Poisson pro
ess with rate ve
tor � = s�.This model is known in the point pro
ess literature as an inhomogeneous Polya pro
ess (seeSnyder and Miller 1991). It is a spe
ial 
ase of the doubly sto
hasti
 Poisson pro
ess: \doublysto
hasti
" be
ause the Poisson rate is itself a random variable (Cox 1955; Snyder and Miller 1991).Clearly, any su
h pro
ess is a latent variable model. Other examples of doubly sto
hasti
 Poissonpro
esses have also been used to model neural spike data by other investigators; for example, someauthors have taken the rate to be a pie
ewise 
onstant fun
tion generated from a Markov 
hain(Radons et al : 1994; Abeles et al : 1993; Seidemann et al : 1996; Gat et al : 1997). The present 
hoi
eis, in part, appealing for its simpli
ity and relative tra
tability. As 
an be seen from the appli
ationsdis
ussed by Linden (1999), it 
an produ
e useful results.The standard form of the gamma density (for the s
ale s) depends on two parameters � and �.It is given by P�;� (s) = 1�(�)�� s��1e�s=� (6.3)It may be easily veri�ed that the mean of this distribution is ��. Thus, our requirement that thedistribution have unit mean 
onstrains the parameters su
h that � = 1=�, and we obtain instead



141the single parameter density P� (s) = ���(�)s��1e�s� (6.4)We will refer to the parameter � as the stability, sin
e as it grows the variability in spike 
ountdrops.Combining this with the expression for the inhomogeneous Poisson pro
ess probability (6.2), weobtain the joint density of a spike train x being observed along with a s
ale fa
tor s.P�;� (x; s) =  TYt=1 e�s�t(s�t)xtxt! !� ���(�)s��1e�s�� (6.5)The s
ale, s, is not dire
tly observable, making this a latent variable model. While we mayapproa
h learning in this model by the EM algorithm that we have used before, in this 
ase it provesto be useful to obtain a 
losed form for the marginal distribution fun
tion of x, by integrating thejoint density of (6.5) with respe
t to s. The resultant marginal isP�;� (x) =  TYt=1 �xttxt!!��(X + �)�(�) ���(� + �)�(X+�) (6.6)Here, � and X are the sums of the elements in the 
orresponding ve
tors: � = PTt=1 �t andX =PTt=1 xt.We assume that a set of spike trains, X = fx1 : : : xNg, 
olle
ted from the same 
ell under identi
altrial 
onditions, is obtained by drawing ea
h one independently from this distribution. We use thesubs
ript n to identify the spike train and write Xn for the 
orresponding total spike 
ount. Thus,we obtain the log-likelihood of the parameters � and � under the set of observations X ,`X (�; �) = logZ+ NXn=1 TXt=1 xnt log�t + log��(Xn + �)�(�) �+ � log�� (Xn + �) log(� + �)! (6.7)where the normalizing 
onstant Z absorbs terms independent of the parameters.As it stands, this model has a large number of independent degrees of freedom in its parameters.In parti
ular, for small 
ounting intervals and reasonable experimental durations, the ve
tor � mayhave hundreds of elements. It is impra
ti
al to expe
t reasonable parameter estimates from thesmall amounts of data that 
an usually be 
olle
ted. Therefore, we impose a prior density onthe parameters. The prior introdu
es inter-dependen
ies between the elements of �, redu
ing thee�e
tive number of degrees of freedom.The stability parameter, � is taken to be independent of the intensity fun
tion and is distributeda

ording to the density e�1=�. As a result, small values of � are subje
t to a slight penalty. Inpra
ti
e, this prior is vague enough to have little e�e
t on the parameter estimates and is in
luded



142only for 
ompleteness.The prior distribution of the intensity fun
tion is a stationary Gaussian pro
ess with zero meanand 
ovarian
e matrix C. The stationarity indi
ates that we have no prior belief about the 
ourseof the intensity fun
tion during the experiment. In mathemati
al terms, it requires that the matrixC be T�oplitz (that is, diagonally striped).The resultant log posterior 
an be written:logP (�; � j x1; : : : ; xN ) = logZ � 12�TC�1�� 1�+ NXn=1�xTn log�� (Xn + �) log(� + �) + � log�+ log��(Xn + �)�(�) �� (6.8)where Z has now absorbed, in addition, the normalization term of the Gaussian.The redu
tion in degrees of freedom is a
hieved by 
hoi
e of a suitable prior. We sele
t a matrixwhi
h is based on an auto-
ovarian
e fun
tion that is Gaussian3 in shape: that is, the 
ovarian
ebetween two elements of the intensity ve
tor �s and �t under the prior is of the formCst = exp�� (s� t)22�2 � (6.9)The quantity �, whi
h is 
hosen a priori, re
e
ts the expe
ted time-s
ale of 
hanges in the intensityfun
tion, expressed in terms of the 
ounting interval length Æ. Thus, this 
hoi
e of prior 
ovarian
eexpresses a belief in the smoothness of the underlying intensity fun
tion.If � is fairly large, the matrix C will be ill-
onditioned. As su
h, the inverse that appears in (6.8)
reates a numeri
al instability. This 
an be resolved by diagonalizing the 
ovarian
e matrix. Re
allthat the eigenve
tors of any T�oplitz matrix are the basis ve
tors of the dis
rete Fourier transform(DFT), and so C is diagonalized by the DFT matrix F�st = 1pT exp(�2�i(s�1)(t�1)=T ). Rather thanuse this 
omplex form, it will be 
onvenient to introdu
e a real transform matrix whi
h separatesthe real and imaginary parts. Su
h a matrix is given byF̂st = 1pT �8>>><>>>: 1 if s = 1
os(2� s2 (t�1)T ) if s > 1 and is evensin(2� (s�1)2 (t�1)T ) if s > 1 and is odd (6.10)We have assumed that T , the total number of 
ounting intervals, is even.Thus, the matrix F̂CF̂T is diagonal, representing the independen
e of the Fourier 
omponents ofa stationary pro
ess. The ill-
onditioning now reveals itself in the presen
e of one or more diagonalelements that are very 
lose to zero. Thus, in the frequen
y domain, the ill-
onditioning of C is3It is important to distinguish between the Gaussian distribution of the prior and the Gaussian shape of theauto-
ovarian
e. One does not imply the other.



143easy to interpret; it re
e
ts the fa
t that in 
ertain frequen
ies very little power is expe
ted underthe prior. In e�e
t, the prior imposes a band-limitation on the intensity fun
tion. The parti
ular
hoi
e of Gaussian auto-
ovarian
e fun
tion, for example, leads to a half-Gaussian shaped fall-o� inexpe
ted power as frequen
y in
reases from 0, with the highest frequen
ies e�e
tively ex
luded. It isimportant to realize, however, that the imposition of this prior is not equivalent to simply �lteringthe intensity fun
tion by the expe
ted frequen
y pro�le.We now restri
t the transform matrix to a re
tangular form F in whi
h rows 
orresponding to theeigenvalues of C that fall below some low threshold have been eliminated. Thus the matrix FCFT isalso diagonal, but is of order less than T and is well-
onditioned. We will also apply this restri
tedtransform to the intensity fun
tion. In doing so, we for
e the power of the intensity fun
tion to zeroat those frequen
ies at whi
h the expe
ted power is vanishingly small.We pro
eed to rewrite the posterior (6.8) in terms of this transformed intensity fun
tion. Inpra
ti
e, it proves to be useful to represent the intensity fun
tion by the transformed logarithm� = F log� (where the logarithm is taken to apply element by element). The introdu
tion of thelogarithm enfor
es the requirement that the intensity be positive; this would otherwise be diÆ
ultto ensure when working in the frequen
y domain. The log-posterior now be
omeslogP (�; � j x1; : : : ; xN ) = logZ � 12e�TFReFT� � 1� + hxiT FT��(hxiT 1+N�) log(e�TF1+ �) +N� log�+ NXn=1 log��(Xn + �)�(�) � (6.11)where hxi represents the sum of the di�erent observations, 1 is a ve
tor of T ones introdu
ed toindi
ate summation of elements, and R = FT(FCFT)�1F. Exponentiation of a ve
tor term is takento apply element by element.6.3 OptimizationWe have presented a latent variable model for spike generation. In prin
iple, we might employthe EM algorithm to �nd the maximum-likelihood | or, given the prior, maximum a posteriori| parameter estimates, as we have done with the other latent variable models dis
ussed in thisdissertation. Inspe
tion of the joint probability (6.5), however, suggests that this may not be aseasy as in our earlier examples. The latent variable, s, will enter into the joint log-likelihood in thelogarithm. Thus, 
al
ulation of the expe
ted value of this likelihood requires not only the �rst one ortwo moments of the latent variable posterior, as in our previous examples, but also the expe
tationof log s.To avoid this, we optimize the marginalized posterior (6.11) dire
tly by numeri
al gradient-basedmethods. Con
eptually, this may be thought of as a simple gradient as
ent algorithm, although, in



144pra
ti
e, better results are obtained by use of a quasi-se
ond order method (see, for example, Presset al : 1993). Su
h optimizations 
an be eÆ
iently exe
uted using numeri
al methods software su
has the MATLAB pa
kage.6.4 Goodness of FitWhile the basi
 stru
ture of the statisti
al model des
ribed in this 
hapter has been 
hosen toembody our beliefs about the origin of neuronal variability, the exa
t densities used (that is, thegamma and Poisson) have by and large been sele
ted arbitrarily. Both are high entropy distributions,whi
h is appropriate in situations where little 
onstraining knowledge is available, but it must beadmitted that, to a signi�
ant extent, the 
hoi
e has been driven by mathemati
al expedien
y. Insome details, we must expe
t the model to be in
orre
t. As was already pointed out, both therefra
tory period and the tenden
y of some 
ells to �re in bursts, violate the independen
e of 
ountsassumption inherent in the Poisson pro
ess. Similarly, we have no guarantee that the s
aling willbe gamma distributed, nor even that the variability due to ex
itability 
an be expressed entirely asmultipli
ative s
aling (on this last point see Linden 1999).In this se
tion we will investigate through Monte-Carlo means the degree to whi
h the model isappropriate to des
ribe a given set of spike trains re
orded in mammalian 
ortex. These data were
olle
ted by J. Linden and A. Grunewald from area LIP of 2 ma
aque monkeys. For data 
olle
tionpro
edures and further information the reader is referred to Linden (1999).In general, su
h goodness of �t testing is a diÆ
ult problem. We have en
ountered the issueof model sele
tion repeatedly in this dissertation, where the best of a group of 
ompeting modelsneeds to be sele
ted. In this 
ase, though, there is no 
lear alternative. Based solely on the singlemodel and the available data, we would like to de
ide whether or not the model is a

eptable;that is, whether it is plausible that the data are indeed distributed in the manner spe
i�ed. Thegeneral framework for making su
h de
isions falls within the Neyman-Pearson signi�
an
e testingliterature that is fundamental to traditional developments of statisti
al theory (see, for example,Hoel et al : 1971). Many spe
i�
 tests have been developed for parti
ular simple distributions (someexamples may be found in Zar 1998). For one dimensional data a general te
hnique, known as theKolmogorov-Smirnov test, is available to assess the validity of an arbitrary distribution (see, forexample, Press et al : 1993). This 
an be extended into a small number of dimensions (Fasano andFran
es
hini 1987), but for more 
ompli
ated models, des
ribing higher dimensional data, as in the
urrent instan
e, su
h straightforward te
hniques are not available.Instead, we approa
h the problem by a novel Monte-Carlo te
hnique, asking whether the obtainedlikelihood of the best �t model for the observed data mat
hes 
orresponding values obtained forsimulated data known to be generated from the distribution. The steps of the pro
edure are as



145follows.� Given a set of observed spike trains X o = fxo1 : : : xoNg, �nd the MAP parameter estimates �oand �o.� Cal
ulate the likelihood on the observed data`o = `X o (�o; �o) (6.12)� Repeat for s = 1 : : : S:{ Generate a set of simulated spike trains from the optimized modelX s = fxs1 : : : xsNg � iid P�o;�o (x) (6.13){ Re-�t the model to the simulated data X s to obtain new MAP estimates �s; �s.{ Obtain the optimal likelihood on the simulated data`s = `X s (�s; �s) (6.14)� Find the rank of the observed likelihood within the set of simulated likelihoodsro = jfs : `s < `ogj (6.15)If this pro
edure is repeated a number of times | ea
h time starting with a di�erent set ofobserved spike trains, perhaps derived from a di�erent 
ell | and if the model represents the 
orre
tfamily of distributions, we would expe
t the resultant ranks to be uniformly distributed between 0and S.Two points about the pro
ess might require elu
idation. First, the simulated data are generatedusing the MAP parameter values so that the likelihoods measured in the simulations are drawn fromthe same region of the parameter spa
e as the true likelihoods. Likelihoods under simulated datataken in an an entirely di�erent parameter regime might be quite di�erent. Se
ond, the likelihoodsunder the simulated data need to be evaluated at the re-�t parameter values so as to avoid a biasdue to over-�tting. If this were not done, we would expe
t the observed likelihoods `o to be largerthan the simulated values, as the parameters would be perfe
tly tailored to the observed data alone.In prin
iple, we may now test for uniformity of the ranks by a Kolmogorov-Smirnov or other,more spe
ialized, hypothesis test. In pra
ti
e it is obvious from inspe
tion that, in this 
ase, theranks are not uniformly distributed. Figure 6.1 shows the ranks obtained using di�erent groups of
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Figure 6.1: Distributions of likelihood ranks
ells under di�erent stimulus 
onditions. Ea
h panel represents a set of spike trains 
olle
ted underidenti
al experimental 
onditions. Only spike trains from 
ells that appeared to be responsive underthe spe
i�
 
onditions were used (the number of these is given by the quoted value of N in ea
hpanel), and a single set was taken from ea
h su
h 
ell. In ea
h 
ase, the number of simulations, S,was 100.It is 
lear from the distributions in �gure 6.1 that the ranks are far from uniformly distributed.This suggests that the model we have developed in this 
hapter is not, in fa
t, an a

urate des
riptionof the re
orded data. However, had the model been entirely o� base, we might have expe
ted thesimulated data to almost always have yielded higher best-�t likelihoods than the real observations.For example, if the smoothing invoked by the prior were too severe then the derived intensity fun
tionwould be greatly ina

urate for the real data, leading to mu
h lower probabilities. Clearly, this is notthe 
ase either; almost half the time `s is smaller than `o. Thus, we 
on
lude that while the model



147is not 
orre
t, it is reasonably 
apable of des
ribing the data. In parti
ular, it would be diÆ
ult totell, simply by looking at the optimal likelihood, whether a given set of spike trains were genuineneural data or simply simulations.A further point of interest in �gure 6.1 is that the distributions of ranks obtained for the fourdi�erent experimental 
onditions | and frequently, from di�erent 
ells | are extremely similar.We might take this as eviden
e that the statisti
s of the spike trains from these di�erent 
ells andunder these di�erent experimental 
onditions are a
tually the same. Thus, while our 
urrent modelis inadequate, we might hope that by some re�nement we 
an, in fa
t, �nd an appropriate model.6.5 Clustering Spike TrainsIt is often a matter of s
ienti�
 interest to ask whether the 
ells within a given area of the brain fallinto 
lusters based on the time-
ourses of their responses to a given stimulus. If su
h 
lusters areapparent, they may indi
ate the presen
e of distin
t sub-populations of neurons that play di�erentrôles in the neural 
omputation.A 
ommon diÆ
ulty en
ountered when attempting to apply traditional 
lustering te
hniquessu
h as the k-means algorithm or its variants, to spike trains, is the problem of �nding a suitablemetri
. Su
h algorithms require a notion of distan
e between two spike trains, but how is su
ha distan
e to be de�ned? One approa
h has been to smooth the spike trains, by binning or by
onvolving with a Gaussian kernel, and then to sample ea
h su
h smoothed spike train to obtaina ve
tor representation (see, for example, Ri
hmond and Opti
an 1987; Opti
an and Ri
hmond1987; M
Clurkin et al : 1991). These ve
tors are then treated as though they were embedded inthe standard Eu
lidean inner-produ
t spa
e. There is, however, no a priori reason to expe
t su
ha distan
e to be an appropriate metri
 for spike train 
lustering. This point is dis
ussed at somelength by Vi
tor and Purpura (1997), who propose an alternative metri
, though also on an ad ho
basis.Fortunately, we 
an avoid this problem. In 
hapter 2 we saw that, in many 
ases, the generativemodeling approa
h to 
lustering is to be preferred. In parti
ular, this is true if we are interested inidentifying the pro
ess from whi
h the observed data arose, rather than simply grouping the datathemselves. The appropriate generative model in su
h situations is the mixture model given by theweighted sum of M 
omponent distributions:P� (x) = MXm=1�mP�m (x) (6.16)The parameters of the mixture de
ompose into independent and disjoint sets � = (�1 : : :�M ; �1 : : : �M ),where the parameters �m des
ribe the mth 
omponent or 
luster. Learning algorithms for su
h mix-



148tures were dis
ussed at length in 
hapters 2 and 3.Su
h an approa
h e�e
tively sidesteps the issue of identifying a suitable metri
 within the spa
eof spike trains. The 
lusters are no longer des
ribed within the observation spa
e; instead, theyare des
ribed by the parameters �m whi
h live in a di�erent spa
e altogether. We no longer needto 
ompute the separation between two spike trains: we need only �nd the \distan
e" between aspike train and the 
luster parameters. A natural 
andidate for su
h a distan
e is obvious: theprobability of the spike train under the 
luster model. Thus, the probabilisti
 treatment espousedthroughout this dissertation allows us to rigourously arrive at a unique 
lustering solution from onlya few expli
itly stated assumptions about the distributions of spike trains.To this point, we have regarded ea
h spike train xn as a separate observation; now, we will insteadtreat all of the spike trains 
olle
ted from the same 
ell under the same experimental 
onditions asa single out
ome of the generative model. For the ith 
ell-experiment pair we 
an 
olle
t the Niindividual 
ount ve
tors into a matrix Xi, in whi
h ea
h 
ount ve
tor appears as a 
olumn. Carefulinspe
tion of the probability (6.7) reveals that, in fa
t, we are only interested in the marginal sumsof this matrix. Thus, we 
ompute and store the following suÆ
ient statisti
s: the sum of the 
ountve
tors Xi1, the ve
tor of total spike 
ounts XTi 1, and the total of all the elements 1TXi1. In theseexpressions the ve
tor 1 should be taken to 
ontain either T or Ni ones as appropriate.We 
an then write the form of the mth 
omponent probability distribution, written in terms ofthe Fourier domain intensity �m and the stability �m,Pm (Xi) / e�TmFXi1�Ni�mm (e�TmF1+ �m)�(1TXi1+Ni�m) exp �1T log��(XTi 1+ �m1)�(�m) �� (6.17)In the �nal fa
tor, the gamma fun
tion and the logarithm should be taken to apply element byelement. We have left out a fa
tor given by the produ
t of the fa
torials of ea
h of the elements inXi. This fa
tor is identi
al a
ross all of the 
omponent distributions and thus has no impa
t on anyof the optimization algorithms and need never be 
omputed.We then �t a mixture model for the entire ensemble of re
ordings taken a
ross multiple 
ellsX = fXig, given by P� (X ) = QiPm Pm (Xi). In doing so, we assume that a \
luster" of spiketrains are su
h that they may have arisen from exa
tly the same intensity fun
tion, although withpossibly di�erent s
alings. The \extent" of the 
luster is de�ned by the model, as well as by thelearned value of the stability parameter.For the single 
omponent model, the introdu
tion of the prior was important to a
hieve regular-ized estimation. In the mixture, this regularization is, if anything, more important as the 
omplexityof the model has in
reased. We 
hoose the prior on the parameter set f�mg [ f�mg to fa
tor overthe di�erent 
omponents; that is, the intensity fun
tion and stability for one 
omponent are a prioriindependent of those of any other 
omponent distribution. For any one 
omponent we 
hoose the



149priors on �m and �m to be exa
tly as before. The 
ovarian
e matrix C is taken to be 
ommon toall of the 
lusters. The mixing parameters �m are subje
t to a uniform prior: this does not a�e
tthe results of the estimation and will be not be written expli
itly.The basi
 EM algorithm suitable for learning in su
h models was des
ribed in se
tion 2.4. Were
all that the E-step involves 
omputation of responsibilities a

ording to (2.9)rm;i = �mPm (xi)Pl �lPl (xi) (6.18)where, the 
omponent distributions are given by (6.17). The M-step update of the mixing probabil-ities is 
ommon to all mixture models (2.12)�m  Pi rm;ijX j (6.19)The update of the 
omponent parameters in the maximum likelihood 
ontext of 
hapter 2 was givenby (2.15) �m  argmax�m Xi rm;i logP�m (Xi) (6.20)where �m stands for the parameters of the mth 
omponent. In the present example, however, wehave a non-trivial prior distribution on the 
omponent parameters. Given our assumption that theprior fa
torizes over the di�erent models, we 
an 
orre
t (6.20) by the addition of the log-prior forthe mth model to the right hand side. The updated parameters of the mth 
omponent are thusobtained by optimizing the expressionQ(�m; �m) = logZ � 12e�TmFReFT�m � 1�m+Xi rm;i h�TmFXi1� (1TXi1+N�m) log(e�TmF1+ �m)+N�m log�m + 1T log��(XTi 1+ �m)�(�m) �� (6.21)As before, this optimization must be performed numeri
ally, and thus, the 
omputational 
ost ofthe M-step is 
onsiderably greater than that of the E-step. It is useful to re
all the Generalized EM(GEM) algorithm, mentioned brie
y in se
tion 1.8, in whi
h the M-step is only partially 
ompleted;that is, the free energy is in
reased by the update of the parameters, but not ne
essarily maximized.This generalization shares the guaranteed 
onvergen
e with the standard EM algorithm, but is moreeÆ
ient. In the present 
ase, this partial 
ompletion is equivalent to exe
uting only a limited numberof steps of the numeri
al optimization at ea
h M-step.The GEM algorithm des
ribed above was run on a subset of the data des
ribed previously, thatwas 
olle
ted from di�erent 
ells under the same experimental 
onditions. The results are shown
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Figure 6.2: Clusters of spike trains
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Figure 6.3: Responsibilities of the di�erent models.in �gure 6.2. The size of the model was determined by the BIC penalized likelihood pro
edure(see se
tion 1.3), whi
h yielded a mixture of �ve 
omponents. The intensity fun
tion learned forea
h of these 
omponents is shown by the heavy bla
k line in ea
h panel of the �gure. The mixingprobabilities are indi
ated by the per
entage �gures above ea
h panel. Cells have been assigned tothe most likely 
luster (that is, the one with the largest responsibility for the data from the 
ell),and the 
orresponding spike trains then shown in the ba
kground of the appropriate panel. Therepresentation is similar to the 
onventional spike raster diagram: ea
h row of dots represents asingle trial; the presen
e of a dot time indi
ates that at least one spike was 
ounted in a 5ms windowaround that time; the size of the dot indi
ates the number of spikes. The horizontal bla
k linesseparate spike trains from di�erent 
ells.Do the spike trains 
lassi�ed in �gure 6.2 really fall into �ve distin
t 
lusters? The fa
t thatBIC model sele
tion reje
ted the option of more 
omponents in the mixture suggests that this maywell be the 
ase. As a further reassuran
e we 
an examine the posterior assignment probabilities,or responsibilities (6.18), under the maximum likelihood solution. These values indi
ate the suretywith whi
h ea
h data point is assigned to ea
h 
luster. If the 
omponents tended to share theresponsibility for ea
h spike train it would suggest that the 
lusters were not well separated. Theresponsibilities of ea
h of the �ve 
omponent models are shown in �gure 6.3. Ea
h line shows theassignment probabilities of one model, indi
ated by the number above the line, for all of data; thedata have been reordered to group spike trains assigned to the same 
luster together. In all 
ases,only one model has high responsibility, very 
lose to 1. This suggests that the 
lusters shown in�gure 6.2 really are well separated.6.6 SummaryIn this 
hapter we have introdu
ed a latent variable model to des
ribe spike trains generated by aneuron under 
onstant experimental 
onditions. The model is designed to 
apture 
ertain re
entobservations about the statisti
s of neural responses: in parti
ular, the fa
t that the variability in
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orti
al spike trains is often greater than that predi
ted by the Poisson pro
ess assumption, andthat in many 
ases this greater variability might result from 
hanges in the overall ex
itability ofthe neuron or 
orti
al area. Although the EM algorithm involves a diÆ
ult E-step, it proves to bepossible to �t the model by dire
t numeri
al optimization.Using a Monte-Carlo goodness of �t pro
edure, we saw that the model does not des
ribe thestatisti
s of spiking exa
tly. However, the maximal likelihood values for the best-�t model underreal neural data are quite similar to the values under simulated data generated from the model itself.Thus, we 
on
lude that model is a reasonable, but not exa
t des
ription.The statisti
al model provides a rigorous foundation on whi
h to base two analyses of neuraldata. First, maximum a posteriori optimization of the model with a suitable prior imposed on theparameters, leads to a smoothed estimate of the underlying spike-rate intensity. This te
hniqueprovides a solid statisti
al basis for the smoothing, as well as 
orre
tly a

ounting for biases thatmight be introdu
ed by any variable ex
itability. Se
ond, by use of a mixture of su
h models, we areable to identify 
lusters of 
ells whose spike trains in response to the same stimuli are similar. Adho
 methods for 
lustering spike trains su�er from the serious diÆ
ulty of the absen
e of a naturalmetri
. In 
ontrast, the probabilisti
 pro
edure avoids the issue of a distan
e measure entirely, andleads to a natural 
lustering algorithm.


