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Grau, teurer Freund, ist alle Theorie,Und gr�un des Lebens goldner Baum.Grey, dearest friend, is all of Theory,And green, the golden Tree of Life.Mephistopheles, in Goethe's Faust.
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AbstractThe brain is perhaps the most complex system to have ever been subjected to rigorous scienti�cinvestigation. The scale is staggering: over 1011 neurons, each making an average of 103 synapses,with computation occurring on scales ranging from a single dendritic spine, to an entire corticalarea. Slowly, we are beginning to acquire experimental tools that can gather the massive amountsof data needed to characterize this system. However, to understand and interpret these data willalso require substantial strides in inferential and statistical techniques. This dissertation attemptsto meet this need, extending and applying the modern tools of latent variable modeling to problemsin neural data analysis.It is divided into two parts. The �rst begins with an exposition of the general techniques oflatent variable modeling. A new, extremely general, optimization algorithm is proposed | calledRelaxation Expectation Maximization (REM) | that may be used to learn the optimal parametervalues of arbitrary latent variable models. This algorithm appears to alleviate the common problemof convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework formodel size selection; in combination with standard model selection techniques the quality of �ts maybe further improved, while the appropriate model size is automatically and e�ciently determined.Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, andapproximate inference and learning algorithms are derived for it. This model is applied in the secondpart of the thesis.The second part brings the technology of part I to bear on two important problems in experi-mental neuroscience. The �rst is known as spike sorting; this is the problem of separating the spikesfrom di�erent neurons embedded within an extracellular recording. The dissertation o�ers the �rstthorough statistical analysis of this problem, which then yields the �rst powerful probabilistic solu-tion. The second problem addressed is that of characterizing the distribution of spike trains recordedfrom the same neuron under identical experimental conditions. A latent variable model is proposed.Inference and learning in this model leads to new principled algorithms for smoothing and clusteringof spike data.
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PrefaceIn the course of mid-graduate school angst about the direction of my research, I was o�ered thefollowing advice by Professor Alan Barr. It is all too easy in multidisciplinary work, he warned, totake simple ideas from one �eld and use them to impress researchers in another. While sometimesproducing useful work, this is not the most rewarding way to cross the boundaries between �elds.Instead, he urged me to strive to make solid contributions to both areas of research, so that workersin either might appreciate the advances made in the study of their own subject. It is my hopethat the research described within this dissertation comes some distance towards this standard. Inparticular, I hope that both the statistician (or machine learning theorist) and the experimentalbiologist will �nd within these pages original ideas and contributions of interest to them.In acknowledgement of this goal, the dissertation is arranged in two parts, very nearly equal inlength. The �rst is entirely concerned with the statistical modeling of data; the techniques described,including the novel proposals, are of general applicability. Nonetheless, the development of thesetechniques has been driven by the desire to solve very speci�c problems in biology. The second partpresents models for the analysis of two di�erent types of neural data; in both cases, this developmentdraws heavily on the statistical tools presented in part I.The statistical content of this dissertation is as follows.� Chapter 1 begins with a review of a signi�cant portion of the theory of statistical modeling. Itreat both parameter estimation and model selection in the general case. The focus then shiftsto latent variable models in particular, and the Expectation{Maximization (EM) algorithm formaximum-likelihood estimation. In one way or another, this algorithm will form the basis formost of the original work in the dissertation. The free energy formulation of EM is describedalong with resulting extensions, such as the generalized and incremental variants.� Chapter 2 introduces the problem of data clustering, and begins by reviewing some olderalgorithms. This leads to a restatement of the clustering objective as a problem in statisticalmodeling, thereby arriving at the simplest of latent variable models, the mixture model. Thestandard EM algorithm for the mixture is derived. Finally, I raise and address a number ofimportant practical issues that arise in the use of mixture models for clustering.Both chapters 1 and 2 contain, for the most part, reviews of the existing literature. The onlynovel contribution is to be found in the detailed analysis of the problem of outliers in clustering(section 2.7.1); and even this follows closely suggestions that have appeared before.



x� In chapter 3, I introduce the Relaxation Expectation{Maximization (REM) algorithm.This is perhaps the single most signi�cant and widely applicable of the original contributionsto statistics. It provides a relaxation-based generalization of any EM algorithm, frequentlyleading to good maximum-likelihood solutions without convergence di�culties due to localmaxima. Furthermore, it may be combined with standard model selection techniques to yielda novel framework called cascading model selection. This approach further improves thequality of the maxima found by REM, and also allows for the appropriate model size (forexample, the number of components in a mixture) to be determined in parallel with theparameter optimization.� Chapter 4 opens with a brief review of the standard hidden Markov model (HMM) develop-ment. I then introduce a special case of HMM, the sparse hidden Markov model (SHMM),in which most of the output symbols assume a single, null, value. The development of algo-rithms speci�c to this model forms the original content of this chapter. It is shown thatinference and learning in such models can be accelerated as a result of the sparse structure.The primary algorithmic interest in the SHMM, however, lies in the fact that a good approx-imate learning scheme can be derived for mixtures of such models. In particular, I derivean EM algorithm for such a mixture, with a constrained E-step given by the novel coupledforward{backward algorithm.� Some novel statistical ideas also appear in the course of the second part of the dissertation.Section 5.7.2 introduces both a scheme to approximate the optimal linear discriminant spacefor certain types of clustered data, without knowledge of the cluster memberships; and also ro-bust principal component analysis, a version of the usual principal component analysis inwhich outlier points are gracefully discounted. Section 5.12 discusses incremental and adaptiveversions of EM for mixtures and for SHMMs. Chapter 6 examines the inhomogeneous Polyapoint process in some detail. Finally, a novel Monte-Carlo goodness of �t procedure isproposed and applied in section 6.4.In the second half of the dissertation, the primary focus shifts to biology, and original solutionsare proposed to two important problems in experimental neuroscience.� Chapter 5 addresses the problem of spike sorting; that is, distinguishing between the spikewaveforms that arise from di�erent neurons in an extracellular recording. Historically, thishas, for the most part, been done by hand, and with relatively little understanding of thestatistical properties of the data. No thorough statistical treatment of this subject has beenpresented, and in this dissertation I seek to rectify the omission.{ A number of important signal processing issues that arise in the handling of spike data,



xiand that are often neglected, are addressed. These include the appropriate thresholding ofmulti-channel data (section 5.5); the alignment of spike waveforms to reduce discretization\noise" (section 5.7.1); and the reduction in dimensionality of the waveform space so asto maintain the greatest separability between clusters (section 5.7.2).{ A novel latent variable model schema is proposed for the generating process, which cap-tures the expected structure of the variation in spike shapes. Learning the parameters(that is, the �ring statistics and distribution of spike waveforms) in this schema can bedecoupled from the inference of the exact spike times: the �rst occurs in a mixture modelin which overlapped spikes are simply treated as outliers, the second in a matched-�lter-based scheme where overlaps can be correctly resolved.{ Three speci�c models within the schema are examined, and learning and inference algo-rithms for these derived. The �rst (section 5.8) presumes that all of the variability inobserved spike shape is due to the addition of the background process: spikes from cellstoo distant to be distinguished and noise from electrical sources. The more sophisticatedexamples provide models for the intrinsic variability of spike waveforms. In particular, insection 5.10.2, an instance of the sparse hidden Markov model is used to explicitly modelthe change in spike waveform during a burst.{ The problem of on-line adaptation of the parameters of these models is discussed. Thisadaptation allows the algorithm to track slow drift in the spike waveforms that mightoccur due to motion of the electrode in neural tissue over a long timescale.{ Finally, a greedy, approximate �ltering scheme is proposed for spike-time inference. Thisscheme is well-suited to real-time operation on parallel signal processors.These investigations result in a new tool-box of statistical techniques which can be applied toautomatically resolve an extracellular recording into its constituent spikes. Such techniquesare crucial, both to the reliable scaling of scienti�c data acquisition to the hundreds of cellsor more, as well as to the realization of the biomedical engineering dream of neural prostheticdevices.� In chapter 6, I turn to the problem of characterizing the distribution of spike times invokedin a cortical neuron by constant experimental conditions. The model examined is an old onein the statistical literature, but appears to be new to this particular application: it is therandomly scaled inhomogeneous Poisson process, or Polya process. This choice is inspired byrecent experiments which have suggested that, at least in part, the super-Poisson variabilityin �ring rate can be accounted for by slow changes in the overall excitability of a neuron orcortical area. Combined with a Gaussian-process prior that enforces slow variation in �ring



xiirate, learning in such a model leads to a statistically rigorous method for the smoothing ofspike trains. Through Monte-Carlo simulations, it is shown that while the model is not exact,it is reasonably able to describe the data. A mixture of Polya processes can also be used asthe basis for the clustering of spike trains, a problem which has been tackled unsatisfactorilyby a number of authors in the past. The proposed approach avoids many of the di�cultieswhich have hampered previous e�orts, and it shown that this procedure leads to a believablegrouping of real data.The material in chapter 6 was developed in collaboration with J. Linden, and more extensiveapplications demonstrating the value of this simple model appear in her doctoral dissertation.



xiii
ContentsAcknowledgements vAbstract viiPreface ixI Statistics 11 Latent Variable Models 31.1 Statistical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Graphical Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.5 Latent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.6 The Expectation{Maximization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 191.7 Free Energy and EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.8 Generalizations of EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Clustering and Mixture Models 252.1 Clustering of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 A Statistical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3 Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.4 EM for Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.5 Applications of Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.6 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.7 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.7.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.7.2 Multiple maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.7.3 The number of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Relaxation Expectation{Maximization 413.1 Annealing and Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.1.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.1.2 Annealed sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



xiv3.1.3 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.2 Deterministic Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.3 REM-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.4 Phase Transitions in REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.4.1 Critical temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.4.2 Model-size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.5 REM-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.6 Cascading Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.6.1 A natural answer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.6.2 Cascading model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 Sparse Hidden Markov Models 674.1 The Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.1.1 The Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.1.2 The hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.2 Learning: The Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 704.2.1 E-step: The forward{backward algorithm . . . . . . . . . . . . . . . . . . . . 714.2.2 M-step: Parameter re-estimation . . . . . . . . . . . . . . . . . . . . . . . . . 734.3 Sparse HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.3.1 Another view of the forward{backward algorithm . . . . . . . . . . . . . . . . 744.3.2 Forward{backward algorithm for sparse HMMs . . . . . . . . . . . . . . . . . 754.4 Mixtures of Sparse HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.4.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.4.2 Coupled forward{backward algorithm . . . . . . . . . . . . . . . . . . . . . . 784.4.3 Parameter re-estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82II Applications 855 Spike Sorting 875.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.1.1 Extracellular recording: the source and nature of the signal . . . . . . . . . . 875.1.2 Spike sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925.2.1 Monkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925.2.2 Locust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935.3 A Generative Model Schema for Extracellular Recording . . . . . . . . . . . . . . . . 94



xv5.4 Learning within the Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.5 Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015.6 The Background Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7 Foreground Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.7.1 Extraction and alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.7.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.8 The Simple Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.8.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.8.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.9 Spike Shape Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.9.1 Ratio methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.9.2 Models of the variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205.10 Dynamic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235.10.1 Refractory period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235.10.2 Sparse hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245.11 Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275.12 On-line Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295.12.1 Incremental EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295.12.2 Parameter adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315.12.3 Limited look-ahead forward{backward . . . . . . . . . . . . . . . . . . . . . . 1325.13 Spike Time Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.14 Comparison with Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375.14.1 Window discriminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375.14.2 Manual clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385.14.3 Automatic techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395.14.4 Spike time detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416 Doubly Stochastic Poisson Models 1436.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436.1.1 Point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436.1.2 Spike response variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1446.2 The Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486.4 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1496.5 Clustering Spike Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



xvi



xvii
List of Figures1.1 The dangers of over-�tting with a complex model. . . . . . . . . . . . . . . . . . . . 91.2 Graphical representation of conditional independence. . . . . . . . . . . . . . . . . . 161.3 Graphical representations of repeated observation models. . . . . . . . . . . . . . . . 171.4 Graphical representation of a latent variable model. . . . . . . . . . . . . . . . . . . 182.1 A mixture model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.2 Two views of a mixture model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.3 Multiple maxima in the mixture likelihood . . . . . . . . . . . . . . . . . . . . . . . . 362.4 Likelihoods obtained from random restarts . . . . . . . . . . . . . . . . . . . . . . . . 373.1 Phase transitions in REM-1 for �xed-variance Gaussians . . . . . . . . . . . . . . . . 503.2 Inequivalence of di�erent size models . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.3 Phase transitions in REM-2 for �xed-variance Gaussians . . . . . . . . . . . . . . . . 573.4 Schematic of model selection using REM . . . . . . . . . . . . . . . . . . . . . . . . . 603.5 Frequency of poor maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643.6 Cascading model selection can improve optima . . . . . . . . . . . . . . . . . . . . . 654.1 The hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.2 A mixture of sparse hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . 775.1 Spike sorting model schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955.2 A sample extracellular recording. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025.3 Event detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.4 The distribution of background noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.5 Alignment of spike waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.6 Events represented by peak voltage on four channels. . . . . . . . . . . . . . . . . . . 1105.7 Events represented in the principal component subspace. . . . . . . . . . . . . . . . . 1115.8 Events represented in the noise-whitened robust PCA subspace. . . . . . . . . . . . . 1145.9 Events represented in the optimal linear discriminant space. . . . . . . . . . . . . . . 1155.10 The HMM transition structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.1 Distributions of likelihood ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516.2 Clusters of spike trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556.3 Responsibilities of the di�erent models. . . . . . . . . . . . . . . . . . . . . . . . . . 156



xviii



1

Part I
Statistics



2



3
Chapter 1 Latent Variable Models1.1 Statistical ModelingWe are given a set of observations X = fxi j i = 1 : : : jX jg. The data xi may be multivariate andare not necessarily independent. We are interested in learning about the nature of the process thatgave rise to these data. In particular, we believe that by investigating the relationships that existbetween the various components of the xi, or between the di�erent xi, we can arrive a succinctdescription of the data, and that this description will reveal the structure of the generating process.In this quest we shall follow a path that lies at the intersection of two �elds: unsupervised learningand density estimation.In the machine learning literature, the project that we have laid out is known as unsupervisedlearning. We shall focus on a subset of the machine learning techniques, de�ned by our belief thatthe underlying generative process is stochastic, where we seek to learn an explicit probabilisticmodel that describes the data. This will exclude from our purview some e�ective techniques, forexample the Kohonen and ART networks; in general, however, there are probabilistic formulationsthat very closely resemble each of these, and so we expect the loss not to be too serious. In return,we gain access to a powerful collection of probabilistic analysis tools.Thus, we seek a description of the probability distribution (or density, for continuous observa-tions) function P (X )1. As such, our objectives are similar to those of the �eld of density estima-tion. However, it is not the resultant distribution (or density) function that holds our interest, butrather the structure of the function and what that structure reveals about the process that generatedthe data. Thus, we will not pursue many useful, \non-parametric" techniques of density estimationon the basis that these will give us little insight into the underlying process.It is important to note that the general task of density estimation { given data X , estimateP (X ) { is not well formed unless something is known a priori about the probability function. Thisprior knowledge may be as simple as a belief that the function must be smooth, but in the absenceof any prior, any scheme for ranking two candidate distributions will fail at least as often as itwill succeed. This point is made clearly by Wolpert (1996). In our case, the prior knowledge,dictated by scienti�c experience and intuition, will go towards the selection of one or more familiesof parameterized probability functions P� (X ). � here denotes a set of parameters, each of which1We shall use the notation P (�) generically for probability distribution and density functions. The exact nature ofthe function should be clear from context and the arguments provided, when this is not so we shall identify particularfunctions with a subscript such as P� (�)



4may be discrete or continuous. There are two central problems to be addressed in the project ofstatistical modeling: the �rst, called learning or �tting, is to estimate a suitable set of parametersb�, or, if one is of the Bayesian persuasion, a posterior distribution over the parameters P (� j X ), thatis appropriate for the observed data. The second, model comparison, is to choose from among agroup of candidate models the one which is better supported by, or more probable given, the data. Itis worth noting that in the strict Bayesian viewpoint there is no di�erence between these operations:we can simply introduce a hyper-parameter that identi�es which model is to be used and theninfer its posterior distribution. However, we are interested in the properties of the particular modelthat best describes the data, and so although we might accept a distribution over parameters, weinsist on identifying a single best model.1.2 Parameter EstimationWe are given a set of observations X , along with a parameterized family of probability functionsP� (X ). We would like to infer an \optimal" value of the parameters such that the correspondingfunction describes the data best. There are many competing de�nitions of \optimal" in this context.It will be simplest to survey these de�nitions by starting from the Bayesian viewpoint. In theBayesian framework, the parameters � are treated as random variables, to be handled on a similarfooting to the observations X . In this case we can more aptly write our family of distributions asPM (X j �), where the subscriptM identi�es the particular model. Bayes' rule then allows us to �nda posterior distribution of the �,PM (� j X ) = PM (X j �)PM (�)PM (X ) (1.1)The function PM (�) denotes the probability associated with particular value of the parametersunder the model M a priori { that is, without reference to any observations. It is called the priordistribution. Similarly, PM (� j X ) gives the probability of the parameter values � in the context ofthe observed data. This is the a posteriori or simply posterior distribution. The term PM (X j �)is the familiar function that describes the distributions within our model, however in the context ofparameter estimation by (1.1) it is best viewed as a function of �, rather than of X . In this contextit is given a di�erent name; it is called the likelihood of the parameters in light of the data, andwill be written LX (�) to emphasize the exchange of rôles between � and X . It is important to notethat the the numerical value of the probability of data X under parameters �, P� (X ) or P (X j �),is identical to that of the likelihood of parameters � given data X , LX (�). The di�erence is onlyone of interpretation. The �nal term in (1.1) is the denominator PM (X ). This is also given a name,but one that will only really be relevant when we discuss model selection below. It is called the



5evidence for the model M , or else the marginal likelihood, since it is obtained by integratingthe likelihood with respect to �. From the point of view of parameter estimation from observationsit is usually of little importance, as it has a constant value with no dependence on the parameters.In the strict Bayesian point of view the equation (1.1) represents all that there is to be saidabout parameter estimation. Once we know the posterior distribution of the parameters we haveexactly expressed the complete extent of our knowledge about their value. In this view, any attemptto provide a single parameter estimate as a description of the situation must give up some usefulinformation. This is most apparent if we ask how the parameter estimate is to be used. Typically,we are interested in predicting the value of some statistic that is dependent on the parameters; itmight, for example, be the next data point to be drawn from the distribution. In this case we needto integrate over the posterior (this will also be true for model selection, treated below). Let us callthe statistic that we wish to predict k. The probability distribution that describes our predictionwill be PM (k j X ) = Z d� PM (k j �)PM (� j X ) (1.2)Here we see the practical di�culty in the strict Bayesian point of view. For many models, thisintegral is impossible to compute exactly. One approach taken is to approximate the integral by aMonte-Carlo sampling technique such as the Gibbs or Metropolis samplers, or by various so-called\hybrid" Monte-Carlo methods (Gelfand and Smith 1990; Smith and Roberts 1993; Neal 1996). Suchmethods are asymptotically exact, although the number of samples needed to reach the asymptoticdistribution can be probitively large.In practice, we often use a single estimate of the values of the parameters. This approach maybe understood from one of two points of view. In the �rst case, we will argue below that a suitablechoice of estimate can, under certain circumstances, actually provide a reasonable approximation tothe correct Bayesian predictor. In the second, it may be that the problem we are trying to solverequires a single estimate. If that is so, the problem will have introduced (perhaps implicitly) aloss-function, which we can then optimize to obtain the appropriate estimate.In many cases the posterior distribution is very strongly peaked at its modal value, written �MPfor maximum a posteriori. In this case we may assume that the only signi�cant contribution to theintegral comes from parameters very near the peak, and we may assume that the value of PM (x j �)is approximately constant for these values of �. Armed with these assumptions, along with theknowledge that R d� PM (� j X ) = 1, we can make the approximationZ d� PM (x j �)PM (� j X ) � PM �x j �MP� (1.3)That is, calculations made by simply plugging in the MAP estimator in the parameterized densityapproximate the Bayesian results. In general, this approximation improves with the number of



6available data. The MAP value is also important in other, more accurate, approximations to theposterior which are based on the Laplace or saddle-point integral. In these techniques, the posterioris approximated by a Gaussian whose mean lies at the posterior mode and whose covariance is inthe inverse of the Hessian of the posterior with respect to the parameters, evaluated at the mode(MacKay 1992). We will treat these in greater detail when we discuss model selection.The MAP estimator maximizes the posterior (1.1). The denominator on the right hand sideof Bayes' rule does not depend on �, and so the maximization applies only to the numeratorPM (X j �)PM (�). In many situations we may choose to neglect the prior and maximize onlythe �rst factor, the likelihood. This yields the maximum-likelihood or ML estimate, �ML. TheML estimate occupies an extremely prominent position in the classical (non-Bayesian) approach tostatistics. In particular, the ML estimate can be shown to be asymptotically e�cient, that is, asthe sample size grows the expected square error of the ML estimate approaches the fundamentallower bound on such errors (known as the Cram�er-Rao bound). In the presence of a \vague" prior(for example, a uniform prior in cases where this is well de�ned) the ML estimate enjoys all theproperties of MAP estimator discussed above.The MAP estimator can be seen to minimize the expected value of a probability-of-error lossfunction, which penalizes all errors equally. For continuous parameters we de�ne the loss by thelimit as �! 0 of the function taking the value 0 in an �-ball around the true parameter values and1 elsewhere. An alternative loss function penalizes errors by the square of the departure from thetrue value. Minimizing the expected value of this loss leads to the minimum-square-error (MSE)estimator. The fact that the second moment of any distribution is smallest about its mean impliesthat the MSE estimator is the mean of the posterior. Finding this value may well involve integrationof the posterior, with all its attendent pratical di�culties. The result about the asymptotic e�ciencyof the ML estimator quoted above implies that as the number of data grow larger the mode andmean of the posterior must converge.We have argued that the MAP and ML parameter estimates are of considerable importancein statistical theory, either as legimate goals in their own part, or as inputs to approximations ofBayesian integrals. In much of this dissertation we shall focus on maximum-likelihood techniques,tacitly assuming a vague prior. In almost all cases, (in particular, in the EM algorithm that we shallencounter shortly and which will resurface throughout this dissertation) the techniques that we willdiscuss can easily be adapted in the presence of a strong prior to yield a MAP estimate.1.3 Model SelectionWe now consider the situation in which we do not have a single parameterized family of probabilityfunctions, but rather must choose between alternative families with di�erent (and perhaps di�erent



7numbers of) parameters. These families might be very closely related. For example, we will discussclustering models at some length in chapter 2, where the data are presumed to arise from somenumber of distinct distributions, one for each cluster. In this case we shall need to determine theappropriate number of clusters, given the data. This is a model selection problem.
Hyperparameters and stacked generalizationOne approach to the model selection problem is to ignore it. We can combine the models into asingle family, with a hyperparameter that selects between them. The parameter set is then theunion of the parameters of the di�erent models, along with the hyperparameter. In the case ofnested models, where one family is a proper subset of the other, this is almost the same as selectingthe most complex model with the addition of the new hyperparameter. If we proceed with the fullBayesian predictive procedure (1.2) this is, in fact, the correct approach. In the case of clustering,for example, we should use an unbounded number of clusters (Neal 1991). However, with suchmodels, the posterior distribution will tend to be far more complex than with a single, continuouslyparameterized family. In particular, we expect modes corresponding to the MAP estimator for eachmodel, along with the corresponding value of the hyperparameter. In the face of su�cient data oneof these modes is likely to dominate, in which case we will have selected one model after all. Withless data, we generally need to integrate this posterior, for example when making predictions, byMonte-Carlo means (Neal 1991).A related approach, now termed stacked generalization, was proposed by Stone (1974) and hasrecently been explored by Wolpert (1992) and Breiman (1996). We can explicitly write the marginalof the predictive density over the model selection hyperparameter. If the models are labelled Mithis is P (k j X ) =Xi P (Mi j X )PMi (k j X ) (1.4)where the rightmost factor is the predictive distribution derived from the ith model. Thus, thepredictive distribution is the weighted sum of the predictions made by the di�erent models. Theweighting factor for the ith model is given by Bayes' rule,P (Mi j X ) / P (X j Mi)P (Mi) (1.5)that is, it is proportional to the product of the evidence or marginal likelihood P (X j Mi) = PMi (X )and the prior probability of the model. The weights are normalized to add to one.



8Choosing one model: the dangers of maximum likelihoodSuch combined model approaches are attractive in situations where the goal is predictive, and thetrue family is unknown. In the case of statistical modeling as we have laid it out, however, weare often interested in identifying the particular model that is best supported by the data. In theexample of clustering, one of our goals may well be to determine how many classes are present. If weare content with a probabilistic answer, then the marginal likelihood, or evidence, described above,indicates the relative probabilities of each model, as long as the prior weighting of each model isequal. If not, we may elect to choose the most probable model, thereby tacitly assuming a zero-one loss function as in the case of the MAP parameter estimate. In the following discussion weshall assume the latter point of view, arguing for the selection of a single, most probable model;however most of the approximations we will discuss can equally well be used to estimate the posteriorprobabilities of various models and thus used in techniques such as stacked generalization.Note that choosing the model with the greatest marginal likelihood is di�erent from choosingthe model with the greatest maximum in the likelihood, which might have been the na�ively favouredpolicy. In general, more complex models will exploit the greater exibility of their parameterizationsto achieve higher likelihood maxima on the same data; however, such models will be able to explainall sorts of di�erent data by adjusting their parameters appropriately, and can thus only assign arelatively low probability to any particular data set. In other words, the complexity is penalized inthe integral, as the region of parameter space that assigns high likelihood to the data is likely tobe proportionately smaller. Thus, the Bayes approach leads to the selection of the simplest model,within the group considered, that is adequate to explain the data; as a result this approach has beencompared with the philosophical \razor" of William of Ockham.We can express the di�culty with maximum-likelihood model choice in another way. The max-imal likelihood for a given model, represents the suitability of one particular member of the modelfamily to describe the data. The member chosen depends critically on the data provided. If themodel is complex, and two equivalent, independent samples from the same probability distributionare available, the member functions chosen in the two cases may be very di�erent. In either case,the function may well be far from the true density.An example appears in �gure 1.1. To produce this �gure, one dimensional data, shown as �lledhalf-circles on the lower axis, were generated from the Gaussian density shown by the solid line.These data were �t by two di�erent models: one, a simple Gaussian density with mean and varianceestimated from the data; the other a three-component mixture of Gaussians (basically the weightedsum of three Gaussian densities). Both models were �t by maximum likelihood estimation (thedetails of �tting the mixture model will be discussed in a subsequent chapter). The optimal estimatesare shown: the simple Gaussian estimate is plotted with dashes; the more complex mixture estiamtewith dashes and dots | the faint dotted lines show the shapes of the three mixture components.
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Figure 1.1: The dangers of over-�tting with a complex model.The mixture model has a higher likelihood than the simpler one. In this case, the log likelihood perpoint for the simple model is -2.54, while that of the mixture model is -2.41. In part, this increasein likelihood has been achieved by adapting to the cluster of data that appears near the value 4,assigning high probability to this region. Di�erent data, unlikely to cluster near 4, will probablyyield a very di�erent estimate.It is obvious by inspection that the simple model has approximated the true density with greateraccuracy. This tendency of complex models to �t the peculiarities of the given sample, rather thanthe underlying density funtion, is called over-�tting.Bayesian analysisWe consider two candidate models,M0 andM1, to be used to describe the data X . The two modelshave, respectively, p0 and p1 parameters, with p0 � p1. The parameter vectors will be written �0and �1. In some cases we shall consider nested models, where the family of functions allowed underM1 is a proper superset of the functions available inM0. In this case we shall further assume thatM0 can be obtained fromM1 by �xing the values of p1 � p0 parameters, and that the remainingp0 parameters ofM1 are identical to the parameters ofM0. Thus,M1 is to be thought of as themore complex model, and, in the nested case, may be a direct generalization ofM0. The Bayesianmodel selection procedure (sometimes called empirical Bayes) dictates that we select modelM1if and only if the posterior odds in favour ofM1, P (M1 j X ) =P (M0 j X ) are greater than one.



10Using Bayes' rule, we can write this asP (M1 j X )P (M0 j X ) = PM1 (X )PM0 (X ) � P (M1)P (M0) (1.6)The second term on the right hand side of this expression is the prior odds ofM1 being correct; the�rst term, which is the ratio of the marginal likelihoods, is called the Bayes factor. It is convenientto work with logarithms, and so the empirical Bayes criterion for selectingM1, in the face of equalprior probabilities for the two models (prior odds = 1), islogB10 = logPM1 (X )� logPM0 (X ) > 0 (1.7)These are the same marginal likelihoods that appeared in the denominator of (1.1). While they donot play much of a rôle in parameter estimation, they can be seen to be vital to model selection.The marginal likelihood is an integral over the parameter vector �i for the modelMi,PMi (X ) = Z d�i PMi (X j �i)PMi (�i) (1.8)As in the case of predictions using the posterior (1.2) this integral is often di�cult to compute.Analytic solutions can be found for simple exponential family models, including multivariate normallinear regression models, with so-called conjugate priors on the parameters (these being priorschosen in part for the simplicity of the resulting integral). In the general case we need to estimatethe integral via Monto-Carlo techniques (which we will not discuss here, but see Gelfand and Smith(1990), Smith and Roberts (1993) and Neal (1996)) or else employ analytic approximations which,while they may be asymptotically exact, yield biased estimates with realistic sample sizes.Approximations to the Bayes factorA simple and widely used approximation is called Laplace's method (Tierney and Kadane 1986;MacKay 1992). Let us write �(�) for the logarithm of the integrand in (1.8), the unnormalizedposterior over the parameters. We have dropped the subscript i for simplicity. We can expand �(�)in a Taylor series about its maximum, which falls at �MP.�(�) = �(�MP) +r�(�MP) � (� � �MP) + 12(� � �MP)Trr�(�MP)(� � �MP) + : : : (1.9)where the notation rr� denotes the Hessian matrix of second derivatives [@2�=@�i@�j ] and shouldnot be confused with the Laplacian, r2� = Tr [rr�]. As �MP lies at a maximum of �, thegradient there is 0 and the linear term in the expansion vanishes. We ignore the terms of higherorder than quadratic, a choice tantamount to approximating the posterior by a Gaussian, and write



11(KMP)�1 = �(rr�(�MP))�1 for the covariance of the approximation. The integral of (1.8) is thenPMi (X ) � ��KMPi =2����1=2 exp�i(�MPi ) = ��KMPi =2����1=2 PMi �X j �MPi �PMi ��MPi � (1.10)where we have reintroduced the model subscript. The log Bayes factor of (1.7) is thus approximatedby logB10 � �MP10 +�MP10 + 12 log ��KMP0 =2�����KMP1 =2��� (1.11)where �MP10 is similar to the log likelihood ratio statistic for classical model comparison, althoughevaluated at the MAP estimates, and �MP10 is the di�erence in the log priors of the MAP estimatorsfor the two models. Note that this is di�erent to the log of the prior odds of M1, which we haveassumed to be 0. The priors in this case are not the priors of the models, but rather the priors ofthe parameters of each model, evaluated at the maximum of the posterior. In general, the morecomplex model may be expected to spread its prior more thinly over a larger parameter space, andthus to provide a smaller prior density at any particular point. Thus, we expect the term �MP10 tobe negative, penalizing the likelihood ratio. Similarly, the determinant of the Hessian of the morecomplex model is likely to be larger (if the parameters are all estimated with roughly equivalenterror e and we rotate to a diagonal basis we see that it will scale as (1=e)pi) and so the ratio of jKjwill be less than one, also penalizing the likelihood. The Laplace approximation is asymptoticallycorrect, with, under certain regularity conditions, relative error of order O(N�1) where N is thenumber of observations (Kass et al : 1990).In the discussion of parameter estimation, we argued that we would remain agnostic on thenature of the prior and choose the maximum-likelihood estimator, which is likely to be close tothe MAP value for vague priors. Can we reduce (1.11) from the same standpoint? Assuming theprior is vague, and that �ML is close to �MP, we can approximate �MP10 by the more conventionallikelihood ratio, �10, evaluated at the respective maxima of the likelihoods. Also, the prior will nothave strong curvature, and so the Hessian of the log unnormalized posterior, evaluated now at �MLwill be dominated by the likelihood term. Thus we can replace KMPi by the observed informationmatrix Ki = �rr`X ��MLi �. This gives uslogB10 � �10 +�ML10 + 12 log jK0=2�jjK1=2�j (1.12)where �ML10 is the log ratio of priors evaluated at the maximum likelihood parameter values. Thisapproximation exhibits relative error O(N�1=2).At �rst glance, it would seem that we cannot dispense with the term �ML10 as it reects the di�er-ence in dimensionality of the two models and provides an important penalty. However, considerationof the asymptotic behaviour of (1.12) reveals that for large data sets it may be neglected. If we have



12N data points, the likelihood ratio takes the form PNn=1 log �PM1 �xn j �ML1 � =PM0 �xn j �ML0 �� andwill therefore grow with N . A similar argument applies to the Hessian of the log-likelihood, so thatthe magnitude of the �nal term of (1.12) grows as logN . Thus the term �ML10 , which is constantwith changes in the number of data can be asymptotically neglected.We can further simplify the ratio of Hessians that appears in the �nal term of (1.12). With Ndata points, we have log jKi=2�j = log ������ 12� NXn=1rrPMi (xn j �i)������ log ���NK̂=2����= log�(N=2�)pi ���K̂����= pi(logN � log 2�) + log ���K̂��� (1.13)where K̂ is the expected value with respect to the distribution of x of the one-point HessianrrPMi (x j �i) evaulated at �MLi . Again we drop the terms that do not grow with N , and ob-tain logB10 � �10 � 12(p1 � p0) logN (1.14)This approximation was introduced by Schwartz (1978) with a far more rigorous derivation in thecase of multivariate linear regression with an exponential family noise distribution, and was extendedby Haughton (1988) to regression on curves. The heuristic approach we have adopted here suggeststhat it should be useful for many model families, and indeed it is used quite widely. It is referred toin the literature as the Schwartz criterion, or as the Bayesian Information Criterion, BIC.In general the BIC approximation to the Bayes factor introduces relative errors of order O(1).Some authors attempt to reduce the BIC error in the context of particular models by approximatingthe constant (with respect to N) term that we have neglected. One approach, practical in thismodern day of the computer, is to determine a suitable value of the constant empirically by simulatingand �tting data from known distributions. Other authors pay close attention to the de�nition of thenumber N . In the above, we simply took it to be the total count of data; on other hand, from thederivation it is clear that it is really the growth rate of the Hessian. In some models, the parametersare local and are only a�ected by data that fall within a small region. The clustering models ofchapter 2, for example, fall into this category. In this case it may be argued that N is not the totalnumber of data, but rather the average number of data falling into each cluster. In practice, however,all of these corrections are of order O(1) and, provided that the number of data are large, the BICalone has been found to produce reasonable results. We shall see, however, that in the context oflatent variable models care must be taken in the choice of the number of parameters (Geiger et al :1998). We will postpone our discussion of this issue, along with treatment of another approximate



13Bayes technique for latent variable models introduced by Cheeseman and Stutz (1996). Instead, weshall proceed to investigate another class of model selection methods based on direct estimates ofthe probability of over-�tting.ValidationWe have motivated much of our development of model selection criteria by the notion of predictiveaccuracy. One approach, then, is to try to measure the predictive performance of the various modelsdirectly by observing the probability they assign to data outside the observations used for training.This approach is called validation. In its simplest form the process of validation involves thedivision of the set of observations X into two parts, the training data for which we will continueto use the symbol X , and the validation or test data for which we will write V . The posterior overparameters for each model (or the parameter estimates) are obtained on the training data, and themodels are ranked by the probability that they assign to the validation setVi = Z d�i PMi (V j �i)PMi (�i j X ) � PMi �V j �MPi � (1.15)The intuition behind this approach is appealing, but it is often a fairly noisy criterion. We usuallyhave only a limited amount of data available, and the necessity to divide it in two means that boththe estimate of the parameters, and the estimate of the expected o�-training set error are likely tobe noisy. Once we have chosen a model by validation, we can combine the training and validationdata sets and then reestimate the parameters to improve our predictions. However, the noise dueto small X and V may lead to the incorrect model being selected.In the simplest validation procedure there is a single training set and a single validation set.However, we could equally well train on V and test on X . This would yield two independentestimates of the o�-training-set performance of a particular model. The average of the two will thushave smaller variance than any one of them. In general, we can split up the data set into NV disjointsubsets. One by one, we take each of these subsets, call it validation data, train on its complementin the data set, and validate the resulting model. Thus we obtain NV independent estimates of Vi,which we can average to reduce the error in the estimate by O(1=pNV ). This simple improvementon the basic validation scheme is called cross-validation. In the extreme case where NV = N , thenumber of data, the term leave-one-out cross-validation is applied.Non-Bayesian PenaltiesThe spirit of such validation techniques, along with approximations similar to those made duringthe Bayesian treatment above, can also be used to obtain alternative likelihood penalization schemessimilar to the BIC. The goal here is to estimate by how much the observed training likelihood is



14likely to di�er from the likelihood of the validation set.Let us suppose that the true distribution of the data is some distribution P� (�), which we areattempting to �t with a family P� (�). Let �� represent the parameters that come closest to the truedistribution in the sense of the Kullback-Leibler divergence, that is�� = argmin� KL[P�kP�] = argmin� Z dx P� (x) log P� (x)P� (x) (1.16)If the true distribution is actually a member of the parametric family then the minimum KL di-vergence will, of course, be 0. Asymptotically, the maximum likelihood estimator will approach��. When discussing parameter estimation we made the well known observation that the maximumlikelihood estimator is asymptotically e�cient, which holds when the true distribution falls withinthe parameterized family. This result can be extended to the general case.The ML estimator given data X has the property that r`X ��ML� = 0. Assuming that �ML isclose to ��, we can make a linear approximation to the gradient at ��r`X (��) � r`X ��ML�+ (�� � �ML)rr`X ��ML� = (�� � �ML)K (1.17)where K is the observed information matrix, as before. Thus the error �� � �ML � K�1r`X (��)Asymptotically, the expected value of the di�erence is 0. To calculate the variance we note thatfor iid data E [K] = NK̂ where N is the number of observations and K̂ is the expected one-pointHessian. We write Ĵ = Var [r`xi (��)] as the more conventional de�nition of the Fisher information,the variance of the one-point log likelihood gradient, so that Var [r`X (��)] = NĴ , and soVar ��� � �ML� � 1N K̂�1ĴK̂�1 (1.18)The expectations and variances are all with respect to the true density P� (�). If this is the sameas P�� (�) then the two de�nitions of the information are equivalent and Ĵ = K̂, so that the meansquare error approaches the standard Cr�amer{Rao bound 1=NĴ .Given the asymptotic behaviour of the ML estimate, we can ask what likelihood we will assign toa validation point, v generated from the true distribution P� (v). We expand around the \correct"validation value at ��.`v ��ML� � `v (��) + (�ML � ��)Tr�`v (��) + 12(�ML � ��)Trr�`v (��) (�ML � ��) (1.19)= `v (��) + (�ML � ��)Tr�`v (��) + 12Tr �rr�`v (��) (�ML � ��)(�ML � ��)T �(1.20)If we now take the expectation with respect to the true distribution of the training data and of v,we can take the expected gradient at �� to be 0. Also, since v is independent of X and therefore of



15�ML, we can factor the expectation within the trace.E �`v ��ML�� = E [`v (��)] + 12Tr �E [rr�`v (��)] E �(�ML � ��)(�ML � ��)T ��= E [`v (��)]� 12Tr hK̂Var �(�ML � ��)�i= E [`v (��)]� 12Tr�K̂ 1N K̂�1Ĵ K̂�1�= E [`v (��)]� 12NTr hĴK̂�1i (1.21)This expression shows the approximate bias in the validation likelihood. On the training data wecan expand `X (��) around �ML (where the gradient is always 0) to obtainE [`X (��)] = E �`X ��ML��� 12Tr hĴK̂�1i (1.22)Now, the expected values of the log-likelihoods at the �xed point �� are equal (up to a factor of thenumber of training data, N). Thus, we obtainE �`v ��ML�� = 1N �E �`X ��ML���Tr hĴK̂�1i� (1.23)This can be viewed as a prediction of the expected di�erence between the validation likelihoodand the training likelihood. We might therefore rank models according to their training likelihoodspenalized by the trace term.This is the NIC (Network Information Criterion) of Murata et al : (1991, 1993, 1994). To use itwe replace the expected values of the information measures Ĵ and K̂ by their observed values,NIC = `X ��ML��Tr �JK�1� (1.24)with K the observed information and J = Pi(r`xi ��ML�)2=(N � p) where p is the number ofparameters. If the true distribution lies within the parameterized family then Ĵ = K̂ and we canreplace the trace penalty by the number of parameters p. This is the AIC of Akaike (1974). Akaikeused AIC as an abbreviation for An Information Criterion, although it is usually taken to stand forthe Akaike Information Criterion.1.4 Graphical RepresentationsIn most experiments we measure more than one variable simultaneously. Thus the observations xithat we have described above are usually multivariate. It is often useful to partition the observationsinto a number of distinct random variables, each of which may still be multivariate. For example,
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x1ix1ix1i x2ix2ix2i x3ix3ix3iP �x3i j x2i ; x1i �P �x2i j x1i �P �x1i � P �x3i j x2i ; x1i �P �x2i �P �x1i � P �x3i j x1i �P �x2i j x1i �P �x1i �Figure 1.2: Graphical representation of conditional independence.we may make measurements with di�erent instruments and regard the output of each instrument,whether a single number or a vector, as a random variable. The advantage to such a partition isthat it is often possible to write the parameterized model distribution P� (xi) more easily in termsof the partitioned variables. Why would this be so?Let us consider a case where the observation xi is partitioned into three random variablesx1i ; x2i ; x3i . In general any probability function of the xi may be written in conditional form:P (xi) = P �x3i j x2i ; x1i �P �x2i j x1i �P �x1i � (1.25)However, it might be that x2i is independent of x1i and so we replace the second term on the rightabove with just P �x2i �. Another possibility is that x3i is conditionally independent of x2i given x1iso that we can write P �x3i j x1i � in place of the �rst right hand term. This might seem like only anotational convenience, but, in fact, if we are to parameterize the probability distribution we havesaved ourself some parameters. The factorized function is simpler (in the sense of model selection)than before.The factorized structure of the distribution can be shown graphically as in �gure 1.2. In panel Athe case of no conditional or marginal independencies is shown as a fully connected undirected graph.Panel B represents the marginal independence of x1i and x2i . Panel C represents the conditionalindependence of x2i and x3i . Each of the latter two cases is represented by a directed acyclicgraph or DAG.It should be noted that the connection between probabilistic models and DAGs is far fromcosmetic. An important and deep theory is available connecting reasoning about the probabilitydistribution with algorithmic manipulations of the graph (Pearl 1988; Lauritzen 1996). However, weshall not exploit this theory at all; for us the graph will simply be a convenient tool for visualization.When representing parameterized probability functions P� (xi) we will �nd it useful to introducenodes in our graphical representation corresponding to the parameters. Since we have factorized ourprobability functions, we need to partition the parameters � into the groups appropriate for each
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i iFigure 1.3: Graphical representations of repeated observation models.factor function. In general, we might writeP� (xi) = P�3 �x3i j x2i ; x1i �P�2 �x2i j x1i �P�1 �x1i � (1.26)where � is the union of �r; r = 1 : : : 3. Figure 1.3A illustrates the representation. Whereas before itwas su�cient to show the variables involved in a single observation i, with the implicit informationthat each observation is independent and identically distributed, we now need to make clear thatthe parameters are chosen exactly once and have the same value over all observations, whereas eachobservation has its own set of random variables xri . This time the fact that the xri are independent(conditioned on the parameters) is shown explicitly by the lack of edges between nodes at di�erentvalues of i.We can condense the representation as shown in Figure 1.3B2. The rectangle represents a single2To the best of my knowledge, this representation was introduced in the computer program BUGS from the MRCbiostatistics unit at Cambridge (Thomas 1994; Spiegelhalter et al : 1996).
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Figure 1.4: Graphical representation of a latent variable model.observation with an index indicated its lower right hand corner; variables that appear within therectangle are repeated across observations, while the parameters which are chosen only once for allobservations appear outside it. As before, the lack of edges between nodes at di�ering i indicatesthat the observations are independent. Now, our decision to represent all the functions P� (xi) by asingle subgraph indicates further that they are identical.If the observations are not independent, say there are correlations between the variables x1i atdi�erent i, we may represent this fact by an edge that crosses out of, and then back into, therectangle, as in �gure 1.3C. However, we cannot show the limits of this interaction. For example, ifx1i is generated by a Markov process, so that x1i is conditionally independent of x11 : : : x1i�2 given x1i�1we need the expanded time view of �gure 1.3A, with additional edges for the Markovian dependence,to distinguish this from the other possible cross-observation dependency structures.1.5 Latent VariablesWe have seen that it can be useful to partition the observed variables so as to simplify the expres-sion of the probability function by exploiting the conditional dependency structure of the problem.Another manipulation that can assist in this simpli�cation is the introduction of latent variables.These are variables which are not observed. The parameters, of course, are also not observed; thelatent variables are di�erent in that they are presumed to be instantiated once for every observation,that is there is a latent yi for each observation xi. In graphical terms, the simplest latent variablemodel is sketched in �gure 1.4. Note that the latent variable node appears within the rectangle.In a latent variable model we can add a third operation to our pair of learning and model



19selection, inference. This will refer to the estimation of value of the latent variables yi given knownparameters and the observations xi. The di�erence from �tting, that is, estimating the parameters,is simply one of scale.Again, it has been shown that certain algorithmic manipulations on the graph that de�nes thelatent variable model can yield the correct form of inference (Pearl 1988). For most of the modelswe shall discuss, however, inference will be a simple matter of the application of Bayes' rule:P� (yi j xi) = P� (xi j yi)P� (yi)P� (xi) (1.27)1.6 The Expectation{Maximization AlgorithmHow do we go about learning the parameter values of a latent variable model? It is possible to de�nea likelihood function for the parameters by integrating over the latent variables3.`X (�) = log Z dY P� (X j Y)P� (Y) (1.28)where the integral is over all the yi in the set Y . However, in many cases this likelihood is quitedi�cult to optimize in closed form. Gradient- or Hessian-based numerical optimization schemescan be very e�ective for a number of problems. In the case of latent variable models, however,another algorithm exists that is frequently more straightforward and of comparable e�ciency. Thisis the Expectation{Maximization (or EM) algorithm (Dempster et al : 1977). Quite complicatedmodels may be �t e�ciently by use of EM (Xu and Jordan 1996).We shall �rst lay out the steps of the EM algorithm and only then o�er two (informal) proofs ofits validity. The second of these proofs will also provide the justi�cation for various extensions.If we had, in fact, observed the variables yi we would be able to write the joint data loglikelihood `X ;Y (�; �) = logP� (X j Y) + logP� (Y) (1.29)This likelihood is often much easier to manipulate than the true likelihood of (1.28), since it avoidsthe awkward log-of-integral (or log-of-sum) expression. It will be the starting point for EM.To begin the EM algorithm we provide seed guesses for the parameters. We will label successiveoutputs of the iterations by the iteration number in the superscript. Thus, the initial guesses willbe called �0. At the nth iteration we estimate new values of the parameters by the following twosteps.E-step: Find the expectation of the joint data log-likelihood under the distribution of the yi given3In this general introduction we shall assume that the yi are continuous, but discrete latent variables may behandled in the same fashion with the integral replaced by a sum.



20the n� 1th parameter estimates and the observations.Qn(�) = EYjX ;�n�1 [`X ;Y (�)] (1.30)M-step: Then maximize this expected joint data log-likelihood with respect to the parameters toobtain the new estimates. �n = argmaxQn(�) (1.31)Why does EM work? Let us consider the e�ect of the iterations on the true log-likelihood functiongiven in (1.28). In each iteration we start with parameters �n�1 and estimate new parameters �n.For notational simplicity we will write Pn�1 (�) for the various probability functions with parameters�n�1 and similarly for Pn (�). The resulting log-likelihood is`X (�n) = log Z dy Pn (Y)Pn (X j Y) (1.32)We introduce a factor of Pn�1 (Y j X )Pn�1 (Y j X ) within the integral and rearrange to obtain`X (�n) = log Z dy Pn�1 (Y j X )�Pn (Y)Pn (X j Y)Pn�1 (Y j X ) � (1.33)We can now use Jensen's inequality (see, for example, Cover and Thomas (1991)) applied to theconvex function log(�) to exchange the logarithm and integral. In this context, Jensen's inequalitystates that, for positive weights �i that sum to 1,log(Xi �ixi) �Xi �i log(xi) (1.34)We can generalize this for a positive continuous weight function with unit integral, in our casePn�1 (Y j X ), to obtain`X (�n) � Z dy Pn�1 (Y j X ) log�Pn (Y)Pn (X j Y)Pn�1 (Y j X ) � (1.35)= Z dy Pn�1 (Y j X ) log (Pn (Y)Pn (X j Y))�Z dy Pn�1 (Y j X ) log (Pn�1 (Y j X )) (1.36)Thus the quantity on the right hand side of (1.36) is a lower bound on the likelihood at the nthiteration. The �rst term is readily identi�ed as the quantity Qn(�) from our statement of the EMalgorithm (1.30). The second term has no dependence on �n. Thus by maximizing Qn(�) as dictatedby the m-step (1.31) we are maximizing a lower bound on the likelihood. Further, we know that the



21maximum must be � `X ��n�1� since we can obtain that value by simply putting �n = �n�1. Thuswe can be sure that as long as the EM algorithm does not converge, the likelihood of the modelmust increase.We need also to show that when the EM algorithm does converge, we have reached a maximumof the true likelihood. This proof appears in (Dempster et al : 1977), and we will not reproduce it.Instead, we will follow Neal and Hinton (1998) and take a slightly di�erent view of the algorithm;this approach will yield the necessary second component of the proof.
1.7 Free Energy and EMLet us de�ne a more general form of the function Q in (1.30) by taking the expectation with respectto an arbitrary probability function p(Y), in place of the particular probability Pn�1 (Y j X ).Q(p; �) = Ep [`X ;Y (�)] (1.37)We can then introduce a function that we will call the free energy by analogy with statisticalmechanics, F (p; �) = Q(p; �) +H(p) (1.38)where H(p) = �Ep [log p] is the entropy of p. This function is familiar from above; it is the righthand side of (1.36) with the arbitrary function p replacing Pn�1 (Y j X ). Furthermore, in arrivingat that expression our choice of weighting function to use in Jensen's inequality was arbitrary, so Falso bounds the likelihood `X (�) below. In drawing the physical analogy we should note that our Fshould, in fact, be regarded as the negative of the conventional free energy, which is consistent withthe fact that we are interested in maximizing F , while physical systems evolve to minimize their freeenergy.We observe (Neal and Hinton 1998) that, if � is held constant, the free energy is, in fact, maxi-mized by choosing p(Y) = P� (Y j X ). To see this, we maximize the quantityL�(p) = F (p; �)� � Z dY p(Y) (1.39)= Z dY p(Y) (`X ;Y (�)� log p(Y)� �) (1.40)where � is a Lagrange multiplier enforcing the normalization constraint. From the theory of thecalculus of variations (Mathews and Walker 1970) we �nd that at the maximum with respect to p thefunctional derivative of the integrand must be 0 (this is a trivial special case of the Euler-Lagrange



22equations). Thus the maximum occurs when0 = @@p (p(Y) (`X ;Y (�)� log p(Y)� �))= (`X ;Y (�)� log p(Y)� �) � p(Y)p(Y) (1.41)and so p(Y) = e���1LX ;Y (�) = e���1P� (X ;Y) (1.42)The requirement that p be normalized determines the multiplier � and yields p(Y) = P� (Y j X ).Thus we obtain a new interpretation of the EM algorithm.E-step: Maximize F with respect to p holding � constant.M-step: Maximize F with respect to � holding p constant.We can now sketch the proof that if F achieves a local maximum at p�; �� then `X (�) achieves alocal maximum at �� (Theorem 2 of Neal and Hinton (1998)). We �rst note that if p(Y) = P� (Y j X )then F (P� (Y j X ) ; �) = Q(P� (Y j X ) ; �) +H(P� (Y j X ))= EYjX ;� [`X ;Y (�)]� EYjX ;� [logP� (Y j X )]= EYjX ;� � logP� (Y ;X )logP� (Y j X )�= EYjX ;� [logP� (X )]= logP� (X )= `X (�) (1.43)Thus, writing p�(Y) for P�� (Y j X ), we have `X (��) = F (p�; ��). Suppose there is some ��� �-closeto �� at which the log-likelihood is larger, and that p�� is the corresponding P��� (Y j X ). Then itmust be that F (p��; ���) > F (p�; ��). But, assuming that P�� (Y j X ) varies continuously with ��,if ��� is �-close to �� then p�� is �-close to p�. This violates the assumption that F achieves a localmaximum at p�; ��, and so there can be no such ��� close to �� with larger likelihood. Thus `X (��)is a local maximum. A similar argument can be made for the global maximum (and we don't evenneed the continuity assumption).1.8 Generalizations of EMThis formulation does not just provide straightforward access to the above proof; it also justi�esa number of generalizations of the EM algorithm. The �rst actually follows from the argument



23following (1.36) and appeared in (Dempster et al : 1977). This is the generalized M-step. As longas, at each iteration, the function Q is increased relative to its value at �n�1, all of the guaranteesof increasing the likelihood are maintained. We do not need to maximize Q at each iteration, wecan instead just take a step in the direction of its gradient (provided we are guaranteed that Q willindeed be maximized at convergence { see the comments below). This variant is called gradient orgeneralized EM (usually written GEM):E-step: Find the expectation of the joint data log-likelihood under the distribution of the yi giventhe n� 1th parameter estimates and the observations. (This is unchanged.)Qn(�) = EYjX ;�n�1 [`X ;Y (�)] (1.44)GM-step: Change � in the direction of the gradient of Q.�n = �n�1 + �r�Qn(�n�1) (1.45)where � is some learning rate parameter chosen in accordance with the usual principles of gradientascent. Clearly, this is useful when Q cannot be maximized in closed form. In such situations it isusually computationally more e�cient to use GEM rather than numerically optimizing Q in eachM-step.The free energy formulation suggests an alternative generalization. In principle, we could makea corresponding generalized E-step, and choose a function p di�erent from Pn�1 (Y j X ), provided itincreases the free energy. We must be careful, however. We have shown that when the free energyreaches a local maximum, so does the likelihood. If we generate functions p by an algorithm thatcan converge even though F is not at a true local maximum, our guarantees of maximal likelihoodevaporate. Such a situation arises when the functions p are restricted in functional form so that formost values of � the function P� (Y j X ) does not lie within the family of possibilities. In this casewe can at best optimize F on the surface of constraint de�ned by the function family. An exampleis found in the Helmholtz machine (Dayan et al : 1995). The wake-sleep learning algorithm (Hintonet al : 1995) for the Helmholtz machine involves exactly such a constrained generalized E-step wherethe estimate p must be the output of a sigmoid belief network. As a result, it cannot guaranteeconvergence to the maximum likelihood parameters.A similar caution, of course, can apply to generalized M-steps too. The usual choice of a gradientM-step, however, is guaranteed to converge to a local stationary point of F .One example of an approximate E-step that maintains the convergence properties is providedby Neal and Hinton (1998). This is the incremental E-step, applicable when the xi and yi areindependent. In this case, we can restrict the functions p to the family of functions with the form



24p(Y) =Qi pi(yi) since the independence of the yi guarantees that the optimal p will be in the family.We can now write F (p; �) = Xi Fi(pi; �)= Xi Epi [`� (xi; yi)] +H(pi) (1.46)and maximize each component F in turn. The incremental EM algorithm now proceeds from initialguesses �0 and p0i so:IE-step: Choose some i. Maximize Fi(pi; �n�1) and leave the remaining pj ; j 6= i unchanged.pni (yi) = Pn�1 (yi j xi) (1.47)pnj (yj) = pn�1j (yj)M-step: Maximize F with respect to � holding p constant.In practice, for many distributions of interest, the M-step can be performed from su�cientstatistics of the data, which are e�ciently updated with respect to pi (Neal and Hinton 1998). Weshall, in fact, use a similar approach to track non-stationary mixture distributions e�ciently.
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Chapter 2 Clustering and Mixture Models2.1 Clustering of DataWe have laid out our overall goal as follows: given a group of observations X = fxi j i = 1 : : :Ng,xi not necessarily univariate or independent, discover the structure of the stochastic process fromwhich the data arose. In this chapter we will investigate one particular form of structure: we willexamine ways to discover if the data fall naturally into distinct clusters of points.Clustering has a long history of essentially ad hoc techniques (Duda and Hart 1973; Jain andDubes 1988). In recent years, however, considerable progress has been made with various statisticallywell-founded techniques. In our treatment of the problem we will pass very quickly to one particularstatistical model, the mixture, which will be seen to be a particularly simple example of a latentvariable model.In general, the clustering problem assumes that the observations are independent and identicallydistributed (iid), and further that some measure of dissimilarity between observations is available.This measure may be quite general; there is no need for it be symmetric, to obey the triangleinequality, or even to be always nonnegative. Many of the techniques which work with these weakassumptions are fundamentally agglomerative, that is they form the data into progressively largerclusters by merging together smaller groups that display signi�cant similarity. We shall not discusssuch algorithms; many examples are reviewed by Jain and Dubes (1988).Probabilistic models require well-de�ned measures in the space of observations, which in turnrequire a de�ned metric. Thus, we will examine clustering problems where the similarity measureobeys all the requirements of a metric. Indeed, we will go further and assume that each of ourobservations de�nes a point in IRD , and that the similarity measure is simply the Euclidean distancebetween the points. In particular, this assumption allows us to speak of distances to points that werenot observed, and thus to speak quantitatively of the process that generated the data, somethingnot always possible in the extremely general spaces.In this early treatment we shall also assume that the number of clusters, M , is known. Once wehave achieved a properly probabilistic framework, the problem of determining the number of clusterswill be reduced to that of model selection and so the techniques of the previous chapter will becomeapplicable.A particularly straightforward criterion for the assignment of D-dimensional observations fxigto M clusters is as follows. We associate with each cluster a central point �m 2 IRD ;m = 1 : : :M ,



26and then require that the sum of the squared distances from each point to the center of its assignedcluster be minimal. For this to be the case, it is clear that �m must be the mean of the observationsassigned to the mth cluster, hence this approach is often referred to as the k-means clusteringcriterion (McQueen 1967). (The `k' in k-means refers to the number of clusters, a quantity for whichwe have chosen the symbol M .)The clustering is fully speci�ed by the location of the �m, since the assignments of the xi arethen determined by which mean is closest. How are we to �nd the optimal locations of the �m?Iterative algorithms to do this have been known since the 60's. The basic approach was providedby Forgy (1965) (this approach is also known, in the related vector quantization literature, as theLloyd{Max algorithm). We begin with an initial, random partitioning of the data into M sets. The�m are placed at the means of these data sets. We then iterate the following two steps1. Re-assign all data points to the closest �m.2. Move each �m is the mean of its assigned data.This basic iteration (which, as we will see, is quite reminiscient of the EM algorithm) is what weshall call the k-means algorithm.A number of variants of this basic approach have been suggested. For completeness, we mentionthem here; no details will be provided and we will not encounter them again in this dissertation,preferring instead the probabilistic approach described below. A more complete review is availablein Duda and Hart (1973), Jain and Dubes (1988) or Ripley (1996).The ISODATA algorithm (Hall and Ball 1965; see also Duda and Hart 1973) introduces anadditional step to the iteration above, in which the number of clusters may be adjusted. Hartiganand Wong (1979) re-assign only one data point at a time, updating the means each time a pointchanges hands. McQueen (1967) gives an incremental algorithm, in which data are considered one-by-one in a single pass and the corresponding cluster mean updated after each assignment. Adaptiveresonance theory (ART) (Carpenter and Grossberg 1987a, 1987b, 1990) provides a similar schemewithin a \neural" framework; rather than choosing the closest mean, the data point is comparedto each in a set order and the assignment is made to the �rst cluster for which the data point fallswithin a distance threshold. In addition, the distortion measures involved in ART are not exactlythe squared-distance measures of the other techniques.2.2 A Statistical InterpretationAs presented, the k-means and related algorithms appear ad hoc, but in fact they can be given astatistical interpretation (Scott and Symons 1971). We note that the sum of squared distance from�m is (up to a normalization constant) the negative log-likelihood of the model that the data are



27generated by an isotropic (that is, identity covariance matrix) multivariate Gaussian distributionwith mean �m. Thus, we can introduce the following likelihood functionLX (f�mg;Y) =Yi G(xi � �yi) (2.1)where Y = fyig is a set of assignment variables taking values between 1 andM , which tell us in whichcluster the each observation falls, while G(�) denotes a standard multivariate Gaussian density withmean 0 and covariance I . The values of f�mg and Y which maximize this likelihood are preciselythe solutions to the k-means sum-of-squares criterion. We have therefore converted our clusteringproblem into maximum-likelihood estimation.This viewpoint also allows us to easily generalize the sum-of-squares criterion. In place of theisotropic Gaussian, we might choose Gaussians with arbitrary covariance matrices, so that eachcluster is ellipsoidal but can have a di�erent size and orientation. Indeed, we can in general chooseany parameterized family of densities, and require that each cluster be represented by one of them(Scott and Symons 1971; Ban�eld and Raftery 1993). The likelihood is thenLX (�;Y) =Yi P�yi (xi) (2.2)where the �m;m = 1 : : :M parameterize the densities. If we are to retain the intuitive notion of acluster being spatially compact we would expect the densities to all be well localized. Algorithmsto maximize these likelihoods are exactly analogous to the procedures we discussed above in whatwe now see was the isotropic Gaussian case.In this framework we maximize the likelihood with respect to both the density parameters andthe assignment variables simultaneously. This is appropriate if our goal is to group the data at hand,as is often the case. However, the project we laid out was to discover the nature of the process thatgenerated the data. The process is characterized only by the density parameters, along with theprobability distribution of the yi. The particular choices of the yi are not important, and indeed wewish to maximize not the likelihood (2.2), but its marginal taken over all the possible assignmentsY . This leads to the mixture model.
2.3 Mixture ModelsThe mixture model is perhaps the simplest example of a latent variable statistical model. Itconsists of a single observed vector variable and one discrete scalar latent variable. Both observationsand latent variables are iid. This model is represented by the graph in �gure 2.1a, using all the
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Figure 2.1: A mixture model.

conventions introduced in section 1.4. The marginal density of the ith observation xi isP� (xi) =Xyi P� (yi)P� (xi j yi) (2.3)where the sum is taken over all the possible values the latent variable might assume. The choice ofdiscrete values available to yi is arbitrary, although the number of such values is not. We will writeM for the number of distinct values the latent variable can take, and will assume that these values liein the range 1 : : :M . The distribution function of the yi is unconstrained, and so is parameterized bythe probabilities associated with each value (strictly, by the probabilities of the �rst M � 1 values).We will write �m for P� (yi = m) and P�m (xi) or even just Pm (xi) for P� (xi j yi = m). We canthen rewrite the marginal density thus,P� (xi) = MXm=1�mP�m (xi) (2.4)where the parameter set � = f�1 : : : �M ; �1 : : : �Mg.Why the name \mixture model"? The latent variable can be viewed as a gate that, for eachobservation, selects one of the densities Pm (�), from which the xi is then drawn. Thus, the resultantset of observations is formed by mixing together sets of data drawn from each of the componentdensities Pm (�). The relative sizes of these sets are de�ned by the mixing parameters �m.



292.4 EM for MixturesThe EM algorithm for mixture distributions has a particularly appealing form. The log-likelihoodfunction for the parameters is `X (�) =Xi log MXm=1�mP�m (xi) (2.5)which has the log-of-sum structure common to latent variable models. The joint data log likelihoodis `X ;Y (�) =Xi log�yiP�yi (xi) (2.6)Written in this way, it is hard to manipulate. For this reason we will �rst re-express the mixturedensity in a way more conducive to application of EM.In place of the singleM -valued latent variable yi we introduce a set ofM binary-valued indicatorlatent variables zm;i. For any observation, the one of these corresponding to the value of yi takesthe value 1, while the others are all 0. This version of the model is drawn in �gure 2.1b. Thezm;i are all dependent on each other. A random variable xm;i is drawn from the mth componentdistribution and multiplied by the value of zm;i. All of these products are summed to produce the�nal observation. The square nodes in the graph represent deterministic combinations of randomvariables.Armed with the variables zm;i we can rewrite the joint data log-likelihood`X ;Z (�) =Xi Xm zm;i log�mP�m (xi) (2.7)with only one term in the inner sum being non-zero. The fact that this expression is linear in thezm;i makes the E-step of the EM algorithm quite straightforward.Qn(�) = EZjX ;�n�1 [`X ;Y (�)]= EZjX ;�n�1 "Xi Xm zm;i log�mP�m (xi)#= Xi Xm Ezm;ijxi;�n�1 [zm;i] log�mP�m (xi)= Xi Xm rnm;i log�mP�m (xi) (2.8)where we have written rnm;i for Ezm;ijxi;�n�1 [zm;i]. The variable zm;i is binary, and so its expectedvalue is just the probability that it assumes the value 1, which it does when the gating variable yi



30is equal to m. Thus,rnm;i = Ezm;ijxi;�n�1 �zim� = P�n�1 (yi = m j xi)= P�n�1 (xi j yi = m)P�n�1 (yi = m)P�n�1 (xi)= �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) (2.9)In other words, the number rnm;i is the posterior probability that the ith observation was generatedfrommth component, under the (n�1)th iteration of the parameters. It is called the responsibilityof the mth component for the ith observation. In clustering terms it can be thought of as the degreeto which observation xi is associated with cluster m.We can also say some general things about the M-step without knowing the form of the componentdensities. Rewriting (2.8), we haveQn(�) =Xm log�mXi rnm;i +Xm Xi rnm;i logP�m (xi) (2.10)and so the maximization with respect to �m and �m can proceed separately. We can �nd the newvalues of the �m directly. We impose the constraint P�m = 1 using a Lagrange multiplier � anddi�erentiate to obtain@@�m �����nm  Xm log�mXi rnm;i � �X�m! =Xi rnm;i�nm � � = 0 (2.11)and so �nm is proportional to Pi rnm;i. The normalization constraint then gives us�nm = Pi rnm;ijX j (2.12)where the denominator is the number of observations and we have used the fact that Pm rnm;i = 1.We cannot, of course, solve for the �nm without knowing the forms of the component densities,but even here we can make a little headway. First, note that the �m (unlike the �m) are independentof each other, and so we can maximize with respect to each component separately. Furthermore,the only term in (2.10) that depends on �m is Pi rnm;i logP�m (xi). Now, if we were to �t the mthcomponent density alone to all of the observations, we would �nd the parameters by maximizing thelog-likelihood Pi logP�m (xi). Thus, we can interpret the M-step as �tting each of the componentdistributions to all of the observations, weighting the contribution of the ith datum to the log-likelihood by the responsibility rnm;i.Here, then, is the EM algorithm for mixture distributions:



31E-step: Calculate the responsibilities at the nth iterationrnm;i = �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) (2.13)M-step: Estimate the new mixing parameters�nm = Pi rnm;ijX j (2.14)and the new component distribution parameters�nm = argmax�m Xi rnm;i logP�m (xi) (2.15)2.5 Applications of Mixture ModelsWe have introduced the mixture model from the point of view of clustering. The component densitiesare thus taken to represent di�erent physical processes, the observed data being a mixture of pointsgenerated by these processes. The mixture-model likelihood and the EM algorithm used to optimizeit, di�er in focus from the clustering likelihood of (2.2) and the k-means algorithms: the mixtureparameter estimates describe the generating process, while the sum-of-squares and related methods�nd the best grouping of the observed data. In general, if we consider many sets of data thatgenerated by mixing the outputs of the same group of processes, we expect the mixture parameterestimates to exhibit much tighter variance than their clustering analogues. In situations where weexpect to classify new data, or to make predictions, it is clear that the former approach is to bepreferred.The di�erence may also be viewed in another way. The likelihood of (2.2) dictates a \hard"clustering scheme | the solution involves an explicit assignment of observations into clusters. Incontrast, �tting the mixture model describes a \soft" or \fuzzy" clustering scheme where observationsare not, in fact, classi�ed, but are partially associated with clusters through the responsibilities. Wemight intuitively expect these techniques to yield di�erent answers. Fuzzy clustering schemes havebeen proposed, without the probabilistic interpretation, within the theory of fuzzy sets (Backer 1978;Bezdek 1981).The clustering view of mixture modeling is only really meaningful in situations where the com-ponent densities are reasonably well separated. In such cases the likelihood landscape generallyexhibits sharp maxima to which EM converges quickly.Mixture models can also be employed in situations where the component densities overlap forthe purposes of density estimation. The mixture density (2.4) can be quite complex, even when
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Figure 2.2: Two views of a mixture model.the component distributions are relatively simple. As a result, complicated densities can be \non-parametrically" �t, with mixtures of Gaussians for instance, by the EM algorithm. From thisviewpoint, there is no signi�cance to the gating variable or to the component distributions { thereis only one process with a complicated density and the mixture is just a convenient and exible rep-resentation of the unknown density function. Indeed, one could view the familiar kernel-estimationtechnique as a particular case of a mixture model used in this way. The two views of the mix-ture model are illustrated in �gure 2.2 where mixture models (the scaled components are shownby the dashed lines, the resulting mixture density by the solid lines) are �t to di�erent types ofone-dimensional data (histogrammed and shown by the grey bars).We should make a short observation on our choice of the EM algorithm for learning the mixturemodel. If the component distributions overlap considerably it has been argued (Redner and Walker1984) that the convergence of the EM algorithm to the optimal parameters of the mixture is slow(�rst order) and that superlinear methods should be preferred. However Redner and Walker (1984)themselves point out, and Xu and Jordan (1996) later elaborate, that the convergence of the likelihoodof the mixture model is rapid, and that the mixture density approximates the true density quitequickly under EM. Thus, when the mixture model is used for clustering and thus the estimatesof parameters are of importance, the components are likely to be reasonably well separated andtherefore EM will converge well; while in the density estimation case, the criterion of importance isthe convergence of the density estimate, and again this is rapid under EM.2.6 Mixtures of GaussiansA particularly fruitful mixture model, both in the context of clustering and of density estimation,arises when the components are (possibly multivariate) Gaussian densities. The parameters �m are



33then a mean vector �m and a covariance matrix �m. The log-likelihood of the model is`X (�) =Xi log MXm=1�m j2��mj�1=2 e� 12 (x��m)T��1m (x��m) (2.16)The joint data log-likelihood with the indicator latent variables (2.7) is then`X ;Z (�) =Xi Xm zm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (2.17)where the exchange of the logarithm and the sum has eliminated the exponentials. The E-step is asfor a generic mixture distribution (2.13), in this case given byrnm;i / �n�1m ��2��n�1m ���1=2 e� 12 (x��n�1m )T (�n�1m )�1(x��n�1m ) (2.18)with the responsibilities normalized so as to sum to 1. In the M-step, the estimation of the mixingparameters is as for the generic mixture (2.14). The estimation of the mth component parametersis achieved by maximizingQnm(�) = �Xi rnm;i�12 log j2��mj+ 12(xi � �m)T��1m (xi � �m)� (2.19)Di�erentiating and equating to 0 we obtain@Qnm@�m �����nm = �Xi rnm;i(�nm)�1(xi � �nm) = 0�nm = Pi rnm;ixiPi rnm;i (2.20)and (di�erentiating with respect to Rm = ��1m )@Qnm@Rm ����Rnm = Xi rnm;i�12(Rnm)�1 � 12(xi � �nm)(xi � �nm)T� = 0�nm = Pi rnm;i(xi � �nm)(xi � �nm)TPi rnm;i (2.21)Thus the mean is updated to the responsibility-weighted mean of the observations, and the covarianceto their responsibility-weighted covariance. This is a particularly elegant and fast update.2.7 Practical IssuesWe have argued that in situations where predictive power is desired, or where the parameters ofthe generating model are to be estimated as accurately as possible, the mixture model approach



34to clustering is to be preferred. Can we then blindly �t (with the EM algorithm) a basic mixturemodel to solve all clustering problems that confront us? Unfortunately, we will �nd that a numberof practical issues need to be examined quite closely before we can achieve robust and repeatableparameter estimates.We shall raise the issues one by one, discussing briey some of the possible solutions to them aswe proceed. The order is arbitrary, and some of the more basic and serious points are not discusseduntil last. In chapter 3 we will discuss in depth an elaboration of the EM algorithm which providesa new way to address a number of these issues.2.7.1 OutliersIt is often the case that some of the data under consideration do not fall into any of the data clusters.These outliers may be caused by measurement errors, such as sensor artifacts or data mis-entry,or may be due to an additional data generating process which is di�use and for which no model isavailable. The outliers may have a considerable e�ect on the estimates of the cluster parameters.For example, in a mixture of Gaussians clustering algorithm, the estimate of the mean for eachGaussian component is disproportionally sensitive to data from the tails of the distribution. Theoutliers fall far from all of the Gaussian clusters but nevertheless must be assigned to one or theother of them. As such, they will perturb the estimates of the means.We can resolve this problem by introducing an additional generative component in the mixturewhich can take responsibility for the outliers1. This component density must be far more di�usethat the cluster densities, and must perturb the component density estimates as little as possible.The most suitable choice for the outlier component probability is found in the uniform density.More precisely, PO (xi) = 8<: 1kAk if xi 2 A0 if xi 62 A (2.22)for some region A. This choice correctly embodies (in the Bayesian sense) our utter lack of knowl-edge of the distribution from which the outliers are drawn. Furthermore, it tends to minimize thepertubation in the cluster parameter estimates. We will make this assertion more precise in theparticular case of Gaussian clusters.Without loss of generality, we consider data drawn from a single Gaussian cluster, with mean� and covariance �, corrupted by the addition of some outliers. We �t a model that has twocomponents: one Gaussian and the other uniform. For simplicity in this analysis, assume that anyoutliers fall far from the center of the cluster and, as a result, have negligible responsibility assignedto the Gaussian. Under this assumption, the outliers themselves do not disturb the estimates of1Ban�eld and Raftery (1993) take a similar approach in the context of hard clustering, introducing a Poissondistribution for outlier generation



35the Gaussian parameters. However, the density of the uniform component within the region ofthe cluster is not negligible, and so responsibility for points that were, in fact, generated from theGaussian is shared between the Gaussian and the uniform component. How will this sharing a�ectthe estimates of the parameters of the Gaussian?Consider the transform ��1=2 applied to the data space. Both the Gaussian and the Uniformdensities enjoy the property of mapping to another member of their respective families under alinear transformation, so that the nature of the mixture is unchanged. In this space, the data thatbelong to the cluster will be distributed according to a unit Gaussian (one with a covariance matrixequal to the identity). Without loss of generality, take the mean to be 0. We write ~� and ~� forthe estimated mean and covariance, respectively, of the Gaussian component. Let the value of theuniform density in this space be ~u. The mixing probabilities are �g and �u for the Gaussian anduniform components respectively.The following system of equations must hold at the maximum likelihood parameter values,rg;i = 1� �u~u��u~u+ �g ���2�~�����1 exp�� 12 (~xi � ~�)T ~��1(~xi � ~�)��~� = Pi rg;ixiPi rg;i (2.23)~� = Pi rg;i(xi � ~�)(xi � ~�)TPi rg;iIt is di�cult to derive expressions for the estimates ~� and ~� directly, however we can makesome arguments based on the symmetry of the situation. The data within the cluster are generatedfrom a spherically symmetric distribution. Neglecting edge e�ects, the uniform density is alsocompletely symmetric. Thus, on the average, there cannot be any directional bias to the estimates.This means that the expected value of ~� must be 0, since any other value would break symmetry.Similarly, the expected value of ~� must be isotropic, and will generally be slightly smaller than thetrue covariance in the transformed space I . These comments are about the expected values of theestimates, particular values of the estimates will be di�erent based on the particular data instancesbeing �t.What do these results tell us about the estimated Gaussian in the original space? The lineartransform �1=2 maps from the whitened space to the original one. Since expectations are linearfunctions, the expected values of the parameter estimates are simply the transforms of the corre-sponding values in the whitened space. The estimated mean is thus distributed around the truevalue of the mean. The expected value of the covariance estimate is slightly smaller than the truecovariance, but has the same shape in the sense of the same eigenvectors, and eigenvalue ratios.It is important to note that this invariance came as a result of the uniform density being sub-
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Figure 2.3: Multiple maxima in the mixture likelihoodstantially symmetric under any linear transform. Any other distribution would have had to havebeen carefully crafted to be symmetric. Furthermore, we would have to know a good deal about thecluster distribution to do so. With many, di�erently shaped, clusters only the uniform density willsu�ce.2.7.2 Multiple maximaThe likelihood surface associated with a typical mixture model tends to exhibit multiple maxima.Trivially, given locally optimal parameters f�m; �mg, another maximum can be identi�ed by retainingthe same numerical values but permuting the component indices. In this case, the di�erent maximaare equivalent in all practical senses and any one of them provides an equally good �t. Unfortunately,the system also exhibits non-trivial multiplicity.Figure 2.3 illustrates the problem. Two-dimensional data are generated from the Gaussianmixture shown in A (each Gaussian in the mixture is represented by its 1-sigma contour). PanelsB{F show the results of 5 separate �ts to these data. The average log likelihood per point for eachmodel (including the generating model) is recorded in the bottom right corner. Each model is theresult of an EM optimization, and each optimization has converged. The di�erence between theresults lies in the initial values of the parameters which are used to seed the EM process. (As anaside note that the best optimum (C) has a larger log-likelihood than the generating model | the
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Figure 2.4: Likelihoods obtained from random restartsdata have permitted a small degree of over-�tting).How are these initial values chosen? One generic approach, that does not depend on the type ofcomponent densities, is to randomly assign responsibilities for each data point and then derive theinitial parameters using the M-step update rules. In large data sets, this approach tends to makethe initial parameter values for each component virtually identical. This initial condition is similarto that of the REM algorithm to be discussed in chapter 3, however applying it in the standard EMcontext does not seem to be e�cient. Convergence from such an initial point tends to be slow, andis no more reliable at �nding a good maximum than the other techniques mentioned below.An alternative approach, particularly useful in the case of mixtures of Gaussians (or the similar,well-localized, densities that are commonly used for clustering), is to pick a single covariance matrix(scale parameter) and initialize the means (location parameters) to randomly chosen data points.This is the method that was used to generate the �ts in �gure 2.3. We can re�ne the techniqueslightly by using these initial locations as the seed for a k-means clustering algorithm, and thenusing the output of that algorithm to provide the initial values of location parameters of the mixturemodel. K-means algorithms are also sensitive to the seed parameter values, but often less so thanthe full mixture, and so this initial stage tends to stabilize the estimates slightly. Nevertheless,experiments (an example appears in �gure 2.4, to be described more completely below) suggest thatin many situations the improvement is only very slight.In general, optimization problems of this sort are known to be NP-hard, and so no entirelyreliable, e�cient solution can be found. Various approximate approaches are well-known in theoptimization literature, and most may be adapted to the present problem. We will not dicuss most



38of these here, instead referring the reader to the books by Hertz et al : (1991), for general techniquesand McLachlan and Krishnan (1996) for EM speci�c approaches. One general method, simulatedannealing (Kirkpatrick et al : 1983), will be described briey in chapter 3, although we will notelaborate on the application of this approach to mixture models. However, the principal subject ofchapter 3, relaxation EM, is extremely pertinant to this issue and application to mixture modelswill be discussed in some detail.For the moment, we note one quite straightforward approach, which is often remarkably e�ective.This is simply to choose a number of random starting conditions by one of the means described above,maximize the mixture likelihood starting from each of these initial values, and then choose the resultthat provides the largest likelihood. Figure 2.4 shows a histogram of the di�erent values of the log-likelihood per point obtain by running 100 optimizations on the data of �gure 2.3. The dark barsshow the results when the EM algorithm started directly from randomly chosen parameter values;the lighter bars show the results obtained when a simple k-means algorithm was run �rst. On thebasis of this experiment, we conclude that approximately one-third of the random selected conditionsyield the best maximum (given either initialization). Thus, in only 10 restarts of the algorithm, theprobability of �nding the best optimum is 0.985. Of course, this probability will be dependent onthe problem being examined: an appropriate number of restarts will need to be determined throughsimulation for each new type of problem.2.7.3 The number of clustersIn general, when presented with a clustering problem we have no a priori information about howmany di�erent clusters we will encounter. This number, along with the optimal parameters todescribe each cluster, must be estimated from the available data. This is a classic example of thegeneral problem of model selection, which was addressed at some length in section 1.3. All ofthe analysis of that section applies to the present problem, and the methods described there arefrequently employed.In this section we will add another result to the battery of approximations to the marginallikelihood. This new approximation, introduced by (Cheeseman and Stutz 1996), is peculiar tomixture models and related latent variable models. In the following chapter, we shall introduce anovel framework, cascading model selection, for the e�cient application of these various techniques.The Cheeseman-Stutz criterionThe marginal likelihood for a mixture model with M components is given byPM (X ) = Z d� PM (�) NYi=1 MXm=1�mP�m (xi)! (2.24)



39Even if the individual cluster likelihood P�m (xi) can be integrated with respect to �m, the overallintegral proves to be intractable due to the MN terms that appear once the product is distributedover the sum.On the other, hand, if the latent variable values (expressed as the indicators zm;i) were known, themarginal likelihood in this case could be written in a simpler form (compare the joint log-likelihood(2.7)) PM (X ) = Z d� PM (�) NYi=1 MYm=1 (�mP�m (xi))zi;m (2.25)= Z d� PM (�) MYm=1�(�izi;m)m NYi=1 (P�m (xi))zi;m (2.26)This integral is more likely to be tractable. If the prior factors over the di�erent cluster parameters�m the expression above reduces to the product of the marginal likelihoods of each cluster, givenonly the data assigned to that cluster.Cheeseman and Stutz (1996) propose that we use this form, with the indicator values zm;ireplaced by their expected values at the optimum, r�m;i, as the basis for an approximation of thetrue integral. In fact, direct substitution of the responsibilities into (2.26) will under-estimate thecorrect integral; however, the size of the error can be estimated from the mismatch between thevalue of the approximate integrand and the true likelihood at the estimated parameter values, ��.The complete approximation isPM (X ) � QNi=1 �PMm=1 ��mP��m (xi)�QMm=1 �R�mm QNi=1 (P�m (xi))r�i;m Z d� PM (�) MYm=1�R�mm NYi=1 (P�m (xi))r�i;m (2.27)where we have written R�m =Pi r�m;i.
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Chapter 3 Relaxation Expectation{MaximizationIn chapter 2 we noted a number of practical di�culties that arise in the use of the Expectation{Maximization (EM) algorithm to �nd maximum likelihood �ts of mixture models. Two among thesewere the sensitivity to initial conditions and the computational overhead involved in carrying outmodel selection. In this chapter we shall introduce a modi�ed EM algorithm which addresses bothof these issues in a natural fashion. Our modi�cations will rely on the statistical mechanics notionof relaxation.3.1 Annealing and Relaxation3.1.1 Simulated annealingRelaxation methods are well known in data analysis, primarily due to the popularity of the simu-lated annealing technique for the solution of non-convex optimization problems (Kirkpatrick et al :1983). This being the most common example, we will review it briey so as to provide a point ofdeparture for our discussion.The objective is to �nd the global minimum of a function E(x). The approach taken is tosimulate the motion (in x space) of a thermally excited particle under the inuence of a potentialenergy landscape given by E(x). In principle, at zero temperature the particle will be found at theglobal minimum. Of course, in practice, if it starts at a position far from the lowest energy pointit will most likely travel to a local minimum and come to rest there. At higher temperatures, theparticle will travel rapidly all over the landscape, spending relatively more time in regions wherethe function E(x) is minimal. The annealing procedure lowers the simulated temperature gradually.As the temperature falls, the bias towards regions of lower energy increases, while the particle isstill able to cross barrier regions of higher energy. If the rate of cooling is su�ciently gradual, thesetwo tendencies | the attraction to regions of low energy and the thermal activation to cross energybarriers | combine in such a way as to inevitably leave the particle at the global minimum oncethe temperature reaches 0. Cooling schedules which guarantee this result can be shown to exist inprinciple (Geman and Geman 1984); however, they invariably take impractically long. Fortunately,less than perfect cooling schedules usually yield good results.This physical picture of the optimization process is appealing, but it is di�cult to build intuitionfor why the trade-o� between activation energy and attraction to potential wells should work out soconveniently. Also, while it will be valuable to contrast this view with the \deterministic annealing"



42or relaxation procedure we will discuss later, it is not the most convenient starting point for thedevelopment of the new approach. Therefore we reexamine the algorithm from a more statisticalviewpoint.3.1.2 Annealed samplingThe fundamental logic behind annealing schemes is best illustrated by the simulated annealing ofMarkov chain Monte-Carlo (MCMC) samplers (Neal 1993; Bertsimas and Tsitsiklis 1993). Theobjective here is to sample from some complicated target probability function P (x). For con-venience, we will introduce an energy function given, up to an arbitrary additive constant, byE(x) = � logP (x). The density is thus given by the Boltzmann equation P (x) = 1Z exp(�E(x)),for some normalizing constant Z. We are able to evaluate E(x) for any point x, but the energy doesnot have a simple functional form that makes direct sampling by analytic means tractable. TheMCMC sampling approach constructs an ergodic Markov-chain1 over the target space such thatthe stationary distribution of the chain is P (x). In other words, we obtain a scheme for makingprobabilistic transitions from one point in the space to another in a memory-less (Markov) fashion,and such that, in the long run, the probability of visiting some point x is exactly P (x). A number ofschemes to construct a suitable Markov chain exist, the most prominent being the Gibbs samplingand the Metropolis algorithms. The details of the process are unimportant for our purposes; weseek only to gain an intuitive picture of the value of annealing; the reader interested in more detailis referred to the excellent review by Neal (1993).When using an MCMC sampler, we need to begin the chain at some point in the domain,say x0. Since we cannot sample directly from the target density, this point must be chosen froman arbitrary density, probably quite di�erent to the target one. Let us say this initial density isuniform on the domain of interest, although the argument is not crucially dependent on this choice.The density of the next point, call it x1, is then the product of this uniform distribution and thetransition density of the Markov chain, marginalized over x0, P1 (x1) = R dx0 P0 (x0)P (x1 j x0).(For discrete domains we can picture multiplying a vector representing the uniform distribution bya transition matrix.) The resultant density will also be far from the target, as will the densities ofmany subsequent samples. Thus, our necessarily poor choice of P0 (x0) results in a \burn-in" periodof incorrectly distributed samples. The typical length of this period is related to the mismatchbetween the initial distribution and the target (or stationary) distribution, and to the magnitude ofthe non-unit eigenvalues of the transition operator, which set the decay rate of the non-stationarymodes in P0 (�). In general, the mixing time cannot easily be calculated, but in experiments withpractical examples it is often impractically long.The di�culty is that in many problems P0 (x0) is likely to ascribe a relatively large mass to1The basic theory of Markov chains will be reviewed in section 4.1.1.



43regions where the target function is vanishingly small, and furthermore, has small log-gradients.For domains of high dimensionality, the probability of falling in such regions can approach 1. Thestructure of the usual MCMC samplers (in particular, a feature called detailed balance which isneeded to guarantee ergodicity) results in the sampler executing an almost unbiased random walkwithin that region until it �nally emerges into a region of higher probability.How can annealing help reduce this burn-in period? We create a sequence of probability functionsP0 (x), P1 (x), . . . , P (x) which starts with the uniform distribution and ends in the target. In thecase of the Boltzmann distribution this sequence is easily constructed using a \inverse-temperature"parameter, �. We choose a sequence of �i, starting with 0 and ending in 1, and write Pi (x) =1Z(�i) exp(��iE(x)), where Z(�i) is the partition function. By analogy with statistical physics,these densities correspond to the canonical distributions of a system with energy E cooled througha sequence of temperatures T = 1=�. We now choose an initial point from P0 (x) as before, butthen use the MCMC sampler corresponding to the density P1 (x), with 0 < �1 � 1, rather thanthe target sampler. The mismatch between these two distributions is small by construction, and sothis Markov chain will soon achieve the stationary distribution for P1 (x). Once enough time haselapsed to make convergence likely, we switch to sampling from P2 (x), where the same argumentabout quick convergence holds. Eventually, we reach the target distribution (at � = 1). In manysituations, the total burn-in time for all of the annealing steps is much smaller than the burn-inencountered stepping directly to the target.What does all this have to do with the physical picture of optimization by simulated annealingthat we saw before? The Metropolis sampling algorithm used in some MCMC simulations hasits origins in the physical simulation of particle motion, and, indeed, is precisely the simulationalgorithm used by Kirkpatrick et al : (1983). If we extend to temperatures close to 0 (� � 1) thesequence of distributions discussed above, virtually all of the probability mass becomes concentratednear the global energy minimum. Provided the MCMC sampler is maintained in equilibrium, then,samples drawn in this limit will be arbitrarily close to the optimum. This is precisely the simulatedannealing optimization algorithm.3.1.3 RelaxationWe have examined the simulated annealing algorithm from two di�erent points of view. In the �rst,the underlying energy landscape was �xed by the function to be optimized, while the motion of athermally active particle in the landscape was simulated at steadily decreasing temperatures. In thesecond, the energy landscape was transformed from a at initial condition to the target function andbeyond, while samples were drawn from the corresponding Boltzmann distribution. This gradualtransformation of the energy surface is called relaxation; for this reason, simulated annealing isalso known as stochastic relaxation.



44Optimization within a relaxation framework need not be stochastic. Let us focus on the energyfunctions themselves rather than on the implied Boltzmann densities. We can construct a sequenceof functions, E0(x) : : : E(x) such that the �rst function E0(x) is easily optimized | it might, forexample, have a single extremum | while the �nal function is the target. Our goal in constructingthis sequence is for the global optimum of the ith function Ei(x) to lie within the domain of con-vergence of the global optimum of the next function Ei+1(x). We then pass along the sequence offunctions, optimizing each one by a hill-climbing (or, for minima, descending) algorithm, which isseeded with the location of the previous optimum. Thus, we hope to track the global optimum fromE0(x), where it was easily found, to E(x). Unfortunately, unlike the case of stochastic relaxation,there is no simple strategy that is guaranteed to provide a suitable sequence of functions in thecase of such deterministic relaxation, even with exponentially long relaxation schedules, and indeedschemes devised for particular classes of energy (say mixture likelihoods) may not work even in allexamples of that class. Nevertheless, in practice, this approach often does yield good results.3.2 Deterministic AnnealingOne example of a non-stochastic relaxation process has been called deterministic annealing. Thisalgorithm was introduced by Rose et al : (1990) as a maximum entropy approach to clustering andvector quantization, following earlier work on elastic net algorithms for the traveling salesmanproblem (Durbin and Willshaw 1987; Durbin et al : 1989; Simic 1990; Yuille 1990). In this form, thealgorithm is strongly motivated by physical analogy. Below, we will see that it can be generalizedbeyond its statistical physics origins, to yield a powerful procedure that can be applied to anyproblem in which the EM algorithm is used for learning. We shall refer to the generalization asRelaxation Expectation{Maximization, reserving the term \deterministic annealing" for the originalformulation.Rose et al : view clustering as a squared-distance distortion minimization operation. Theyintroduce a cost function, Em(xi), describing the distortion due to association of the the ithdata point with the mth cluster. We shall take this cost to be the squared Euclidean distanceEm(xi) = k�m�xik2, although other distortions may be considered. The cost of adopting a partic-ular set of cluster parameters � = f�mg and a particular assignment of points to clusters, representedby indicator variables Z = fzm;ig, is given byE(�;Z) =Xi Xm zm;iEm(xi) (3.1)We have chosen notation di�erent from that of Rose et al : (1990) in order to highlight the similarityto the mixture model development in chapter 2. This cost, E(�;Z), may be viewed as the energy



45of a microstate, identi�ed by the pair (�;Z), of a physical system and we may proceed by analogyto statistical physics (as we will see below, this analogy is not vital; the results follow directly fromthe maximum-likelihood framework and the EM algorithm). We expect the system to display adistribution over microstates P (�;Z). For a �xed average energy, E, this distribution will maximizethe entropy under the constraint E [E(�;Z)] = E (see, for example, Kittel and Kroemer (1980)).We can �nd this maximizer by the method of Lagrange multipliers, optimizing the entropy H =� R d� PZ P (�;Z) logP (�;Z) while enforcing the constraint E � R d� PZ P (�;Z)E(�;Z) = 0with the multiplier �. Doing so, we obtain the well-known Boltzmann distributionP� (�;Z) / e��E(�;Z) (3.2)The value of the multiplier � can be obtained by solving for the constraint energy. Rose et al : argue,as we have, that the distribution of interest in the case of modeling or prediction problems is notthe joint, but rather the marginalP� (�) =XZ P (�;Z) /Yi Xm e��Em(xi) (3.3)For the case of the squared distance cost, this is seen to be the same as the likelihood of a mixtureof Gaussians with mixing probabilities �m = 1M and covariances �m = 12� I .Given this \likelihood", they proceed to derive heuristically re-estimation equations similar tothose of the EM algorithm (written here for the squared error distortion metric):ri;m  e��Em(xi)=Pl e��El(xi)�m  Pi ri;mxi=Pi ri;m (3.4)We have again chosen notation to emphasize the connection to our previous development. Thedeterministic annealing algorithm then involves varying the value of the parameter � from 0 to a�nal value chosen either through some knowledge of the expected �nal distortion (due, say, to aknown noise-oor), or else by a validation-based stopping criterion (or else by operator �at). Ateach step the re-estimations (3.4) are iterated to convergence.The intuitions that underlie this algorithm can be used to obtain similar solutions to a numberof other problems (Rose et al : 1993; Buhmann and Kuhnel 1993; Miller et al : 1996; Kloppenburgand Tavan 1997; Rao et al : 1997; Rao et al : 1999). Many of these are reviewed by Rose (1998). Ingeneral, however, each such problem presents the need for a fresh derivation. Furthermore, it is notalways clear how best to generalize the approach to some problems. For example, Kloppenburg andTavan (1997) provide an extension to a mixture of multivariate Gaussians with arbitrary covariances;but they are forced to introduce multiple annealing parameters, leaving serious questions about the



46choice of relative annealing schedules.In the next section we will encounter a generalized relaxation method which subsumes the variousdeterministic annealing algorithms, and allows extremely straightforward generalization.3.3 REM-1In this section, we will develop a novel relaxation scheme within the framework of the EM algorithm,to obtain an algorithm that we call the �rst Relaxation Expectation{Maximization algorithm2(REM-1).In section 1.7 we introduced a free-energy F , a function of the model parameters, �, and aprobability distribution on the latent variables, p,F (p; �) = Q(p; �) +H(p) = Ep [`X ;Y (�)]� Ep [log p(Y)] (3.5)We showed that if this function achieved a maximum at (��; p�) the true model likelihood (marginal-ized over the latent variables) achieved a maximum at ��. This allowed us to interpret the EMalgorithm as an alternation of optimization steps, maximizing F �rst with respect to p, and thenwith respect to �. This view of EM forms the basis for our relaxation scheme.Let us introduce an annealing parameter � so as to construct a family of free-energy functions,F�(p; �) = �Q(p; �) +H(p) (3.6)The analogy to statistical mechanics inherent in the term \free-energy" is maintained by this choice(modulo an overall minus sign). We may view � as the inverse of a (dimensionless) temperature, inwhich case it enters into the free-energy de�nition in the physically appropriate position. When �takes the value 1 (that is, T = 1) we recover the original free-energy, which is the target functionwhose maximum we seek. On the other hand, when � is 0 (T ! 1) F is equal to the entropyH(p). In general, there is a single, easy to �nd, global maximum of this entropy. For discrete latentvariables, for example, it is achieved by the uniform distribution. For the case of the mixture model,in which the latent variables indicate with which cluster each point is associated, and we see that F0is maximized by associating all of the points uniformly with all of the clusters. The � = 0 case doesnot constrain the parameters � at all, however it is convenient to choose � as before, maximizing Qwith p �xed at its maximum-entropy value.Thus, the sequence of functions F�i(p; �); 0 = �0 < �1 < � � � < �R = 1 satis�es at least two ofthe conditions we desired for a relaxation progression: it starts with an easily maximized function2The same formulation has been independently proposed under the name \Deterministic Annealing ExpectationMaximization" by Ueda and Nakano (1998). A slightly di�erent development, which we call REM-2, will appearbelow.



47and ends with the target. To be sure of �nding the global maximum of the target function we needanother condition to be satis�ed: the global maximum of each function in the sequence must liewithin the basin of attraction of the global maximum of the next function. Provided that the locationof global maximum changes continuously with �, this can be assured by choosing su�ciently smallannealing steps.3 Unfortunately, we will see below that even for the particularly simple exampleof the mixture model, the maximum does not move smoothly. In general it is not guaranteed thatREM will �nd the global maximum of the target. However, in many common examples it does �nda good maximum.Any hill-climbing technique may be used to �nd the optimum of each succeeding free-energy inthe relaxation sequence; however, we choose to employ the same approach as in the EM algorithm,alternately optimizing with respect to p and �, in each case holding the other variable �xed. Note�rst that, for �xed p, the relaxation factor � has no e�ect on the optimal value of �. Thus, theM-step of the algorithm is exactly as for the normal EM algorithm. The E-step, however, doesdi�er.We showed previously (1.42) that the target free-energy is maximized with respect to p (for �xed�) by choosing p(Y) = P� (Y j X ). In the case of the relaxation free-energies we can proceed in thesame fashion as we did at that point. We introduce a Lagrange multiplier � enforcing the constraintR dY p(Y) = 1 and obtain0 = @@p �F�(p; �)� � Z dY p(Y)�= @@p �Z dY p(Y)(�`X ;Y (�)� log p(Y)� �)� (3.7)from which, by the calculus of variations,0 = @@p (p(Y)(�`X ;Y (�)� log p(Y)� �))= (�`X ;Y (�)� log p�(Y)� �)� p�(Y)p�(Y) (3.8)and so p�(Y) = e���1(LX ;Y (�))� = e���1(P� (X ;Y))� (3.9)But P� (X ;Y) = P� (X j Y)P� (Y) and sop�(Y) = 1Z(�) (P� (X j Y)P� (Y))� (3.10)3This assertion can be proved by noting that a global maximum must have at least an �-sized basin of attractionand that continuity guarantees that there exists some � so that for a �-sized step in � the change in global maximumis smaller than this �.



48with Z(�) and appropriate normalizing constant.Thus we obtain the steps of the REM-1 algorithm, repeated until � = 1.R-step: Increment � according to the relaxation schedule.Repeat the following EM steps until convergence:E-step: Maximize F� with respect to p holding � �xed.p(Y) 1Z(�) (P� (X j Y)P� (Y))� (3.11)M-step: Maximize F� with respect to � holding p �xed.�  argmaxEp [`X ;Y (�)] (3.12)Relationship to deterministic annealingThe deterministic annealing algorithm for vector quantization described in section 3.2 is easily seento arise from REM-1 applied to a simple mixture model. Consider an M-component model in whicheach component is a Gaussian with identity covariance matrix and mean �m. We will refer to thisas a mixture of unit Gaussians. Any model in which the all of the components are known to sharethe covariance matrix � can be transformed to this canonical form by multiplying each data vectorby the whitening matrix ��1=2. The relaxation free-energy for such a model isF�(p; �) = �Xi Xm rm;i(log�m � 12kxi � �mk2)�Xi Xm rm;i log rm;i (3.13)where the distribution p is expressed in terms of the responsibilities rm;i. For notational simplicity wehave left out the normalization factor from the Gaussian. For a model with �xed, equal, covariancesthis factor does not change and careful inspection reveals that it does not survive in any of oureventual results.The REM-1 iterations for such a model are easily seen to be given byri;m  1Zi��me� 12�kxi��mk2�m  Pi ri;m=jX j�m  Pi ri;mxi=Pi ri;m (3.14)If we further constrain the mixing probabilities to remain equal, that is, �m = 1=M , we obtainexactly the iterations of (3.4).Note that in the case of the �xed mixing probabilities, the relaxation likelihoods correspond totrue likelihoods for other models, in this case, a mixture of Gaussians with covariance ��1I . This



49allows us to interpret the relaxation procedure as the successive optimization of a sequence of modelswith shrinking covariances. This is actually a special case and for the majority of models no suchequivalence holds. Given even the simple step of allowing unconstrained mixing probabilities, theiterations (3.14) do not correspond to EM for any model.It is instructive to note that the maximization of the free-energy with respect to p, which ismotivated in REM entirely by the maximum likelihood considerations of chapter 1, may indeed beinterpreted as a maximization of the entropy of p under a \constraint" set by the expected jointlog-likelihood and enforced by a Lagrange multiplier. This is in accordance with the physical analogyof Rose et al : (1990), although it is obtained directly without resort to the physics.Yuille et al : (1994) remarked on a connection between the heuristic optimization steps usuallyemployed within deterministic annealing solutions and the EM algorithm. However, they seem toregard EM simply as an optimization technique embedded within the physically motivated deter-ministic annealing framework. Notably, they appear to have failed to observe the deep connectionbetween the free-energy formulation of EM and the relaxation procedures of deterministic anneal-ing; in particular, they make no mention of the availability of a simple generalization of any EMalgorithm to yield a relaxation (or \annealing") procedure.3.4 Phase Transitions in REMAn important feature of deterministic annealing and relaxation EM is best illustrated in a simpleexample. We will use the mixture of unit Gaussians described in the preceding section. We willwrite (r�m;i; ��m; ��m) for the optimum of the relaxation free-energy. Clearly, these values satisfy therecurrence relations r�m;i = ���m e� 12�kxi���mk2Pl ���l e� 12�kxi���l k2 (3.15)��m = Pi r�mijX j (3.16)��m = Pi r�m;ixiPi r�m;i (3.17)When � = 0 the relaxation E-step �nds the maximum entropy distribution over the latentvariables. For a mixture distribution, where the latent variables are discrete, this is the uniformdistribution and r�m;i = P (zm;i = 1 j xi) = 1M (3.18)In this limit the relaxation free-energy is independent of � and so the M-step is unconstrained.However, we can choose it to maximize Q(�; p�) where p� is the maximum entropy distributiondescribed above, thereby preserving consistency with the � > 0 case. As the responsibilities for each
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Figure 3.1: Phase transitions in REM-1 for �xed-variance Gaussiansdata point are shared equally between all of the components, the maximizing �m are all identical.The solution in the � = 0 case, then, has all the components located at the overall mean of the data.A remarkable fact is that even as the temperature decreases (that is, � increases) this solutionremains the global maximum of the likelihood for some range of temperatures. Once the relaxationprocess reaches a critical temperature, the solution undergoes a phase transition and the formerstationary point (where all the components are identical) ceases to be a maximum. A new maximumappears, usually dividing the components into two groups, so that all of the components assumeone of only two distinct parameter values. As the system cools further, the optimal solution againcontinues with only two distinct component values, although the values of those components maychange. Eventually, though, it undergoes another phase transition and more distinct componentsare observed.Figure 3.1 shows an example of the optimal mixtures at various stages of relaxation. We �t twodimensional data, shown by the scattered points, by a mixture of �ve unit Gaussians. Each panelof the �gure shows the mixture at a di�erent temperature. The inner, solid, circle shows the 1�boundary of the Gaussian; the outer, dashed, circle shows the e�ective variance (��1I) boundary.In the �rst few diagrams, fewer than �ve components are visible due to the exact coincidence of themeans.



513.4.1 Critical temperaturesIn the case of this simple model it is possible to calculate the critical temperatures at which themixture will undergo a phase transition.Suppose we were to start the EM algorithm with parameters �0 in which two (or more) ofthe components were identical. Without loss of generality we shall take these two be the �rsttwo components, setting �01 = �02 and �01 = �02 . At each E-step the responsibilities of these twocomponents for each of the data points will be the same. Thus, at the M-step they will both beupdated in exactly the same way, and will remain identical. The EM algorithm will thus preservethe duplication, and will converge to a stationary point with ��1 = ��2 and ��1 = ��2 .Is this stationary point a maximum, or merely a saddle point? The stability of the solution ��can be evaluated by examining the value of the Hessian of the free-energy at that point. In fact,we know that for any parameter value, F� is maximized with respect to the rm;i by the relaxationE-step. Thus, we need only evaluate the Hessian within the surface of constraint set by the equation(3.11). With the responsibilities chosen optimally, we can reduce the free-energy thus,`� (�) = F�( ��me� 12�kxi��mk2Pl ��l e� 12�kxi��lk2 ; �)= �Xi Xm rm;i log��me� 12kxi��mk2��Xi Xm rm;i log rm;i= Xi Xm rm;i log ��me� 12�kxi��mk2rm;i != Xi Xm rm;i logXl ��l e� 12�kxi��lk2= Xi logXl ��l e� 12�kxi��lk2 (3.19)where, in the last step we have used the fact that Pm rm;i = 1. This form is quite similar to thelog-likelihood of the underlying model. We refer to it as the relaxation log-likelihood. Preciselythe same relationship exists between the relaxation free-energy and the relaxation log-likelihood asdoes between the true free-energy and log-likelihood.Evaluation of the Hessian of `� (�) proves to be notationally challenging. Rose (1998) suggestsan alternative which is more tractable and which we shall adopt. We consider a perturbation ��mapplied to each of the means ��m respectively, with �m = 0 for all but the identical components. Wethen evaluate the derivative d2d�2 `� (f��mg; f��m + ��mg) at the point in question. This is equivalentto �nding the projection of the Hessian on the direction de�ned by the perturbation �m.We begin with the �rst derivative.dd�Xi logXl ���l e� 12�kxi���l���lk2 = Xi Xl ���l e� 12�kxi���l���lk2Pk ���k e� 12�kxi���k���kk2 ��Tl (xi � ��l � ��l)



52= Xi Xl �rl;i�Tl (xi � ��l � ��l) (3.20)with the responsibilities evaluated at the perturbed �. We note that when � = 0 we can write thisderivative as �Pl �Tl �Pi r�l;ixi � ��l Pi r�l;i� which is always zero by (3.17). This simply veri�esthat parameters which satisfy the recurrence relations (3.15){(3.17) are indeed stationary points ofthe relaxation log-likelihood.The second derivative isdd�Xi Xl �rl;i�Tl (xi � ��l � ��l) =Xi Xl �� drl;id� �Tl (xi � ��l � ��l)� �rl;ik�lk2� (3.21)with the derivative of the responsibility given bydrl;id� = dd�  ���l e� 12�kxi���l���lk2Pk ���k e� 12�kxi���k���lk2!= ���l e� 12�kxi���l���lk2��Tl (xi � ��l � ��l)Pk ���k e� 12�kxi���k���lk2 ����l e� 12�kxi���l���lk2Pj ���j e� 12�kxi���j���lk2��Tj (xi � ��j � ��j)�Pk ���k e� 12�kxi���k���lk2�2= �rl;i0@�Tl (xi � ��l � ��l)�Xj �ri;j�Tj (xi � ��j � ��j)1A (3.22)Combining these equations we arrive atd2d�2 `� (��) = �2Xi Xl rl;i ��Tl (xi � ��l � ��l)�2 � �2Xi  Xl rl;i�Tl (xi � ��l � ��l)!2��Xi Xl rl;ik�lk2and so, evaluating at � = 0 and exploiting the facts that �l = 0 for l > 2 and that the means andresponsibilities of components 1 and 2 are identical by construction.d2d�2 `� (��) = �Xl �Tl  �Xi r�l;i(xi � ��l )(xi � ��l )T �Xi r�l;i! �l��2Xi  r�1;i(xi � ��1)T Xl �l!2 (3.23)The second term in this expression, a sum of squares, is always non-negative. We can force it to0 by choosing the perturbations so that Pl �l = 0. The �rst part will be negative for all choices of� as long as the matrix �Pi r�l;i(xi���l )(xi ���l )T �Pi r�l;i is negative de�nite. Let �l;s be the sth



53eigenvalue of the matrix Pi r�l;i(xi � ��l )(xi � ��l )T =Pi r�l;i. The condition for negative de�nitenessis thus � < 1max(�l;s) ; l = f1; 2g (3.24)This condition is both necessary and su�cient for the solution �� with components 1 and 2 identicalto be a stable maximum. We have shown that if it holds then the derivative of (3.23) is negativefor any choice of �m. If it fails we can choose �1 and �2 pointing in opposite directions along theeigenvector corresponding to the largest �l;s so as to obtain a positive Hessian.Thus, a critical temperature is reached whenever the temperature ��1 becomes smaller than theleading eigenvalue of the covariance of the data assigned to any of the mixture's components. If weinterpret the parameter ��1 as the e�ective scale of the covariance matrix of each Gaussian, thisresult is intuitively appealing. When the observed covariance of the data assigned to a componentbecomes larger than the component can \handle", a transition to more distinct component centersoccurs.3.4.2 Model-sizeIt is tempting to interpret the phase transition structure of relaxation models as indicating a pro-gressive change in the underlying model-size (for example, the number of components in a mixture).Take the mixture model shown in �gure 3.1, for example. Initially, only one distinct set of compo-nent parameters exists, and we might think of the mixture as containing only that one component.As the relaxation progresses, each phase transition introduces more distinct component values. Wewould like to view these as new components being added to the mixture, thus growing the underlyingmodel-size.Unfortunately, under the REM-1 algorithm (as well as the basic deterministic annealing algo-rithm), such an interpretation does not hold up. In the ground-state (� = 1) mixture likelihood, iftwo components, say the �rst two, have identical parameters, so that P1 (xi) = P2 (xi), they may bereplaced by a single component with the same parameters and mixing proportion �1 + �2 withoutany change in the likelihood. This is made clear by inspection of the likelihood`X (�) =Xi logXm �mPm (xi) (3.25)In particular, if the larger model is at a maximum in the likelihood, then the smaller one will betoo.This convenient behaviour does not carry through to higher temperatures. Recall the form ofthe relaxation log likelihood `X ;� (�) =Xi logXm ��mPm (xi)� (3.26)
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A B 

Figure 3.2: Inequivalence of di�erent size modelsClearly, with � < 1 we cannot replace the identical components as before, since ��1 +��2 6= (�1+�2)� .Nor can we simply set the mixing proportion of the new component to (��1+��2 )1=� , since this violatesthe normalization of P� (yi). In general, then, the relaxation likelihood changes between the twomodels. Furthermore, a maximum in the more complex model may not correspond to a maximumin the simpler one, indeed the number of distinct component values in the two models may not bethe same.Figure 3.2 illustrates the point. Panel A shows a maximum in the relaxation likelihood of athree-component mixture of unit Gaussians at the stage � = 0:3. Panel B shows the optimalcon�guration, at the same temperature, of a four-component mixture, which was constructed byreplacing the rightmost component of the mixture of panel A with two identical Gaussians. Bothvisible contours in B represent two identical components (indicated by the dark lines | other thanthis the representation of the components is as in �gure 3.1). Thus, the duplication of one componenthas, in e�ect, driven the relaxation of the mixture in reverse, to a smaller phase.Thus, the view of the model changing in size during the relaxation process cannot be maintainedconsistently under REM-1.A further issue emerges from this analysis. Consider the mixture of �gure 3.2B, where a fourcomponent mixture is being �t, but where only two distinct component values are visible. How dowe know how to distribute these duplicated components? Clearly, each choice will yield a di�erentintermediate solution; but the �nal result may also be a�ected since subsequent phase transitions willbe constrained by the availability of components. We would like to be able to introduce the additionalcomponent wherever it is needed, but we cannot \move" the component around without changingthe likelihood landscape. The result is that the choice of how to group the various components, achoice that must be made at each phase transition, will a�ect the outcome of the relaxation process.Both of these issues can be recti�ed by the introduction of a variant of the basic relaxation



55algorithm, which we call REM-2.3.5 REM-2It is instructive to examine the structure of the relaxation free-energy of REM-1 for clues to theorigin of the inequivalence of di�erent model-sizes described above. Recall that the term Q(p; �)is the expected value of the joint data log-likelihood under the distribution p. Using the fact that`X ;Y (�) = log (P� (X j Y)P� (Y)) we can write the free-energy of (3.6) asF�(p; �) = �Ep [logP� (X j Y)] + �Ep [logP� (Y)]� Ep [log p] (3.27)If we introduce a new hidden state, we increase the entropy of the latent variables. However, providedthe new state is identical to some old one, the cross-entropy �Ep [logP� (Y)] decreases by the sameamount. When � = 1, then, such an addition has no net e�ect on the free-energy. However, athigher temperatures the free-energy increases with the introduction of the new state. The size ofthis increase depends on both p and � and so the location of the maxima of the free-energy may alsochange, as we saw above.This formulation suggests a resolution of the di�culty. We introduce a slightly di�erent relaxationfree-energy which will form the basis of our second Relaxation Expectation{Maximization algorithm(REM-2). F 0�(p; �) = �Ep [logP� (X j Y)] + Ep [logP� (Y)]� Ep [log p]= �Q0(p; �)� KL[p(Y)kP� (Y)] (3.28)Here KL[fkg] stands for the Kullback-Leibler divergence between the distributions f and g. Thisform no longer enjoys the analogy with the familiar free-energy of statistical physics. Nonetheless,from the point of view of optimization it provides just as valid a relaxation progression as does themore traditional form.Again, we optimize each free-energy in the relaxation sequence using the EM approach of al-ternate optimizations with respect to p and with respect to �. The E-step is derived in the samemanner as before. We introduce a Lagrange multiplier � enforcing the constraint R dY p(Y) = 1 toobtain 0 = @@p �F 0�(p; �)� � Z dY p(Y)�= @@p �Z dY p(Y)(� logP� (X j Y) + logP� (Y)� log p(Y)� �)� (3.29)



56from which, by the calculus of variations,0 = @@p (p(Y)(� logP� (X j Y) + logP� (Y)� log p(Y)� �))= (� logP� (X j Y) + logP� (Y)� log p�(Y) � �)� p�(Y)p�(Y) (3.30)and so p�(Y) / P� (Y) (P� (X j Y))� (3.31)The multiplier � ensures that p is correctly normalized.At �rst glance it might seem that the M-step, involving the maximization of �Ep [logP� (X j Y)]+Ep [logP� (Y)] will be di�erent from standard EM and REM-1. In most models, however, the param-eters � can be partitioned into two disjoint and independent sets, one responsible for the distributionof the latent variables and the other for the conditional of the observables given the latent variables.If this is the case, F 0� can be optimized with respect to each of these sets separately, and clearly theresulting update rules will be exactly as in standard EM.Now, when � = 0, this free-energy is optimized by any choice of p and � for which p(Y) = P� (Y).Although p need not be the maximum entropy distribution, the resulting parameter values are verysimilar to the initial conditions for REM-1. In particular, the distribution p must be independentof the observations X . For the mixture model, for example, we have rm;i = �m, which impliesthat each component is �t with equal weight given to all of the data (although that weight maybe di�erent for the di�erent components) and so all the component parameters are identical. Forconsistency with REM-1, and in the spirit of maximum entropy statistical methods where unknowndistributions are assumed to be maximally uncertain, we will adopt the convention that the initialchoice of parameters governing P� (Y) does indeed maximize the entropy of the latent variablesunder the constraints of the model. This is merely a convention, though. Any initial choice ofP� (Y), provided every possible outcome has non-zero probability, will produce the same results.In �gure 3.3 the REM-2 algorithm is used to �t a 5-component mixture to the same data aswas used in �gure 3.1. This �gure illustrates the fact that REM-2 exhibits the same type of phasetransition structure as we saw previously in REM-1. Indeed, we can follow through the analysisof section 3.4.1 and �nd that exactly the same condition for stability holds, except that now theresponsibilities that appear in (3.23) are those of the new algorithmrm;i = �me� 12�kxi��mk2Pl �le� 12�kxi��lk2 (3.32)(note that the mixing probabilities �m are not raised to the power �). This results is a small changein the actual values of the critical temperatures between the two algorithms on the same data set;
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Figure 3.3: Phase transitions in REM-2 for �xed-variance Gaussiansan example of this is evident in a comparison of �gures 3.3 and 3.1.We can verify that the issues raised in section 3.4.2 are resolved by REM-2 by consideration ofthe implied relaxation likelihood for a mixture model.`� (�) = F 0�(fri;mg; �)= �Xi Xm rm;i logPm (xi) +Xi Xm rm;i log�m �Xi Xm rm;i log rm;i= Xi Xm rm;i log �mPm (xi)�rm;i= Xi Xm rm;i logXl �lPm (xi)�= Xi logXl �lPm (xi)� (3.33)Clearly, the two identical components can be replaced by one (with mixing probability given by thesum of the weights of the duplicate components) without disturbing the likelihood. Thus, we canlegitimately regard the model-size as increasing during the relaxation process. Furthermore, we neednot make any choice about how to group components: any grouping will yield the same sequence oflikelihoods and extra components can be assigned as needed when a critical temperature is reached.



583.6 Cascading Model SelectionIn our development to this point, we have tacitly assumed that the size of the eventual model isknown. If we use REM-1, the model size is set at the outset and maintained throughout. If we useREM-2, the model-size grows during the relaxation, but is capped at the correct value. In practice,however, this knowledge is often not available a priori. In using a mixture model for clustering, forexample, we may not know in advance the appropriate number of clusters. Instead, the model-sizeneeds to be learnt along with the parameters of the appropriate model.This is an example of the more general problem of model selection. We have already visitedthis problem twice in the course of this dissertation. Section 1.3 discussed the general theory anddescribed a number of likelihood-penalty techniques that are used in practice, as well as relatedapproaches such as cross-validation. Section 2.7.3 added a further technique, called the Cheeseman-Stutz criterion, which is suitable for latent variable models such as mixtures. In this section we willinvestigate the relationship between these techniques and REM.3.6.1 A natural answer?It is tempting to think that in certain situations, the phase transition structure of REM providesa natural answer to such problems, and, indeed, a number of authors have assumed this (see, forexample, Rose (1998) or Weiss (1998)). Take the mixture of unit Gaussians that has been ourrunning example in this chapter. Suppose we were to �t by relaxation a mixture with a very largenumber of components. Once the relaxation had run its course, we would �nd that only a smallnumber of distinct component values existed in the �nal mixture. Furthermore, whether we had usedREM-1 or REM-2 to �nd that mixture, it would always be the case that at unit temperature theequivalence between a mixture with duplicate components and a smaller one with all duplicationsremoved would hold. Thus, we can safely assert that the relaxation procedure has found a solutionwith limited model-size. Is this the correct model-size?Unfortunately, despite the suggestions to that e�ect that appear in the literature, it is not. Thisshould be clear from the fact that ultimately, the technique by which the �nal mixture was foundis not important. That mixture is simply a maximum | with luck, the global maximum | of themodel likelihood. Choosing a number of components in the manner suggested is thus the same aschoosing between di�erent models solely on the basis of their unpenalized likelihoods. Such a choiceis prone to over-�t for all of the reasons that were discussed in section 1.3. The estimate of themodel-size will be biased upwards.We can drive the point home by means of a simple example. Suppose that the data to be modeledhave actually arisen from a single Gaussian distribution with zero mean and unit covariance matrix.We attempt to model this data with a mixture of Gaussians, each with unit covariance, �tting



59the mixture by REM. As we have seen, at low values of the relaxation parameter, �, all of themixture components coincide. However, once � reaches the inverse of the leading eigenvalue of theobserved covariance matrix, more than one distinct mean will be observed. The eigenvalues of theobserved covariance are asymptotically symmetrically distributed about 1 (the exact density is givenby Anderson 1963). Thus, with a probability of approximately 1�2�p, where p is the dimensionalityof the Gaussian, the leading eigenvalue will be greater than 1. In this case, the phase transitionwill occur with � < 1. If relaxation were to proceed to completion at � = 1, we would arrive at asolution with more than one component.The situation is even more dire for other latent variable models. For example, if the covariancesof the Gaussians are unknown (and perhaps unequal) the maximum likelihood solution given asu�ciently large number of components has each component concentrated around exactly one datapoint, giving rise to as many distinct components as data. Clearly, this is not a reasonable solution.Another suggestion is as follows. The relaxation procedure is carried out using a large numberof components, just as before. Now, however, a section of the data | a validation set | is held outand the (relaxation) likelihood of the optimal model at each temperature is evaluated on these data.After relaxation is complete, we select the model at which the validation likelihood was greatest.This scheme is only meaningful in situations where the relaxation likelihood corresponds to anactual model. Even in such situations, though, it will tend to return the wrong answer; in this casethe bias appears in the parameter estimates. Take the simple example of data from a single Gaussian.It is plausible that this scheme would correctly identify the optimal model-size as containing onlyone component. However, selecting this component will require choosing a solution at a non-unittemperature. Thus, the Gaussian will have a larger variance than appropriate.The resolution would appear to be to use a model selection scheme (validation in this example)to choose the model-size, but then continue to relax the model of this size to unit temperature. Weshall discuss a local version of this scheme in the next section.3.6.2 Cascading model selectionCareful consideration of the nature of the relaxation likelihood has indicated that, despite the ap-pealing natural limits that appear in the �xed-variance models commonly used in conjunction withdeterministic annealing, to avoid bias the model-size must be chosen by a more traditional modelselection technique. Nonetheless, the hierarchical \division" due to the phase transition structurethat we saw in the case of the mixture model does still form an attractive basis for model selection.We shall see that it is indeed possible to exploit this structure. Through a progressive develop-ment we will arrive at an e�cient method for choosing the correct model size, within the relaxationframework, that we call cascading model selection.In what follows we shall consider the mixture model, with the selection of model-size being
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Figure 3.4: Schematic of model selection using REMequivalent to choosing the correct number of components. The method is, however, quite generaland can be applied with ease to any latent variable model for which an EM algorithm can be written.The standard approach to model selection is as follows. Using some algorithm, which might justas well be REM, we obtain maximum likelihood �ts for a variety of models with di�ering numbersof components. These models are then compared using one the methods discussed in sections 1.3or 2.7.3. Many of these methods involve a comparison of the maximal log-likelihood values of thedi�erent models, reduced by a term that reects the number of free parameters in the model. It issuch penalized-likelihood methods that we shall consider �rst.The various model selection schemes that we will discuss are shown schematically in �gure 3.4.Panel A represents the basic procedure. The solid lines each represent the relaxation of a model,while the circles indicate the occurrence of phase transitions. The �ve models being �t are ofdi�erent sizes, which is why they undergo di�erent numbers of phase transitions. Roughly speaking,the total length of the lines in each panel represents the computational cost associated with eachmodel selection strategy. The remaining panels will be described below.If the optimization is carried out using REM-2 then the process of �tting the di�erent size modelscan be made considerably more e�cient. The relaxation process for models with M and with M +1components is identical until the �nal phase transition of the larger model. Thus, there is no needto repeat the �tting process up to that point. As a result, we �t all of the models in a lineartree structure, shown in �gure 3.4B, with a new branch emerging at each phase transition. (Theschematic adopts the convention that the line emerging on the right of the circle has not undergonethe phase transition, while the one that continues below has.) We note that this process is not



61possible with either the conventional deterministic annealing algorithm or REM-1.We can improve further on this scheme by allowing early pruning of some branches. This isfacilitated by the following important result, which holds for models being �t by REM-2. Supposewe have an M component model in which one component is unstable in the sense of section 3.4.1,that is, if additional components are available it would undergo a phase transition. We compare thelikelihoods of two models: M1 has only M components and therefore exhibits no phase transition,whileM2 has a model-size of M +1 and thus has allowed the unstable component to \split". If therelaxation log-likelihood at some � < 1 ofM2 exceeds that ofM1 by �, then the �nal log-likelihoodof M2 will exceed that of the smaller model by an amount larger than �. We o�er an informalproof of this point.Recall �rst that M1 is identical in likelihood to an (M + 1)-component model M1� in whichthe unstable component is duplicated, but both copies retain the same parameters. By assumptionthe relaxation log-likelihood ofM2 exceeds that ofM1�. Recall that this log-likelihood is obtainedfrom the free-energy F 0�(p; �) = �Q0(p; �)� KL[p(Y)kP� (Y)] (3.28)by setting p(Y) = P� (Y j X ). Now it must be the case that the Kullback-Leibler term forM2 isgreater than that forM1�. If that were not true, the more complex model would be preferred evenat � = 0, which we know not to be the case. Thus, it must also be true that the Q0 term in thelikelihood ofM2 exceeds that ofM1� (and thus ofM1).How will the log-likelihoods of the two models change as relaxation progresses? Let `� (��) be theoptimal relaxation log-likelihood, that is, the value of F 0�(p; �) with � = ��, the optimal parameters,and p(Y) = P�� (Y j X ) . The maximizing value of the model parameter vector, ��, is, of course, afunction of the relaxation parameter �. Thus, we may di�erentiate the maximal log-likelihood withrespect to � using the chain ruledd� `� (��) = @@� `� (��) + @@� `� (��) d��d� (3.34)But, since �� maximizes the log-likelihood, the gradient of `� (�) at �� for �xed � is 0. The partialwith respect to � is obtained trivially from (3.28), and thus we �nd thatdd� `� (��) = Q0(P�� (Y j X ) ; ��) (3.35)We have argued that the Q0 term for M2 is greater than that for M1. Thus, we �nd thatthe optimal log-likelihood of the larger model is growing more rapidly than that of the smaller one(if both gradients are negative, then it is shrinking less rapidly). As a result, any di�erence inlikelihoods at � < 1 can only grow as � increases.



62Thus, it is possible to further streamline the model selection process. If, at any stage in therelaxation, the penalized relaxation log-likelihood of some model is exceeded by that of a largermodel (that is, the di�erence in log-likelihoods is greater than the di�erence in penalties) we canimmediately neglect the smaller model, e�ectively pruning that branch of the tree. This is indicatedin �gure 3.4C, where the �rst two models are pruned.Finally, we arrive at the approach that we call cascading model selection. We assume that thepenalized likelihood rises monotonically with model-size until the optimal value is reached. Whilethis is not guaranteed to be the case, it is an intuitively appealing assumption and the experimentsbelow suggest that, at least for simple mixture models, it is typically valid. Under these conditions,we need not even consider a model of size M + 2 until the model with M components has beenrejected in favour of one with M + 1.In our implementation of cascading model selection we think of a particular model size as being\current" at all times. This is indicated by the solid line in �gure 3.4D. When a critical temperatureis reached, the current model retains its size. However, we begin to track the optimum of a \shadow"model of larger size (and thus, which undergoes the phase transition). If the penalized likelihoodof this shadow model exceeds that of the current one, we abandon the current model and make theshadow current. Sometimes, it will be the case that the shadow model reaches a critical temperaturewithout having replaced the current model. If this happens, we simple maintain the shadow model'ssize and continue to relax; we do not introduce the larger model.It might also be the case that the current model will encounter another critical temperature,even though it remains more likely than the shadow. In this case we need to introduce anothershadow model, usually of the same model-size as the previous one, but resulting from a di�erentphase transition. In the case of the mixture model, it is useful to think of a di�erent componenthaving \split". If, as relaxation progresses, we reach a point where either of these shadow modelsbecomes more likely than the current one, we make that model current and abandon all the others.The cascading model selection procedure is capable of �nd optima that the basic REM algorithmis not. To see why, consider the case described above where a second shadow model may be intro-duced. This shadow model is di�erent from any that might be obtained by REM; to achieve it wehave \disallowed" one phase transition but allowed another. If this model proves to have greaterlikelihood than the �rst shadow, and also to be preferred to the current model according to thepenalized likelihoods, then we will arrive at a model with greater likelihood than that obtained byREM with the same number of components. Intuitively, the cascading model selection prevented usfrom \wasting" a component due to the phase transition at the higher temperature, instead reservingit for the more advantageous split. This point will be illustrated below.Finally, we note that the core result of cascading model selection has been obtained only fora penalized likelihood style model selection procedure. However, to the extent that such methods



63approximate techniques such as Bayesian model selection or cross-validation, we might believe thatsuch techniques can be used in the same way. In particular, for mixture models the Cheeseman-Stutzcriterion of section 2.7.3 often provides good results.3.7 ExperimentsAs we �rst encountered the REM algorithm in section 3.3, we noted that, because the maximumof the free-energy does not, in fact, vary continuously with the relaxation parameter, the algorithmprocess cannot be guaranteed to �nd the global optimum of the likelihood. Instead, we appealed toan intuitively founded expectation that it would tend to �nd a good optimum. In this section weexamine the results of numerical experiments to see if this is actually the case.The experiments described here all involve the simple mixture of two-dimensional unit Gaussiansmodel, which we have seen throughout this chapter. In all cases the relaxation is performed using theREM-2 algorithm. The basic outline of the experiments is as follows: we select a random mixture ofunit Gaussians, generate data from it, and �t mixture models to these data using both the REM-2and standard EM algorithms. We then compare the performance of the algorithms by computingthe likelihoods of the resultant models. Any solution in which the likelihood of the �t model isgreater than the likelihood of the true (that is, data-generating) model will be called \good."The parameters of the generating mixture are all chosen randomly within pre-speci�ed intervals.The number of components, M , is chosen from the discrete uniform distribution on the values 3, 4,5 and 6. The mixing proportions are chosen by randomly partitioning the interval (0; 1) as follows:M � 1 numbers in the interval (0; 1) are chosen from a uniform distribution on the interval andthen ordered, thereby inducing a partition into M subintervals; the lengths of these subintervals aretaken to be the mixing probabilities. The means are generated from the two-dimensional uniformdistribution on the rectangular region bounded by �5 in both dimensions. The covariances are allset to the identity matrix.500 data points are generated randomly from this mixture distribution. Mixtures of the cor-rect number of Gaussians are then �t both by REM-2 and by standard EM. For each data set,the standard EM algorithm is started 10 times, from 10 randomly selected initial conditions (seesection 2.7.2). Both algorithms are iterated to the same convergence criterion, which is that therelative change in likelihood after a complete EM step should fall below 10�7. The likelihoods of allof the models, including the generating one, are then evaluated. We call a �t model \poor" if itslikelihood is less than that of the generating model on the given data.This entire procedure is repeated for 200 di�erent generating mixtures.Figure 3.5 shows the number of \poor" optima achieved under the di�erent algorithms. The10 bars on the left show how the rate of success of the standard EM algorithm increases as a
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Figure 3.5: Frequency of poor maximaprogressively larger number of restarts are used. The likelihood used in the calculation of the barlabeled n is the largest of the likelihoods obtained from the �rst n restarts. The single bar on theright indicates that, for REM-2, only a single run achieved a poor optimum.It is instructive to examine the single example in which REM-2 converged to a poor maximum.This is shown in �gure 3.6. Panel A shows the model from which the data were generated. PanelB shows the optimum found by the REM-2 algorithm. Evidently, a phase transition that split thecomponent in the middle-right was encountered before the phase transition that would correctly splitthe bottom-left component. In panel C we show the results of running REM-2 in conjunction withcascading model selection (using the BIC likelihood-penalty with no corrective constant). Whereasthe standard REM-2 algorithm ran on a model with the correct number of components provided apriori, with cascading model selection this number could be determined from the data. Furthermore,it is evident that by incorporating on-line model selection, the early phase transition was rejectedon the basis of the penalized likelihood , whereas the later, correct, one was subsequently accepted.It should be clear that without the cascading property this maximum could not have been found:had the di�erent model sizes been compared after optimization (as is usual) then the model of size 5would have been that of panel B. Thus, we observe that | as was suggested at the end of section 3.6| besides the obvious bene�ts of automatic model size determination, the cascading model selectionprocess can sometimes improve the optima found by REM.



65
A B C 

PSfrag replacements Generating model REM-2 CMSFigure 3.6: Cascading model selection can improve optimaA word of caution needs to appear here. The data shown in �gure 3.5 suggest that, at leastin this simple case, REM | perhaps in combination with cascading model selection | might wellconverge reliably to the global maximum of the likelihood. This is not actually the case. Closerinspection reveals that for 11 of the random mixtures at least one of the standard EM runs found amodel with a likelihood more than 10�4 log-units larger than that found by REM-2. Furthermore,it is possible that even for the remaining mixtures the relaxation solution is not globally optimal,but that none of the standard EM iterations found the maximum either. Thus, REM does notalways �nd the global optimum; indeed we cannot expect any algorithm of polynomial complexityto reliably do so. Nonetheless, �gure 3.5 does suggest that it tends to �nd an optimum at least asgood as the model that actually generated the given data with remarkable regularity.
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Chapter 4 Sparse Hidden Markov ModelsThe hidden Markov model (HMM) is one of the most successful and widely used generativemodels in the �eld of statistical modeling. The statistical theory of HMMs has been driven in largepart by the �eld of speech processing and is extremely well worked-out. Indeed, the Baum-Welchalgorithm of the sixties is one of the earlier examples of an implementation of an EM algorithm,and much of the theory of EM was well understood in this context well before the publication of thegeneral formulation. Nevertheless, advances in the theory of HMMs are still made. Recent examplesinclude the factorial hidden Markov model Ghahramani and Jordan (1997).In this chapter we review the generative model underlying the HMM, and discuss the applicableEM learning algorithm. We then examine a particular sub-class of the general model, the sparseHMM, in which the majority of outputs are zeros (or null). We then consider a \mixture" of theserestricted models. This mixture-like compound model is a special case of the factorial HMM: weconstruct an EM algorithm with an imperfect E-step, of the form that was justi�ed in section 1.8.This approach, though not exact, will come close to the true the maximum likelihood solution forcertain classes of data.4.1 The Generative Model4.1.1 The Markov chainThe �nite Markov chain (or Markov process) has been extensively studied in stochastic processtheory. It consists of a series of N identically distributed discrete variables fyig, with the propertythat each is dependent only on the value of the preceding one. More precisely, the joint distributionover the variables factors as follows.P (y1; y2 : : :) = P (y1) NYi=2P (yi j yi�1) (4.1)As a result, yi is conditionally independent of all of the variables y1 : : : yi�2 given yi�1.The di�erent values that the variables may take on are called the states of the process; in themodels we discuss there is a �nite number of such values and we take them to be the numbers 1 : : : P .The \state" terminology suggests a connection between a Markov process and a non-determinstic�nite-state automaton. In fact, the sequence of states traversed by such an automaton in the absenceof input (or given constant input) indeed forms a Markov sequence. We shall use the two sets of



68terminology interchangeably, as is common in the �eld, referring, for instance, to the model as beingin state p at step i when yi takes the value p.The joint distribution (4.1) is completely speci�ed by the two discrete probability distributions,the initial state probabilities P (y1) and the state transition probabilities P (yi j yi�1) fori > 1. We can collect each of the transition probabilities into a P � P transition matrix T+, sothat T+pq = P (yi = p j yi�1 = q). The initial probabilities might be collected into a seperate vectorT0, however, in most cases it is more convenient to roll them into the transition matrix as follows.We introduce a new \random" variable y0 which precedes (in the sense of the Markov conditioningcriterion) the �rst actual random variable y1. This variable assumes the value 0, which is not apossible outcome for any other variable, with probability one. In this model, the transition matrixis augmented to a (P + 1) � (P + 1) matrix T , with the �rst column containing the initial stateprobabilities; the �rst row being entirely zero to indicate that the system never makes a transitionback into the state 0; and the remaining elements being the transition probabilities. For obviousreasons it will be convenient to number the rows and columns of T from 0, rather than 1. Oncenormalization requirements are accounted for, the augmented transition matrix T contains P 2�1 freeparameters; P � 1 specify the initial probabilities and P (P � 1) specify the transition probabilities.Using this notation, manipulations of the probability functions becomes quite straightforward.For example, if the marginal distribution of the variable yi�1 is given by the vector �i�1, then themarginal distribution of yi is given by P (yi = p) =Pq P (yi = p j yi�1 = q)P (yi�1 = q), which canbe written more succintly as �i = T�i�1. As a result, the marginal distribution of the ith variableis �i = T i0BBBBBBBBB@
100...0
1CCCCCCCCCA (4.2)

Given some basic regularity conditions on the transition matrix T , there exists a unique proba-bility distribution over the states, represented by the vector �, which satis�es the conditionPT (yi) = � ) PT (yi+1) = � (4.3)For obvious reasons, this is called the stationary distribution of the Markov process.Clearly, � is a right eigenvector of the matrix T with eigenvalue 1. It can be shown, undersome additional mild conditions on T (related to the ergodicity of the Markov process), that allother eigenvalues have absolute values strictly smaller than 1 (Seneta 1981; Karlin 1991). As aresult, given any initial distribution on the states, after a su�cient number of steps the marginal
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yiTf�pg iFigure 4.1: The hidden Markov modeldistribution of the yi will approach �. The stationary distribution is thus an attractor in the spaceof marginal distributions on the Markov variables. The magnitude of the largest non-unit eigenvaluesets the rate of decay of the non-stationary components, and thus the number of steps we need towait in the typical case before the marginal state-distribution approaches the stationary one. Thisis called the mixing time of the (ergodic) chain.4.1.2 The hidden Markov modelThe hidden Markov model is a latent variable generative model derived from the basic Markovmodel described above. The structure of the model is drawn in graphical terms in �gure 4.1. Panel Arepresents all of the variables of the model explicitly. The variables yi form a Markov chain, butin this case they are not directly observed. Instead, we see output variables xi which depend onlyon the corresponding state yi; that is, each xi is conditionally independent of all other variables,both observed and latent, given yi. We adopt the convention of a deterministic initial state y0 tocompress all of the Markov parameters into a single matrix. There is no corresponding observablex0. The conditional distribution P (xi j yi) is stationary with respect to the instance variable i. Thus,associated with each state p (except 0) is an unchanging output distribution which plays a similarrôle to the component distributions of the mixture model. We will write �p for the parameters of thisdistribution and Pp (x) for the distribution (or density) function, just as in the case of the mixturemodel. Indeed, the connection between the two is quite deep. In �gure 4.1B the same HMM, alongwith explicit parameter nodes, is shown in the more compact plate representation. It is clear thatthe structure is extremely similar to that of the mixture model; the only di�erence is the dependenceof the latent variable between di�erent instances. (As an aside, the plate notation is not well suited



70for such models, since it does not make clear the essential Markov nature of the latent variableprocess, which is that the arrow linking the yi nodes stretches only to the next plate.)The parameters of model are the Markov probabilities contained in the matrix T along with allof the parameters �p of the output distributions. The likelihood of the parameters, with observationsX = fxig, is found by summing over all possible strings of Markov states y1 : : : yNLX (T; f�pg) = Xy1:::yNYi Tyi;yi�1Pyi (xi) (4.4)An alternative, recursive, form for the calculation of this likelihood will appear below.4.2 Learning: The Baum-Welch AlgorithmThe commonly used learning algorithm for HMMs was developed in the course of classi�ed work byEric Baum and Lawrence Welch in the sixties. This algorithm turns out to be the standard EMalgorithm applied to the generative model; however, its development pre-dated the publication ofthe original EM paper (Dempster et al : 1977) by at least a decade. The application is considerablymore involved than the examples we have handled thus far. In particular, the E-step, in whichparts of the conditional P� (Y j X ) are calculated, is su�ciently elaborate to have claimed a nameof its own; it is called the forward{backward algorithm. Once this is completed, the M-step is morestraightforward. The complete approach is commonly known as the Baum-Welch algorithm.The joint data likelihood, based on observations, X = fxig and latent variable values Y = fyigis LX ;Y (T; f�pg) = NYi=1 Tyi;yi�1Pyi (xi) (4.5)leading to the log-likelihood`X ;Y (T; f�pg) =Xi logTyi;yi�1 +Xi logPyi (xi) (4.6)As in the case of the mixture model, we introduce latent indicator variables in place of thediscrete latent variables yi. We de�ne zp;i to take the value 1 if yi = p and 0 otherwise. We canthen rewrite the log-likelihood as follows`X ;Z (T; f�pg) =Xi Xp;q zp;izq;i�1 logTpq +Xi Xp zp;i logPp (xi) (4.7)In the E-step for the nth iterarion, we take the expected value of this likelihood with respect tothe conditional distribution determined by the parameter values on the (n�1)th step, P�n�1 (Z j X ).



71This gives usQn(T; f�pg) = EZjX ;�n�1 [`X ;Z (T; f�pg)]= Xi Xp;q EZjX ;�n�1 [zp;izq;i�1] logTpq +Xi Xp EZjX ;�n�1 [zp;i] logPp (xi)= Xi Xp;q tnpq;i logTpq +Xi Xp snp;i logPp (xi) (4.8)where we have written snp;i for EZjX ;�n�1 [zp;i] and tnpq;i for EZjX ;�n�1 [zp;izq;i�1]. These quantitiesare analogous to the responsibilities of the mixture model, although that name is not used in thiscase. We shall call them the state estimates and transition estimates respectively. They aregiven by the probabilitiessnp;i = P�n�1 (zp;i = 1 j x1 : : : xN ) (4.9)tnpq;i = P�n�1 (zp;i = 1 & zq;i�1 = 1 j x1 : : : xN ) (4.10)Unlike in the case of the mixture model, the conditioning on the observations does not reduce toconditioning only on xi, due to the coupling of latent variables in this model. These probabilitiesneed to be calculated by an iterative approach known as the forward{backward algorithm.4.2.1 E-step: The forward{backward algorithmThe algorithm by which the state and transition estimates are found is a special case of a generalinference algorithm on probabilistic graphical models (Jordan 1998). However, we have not developedthe general theory of such models here. Therefore, we simply lay out the algorithm, and then showthat it does indeed achieve the necessary estimates.We are given a hidden Markov model with known parameters, T and f�pg, and a set of obser-vations fxig. We wish to calculate the marginal probabilities of (4.9) and (4.10). Introduce twoquantities, each a joint probability distribution, whose values can be calculated recursively at eachtimestep. The �rst is the likelihood that the system emitted the observed values x1 : : : xi and wasthen in state p at the ith time-step.Fp;i = P (yi = p; x1 : : : xi) (4.11)= Pp (xi)Xq TpqFq;i�1 (4.12)Note that the likelihood that the model generated the complete string of observations is then justLX (T; f�pg) =Xp Fp;N (4.13)



72thus obtaining the promised recursive expression for this likelihood. We will need this value againbelow, and so reserve for it the symbol L.The second recursive quantity we need is the likelihood that, starting from state p on step i thesystem generated the observed string xi+1 : : : xN .Bp;i = P (xi+1 : : : xN j yi = p) (4.14)= Xq TqpPq (xi+1)Bq;i+1 (4.15)Note that due to the Markov nature of the latent variable chain, observations xi+1 and furtherare independent of all previous observations given the value of yi and so Bp;i is also equal toP (xi+1 : : : xN j yi = p; x1 : : : xi)Both recursions can be written more succinctly if we introduce a (P + 1) � (P + 1) diagonalmatrix Ri (indexed, like T , from 0) with Rpp;i = Pp (xi). We then obtain, with vector forms forboth F and B Fi = RiTFi�1 and Bi = TTRi+1Bi+1 (4.16)Notice that one of these recursions runs forward over the observations, while the other runs back-wards. Thus the name \forward{backward".The estimates sp;i and tpq;i can be expressed in terms of F and B:sp;i = P (yi = p j x1 : : : xN )= P (xi+1 : : : xN j yi = p)P (yi = p; x1 : : : xi)P (x1 : : : xN )= Fp;iBp;i=L (4.17)andtpq;i = P (yi = p; yi�1 = q j x1 : : : xN )= P (xi+1 : : : xN j yi = p)P (xi j yi = p)P (yi = p j yi�1 = q)P (yi�1 = q; x1 : : : xi�1)P (x1 : : : xN )= Bp;iRpp;iTpqFq;i�1=L (4.18)where, in the second step of each of these results we have used the Markovian properties of themodel to remove irrelevant conditioning variables.The E-step of the Baum-Welch algorithm, then, is achieved by substituting into (4.17) and (4.18)the (n� 1)th iteration parameter estimates, to obtain snp;i and tnpq;q .



734.2.2 M-step: Parameter re-estimationThe re-estimation of the Markov transition matrix is straightforward, and reminiscient of the re-estimation of the mixing probabilities of a mixture model. We optimize the expected log-likelihoodof (4.8) with respect to Tpq, enforcing the constraint Pp Tpq = 1 with a Lagrange multiplier, toobtain @@Tpq ����Tnpq  Xi Xp;q tnpq;i logTpq � �Xp Tpq! =Xi tnpq;iTnpq � � = 0 (4.19)From which we �nd that Tpq /Pi tnpq;i. The normalization constraint then gives usTnpq = PNi=1 tnpq;iPN�1i=0 snq;i (4.20)where we use the fact that Pp tnpq;i = snq;i�1 which follows from the marginalization of the jointdistribution represented by tpq;iThe remaining update rules, for the output distribution parameters f�pg, depend on the formof the output distribution function. We can, however, make some headway. First, note that the�p are independent of each other, and so can each be optimized separately. Furthermore, only thesecond term in the expected log-likelihood (4.8) has any dependence on �p. As a result, we arriveat an update rule identical to that encountered in the case of the mixture model (2.15), with theresponsibilities replaced by the state estimates snp;i.�np = argmax�p Xi snp;i logP�p (xi) (4.21)As in the mixture case, we may interpret this as a weighted �t of the output distribution parametersto the observations xi, with weights given by the estimates snp;i.4.3 Sparse HMMsIn this section, we introduce a special case of the HMM. This restricted model, the sparse hid-den Markov model or SHMM, is one that may be encountered with some frequency in practicalmodeling situations; indeed we develop it here because it will be of use to us in a neural data anal-ysis problem tackled in the following chapters. The restricted model itself will only be of limitedinterest from an algorithmic point of view: all of the standard HMM learning algorithms may beused and, though we will describe an adaptation of the standard Baum-Welch algorithm, the advan-tages thereby derived are merely in the realm of e�ciency. However, the introduction of this modelwill allow us to speak meaningfully of a mixture of sparse HMMs, and derive an e�cient learningalgorithm for such a mixture.



74The processes that we consider are sparse in the following sense. In each string of observationsxi, the majority yield a null value, which we represent by the symbol �. This value tells us relativelylittle about the state of the underlying process; in e�ect, the process has no output at these obser-vation times. Scattered within this string of �s are occasional non-null output values, but these aredistributed sparsely. Nevertheless, they provide our only information about the state of the process.We will examine hidden Markov models for such a process. Each model contains one or morestates for which the output distribution produces the outcome � with probability 1. We will referto these as the null states. We will assume for the purposes of this discussion that the outputdistributions in the remaining states assign probability 0 to this outcome, although most of theresults of this and the following sections can be carried through even if this were not the case. Thesparsity of the process requires that the transition matrix be set up so that on the majority of time-steps the model is in a null state. On the whole, then, the transition probabilities from null statesto states with full output distributions are relatively low, while transitions in the other direction arerelatively likely.How sparse is sparse? There is no precise answer to this question. All of the algorithms that wediscuss can be equally well applied to models which spend little or no time in null states. However, itwill be apparent that under that condition they would produce poor results. The transition betweensparse and full, then, is a matter for empirical discovery within the framework of the application.Learning in the SHMM may proceed by the standard Baum-Welch algorithm that was laid outin the case of the full HMM. However, it is possible to achieve some optimizations on the basis ofthe sparse output structure, which we will discuss here. Before we can do so, however, we need torecast the forward{backward algorithm slightly.4.3.1 Another view of the forward{backward algorithmThe presentation in section 4.2.1 described the forward{backward algorithm in a notationally com-pact form ideal for exposition. In fact, as described, the algorithm is numerically unstable inimplementations. This instability can be resolved by a small modi�cation, which is the subject ofthis section. The same modi�cation is important to adaptations of the algorithm to sparse HMMs.The di�culty with the currently described algorithm is this. At each instance i, the conjunctionof observations that appear in the likelihoods described by Fi and Bi is of a di�erent size. Forinstance, F1 describes the likelihood P (y1; x1), while FN describes P (yN ; x1 : : : xN ). If the typicaldensity at the observation point xi is a, then while F1 is of order a, FN is of order aN . Similarly,B1 is of order aN�1, while BN is of order a0. The product of the two terms is always of order aN ,and it is divided by the likelihood (also order aN) to derive estimates sp;i and tpq;i of order 1. Ifthe value a is considerably di�erent from 1, the intermediate values in this calculation can becomeeither very large or very small, and the computation may become numerically unstable.



75We can resolve this problem by introducing an alternative group of recursive functions thatremain of order 1 throughout. In fact, we need three functionsCi = P (xi j x1 : : : xi�1) (4.22)Fp;i = P (yi = p j x1 : : : xi) (4.23)Bp;i = P (xi+1 : : : xN j yi = p)P (xi+1 : : : xN j x1 : : : xi) (4.24)which are calculated recursively as follows.Ci = 1TRiTFi�1 (4.25)Fi = RiTFi�1=Ci (4.26)Bi = TTRi+1Bi+1=Ci+1 (4.27)where 1 is a vector of P ones, and is introduced to indicate a sum of the elements of the followingvector-valued product.Given these new functions, the state and transition estimates becomesp;i = Fp;iBp;i and tpq;i = Bp;iRpp;iTpqFq;i�1=Ci: (4.28)The normalization of the recursive terms F and B de�ned here is crucial to the following ex-position of the forward{backward algorithm for SHMMs. Thus, all subsequent references to thealgorithm, and the symbols F , B and C will refer to this recast version.4.3.2 Forward{backward algorithm for sparse HMMsBy de�nition, the output sequences recorded from a sparse HMM tend to contain long stretches ofnull outputs. These segments leave the model in an identi�able con�guration; that is, the value of Fiat the end, and Bi at the beginning of such a sequence is relatively independent of the measurementsbefore and after such a segment.Consider a long segment of null observations stretching from observation indices a to a+ l. Weassume that the values of the functions Fa�1 and Ba+l are known, while we seek to calculate Fa+land Ba�1.Consider, �rst, the forward term. Let the notation R� stand for the value of the likelihood matrixRi in cases where xi = �. Recall that such matrices are diagonal, with Rpp;i = Pp (xi). In this case,these elements are 1 for null states and 0 elsewhere. We then haveFa+l / (R�T )(l+1)Fa�1 (4.29)



76with the vector then normalized so that the sum of its elements is 1. Whatever the value of Fa�1,this expression will be dominated by the leading eigenvector of the matrix R�T . We will write F�for the suitably normalized eigenvector | note that normalization here means that the sum of theelements, rather than the sum of the squares of the elements, is 1. In fact, F� is the stationarydistribution of the Markov chain that is obtained by restricting the current estimate of the Markovmodel to only the null states, the transition matrix of which is given by renormalizing the columnsof the matrix R�TR�. Thus the forward step after a sequence of null outputs is achieved by simplysetting the value of the forward term to F�.Using a similar argument we can show that at the beginning of a long segment of nulls, thevalue of the backward term Ba�1 will approach the leading eigenvector of the matrix TTR�, suitablynormalized. We write ~B� for the unnormalized eigenvector. Unlike the forward terms, Bi is notitself a probability distribution and thus we have no immediate way to normalize. However theproducts FiBi = P (yi j x1 : : : xN ) are probabilities. Thus, knowing the value of Fa�1 we can �ndthe appropriate normalization for Ba�1 (which is potentially di�erent before each null segment).The forward{backward steps across a sequence of nulls from a to a+ l is thusFa+l = F� (4.30)Ba�1 = ~B�=FTa�1 ~B� (4.31)The use of these forms limits the application of the full forward{backward algorithm to onlythose regions in which some non-null outputs are observed, often at a considerable computationalsavings.4.4 Mixtures of Sparse HMMsWe consider the following model. We have M independent sparse hidden Markov models. Call theoutput of the mth model at time-step i, xm;i1. We do not observe these variables directly, insteadwe make a single observation at each time-step, derived from these values according to the followingxi =8>>><>>>: � if all xm;i = �xm�;i if only xm�;i 6= �c= if multiple xm;i 6= � (4.32)1Variables in the ensuing development will often need to be identi�ed by state, component model and observationnumber. We shall adopt two conventions to assist in correctly parsing all of these subscripts. 1. The order will alwaysbe (state, model, instance), but some indices might be omitted if unnecessary. 2. the letters p and q will be usedto index state, m and l for model, and i for instance; n will be used in the superscript for EM iteration number asbefore.
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PSfrag replacements

y1;0 y1;1 y1;2 y1;3x1;1 x1;2 x1;3y2;0 y2;1 y2;2 y2;3x2;1 x2;2 x2;3y3;0 y3;1 y3;2 y3;3x3;1 x3;2 x3;3x1 x2 x3Figure 4.2: A mixture of sparse hidden Markov modelsIf more than one HMM has non-null output, we see only the fact that a collision occured, notedby the special output value c=. We obtain no information about which, nor even how many, of theHMMs had non-null outputs.The model is illustrated in �gure 4.2. The random variables in the model are the state variablesym;i and the corresponding outputs xm;i. The observed value xi is actually a deterministic functionof the outputs, xm;i, of each component sparse HMM.4.4.1 LearningSince the component SHMMs are presumed to be independent, the joint data likelihood, givenobservations X = fxig, HMM outputs Xm = fxm;ig and indicator variables Z = fzm;ig is simplythe product of the joint data likelihoods (4.5) for each of the component HMMs given observationsfxm;ig and indicators fzm;ig. In the log domain, this is`X ;Xm;Z (fTmg; f�p;mg) =Xm Xi  Xp;q zp;m;izq;m;i logTpq;m +Xp zp;i logPp;m (xm;i)! (4.33)



78The E-step involves calculation of the expected value of this expression with respect to thedistribution P (zp;m;i; xm;i j xi). Note that the expectation is taken not only with respect to thezm;i (as usual), but also with respect to the xm;i, which are not directly observed in this case. Theexpected value isQn(fTmg; f�p;mg) = EZ;XmjX ;�n�1 [`X ;Xm;Z (fTmg; f�p;mg)]= Xm Xi Xp;q EZ;XmjX ;�n�1 [zp;m;izq;m;i�1] logTpq;m+Xm Xi Xp EZ;XmjX ;�n�1 [zp;m;i logPp;m (xm;i)]= Xm Xi Xp;q tnpq;m;i logTpq;m+Xm Xi Xp snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)] (4.34)Note the change in distribution that appears in the expectation of the �nal expression; we have usedthe fact that zp;m;i is an indicator variable as followsEZ;XmjX ;�n�1 [zp;m;i logPp;m (xm;i)]= Xzp;m;i Z dxm;i P�n�1 (zp;m;i; xm;i j X ) zp;m;i logPp;m (xm;i)= P�n�1 (zp;m;i = 1 j X ) Z dxm;i P�n�1 (xm;i j zp;m;i = 1;X ) logPp;m (xm;i)+ P�n�1 (zp;m;i = 0 j X ) 0= snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)] (4.35)What is this expected value? If no collision was observed then xm;i is completely determined byzp;m;i and xi. If state p of model m is a null state, xm;i = �; otherwise xm;i = xi. On the otherhand, if a collision was observed then xi tells us nothing about the value of xm;i. It is still truethat if the state (p;m) has no output, xm;i = �; but now, if the state is non-null, xi;m is distributedaccording to Pp;m (x). Thus, for non-null states, we haveExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)] = 8<: logPp;m (xi) if xi 6= c=�H[Pp;m] if xi = c= (4.36)where H[�] indicates the entropy of the distribution.4.4.2 Coupled forward{backward algorithmWe need to calculate the state and transition estimates that appear in (4.34). We do so by runningthe forward{backward algorithm separately on each component SHMM. Since direct observation of



79the outputs of the component models is not possible, however, we must estimate those outputs usingthe observed output of the entire mixture, as well as the recursive terms, Fm;i�1 and Bm;i�1, fromall of the components. This use of the values of the recursive terms from other component SHMMsleads to a coupling of the di�erent instances of the forward{backward algorithm.Despite this coupling, however, the separation of the estimation process into multiple componentrecursions constrains the E-step optimization to only those distributions which satisfy a factorizationconstraint of the form (for the F recursion):P (fym;ig j x1 : : : xi) =Ym P (ym;i j x1 : : : xi) (4.37)as well as a second, similar, constraint due to the B recursion. Such imperfect E-steps were discussedbriey in section 1.8. At each time-step we calculate the full joint distribution of the ym;i (whichcontains PM terms) but then store only the marginals (needing only P �M terms). Clearly, tocalculate the state and transtion estimates we only need the marginals, and so from that point ofview the restriction is reasonable. However, the Fm;i are also used to estimate the distribution atthe (i + 1)th step. Use of the factorized distribution for the ith step, rather than the full jointdistribution, leads to a mis-estimation of the joint distribution at the (i+1)th step. It is thus, thatthe constraint of (4.37) appears.We will discuss the impact of this constraint on the EM process below. First, let us proceed withthe exposition of the algorithm. The recursive terms are de�ned much as before.Ci = P (xi j x1 : : : xi�1) (4.38)Fp;m;i = P (ym;i = p j x1 : : : xi) (4.39)Bp;m;i = P (xi+1 : : : xN j ym;i = p)P (xi+1 : : : xN j x1 : : : xi) (4.40)However, in this case the xi are not the direct outputs of the HMM, but are rather the overallobservations from the mixture. Thus, the calculations become slightly more elaborate. We willobtain here expressions for only the forward terms Ci and Fp;m;i. The calculation of Bp;m;i proceedssimilarly.We write ~Fp;m;i for P (ym;i = p j x1 : : : xi�1), the probability of �nding the mth model in statep on step i given the previous observations, but not the current one. This is, of course, basedrecursively on our estimate of the distribution of states ym;i�1 given observations up to xi�1. Withour factorial assumption on the distribution of ym;i�1 this is given by~Fm;i = TmFm;i�1 (4.41)



80Also of interest will be the probability that model m is in a null state. We will write �p;m = 1 ifPp;m (�) = 1 and �p;m = 0 otherwise. Using this indicator, we obtain ~F�;m;i =Pp�p;m ~Fp;m;i.It will be useful to treat separately the three cases where xi is 1. null, 2. non-null and non-collision,and 3. a collision.1. xi = �In this case Ci is the probability that every component is in a null state,Ci =Ym ~F�;m;i (4.42)To calculate Fp;m;i we need to �nd the distribution P (xi = �; ym;i = p j x1 : : : xi�1) =P (xi = � j ym;i = p; x1 : : : xi�1) ~Fp;m;i. This is clearly 0 if �p;m = 0. If �p;m = 1, thenP (xi = � j ym;i = p; x1 : : : xi�1) is just the probability that all other components are in nullstates. Thus Fp;m;i = 1CiP (xi = �; ym;i = p j x1 : : : xi�1)= 1Ci�p;m ~Fp;m;i Yl6=m ~F�;l;i= �p;m ~Fp;m;i~F�;m;i (4.43)2. xi 6= �; c=Here, Ci is the probability that one component outputs the observed value xi, while all theother components are in null states.Ci =Xm Xp Pp;m (xi) ~Fp;m;i Yl6=m ~F�;l;i (4.44)P (xi j ym;i = p; x1 : : : xi�1) is straightforward if (p;m) is not null; being Pp;m (xi) times thethe probability that all other components are in null states. If, on the other hand, �p;m = 1,then the conditional probability is given by the probability that exactly one of the remainingcomponents outputs the value xi.Fp;m;i = 1Ci ~Fp;m;i0@(1��p;m)Pp;m (xi)Yl ~F�;l;i +�p;mXl6=mXp Pp;l (xi) ~Fp;l;i Yk 6=l;m ~F�;k;i1A(4.45)3. xi = c=



81In this case, Ci is the probability that at least two components are in a non-null stateCi = 1� Ym F�;m;i!�0@Xm (1� F�;m;i)Yl6=mF�;m;i1A (4.46)The expression for Fp;m;i is notationally cumbersome, so we will not write it explicitly. Instead,we note that P (xi j ym;i = p; x1 : : : xi�1) is the probability that at least one other componentis non-null if �p;m = 0 and that at least two other components are non-null if �p;m = 1. Bothof these probabilities are found in a form similar to that of Ci, above.Once the terms Fi;m and Bi;m have been calculated, the state and transition estimates are derivedusing (4.28) applied to each component in turn.Consequences of the factorial approximationTo what extent does the factorial constraint of the coupled forward{backward algorithm a�ect theeventual parameter estimates? We may can make two separate arguments for robustness of theestimates to error.First, it might be feared that, since the terms F and B are calculated recursively and since thereis an error in each calculation, the estimated value and the true value would progressively divergeover time. This is not the case. Boyen and Koller (1999) have examined factorial approximationssuch as the present one in the context of general dynamic probabilistic networks. They argue thatthe approximation error does not grow over time because two forces oppose the growth. First, theincorporation of observed data tends to drive the approximated distribution towards the correct one.Second, the randomization due to the stochastic transition from the (i�1)th step to the ith tends tobroaden both the correct distribution and the approximate one, which also has the e�ect of bringingthem closer together. In other words, TmFm;i�1 may be closer to the true P (ym;i j xi : : : xi�1) thanFm;i�1 is to P (ym;i�1 j xi : : : xi�1). Intuitively, we may think of each random transition contributingto a \forgetting" of the old, incorrect, distribution.To these arguments we can add a third, peculiar to the current model. When the observationxi = �, our forward and backward steps are correct. Recall from the discussion of the forward{backward algorithm for sparse HMMs that after a substantial stetch of null observations, Fi (Bi)is relatively independent of its value at the beginning (end) of the segment. Thus, in the mixture,whenever we enounter a stretch of null observations we tend to reset the forward{backward estimatesto their correct values.Second, even if the errors in the state and transition estimates are typically large, it is possiblethat their e�ect on parameter estimates derived through EM may be small. Constrained E-stepsof the sort we perform here were discussed briey in section 1.8. There it was pointed out that



82generalized EM using a constrained optimization of the latent variable distribution will eventuallyyield the correct maximum-likelihood parameter estimates if and only if the conditional distributionat the optimum P�� (Y j X ) satis�es the constraint. In the present case, this will be true if, at theoptimal parameter values, only one component is likely to be in a non-null state at each time-stepwhere xi 6= �; c=. In other words, all observed data can be assigned with high likelihood to onlyone component. If, on the other hand, two di�erent components claim equal responsibility for thepoint, then the factored distribution will assign a probability close to 0.25 that they were bothin non-null states, whereas the correct joint probability would be 0 (if they were both in non-nullstates a collision would have been observed). Futhermore, provided that most data are well assignedin this way, the above arguments suggest that a small number of ambiguous points will not havea profound e�ect on the estimates associated with the others. Thus, in well clustered data, theapproximation has little e�ect on the eventual estimates, even if, in intermediate steps of EM, it isinaccurate. Note that \well-clustered" here does not necessarily mean that the output distributionsare well separated. Each data point must be assigned to a single component, either because onlythat component has an output distribution which assigns it high likelihood or because its temporalrelationship to nearby points marks it as arising from a particular model.
4.4.3 Parameter re-estimationThe M-step requires optimization of the expected log-likelihood (4.34) with respect to the parame-ters, with the estimates snp;m;i and tnpq;m;i �xed at the values derived from the E-step. The expressionof (4.34) contains separate additive terms for each component model; as a result, it can be ompti-mized with respect to the parameters of each SHMM independently. The part that involves the mthmodel isQnm(Tm; f�p;mg) =Xi Xp;q tnpq;m;i logTpq;m +Xi Xp snp;m;iExm;ijzp;m;i=1;X ;�n�1 [logPp;m (xm;i)](4.47)Optimization with respect to Tpq;m can clearly proceed exactly as in the standard case, and so weobtain Tnpq;m = PNi=1 tnpq;m;iPN�1i=0 snq;m;i (4.48)Re-estimation of the output distribution parameters �p;m is almost the same as in the standardBaum{Welch algorithm. It is still the case that the di�erent output distributions can be optimizedindependently. For states with null output distributions, of course, there are no parameters to �t.



83For non-null distributions, we recall the result of (4.36) and �nd that�np;m = argmax�p;m 0@ Xi:xi 6=�;c= snp;m;i logP�p;m (xi)� Xi:xi=c= snp;m;iH[Pp;m]1A (4.49)(Note that if xi = � and (p;m) is not a null state, snp;m;i must be 0, and so we can ignore thecorresponding terms). Thus, the parameters are �t to the observed non-null and non-collision data,weighted by the state estimates as usual, but with an additional entropy penalty on the likelihoodwhich weighted by the sum of the state estimates for collision time-steps. In practice, if the numberof collisions is small relative to the total number of non-null observations, we can often neglect thisterm.
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Part II
Applications
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Chapter 5 Spike Sorting5.1 IntroductionIn this chapter we take up the �rst and most extensive of our neural data-analytic applications oflatent variable methods. Spike sorting allows scientists and technologists to e�ciently and reliablymonitor the signals emitted simultaneously by many di�erent nerve cells within intact brains. Toneuroscientists, interested in how the brain carries out it complex functions, such multi-neuron datais essential input to improved understanding. In addition, the ability to collect signals from largenumbers of speci�c neurons brings biomedical engineers closer to the dream of prosthetic devicesdriven directly by neural output.5.1.1 Extracellular recording: the source and nature of the signalThe action potentialMost neurons communicate with each other by means of short, local perturbations in the electricalpotential across the cell membrane, called action potentials. The discovery of the mechanism thatgives rise to the action potential was one of the seminal breakthroughs of early neurophysiology(Hodgkin and Huxley 1952), and the account made at that time of action potentials in the squidgiant axon has proven to apply quite broadly. For the purposes of this discussion, we will not needa detailed account of the action potential. However, a qualitative understanding of some points willbe important.Protein complexes embedded in the membranes of neurons pump speci�c ions into or out of thecytoplasm so as to establish strong concentration gradients across the membrane. The membranepossesses a baseline permeability to some of these ions, and so the system equilibrates with anelectrical potential opposing the chemical potential established by the ion pumps. This electricalpotential, around �70 mV for most cells (the convention is that membrane potentials are measuredinside the cell, with reference to the extracellular medium), is known as the resting potential.Cells at rest are said to be polarized. Two ions are important to the action potential. Sodium ions(Na+) are concentrated outside the cell at rest, while potassium ions (K+) are concentrated inside.Besides the ion pumps, the membrane contains other proteins that serve as temporary channelsto speci�c ions. These channel proteins have two or more metastable conformations. In one of these,the open conformation, the channel allows speci�c ions to pass through it. Thus, as the number ofchannels in the open state varies, the permeability of the membrane to speci�c ions changes. Two



88types of channel, one permeable to Na+ and the other to K+, form the basic machinery of the actionpotential. Both channels are voltage-sensitive, that is, the probability of �nding them in the openstate depends on the electrical potential across the membrane. In particular, they are both morelikely to open as the potential inside the cell increases.The action potential is initiated when a patch of membrane becomes slightly depolarized. Asthe interior voltage increases, the voltage-sensitive sodium channels are faster to open that thepotassium ones. Na+ ions are driven into the cell through these open channels, further raising theinterior potential and establishing a rapid positive-feedback loop. This feedback loop is terminatedin two ways. First, once in the open state, the sodium channels begin to transition to a third,inactivated conformation. Here again the channel is impermeable to ions, but this con�gurationis di�erent from the original, closed, one. In particular, the probability of transition back into theopen state, while the membrane potential remains high, is now extremely low. The return transition,called de-inactivation, happens only at potentials near or below rest, when the protein switchesdirectly to the closed state. Second, the potassium channels also open in response to the increasedcellular potential. The di�usion gradient for K+ is opposite to that for Na+, and so K+ ions leavethe cell, restoring its polarization. In fact, the membrane potential falls below the resting level.As it falls, the potassium channels close (they have no inactivated state). Eventually, all of thevoltage-sensitive channels are either inactivated or closed, returning the membrane to its baselinepermeability and the resting potential.The voltage-sensitive sodium channels are most highly concentrated on the cell body at the pointwhere the axon emerges (the axon hillock). This is the �rst piece of cell membrane to undergo anaction potential, usually initiated by the passive propagation of depolarizations caused by membranechannels in the dendrite that open due to synaptic input. This action potential depolarizes a nearbypiece of membrane on the axon, thus launching it into an action potential too, which, in turn,depolarizes a further piece and so on. Thus, once initiated at the hillock, the action potential travelsdown the axon, eventually triggering the release of a neurotransmitter onto another cell.As the membrane comes out of the action potential, a number of potassium channels are stillopen and many sodium channels remain inactivated. Thus, for a short period of time called theabsolute refractory period it is impossible to induce a second action potential in the cell. Evenafter the potassium channels have all closed and enough sodium channels have de-inactivated to allowanother action potential to begin, the threshold perturbation needed to seed the action potentialwill be higher than normal. This period is called the relative refractory period. Eventually theinactivation of the sodium channels drops to an equilibrium level and the cell returns to the reststate.In many cases a cell will �re a group of action potentials spaced by little more than the absoluterefractory period. Such a group is called a burst or, sometimes, a complex spike. In general,



89such bursts are not driven entirely by synaptic input, but rather by the biophysics of the neuronalmembrane. For example, extremely long time-constant voltage-sensitive calcium channels are foundin some neurons. The �rst action potential in a burst causes some number of these to open, butthey neither close nor inactivate rapidly. Ca++, which is concentrated outside the cell by the ionpumps, ows in through these open channels. As a result, as soon as the �rst action potential isover and the potassium channels closed, the depolarizing calcium current can launch the next actionpotential. The cell is still in its relative refractory period, however, so many sodium channels arestill inactivated. As a result, the currents that ow in this and subsequent action potentials maynot be quite as strong as in the initial one.In many, if not most, neurons, voltage-sensitive channels are to be found all over the cell body anddendritic surface. Recent work in pyramidal neurons has shown that the action potential propagatesnot only down the axon, but also from the axon hillock back into the dendrite (Stuart and Sakmann1994; Stuart et al : 1997; Buzsaki and Kandel 1998). Further, the degree of penetration varies withthe recent activity of the cell (Spruston et al : 1995; Svoboda et al : 1997). The later action potentialsin a burst penetrate the dendrite to a much lesser degree than the �rst.Extracellular recordingThe mechanism of the action potential, as well as many other important neuronal phenomena, havebeen understood through measurements taken using an intracellular electrode, that is, one whichpenetrates the cell. Unfortunately it is di�cult to record with such an electrode in an intact animaland all but impossible in many awake ones. Fortunately, if all that is needed is the timing of actionpotentials in the cells, it is possible to acquire this information with an extracellular electrode. Themost common such electrode is a �ne metal wire, insulated everywhere but at the tip, which istapered to an extremely �ne point of only a few microns diameter. The uninsulated tip acquires alayer of ions at its surface which form the second plate of an extremely thin capacitor. The resistivecoupling of the electrode to the surrounding medium is generally weak; resistances in the hundreds ofM
 are not uncommon. However, the capacitive coupling is much stronger, with 1kHz impedancesin the hundreds or thousands of k
.The electrical currents associated with the ow of ions through the membrane are transient. Ifthe electrode tip is near the membrane surface during an action potential, these currents couple tothe electrode, resulting in a transient change in the potential of the electrode measured relative toany stable external point. Thus, if we were to make a trace of the electrode potential over time, wewould see spikes1 in the trace corresponding to the action potentials in the cell near the tip. The1In this chapter, \spikes" occur in the electrode voltage trace, while \action potentials" occur on the cell membrane.This sharp distinction is not entirely conventional, but it is useful, allowing us to speak, for example, of the \changingamplitude of a spike" without any implications about the maximal currents that ow across the cell membrane. Thetime of occurrence of the spike and action potential will be taken to be the same.



90relationship between the intracellular trace of the action potential and the extracellularly recordedspike is complex. First, the extracellular probe records a integral current from many patches ofmembrane that may be in many di�erent stages of the propagating action potential. Second, the tipgeometry �lters the measured spike; for an electrode with a smooth surface this �lter is dominatedby a single-pole high-pass component, but for porous electrode tips (plated with platinum black, forexample) it is more complicated (Robinson 1968).Many cells' membranes might lie close to the electrode tip so that spikes from many cells arerecorded. Historically, the experimenter has manoeuvered the electrode so that the tip lies veryclose to one cell, and thus the spikes from this cell are far larger in amplitude than the spikes fromother cells. A simple hardware device can then be used to record the times of these large spikes,and thus of the action potentials in a single cell. Even if the spike shape associated with the neuronvaries, its amplitude remains greater than that of any other cell's spikes. This process is referred toas single-cell isolation. It is time-consuming and, in an awake animal, temporary. Movement of thetissue relative to the electrode eventually causes the experimenter to \lose" the cell.Multineuron recordingOne can only learn so much about the brain by monitoring one neuron at a time. As a result, therehas been a great deal of recent interest in multineuron recording2.There is some reason to believe, based on the biophysics of neurons (the literature is extremelylarge, but see, for example, Softky and Koch 1993) as well as some direct experimental evidence(again a list of citations could be very long, so we choose a recent example: Usrey et al : 1998),that action potentials that occur simultaneously in a pair of neurons with a shared synaptic targetare far more e�ective at causing the target to �re than are two non-coincident action potentials.It is possible, then, that coincident �ring plays a signi�cant role in the transmission of informationwithin the nervous system. A number of experimenters have argued that indeed more, or di�erent,information is available if the precise timing of action potentials across multiple cells is taken intoaccount (e.g., Gray and Singer 1989). Furthermore, even if the exact relationship of �ring timesbetween cells is not functionally signi�cant, this relationship can provide valuable (though indirect)clues to the micro-circuitry of the system (e.g., Alonso and Martinez 1998; Abeles et al : 1993).It is possible to collect multineuron data by introducing many separate electrodes into the brainand isolating a single neuron with each one. Indeed many of the studies cited above were carriedout in this way. This approach is, however, di�cult to execute and di�cult to scale. There are twoapproaches possible to obtaining many isolations. One can insert many individually positionable2We shall take \multineuron recording" to mean that separate (or separated) spike trains from multiple cells areavailable. This situation is sometimes called \multiple simultaneous single-neuron recording" to distinguish it fromthe earlier use of the term \multineuron recording" which was applied to a single spike train representing all the actionpotentials in an unknown number of cells near the electrode tip. This earlier usage seems to be fading as technologyadvances, and the term \multineuron" is less cumbersome than \multiple simultaneous single-neuron".



91electrodes and manoeuver each to isolate a cell, or one can insert a larger number of �xed electrodesand simply record from those that happen to provide a decent isolation. The former approachrequires considerable time from the experimenter. Furthermore, since, at least in awake animals,isolations generally last for only a short time, as the experimenter isolates cells on more and moreelectrodes he risks losing the cells isolated at the outset. The latter of the two approaches willoften lead to a more stable recording than can be obtained with manoeuverable electrodes, in partbecause the probes can be allowed to settle within the tissue over a long time. However, the yieldof electrodes with single-cell spike trains can be extremely low.5.1.2 Spike sortingSpike sorting provides an alternative to physical isolation for multineuron recording. In this ap-proach, the electrode is placed in the neuropil, with no e�ort being made to isolate a single cell.Instead, the spikes due to many cells are recorded and a data-analytic e�ort is made to sort theminto groups according to their waveforms. Each such group is presumed to represent a single cell.The attractions to this approach are clear. If repositionable electrodes are used, far less manoeu-vering is needed in order to obtain clear spike information. If �xed electrodes are used, the yield ofrecordable cells from a given array is much increased. Beyond such issues of experimental e�ciency,spike sorting approaches can provide data that is extremely di�cult to obtain using one-cell-one-electrode approaches. All the cells detected on a single electrode lie within some few tens of micronsof the tip, and thus of each other. Such cells are more likely to be functionally and anatomicallyrelated than well-separated neurons chosen at random.Multiple-tip electrodesSpike sorting can be made easier by use of a multi-tip electrode such as a stereotrode3 (McNaughtonet al : 1983) or tetrode (Recce and O'Keefe 1989). This is really a group of electrodes whose tipslie su�ciently close together that an action potential in a single cell generates a spike on more thanone of the electrodes. Each electrode will have a di�erent spatial relationship to the source cell, andso experience a slightly di�erent spike waveform. Put together, these \multiple views" of the sameaction potential provide more information on which to base the sorting of the spikes.An analogy may be drawn to stereophonic sound recording. Two instruments with similar timbrecannot be distinguished in a monophonic recording. With two microphones, the added spatialinformation allows us to hear the two di�erent sources. This analogy can only be taken so far,however. In the stereophonic recording the scale of the separation between sources and microphonesis very much greater than the scale of the sources and microphones themselves. This is not the3Unfortunately, the term \stereotrode" has come to mean a two-wire electrode. We shall continue in this usage,even though a tetrode, with its four wires, is as much a stereotrode as its two-wire predecessor.



92case in the neurophysiological recording. The tip size, the distance from the membrane and thesegment of membrane that contributes to each recorded spike are all on the order of 10 microns.As a result, some of the simple sorting strategies suggested by the recorded music analogy are notactually workable.5.2 Data CollectionThe algorithms that appear in this chapter are expected to be of general applicability. Theyhave been developed, however, with reference to data taken in two preparations: parietal cortexof macaque monkey4 and locust lobula5. The methods of data collection are described here.5.2.1 MonkeyData have been collected from two adult rhesus monkeys (Macaca mulatta). A stainless steel headpost, dental acrylic head cap, scleral search coil, and stainless steel recording chamber were surgicallyimplanted in each monkey using standard techniques (Mountcastle et al : 1975; Judge et al : 1980).During recording, the monkeys sat in a primate chair (custom); the implanted head posts weresecured to arms attached to the chairs, thereby immobilizing the animals' heads. Eye-positions weremonitored in two dimensions by recording the level of emf induced in the scleral coil by two externalmagnetic �elds that oscillated at non-reducible frequencies (Fuchs and Robinson 1966).The recording chambers in each monkey were set over a craniotomy opened over the posteriorparietal cortex. All electrodes were inserted in this area; in most cases they penetrated to the lateralintra-parietal area (LIP). During recording, the animals were awake and performing a \memory-saccade" task in which they remembered the location of a ash of light and then looked towards iton a cue. The details of the task will not be relevant to the present discussion.In all cases a single tetrode was used for recording (Pezaris et al : 1997). The tetrodes wereprepared from 13�m-diameter tungsten wire (California Fine Wire), insulated along its entire length.Four strands of wire were twisted together at approximately 1 turn/mm and heated so that theinsulation fused over a length of some 10cm. One end of the fused region was cut with sharp scissorsso that the tungsten conductor was exposed in all four strands. The impedance of the each conductorinterface to physiological saline was measured to be between 0.4 and 0.7 M
at 1kHz. At the otherend the four strands remained separated and were individually stripped of their insulation with achemical stripper and bonded with conductive paint to electrical connectors.The tetrode was inserted into a construction of nested metal cannulae which provided mechanicalsupport. The tip of the narrowest, innermost, cannula was sharpened and inserted through the dura4Data collected in collaboration with J. S. Pezaris in Dr. R. A. Andersen's laboratory.5Data collected in collaboration with M. Wehr and J. S. Pezaris in Dr G. Laurent's laboratory.



93mater, with minimal penetration of the underlying neural tissue. The tetrode could then be advancedfrom within this cannula into the brain by a hydraulic microdrive (Frederick Haer Company). Aseries of tests in another animal revealed that the tetrodes tend to travel straight once inserted intothe brain.The electrical connector at the end of the tetrode was inserted into an ampli�er head-stage(custom) with 100x gain. The animal, electrode and head-stage ampli�er were all placed withinan electromagnetically shielded room. Ampli�cation was in di�erential mode, with the cannulaassembly serving as the reference electrode. Four coaxial cables fed the signals from the head-stageampli�er to the main ampli�er (custom) with adjustable gain. Besides enhancing it, the ampli�ersalso reversed the polarity of the signal. This resulted in the peak amplitude of each spike appearingpositive, rather than negative as is the case at the electrode tip. We will maintain this conventionthroughout the chapter.The ampli�ed signals were �ltered to prevent aliasing and digitized. The digitization rate atthe A/D converters (Tucker Davis Technologies AD-2) varied between 12.8 and 20 kHz. The 9-pole Bessel low-pass anti-aliasing �lters (Tucker Davis Technologies FT5-4) had corner frequenciesof either 6.4 or 10kHz. The data were recorded to digital media and all subsequent operationsperformed o�-line, although sometimes under simulated on-line conditions.5.2.2 LocustA di�culty common to almost all data sets used for the development of spike sorting techniques isignorance of the ground truth. There is no independent way in which to establish the number ofdistinct cells whose spikes are present in the recording, nor to know which cell �red when. Thesedata, collected from the lobula of the locust, were collected in an attempt to remedy at least oneof these concerns. Recordings were carried out with a single tetrode as well as two sharp pipette,intracellular, electrodes. The intracellular electrodes provided incontrovertible information aboutthe �ring of up to two cells in the region. Often, one or both of these cells would invoke sizablespikes on the tetrode.Experiments were carried out in vivo on adult female locusts (Schistocerca americana). Animalswere restrained dorsal side up, the head was immobilized with beeswax, and a watertight beeswaxcup was built around the head for saline superfusion. A window was opened in the cuticle of thehead capsule between the eyes, and air sacs on the anterior surface of the brain carefully removed.For stability, the oesophagus was sectioned anterior to the brain, and the gut removed througha subsequently ligatured distal abdominal section. The brain was treated with protease (Sigmatype, XIV), gently desheathed, and supported with a small metal platform. The head capsule wascontinuously superfused with oxygenated room-temperature physiological saline (in mM: 140 NaCl,5 KCl, 5 CaCl2, 4 NaHCO3, 1 MgCl2, 6.3 HEPES, pH 7.0).



94Intracellular recordings were made using conventional sharp glass microelectrodes pulled with ahorizontal puller (Sutter P-87), �lled with 0.5 M KAc, for resistances of 100{300 M
. Intracellularrecordings were done in bridge mode using an Axoclamp 2A ampli�er (Axon Instruments) fromthe third optic lobe (lobula). Data were collected from 28 single neuron and 6 paired intracellularrecordings, all with simultaneous tetrode recordings, from 7 animals. The tetrode was prepared asdescribed above.All signals were ampli�ed, low-pass �ltered at 10 kHz (8-pole analogue Bessel with gain, Brown-Lee Precision), digitized at 50 kHz with 16-bit resolution (Tucker Davis Technologies), and writtento compact disc.5.3 A Generative Model Schema for Extracellular RecordingThe cornerstone of our approach to spike sorting will be the identi�cation of an adequate generativemodel for the observed extracellular recording data. The model has to be powerful enough to accountfor most of the variability observed in the data, while being simple enough to allow tractable androbust inference. In fact, we will identify not one model, but a model schema, that is, a group ofmodels of similar structure. The choice of a particular model from within this schema will be madeon a case-by-case basis, using data-driven model selection procedures.The recorded signal is dominated by the �ring of nearby cells; in general the thermal noise inthe electrode and noise in the ampli�cation system can be neglected relative to the neural signal.For a 0.5 M
electrode at 300K (treated as a purely capacitive impedance) the root-mean-squareamplitude of the thermal noise integrated over a 10kHz bandwidth is on the order of 5�V. As wewill see (for example, see �gure 5.2), this is generally smaller than the recorded amplitudes of neuralsignals.We divide the cells into two groups | foreground and background | of which the second ismuch the larger. The division is somewhat arbitrary. Roughly, the foreground cells are those whoseinuence on the recorded signal is large enough that we expect to be able to recognize and sortspikes that arise from them, while the background cells are so distant that their spikes merge intoan indistinguishable baseline. In practice, there will be cells whose spikes are occasionally, but notalways, distinguishable. We treat these as foreground cells in the model, detecting those spikes thatrise out of the background, but neglect the data thus obtained as unreliable.Thus, we think of the recorded signal as the superposition of spikes from the foreground cells anda single, continuous background noise process, which is itself the superposition of all the spikesfrom the background cells, and other noise sources. Provided that the currents do not total to a sumthat is beyond the ohmic limit of the intracellular medium, we expect each of these superpositionsto be linear. Measurements made in the locust lobula show that at least in that preparation they
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time tFigure 5.1: Spike sorting model schemaare indeed linear (Wehr et al : 1999), however we will take this fact on trust in other preparations.The model is sketched in �gure 5.1. We write V (t) for the recorded potential, the only observedvariable in the model. If a multichannel electrode, with tips whose listening spheres overlap (forinstance, a tetrode) is used, this is a vector-valued function of time. If the multiple electrode tips arefar enough apart that they cannot collect signals from the same cells (more than about 100 microns)we treat each as an independent process and model the recorded voltage traces one at a time. Ourmodel can be written asV (t) =X� (c1;�S1;� (t� �) + c2;�S2;� (t� �) + � � �) + �(t) (5.1)Here, cm;� is an indicator variable that takes the value 1 if the mth foreground cell �res at time �and 0 otherwise. If cell m �res at � it adds a deection of shape Sm;� (t��) to the recorded potential.The functions Sm;� have limited support, all of which is around 0. The e�ect of all the background



96neural sources, along with any electrical noise which might be present, is gathered into a single term�(t). For the multichannel electrode, both �(�) and Sm;� (�) are vector valued functions.Note the subscript � applied to the spike shape Sm. This allows for variability in the shape of therecorded action potential from a single foreground cell, over and above that due to the addition ofthe background noise. Such variability may arise due to changes in available membrane channels, ordue to changes in the membrane surface that participates in each spike. The nature of this intrinsicvariability will be discussed at greater length below. In any case, it is of a quite di�erent characterto that due to the background: it is potentially di�erent for each cell, it need not be stationaryover the course of the spike, and while we will argue below in favour of a Gaussian distribution forthe background, this foreground variability is unlikely to be Gaussian in nature. The separation ofthe distribution of spike shapes from a single cell into these two parts is a critical feature of ourapproach, and one that was lacking in previous algorithms.The random variables in our schema, as we have written it, are the background �(t), the �ringindicators cm;� and the spike shapes Sm;� . None of these are directly observed; however, we think ofthe foreground variables, cm;� and Sm;� as the only latent variables in our model. We can treat V (t)as a random variable, whose distribution conditioned on the latent variables subsumes the noise �(t).The parameters of the model can be separated into two groups �� which governs the conditionalP (V (t) j fcm;� ; Sm;�g) and, simply, � governing the distribution of Sm;� and cm;� . Thus, we havefactored the underlying distribution so:P (V (t)) = P�� �V (t)�P�;m cm;�Sm;� (t� �)�P� (fcm;� ; Sm;�g) (5.2)We have said nothing yet about the nature of the distributions in this factorization. This is why itis a schema and not a full blown model. We will argue that the background process is approximatelyzero-mean Gaussian, and the distribution of V (t) conditioned on the latent variables will be normalin all of our instances of the schema. The distributions of the cm;� and Sm;� will vary, and indeed,in applications will not always be the same for all foreground cells. Figure 5.1 is drawn as though allof the cm;� and Sm;� were independent. This is merely for clarity in the diagram, we will considerbelow models for which this is not true.Our eventual goal within each model is to infer the posterior distribution P (cm;� j V (t)). Inpractice we will not carry out the marginalization over the parameters implied in that posterior;instead, we will approximate the marginal posterior by the posterior conditioned on estimated valuesof the parameters P �cm;� j V (t); �̂; �̂��. The rationale behind this approximation is explained insection section 1.2. In the next few sections we will address the problem of �nding these estimates(that is, learning) within the various models that appear in our schema, as well as that of selectingan appropriate model from the schema. After this, we will turn to the question of e�cient inference



97of the foreground spike occurrence times.5.4 Learning within the SchemaSeparating foreground and backgroundThe foreground and background cells in our model are distinguished entirely on the basis of theamplitudes of their spikes on the recording electrodes. It is therefore reasonable to identify thetimes of �ring of the foreground cells using a simple amplitude threshold. We take the times atwhich the signal crosses the threshold (the details of which are discussed below) and extract a shortsegment of the signal, corresponding to the typical length of a spike waveform, around each one.These segments, which we shall refer to on occasion as events, contain the foreground spikes. Theremaining stretches of signal are presumed to be generated by the background noise process.This separation of foreground and background allows us to divide our learning procedure intotwo stages. We examine the stretches of background activity directly to estimate the parametersof the noise. Armed with this estimate, we learn the remaining parameters from the foregroundevents. This second stage is considerably more straightforward given an independent estimate of thebackground distribution. Earlier approaches, which did not di�erentiate between background noiseand spike shape variability, did not enjoy this advantage. The choice of distribution and resultingparameter estimation for the noise will be explored in detail below.Independent components analysisWe consider the problem of estimating the parameters � which govern the distributions of the latentvariables cm;� and Sm;� . On the surface, the model (5.2) is quite similar to the generative modelwhich underlies statistical signal separation algorithms such as independent components analysis(ICA) (Jutten and Herault 1991; Comon 1994; Bell and Sejnowski 1995; MacKay 1999) or indepen-dent factor analysis (IFA) (Attias 1999). In these algorithms, signals from a group of independentnon-Gaussian sources (in the spike sorting case these would be the di�erent cells) are mixed linearlyonto multiple channels of output. The output channels may then have noise, usually Gaussian,added. Learning algorithms in such models have been well studied.Unfortunately, there are signi�cant di�erences between our model and these ones. We shall notethree here: two of these might be surmountable, but the third makes it very di�cult to envisagesuch a solution in the current context.1. ICA models generally involve exactly as many sources as output channels. If the number ofcells is smaller than the number of channels this poses no problem; the algorithm would simplyresolve some part of the noise as another \source", which could subsequently be discounted



98using some heuristic. However, the number of cells may well be greater than the number ofelectrode tips that can be practically introduced. In hippocampal recordings, for example,more than 10 cells are often recorded on a single tetrode.2. Most ICA models imply that the sources are mixed in an instantaneous manner (that is, theoutput at a point in time depends only on the source signals at that time). In the case ofextracellular electrophysiological data, where the electrode tip properties result in �ltering ofthe recorded signal, the mixing cannot be instantaneous. Recently, Attias and Schreiner (1998)have proposed a signal separation algorithm that resolves this di�culty.3. The most severe di�culty is posed by the extended nature of the sources and recording surfaces.While it would seem sensible to regard each cell as a single source, the di�erent electrodetips will, in fact, lie closest to di�erent parts of the cell membrane, and thus record slightlydi�erent spike waveforms. As a result, one cannot treat an isolated foreground spike as a singlewaveform scaled linearly (or even �ltered linearly) onto the multiple recorded channels. Thespike waveform must itself be regarded as a fundamentally multichannel entity. This preventsthe application of blind source separation techniques to spike sorting in many preparations,notably in neocortical recordings.If we cannot use these well-established signal processing techniques, can we hope to solve theproblem? In fact, ICA-like techniques fail to exploit the signi�cant amount of prior knowledgeavailable about the neural signal. Nowhere in the generative model for ICA, for example, is itacknowledged that a single source signal will always be a chain of approximately stereotypical pulses.It is this repetitive nature of the signal that we will exploit to solve the problem.Before leaving this point, we make two additional observations. First, consider the followingscheme for application of ICA. We regard each source as producing a train of delta-functions, withthe spike waveform on each channel, however it is produced, appearing as the impulse response ofa �ctitious linear �lter. The delta-function trains are convolved with their corresponding �lters andsummed (along with noise) to produce the recorded signal. The �ltering and summing represent themixing stage of a dynamic components analysis (DCA) model (Attias and Schreiner 1998). Thistreatment would seem to restore our faith in the applicability of an ICA-like algorithm. Even better,it would indeed incorporate our prior belief in the pulsatile nature of each source. The di�culty withthis approach lies in the presence of spike waveform variability in the data. Since, in this scheme,the waveform information is treated as part of the mixing process rather than as a source signal,we would require a variable mixing process. Such variability cannot be handled within the DCAframework.Second, it should be borne in mind that there may well be preparations in which ICA-likealgorithms are applicable to spike sorting. For example, the form of ICA suggested in the preceding



99paragraph might be successful in cases where there is little or no spike shape variability. Anotherexample is provided by Brown et al : (1998) who have reported success in optical recordings ofvoltage-sensitive-die-treated Tritonia tissue. In this example, the recordings are su�ciently slowlysampled that the spread of signal across the membrane is e�ectively instantaneous (Brown, personalcommunication). As a result, the spike waveforms recorded on di�erent photodetectors may indeedbe linearly scaled versions of a single waveform. Furthermore, the optical nature of the recordingensures that the signal mixing at the detector is linear and instantaneous.Clustering algorithmsOur approach to learning the waveform parameters is based on two observations. First, all the spikesrecorded from a single cell are expected to be roughly similar. Indeed, we will specify the exact natureof the variability that we expect, by specifying the distribution of Sm;� within the generative modelschema. Second, the probability that two foreground cells will �re so close together in time that theirspike waveforms overlap in the recorded signal is relatively low. As a result, most of the foregroundevents gathered by the application of our threshold represent only a single spike waveform. Thus wemight expect to learn the shapes of the underlying waveforms (and the distributions of such shapes)by clustering these foreground events.Consistent with our probabilistic viewpoint, we shall adopt a generative-model-based approachto clustering, as was outlined in chapter 2. To do this we need to transform the model of (5.2) intoa suitable form.Whereas (5.2) provides a model of the continuous waveform V (t), we now desire a model thatdescribes the set of extracted events, fVig. Each Vi is a vector of samples drawn from all of thechannels of V (t) around the time �i at which the ith event occurs. At all times � other than the �iwe assume that no foreground cell �red and so cm;� = 0 for all m. We will employ the labels cm;iand Sm;i for the latent variables at the times �i, in place of the more cumbersome forms such ascm;�i .The vectors Vi are taken to be conditionally independent, given the values of the latent variablescm;i and Sm;i. In other words, we assume that the separation between events is always greater thanthe correlation-time of the background noise process. The distribution of the ith vector is describedby amixture density, with one component for each possible value of the indicators cm;i;m = 1 : : :M .Let us consider these components one by one.1. All cm;i = 0. This implies that the threshold was reached by the background process alonewithout a foreground spike. In this case the density of the vector Vi is exactly that of thebackground noise, expressed as a vector density, rather than as a continuous process density.



100We will introduce a new indicator variable z�;i to indicate this condition, and writeP (Vi j z�;i = 1) = P�� (Vi) = P� (Vi) (5.3)2. Only one of the cm;i = 1. Such events will make up the majority of those detected. We useindicators zm;i;m = 1 : : :M to represent each of these states (the zm;i are exactly the same asthe corresponding cm;i, though only in this condition). The density of the event vector is thenP (Vi j zm;i = 1) = Z dSm;i P�� (Vi � Sm;i)P� (Sm;i j fSn;j ; cn;j : j < ig; cm;i = 1) (5.4)Notice the conditioning of Sm;i which depends only on the preceding latent variables to enforcecausality. We will abbreviate this set of latent variables at all times earlier than �i by �<i andwrite this density as Pm (Vi j �<i).3. More than one cm;i = 1. In this case two foreground cells �red at close enough times that thethreshold was only crossed once by the compound waveform. We expect such events to occurrarely and will not explicitly model them as overlapped events at this stage. Instead, we treat allsuch waveforms as \outliers", and model them by a single, uniform density (see section 2.7.1).We introduce a latent variable zc=;i to indicate this condition. The corresponding density issimply P (Vi j zc=;i = 1) = 8<: 1kAk if Vi 2 A0 if Vi 62 A (5.5)with A some region of the vector space of Vi and kAk its volume. We will write this densityas Pc= (Vi).The complete model for the ith vector is thusP (Vi) = P� (z�;i = 1 j �<i)P� (Vi)+ P� (zc=;i = 1 j �<i)Pc= (Vi)+ MXm=1P� (zm;i = 1 j �<i)Pm (Vi j �<i) (5.6)Once again, the distribution of the indicator variables is conditioned only on earlier latent variablesso as to preserve causality in the model.The latent indicator variables zm;i, m = �; c=; 1 : : :M are mutually exclusive: exactly one of themtakes the value 1 for any i, while all of the rest are 0. As such, they closely resemble the mixturelatent variables of chapter 2. In many of the models we will discuss, the indicators for each eventwill be drawn independently from a �xed distribution. In this case, the model is exactly a mixture



101model. Even where this is not exactly true, however, we shall call this the mixture form of thegenerative model. Fitting such a model is what we will mean when we claim to be performing aparametric clustering of the spike events.It is worthwhile to consider the impact of our choice not to model the overlapped spike eventsexplicitly, but rather to sweep them into a single outlier distribution. Is it likely that this inaccuracyin the event model (5.6) will lead to estimates of the parameters that do not carry over to thetrue continuous signal model (5.2)? The mistreatment of overlaps poses two distinct dangers toaccurate parameter estimation. The �rst is that some overlaps will be incorrectly interpreted assingle spikes, and thus bias the estimate of the spike shape distribution of the misidenti�ed cell.This possibility is slim. Overlaps need to be fortuitously exact to look anything like single spikewaveforms. Most likely, they will fall quite far from any single cell cluster and be easily recognizedas outliers. Furthermore, the use of a uniform outlier distribution minimizes the expected bias inestimates of the mean spike shapes of each cell (robustness to outliers in the �tting of mixturemodels is discussed in section 2.7.1). The second danger arises from the fact that the occurrence ofan overlap \removes" an event which would otherwise contribute to the parameter estimation. Formodels in which the latent variables associated with each event are independent of all others (theseare the true mixture models) this e�ect will be negligible, provided that the probability of overlap issmall and independent of the latent variable values. However, for models in which the spike shapeand probability of �ring for each cell depend on its history, this can pose a real problem. We shalladdress it when we discuss such models.For the sake of the reader familiar with previous spike sorting techniques it is worth emphasizinghere a point that has appeared before, and will be addressed again in section 5.14. In the presentapproach to the problem, unlike in many (though not all) others, the clustering stage is a preliminaryto the inference of spike arrival times. We use it as a device to learn the parameters � that governthe distributions of cm;� and Sm;� . The actual inference of the variables cm;� is done within themore accurate superposition model (5.2), without the imposition of an arti�cial threshold, nor therejection of overlapped spikes.5.5 Event DetectionOur �rst step in the process of learning the model parameters is to identify the times at whichforeground cells �red by comparing the recorded signal to a threshold amplitude.A short segment of data recorded from the neocortex of a macaque monkey using a tetrode isshown in �gure 5.2A (the four traces show the simultaneously recorded signals on the four wires).Large amplitude spikes are clearly superimposed on a lower amplitude background process. However,it is clear that the comparison of this raw signal to a �xed threshold will not achieve the separation
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PSfrag replacements250�V 100ms raw signal �lteredFigure 5.2: A sample extracellular recording.we desire; the signal exhibits a low frequency baseline modulation with an amplitude comparable tothat of the largest foreground spikes. This low-frequency �eld potential signal may be of considerableinterest in itself, however the frequencies involved are too low to have an inuence on the shapes ofthe relatively short spike waveforms and so it can safely be removed for the purposes of spike sorting.Figure 5.2B shows the same segment of data after it has been digitally high-pass �ltered. The �ltercuto� is chosen at the lowest frequency that can contribute to the foreground spike shapes, basedon the length of those spikes. For neocortical recordings of the type shown in �gure 5.2 the spikelength is not longer than 2 milliseconds, implying a �lter cuto� of at least 500Hz.We wish to choose a threshold which allows us to identify the spikes that rise above the back-ground process. To do this we need to know the statistics of the background, but, of course, wecannot measure these until we have separated background from foreground. We shall set the thresh-old in terms of the variance of the entire signal, foreground and background. In doing so, we assumethat foreground spikes are rare enough that this measurement is dominated by the background. Thismay not always be true: if we record 4 foreground cells, all �ring at about 50Hz, there would be atotal of 200 spikes in one second of recording. As the large amplitude peak of each foreground spikecan last up to half a millisecond, this would mean that one-tenth of the recording has large amplitudeforeground contributions { enough to a�ect the background variance estimate. As a result, a certaindegree of user intervention is useful in setting the threshold level. A typical choice of threshold is3{5 times the root-mean-square value of the high-pass �ltered signal.Spike waveforms are generally biphasic pulses. The strongest currents during an action potentialare associated with the inux of sodium that initiates the �ring; as a result, the �rst phase is almostalways the larger. The sodium current ows into the cell, away from the electrode tip. Thus,this �rst phase is negative on the electrode. Under the polarity convention adopted in this chapter(introduced in section 5.2) it will appear positive in our recordings. In order to reduce the probability
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A B 

Figure 5.3: Event detection thresholdsof false triggers, and also to ensure that each spike causes only one threshold crossing, we apply thethreshold in a one-sided manner, accepting only crossings where the recorded potential rises abovethe positive threshold value.It is not obvious how to apply the threshold to multichannel data. We shall consider threeschemes here, and it will be useful to compare them graphically. This is done for a hypotheticaltwo-channel signal in �gure 5.3. The axes in panel A represent the amplitude of the signal on thetwo channels: each sample of the signal is represented by a point in this plane. The thresholdingschemes will be described by boundaries in the plane which separate regions where the signal isbelow the threshold from regions where it is above. The various lines in this panel, and the natureof panel B, will be described below.The most commonly employed approach to multichannel data is to accept an event wheneverany one channel rises above a scalar threshold. The acceptance boundary of such a threshold for thetwo-channel example is represented by the dash-dotted line in �gure 5.3A. The signal has crossed thissimple threshold if the point falls to the right of or above the line. We shall call this a rectangularthreshold.An alternative approach would be to threshold the total instantaneous power of the signal, thatis, the sum of squares of the amplitudes on the various channels. Given the unidirectional nature ofthe spike peaks, we choose to half-wave rectify the signal before squaring. The resultant threshold,which we call circular, is shown by the dashed line.The dotted ellipse in �gure 5.3A shows a covariance contour for the background distribution, thatis, a line drawn at a constant distance from 0 in the Mahanalobis metric de�ned by the distribution'scovariance. The ellipse is drawn as though the background on the two channels is positively corre-lated. In fact, this is the overwhelmingly dominant case in experimental data. It is reasonable thatelectrode tips close enough to share spikes from the same foreground cells will also share backgroundspikes.A comparison between this elliptical noise contour and both of the threshold boundaries described



104so far reveals the weakness in these approaches. Many points above and to the right of the ellipseare unlikely to arise purely from the background process, and yet are not detected as foregroundevents. A more sensible approach would seem to be to shape the boundary to match the contour ofthe second moment of the noise distribution. This is conceptually easiest in the noise-sphered space,which is obtained by an instantaneous linear transformation on the signal (if the noise covarianceis � the sphering matrix is ��1=2). This space is represented in �gure 5.3B. The noise covariancematrix is now, by construction, spherical. The rectangular and circular thresholds are shown in thedot-dashed and dashed lines, as before. The solid line represents a threshold boundary constructedin the same way as the circular threshold, but now in the sphered space; the solid line in panel Ashows the shape of this boundary in the original space. We refer to this as the elliptical threshold.By construction, the elliptical threshold matches the covariance contour of the noise. If thatnoise is Gaussian distributed, this curve is also an iso-probability contour, so that the probability ofthe noise alone exceeding the threshold is independent of the direction (in the space of �gure 5.3A)of the signal.5.6 The Background ProcessOnce the times of the foreground events have been identi�ed, we explore the statistics of the signalduring the periods between these events, with the goal of characterizing the background process. Inthe �rst instance, we are interested in the distribution P�� (Vi) which expresses the background asa vector-output process. This distribution will be of critical importance in what follows: not onlyis it the distribution of the noise (5.3), it also makes a signi�cant and common contribution to thedistribution of spike waveforms recorded from each cell (5.4).We estimate the distribution of the Vi directly, by sampling the background process at timeswhen no foreground spike is present. The spikes extend for some time before and after the times ofthe threshold crossings; thus, we need to extract vectors away from these points so as not to overlapthe foreground waveforms. For the data shown here, no samples were taken within 1.6ms of eachcrossing. The remaining signal is then broken up into segments whose length matches the duration ofa foreground spike. Each such segment represents a single vector sample of the background process.We study the distribution of the ensemble of these vectors along the principal components.Each of the columns of panels in �gure 5.4 shows the density of the loadings of the noise vectorson a selection of the ensemble principal components, for an example macaque tetrode recording. Ineach column the upper and lower panels show the same data; the upper panel shows the densitydirectly, while the lower panel shows the log density, thereby revealing the details of the tails ofthe distributions. The rank of the component on which the loadings are taken is indicated belowthe column. The dots represent the density histogram of the observed vectors. The continuous line
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PSfrag replacements pc1 pc32 pc64 pc96 pc128Figure 5.4: The distribution of background noiserepresents a Gaussian density with the same variance as that of the observed loadings. It is clearthat a Gaussian model for the background process is reasonable, although a slight excess in kurtosisis evident in the �rst components.In the rest of this chapter we shall take the background to be Gaussian distributed. While�gure 5.4 suggests that this is reasonably well supported by the data, it is not exactly true in all cases(Fee et al : 1996b). Our choice is driven by two observations. First, the Gaussian model considerablyreduces the computational demands of the various approaches that we will discuss, and is quiteimportant for e�cient separation of overlapped spike waveforms. Second, we will introduce separatemodels for intrinsic spike variability that will be non-Gaussian. Thus, it is possible for some non-Gaussian background noise to be subsumed by these models. In situations where computational costis no object, or where the data exhibit extreme departures from normality, an alternative distributionmay be used for the background. Most of the generative models to be discussed will carry throughwith little modi�cation. The largest cost will come in the �nal stages of spike-time inference, wherethe �ltering scheme we adopt is critically dependent on Gaussian noise.A zero-mean Gaussian density is entirely speci�ed by its covariance matrix. Since the backgroundprocess is stationary with respect to the duration of the spike waveform | that is, the statisticsof the background are the same at each point along the spike | this covariance matrix may beconstrained to have T�oplitz (diagonally striped) structure. Thus, the only parameters of the noisedistribution are given by the autocorrelation function of the background.While the noise is almost certain be stationary on the time-scale of a single spike waveform,



106it may well be appreciably non-stationary on time-scales of hundreds of milliseconds or more. Inparticular, as stimulus conditions change, the rate of �ring of both foreground and background cellswill change, quite probably in a correlated fashion. Thus, by sampling the background far from thelocations of the foreground spikes we run the risk of measuring a background quite di�erent fromthat which actually a�ects the distribution of event waveforms.We can avoid this pitfall by biasing the sample of background vectors so that most are drawnclose to, though not overlapping with, the foreground spikes. One simple procedure to ensure thisit to sample a �xed o�set from each foreground spike (after making sure that this would not resultin an overlap with a di�erent event). Another is to sample exactly in-between each pair of adjacentevents (again making sure that the pair is far enough apart that this will not cause an overlap).Furthermore, in extended recording we can re-estimate the noise continuously, leading to an adaptiveestimate that can track non-stationarities on the time-scale of seconds.5.7 Foreground EventsModels within the mixture schema (5.6) describe a multivariate density for foreground events. Inthis section we shall examine the procedure by which a vector representation in constructed for eachforeground spike. We proceed in two steps: in the �rst the vector elements are sampled directlyfrom the voltage trace yielding relatively high-dimensional vectors; in the second we use a low-ranklinear transform to reduce this dimensionality through a technique similar to principal componentsanalysis.5.7.1 Extraction and alignmentIn the �rst stage, each element of the event vector will be a sample drawn from the recorded voltagetrace near the time of the corresponding threshold crossing. The extracted samples will be separatedby the Nyquist sampling period derived from the frequency content of the signal, which in turn iscontrolled by an analogue anti-aliasing �lter. We order the samples forward in time, with all of thesamples from the �rst channel appearing together, followed by the samples from the second channelif there is one, and so forth. In multichannel recordings, the corresponding samples on each channelwill always be simultaneous.A common approach to selecting the vector coordinates is to copy a �xed number of valuesfrom the digitized recording before and after the sample at which the threshold was crossed. This,however, does not ensure that the samples are taken at the same time relative to the underlying spikewaveform. This jitter in sampling introduces arti�cial variability in the extracted set of vectors asillustrated in �gure 5.5. Panel A shows one channel of a small number of recorded spike waveforms,all originating from a single cell. The samples extracted from the waveforms are shown by the dots;
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200�s 50�VFigure 5.5: Alignment of spike waveforms.the solid lines beneath show the Fourier reconstruction of the underlying signal, assuming the therewas no power above half the sampling frequency. The variation in alignment of the underlyingwaveform is evident, and results in \noise" in the samples that can reach up to half of the spikeamplitude. Furthermore, if the temporal jitter of the alignment is uniformly distributed within onesample interval, this apparent \noise" will also be almost uniform (its exact shape is set by thederivative of the underlying spike shape), making it di�cult to model. Fortunately it can be mostlyeliminated.There are two sources of jitter. For the sake of argument, let us assume that the underlyingspike waveform being measured has no intrinsic variability. In that case, there is a well de�ned timeat which the waveform crosses the threshold, and we would like to align the samples in the eventvector with this time. The �rst source of jitter is the background noise, the addition of which to therecorded spike waveform will result in that waveform crossing the threshold at a slightly di�erentpoint from our reference time. The second source comes from the sampling of the waveform, whichis unlikely to be aligned with the spike and thus the crossing-time will probably fall between twosamples, rather than on one.The jitter and its associated artifact can be reduced considerably by some amount of signalprocessing. The e�ect of the background on alignment can be reduced by choosing to align to acomposite landmark, rather than a single sample level. We will use the \centre of mass" of thepeak of the waveform, that is, the quantity �c = R dt tS(t)= R dt S(t) with the integrals limited to



108the peak region of the spike waveform S(t). This is estimated from sampled data Sn by a formsimilar to �̂c = P tnSn=PSn, with the range of the sum limited to samples near the peak ofthe waveform. The sum over samples reduces the e�ect of the background on the alignment time.Temporal correlations in the background will interfere with this reduction, and so it is preferable touse the background-whitened signal (see section 5.6).We can eliminate the sample-alignment jitter by resampling the waveform to align with the esti-mated centre of mass exactly, even if that estimate falls o� the original sample grid. This resamplingis achieved by interpolation, either with cubic splines, or \exactly" using Fourier techniques. Thecubic spline interpolation is straightforward and will not be described here. The Fourier techniqueproceeds as follows. Conceptually, we �nd the discrete Fourier transform of the sampled waveformand treat the coe�cients thus obtained as the coe�cients of a �nite Fourier series. Provided that theoriginal signal was sampled at or above the Nyquist sampling frequency for its bandwidth, this seriessums to the original, continuous signal (barring boundary e�ects). We draw new samples from thisexact interpolant. The Fourier process described is equivalent to a kernel smoothing of the discretesequence treated as a sum of delta-functions, where a sinc-function is used for the kernel. As mightbe expected from a sinc-function kernel, the interpolant will tend to ring near the boundaries of theinterpolated segment; it is important, therefore, to use a segment su�ciently long that the region ofinterest does not fall critically close to a boundary.The selection procedure for the samples to be used in calculation of the centre of mass has notyet been discussed. It proceeds as follows. First, the maximum sample within a short time after thedetected threshold crossing is identi�ed. In the region of this sample the waveform is \upsampled"by resampling from the interpolant at a higher rate. The region used extends su�ciently far on eachside of the maximum to encompass the entire �rst peak of the spike waveform. Next the contiguousregion of samples that encompassed the maximum and lies above a threshold value is identi�ed.This threshold is chosen lower than the trigger threshold, so as to ensure that a large number ofsamples will fall above it. The threshold-based centre of mass calculation is preferred to use ofa �xed number of samples around the maximum because it avoids the bias towards the centre ofselected interval that is inherent in the latter approach.The centre of mass is calculated by, �̂c = P tn(Sn � a)P(Sn � a) (5.7)where the sums range over the contiguous samples Sn of the upsampled waveform that lie abovethe threshold a. The subtraction of the threshold from the sample values ensures that samples nearthe boundary of the selected region have little e�ect on the estimate, thereby protecting it fromnoise-driven variations in that boundary. A �xed number of samples, su�cient to encompass the



109extent of the spike waveform, spaced by the Nyquist period and aligned with �̂c, are extracted fromeach channel of the recording and arranged into the event vector.The results of this alignment procedure are shown in �gure 5.5B. Clearly, the apparent noise hasbeen reduced considerably. Given a group of waveforms known to originate from the same cell, wecan measure the e�ect of the alignment procedure by calculating the trace of the covariance matrixof the spike waveforms after alignment. These values of are shown in �gure 5.5C for a number ofdi�erent algorithms. The dashed line represents alignment to the threshold crossing, while the solidline represents alignment to centre of mass. Furthermore, each reference point was extracted usingvarying degrees of upsampling (that is, interpolation). Two observations are clear: both techniquesimprove at about the same rate as �ner upsampling is employed; and furthermore, the centre of massreference point provides a constant bene�t over the threshold crossing at all upsampling factors. Thetwo di�erent sources of jitter, along with the e�ectiveness of the proposed techniques in overcomingthem, are evident.5.7.2 Dimensionality reductionThe number of samples that goes into each vector might be quite large. For tetrode recordings inmonkey neocortex, for example, a 10kHz signal bandwidth is suitable, spikes last over a millisecondin time, and so the vectors will contain more than 80 elements. Such large vectors lead to twodi�culties. One is purely computational: calculations on lower-dimensional objects would be muchfaster. This is a particularly relevant concern for the case of on-line spike sorting. The second isperhaps more serious. As the dimensionality of the modeled space grows so does the number ofparameters, and so the quantity of data needed to obtain good estimates can become very large.With insu�cient data, the danger of over-�tting is considerable.Fortunately, it is possible to reduce the dimensionality of the space e�ciently and without anyloss of useful information. In this discussion we will only consider linear dimensionality-reducingtransforms. That is, we will seek a rectangular matrix, R, by which we can multiply the data vectors,Vi so as to obtain the lower-dimensional products xi = RVi. The xi must retain as far as possiblethose features of the data set Vi which are essential to clustering.Hand-picked featuresPerhaps the most commonly adopted approach is to derive from each waveform a small group offeatures which might a priori be expected to carry much of the relevant information. For a multi-channel electrode, the most natural such features are the peak potentials attained on each recordingsurface. For tetrodes, then, each xi becomes a point in IR4. Figure 5.6 shows the events extractedfrom one tetrode recording, projected into this basis. The 4-dimensional space is represented by the6 possible 2-dimensional axial projections. Thus, in the topmost panel the peak value on channel 2
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112amount of the original data variance. We expect the PCA projection to be useful because clusteringis likely to be easiest in those directions in which the data are well spread out. However, it may notbe the optimal projection.Figure 5.7 shows the projection into the �rst four principal components (in order) of the samedata set as was shown in �gure 5.6. In this case, our expectation that PCA will improve theseparation of the clusters is belied. Where six di�erent groups could be made out in �gure 5.6,only four can be clearly resolved here. Furthermore, the clusters are separated in only the �rst twodimensions. This experience is not uncommon when handling tetrode data.The optimal linear projectionIt is well known that we can obtain the optimal linear projection a posteriori, that is, given knowledgeabout which cell each spike originated from. The procedure, known as linear discriminant analysis(LDA), selects the linear projection in which the separability of the clusters is maximized, that is,the ratio of the average distance between the clusters to the average spread of the data within eachcluster is greatest.We introduce two new covariance or scatter matrices, the between-class scatter �B and thewithin-class scatter �W . Let us identify the vectors that fall in the mth class by Vm;i, and write themean of all such vectors as �Vm, with �V being the overall mean as before. The number of vectorsin the mth class will be written Nm, and the fraction of the total that this number represents, �m(these fractions being equivalent to the mixing probabilities of a mixture model). The two newscatter matrices are de�ned thus�B = Xm �m( �Vm � �V )( �Vm � �V )T (5.9)�W = Xm �m 1Nm Xi (Vm;i � �Vm)(Vm;i � �Vm)T (5.10)The symmetrized ratio we wish to see maximized in the projected space is ��1=2W �B��1=2W . Justas in PCA, we �nd the eigendecomposition of the corresponding matrix in the higher dimensionalspace and then project onto the space formed by the leading few eigenvectors.It would appear that we can obtain little advantage from the discriminant approach, as the scat-ter matrices given by (5.9) and (5.10) cannot be calculated without access to the very informationthat we seek. However, it is possible to view the LDA procedure in a di�erent light. Consider atransformation of the vectors Vi;m by the matrix ��1=2W to obtain new vectors ~Vi;m. Direct substitu-tion into (5.10) reveals that in this transformed space, the within-class scatter, ~�W , is the identitymatrix. We shall refer to this as the class-whitened space. To now perform LDA, we need onlymaximize the between-class scatter ~�B . It is straightforward to see that the subspace thus identi�ed



113is exactly the same as would be obtained by discriminant analysis in the original space. Indeed, thiswhiten-and-diagonalize algorithm is a common implementation for LDA (see, for example, Ripley(1996)). We can go one step further if we note that the total covariance in the class-whitened spaceis simply ~�T = ~�B + ~�W = ~�B + I . Thus the overall scatter matrix is diagonalized in the samebasis as the between-class scatter matrix. LDA is equivalent to PCA in the class-whitened space.The key point of this analysis is the simple relationship �T = �B+�W . This implies that we needonly one of the classi�cation-dependent scatter matrices in order to �nd the optimal discriminantsubspace, the other can be derived from the overall variance of the data. We do not know either ofthese matrices, but we do have an (under)estimate of the average within-class scatter �W , providedby the direct measurement of the background. Thus, we can �nd a basis quite similar to the optimalLDA basis by taking the principal components in the noise-whitened vector space. An exampleof this procedure will appear in �gure 5.8.Robust principal component analysisInevitably, some events within the ensemble will fall far from any clusters. These are mostly theevents that contain overlapped spikes as described in section 5.4. Since the data covariance matrixweights points by the square of their distance from the mean, principal components calculated fromthe entire data set are particularly sensitive to the number and location of these outliers. It isimportant, therefore, to obtain the components in a manner that is robust to outliers.We will adopt an approach to robustness similar to that discussed in the context of the clusteringalgorithms in section 5.4. We can view the PCA procedure as �tting a multivariate Gaussiandistribution to the data and then selecting a projection on the basis of the �t distribution. Thisrelationship between PCA and Gaussian modeling has been explored quite extensively in the recentpast (Tipping and Bishop 1997; Roweis 1998). Following the argument made during the discussionof the impact of outliers on clustering, we replace the single Gaussian by a mixture of a Gaussianand a uniform density (the limits of the uniform density being set by the maximum extent of thedata). Recall from the discussion of section 5.4, that the introduction of the uniform component willnot, on average, bias the estimates of the eigenvectors of the covariance of the Gaussian component.It is these eigenvectors which represent the principal component basis.Figure 5.8 shows the subspace obtained when this robust PCA is applied in the noise-whitenedspace. The six clusters are now very much in evidence, and comparison with �gure 5.6 suggests thatthey are better separated. Figure 5.9 shows the data set projected into the �rst four dimensions of theoptimal linear discriminant space, calculated a posteriori from a mixture �t to these data. Clearly,for this recording, the noise-whitened robust PCA technique has identi�ed a subspace remarkablyclose to the optimal one.
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116Outlier rejectionDimensionality reduction carries with it the danger of reintroducing outliers into the main body ofthe ensemble. The danger arises in the case of outliers which fall outside the principal distributionalong the directions which are to be suppressed, but whose projections onto the preserved spaceare not easily distinguished from those of normal spikes. Such outliers may bias the estimation ofwaveform parameters. Fortunately, they can be eliminated by removing from the ensemble spikeswhich exceed a data-set threshold in the suppressed directions. If the robust principal componentsanalysis is used, they may be identi�ed as points for which the uniform outlier component takessigni�cant responsibility.5.8 The Simple Mixture Model5.8.1 The modelOnce the ensemble of vectors has been extracted, we proceed to �t a model drawn from the schema(5.6), with the observations Vi replaced by the processed, lower dimensionality vectors, xi. Initially,we shall examine the simplest possible such model.We begin with two assumptions. First, each measured event vector is taken to be independentof all the others. This implies both that the set of indicators fz�;i; zc=;i; zm;ig are independent fordi�erent i (clearly, for any given i, they cannot be independent as only one can take the value1) and also that the spike shape measured depends only on which cell �red, not on the previouswaveforms emitted by that, or any other, cell. This assumption, allows us to drop the conditioningon the past latent variables (which was written \j �<i" in (5.6)). We write �r for P� (zr;i = 1) forr = �; c=; 1 : : :M .Second, the intrinsic variability in the spike shape is taken to be negligible, so that all of theobserved variation is due to the addition of random background noise. In this case, each of the spikewaveform densities Pm (xi) is a Gaussian, whose mean is the spike shape associated with the mthcell and whose covariance is that of the background process. For noise-whitened data, this is theidentity matrix.Combining these assumptions with the mixture model schema (5.6), and restricting to thereduced-dimensionality space of the xi, we obtain the basic modelP (xi) = �� j2�I j�1=2 e� 12kxik2 + MXm=1�m j2�I j�1=2 e� 12kxi��mk2 + �c=Pc= (xi) (5.11)where Pc= (xi) is the uniform density given in (5.5).



1175.8.2 Parameter estimationSuch a model is easy to �t. We employ the well-known Expectation{Maximization (EM) algorithm(Dempster et al : 1977; see chapters 1 and 2 of this dissertation) to �nd the maximum-likelihoodparameter values. Other techniques, such as gradient-ascent or Fisher scoring may also be used foroptimization. EM, however, o�ers some advantages.1. EM is, perhaps, the most exible of the various hill-climbing techniques, being easily extendedto the more complex models to be discussed below. As a result, it provides a uniform approachto the �tting of the various models within the schema. Further, it is easily adapted to thesituation in which di�erent generative distributions are used for di�erent cells, which will bediscussed in section 5.11.2. Incremental variants of EM are provably correct (Neal and Hinton 1998). While such proofsare derived in the case of static parameter values, they can give us con�dence that similarvariants will be well-behaved in the case of slowly drifting parameters, allowing us to tracksuch drift.3. The EM algorithm is very closely linked to the maximum-entropy deterministic annealingclustering technique (Rose et al : 1990). Indeed, the deterministic annealing approach canbe extended to any latent variable model where EM is used by the Relaxation EM (REM)algorithm of chapter 3 (see also Ueda and Nakano (1998)). This technique provides a initial-condition-independent optimum, relatively immune to local maxima.The EM iterations for simple mixture models such as this were derived in section 2.4. The currentmodel has some additional constraints which further simplify the �tting procedure.The background component distribution in (5.11) is �xed; only the mixing parameter �� needsto be learnt. The uniform outlier distribution has parameters that describe the region of support,A, in (5.5). We take this region to be rectangular in the transformed space of xi (in fact, the shapeis unimportant) and so it is speci�ed by two opposite vertices. Provided the component is initializedwith at least some responsibility for each of the data points, it is straightforward to see that themaximum likelihood solution will be such that A is the minimal region that contains all of the points.Furthermore, this value will ensure that in subsequent EM steps the component continues to havenon-zero responsibility for each point and therefore maintains this parameter value. In practice,then, we can set the parameter directly from the data and update only the mixing component �c=.The remaining components form a mixture of Gaussians. EM update rules for this model aregiven in section 2.6. We omit, of course, the update of the covariances as they are known in advance.



118The update rules for parameter estimates at the nth step are thusrnm;i = �n�1m P�n�1m (xi)Pl �n�1l P�n�1l (xi) ; m = �; c=; 1 : : :M�nm = Pi rnm;ijX j ; m = �; c=; 1 : : :M (5.12)�nm = Pi rnm;ixiPi rnm;i ; m = 1 : : :MThey are iterated until convergence.It is guaranteed that this procedure will converge to a local maximum of the model likelihood.However, the identity of that maximum is crucially dependent on the initial parameter values usedto seed the optimization. EM shares this dependence with other hill-climbing approaches, whether�rst or second order. We can avoid it by using a Relaxation Expectation{Maximization (REM)technique as described in chapter 3. In this simple case REM yields an algorithm very similar to thesimple deterministic annealing example treated by Rose et al : (1990). The di�erences are primarilyin the presence of the mixing probabilities and the single non-Gaussian component.The REM update rules di�er only in the update of the responsibilities, which become, for arelaxation parameter �, rnm;i = �n�1m (P�n�1m (xi))�Pl �n�1l (P�n�1l (xi))� (5.13)(we have given the E-step according to the REM-2 algorithm; see section 3.5). The parameter � isincreased gradually from near 0 to 1, with the EM iterations being run to convergence at each valueof �. An extensive discussion of the properties of this algorithm is given in chapter 3The number of cellsIn the absence of simultaneous high-power microscopy, we generally do not know how many fore-ground cells are to be expected in an extracellular recording. As a result, this quantity must beestimated from the data along with the parameters of the spike waveform distributions. In themixture model framework this is equivalent to determining the correct number of components.As was pointed out in section 2.7.3, this is essentially a model selection problem. We havealready examined at some length in sections 1.3 and 2.7.3 techniques appropriate to carrying outthis selection. The use of the REM algorithm for learning makes available a particularly e�cient ande�ective framework within which to apply these techniques, which we have called cascading modelselection. This was discussed in section 3.6.For the most part these techniques, described in part I of this dissertation, can be applied withoutmodi�cation. Two components of the mixture, the noise model P� (�) and the overlap model Pc= (�)are always assumed to be present; thus, the model selection chooses between models with three or



119more components.5.9 Spike Shape VariabilityThe simple mixture model assumes that the action potential currents in each foreground cell are thesame each time the cell �res, so that the only variability in the foreground spike waveform is due tothe superposition of background spikes. In fact, this is rarely true.Biophysically, one can imagine many reasons why the currents owing across the somatic mem-brane might be variable. The concentrations of ions inside or outside the cell may vary. Ligandgated channels (for example, calcium-dependent potassium channels) may open on the membrane.A varying fraction, not large enough to prevent an action potential, of the sodium channels maybe inactivated. Many of these conditions well depend on the recent activity of the cell, and thisdependence will be examined more closely later. For the present, we will simply treat it as randomvariation.5.9.1 Ratio methodsSome authors have argued (Rebrik et al : 1998; Zhang et al : 1997; Rinberg et al : 1999) that al-though the underlying action potential shape changes under these conditions, the ratios of the spikewaveforms on the di�erent channels should remain almost constant (disturbed only by the additivebackground noise). These ratios may be between maximal spike amplitudes, or between the magni-tudes of the Fourier coe�cients in various frequency bands. Such arguments are based on the samemodel as the ICA-based algorithms described earlier. The spikes recorded on the di�erent channelsare taken to be due to currents at a single point source which have been �ltered di�erently by theextracellular medium through which they passed and by the electrode tip. If the source waveform(in the Fourier domain) is S(!) the recorded signal on the nth channel will be Rn(!) = Fn(!)S(!)where Fn is some linear �lter. As the source changes, then, the spike shapes also change; but bytaking the ratio of the recorded spike shapes Rn(!)=Rm(!) = Fn(!)=Fm(!) we divide out the sourcesignal and obtain a stable measure.Once again, the arguments advanced against the applicability of ICA-models in, at least, neo-cortical tissue, apply here. The most severe is the fact that the simple model of one-source-multiple-detectors does not hold in preparations where the action potential travels over signi�cant sections ofcell membrane. In neocortical and hippocampal pyramidal cells, for example, action potentials areknown to propagate over the dendrite (Stuart and Sakmann 1994; Stuart et al : 1997) and di�erentelectrode tips will record spikes due to di�erent parts of the membrane (Buzsaki and Kandel 1998).In discussions of spike variability a further di�culty presents itself. The spread of the action poten-tial across the membrane is known to be variable, depending on the recent �ring activity of the cell



120(Spruston et al : 1995; Svoboda et al : 1997). Thus, not only are the sources recorded by the di�erentelectrode tips spatially distinct, but these sources can vary in a distinct manner. As a result, thereis reason to expect ratio methods to be inadequate in such preparations.5.9.2 Models of the variabilityUnable to remove the intrinsic variability in the waveforms, we seek to model it. In this section willwe discuss models in which the underlying spike shapes are independent and identically distributed.Following this treatment, in section 5.10, we will discuss models which capture the dependence ofthe spike shape on the recent �ring history of the cell.Unconstrained GaussiansOne approach, attractive for its mathematical simplicity, is to model the underlying spike shapevariability as Gaussian. If this model were correct, each observed spike waveform from a given cellwould be the sum of two Gaussian random variates, and thus, would itself be Gaussian distributed.We have no independent data source from which to establish an appropriate covariance matrix forthe intrinsic variability, and so the covariance must be learned along with the mean spike waveform.The measured background covariance can only provide a lower bound.The general EM iterations for the arbitrary Gaussian mixture are as in (5.12), with the additionof a re-estimation rule for the mth covariance matrix�nm = Pi rnm;i(xi � �nm)(xi � �nm)TPi rnm;i (5.14)If the background covariance has been whitened, we can enforce the lower bound set by the back-ground by diagonalizing the �nm obtained in this way, resetting any eigenvalues less than unity to1, and then rotating back into the original space. If V is the matrix of eigenvectors of �nm, and thebinary operator max(� ; �) is taken to act element by element�nm  V max(V T�nmV; I)V T (5.15)In the case of the background process, the superposed nature of the signal led us to expect it tobe approximately Gaussian. In contrast, we have no reason to believe that the intrinsic variabilityshould give rise to a Gaussian process, and so the validity of this model will rest entirely on theexperimental evidence. In practice, cell waveform distributions in the macaque data set seemed to bewell approximated in this fashion only if they did not �re bursts of closely spaced action potentials.The case of the bursting cells will be discussed more thoroughly below.One issue introduced by the use of unconstrained Gaussians is the multiplicity of parameters. In



121aD dimensional space, each component of the simple Gaussian model contributes onlyD parametersto the model. In contrast, the unconstrained Gaussian contributes D(D+1)=2+D parameters. Asthe number of parameters increase the dangers of over-�tting and of being trapped in local maximaincrease. The REM algorithm can alleviate the second of these to some extent, however strategies toreduce the complexity of the model are useful. On approach is to constrain the number of non-uniteigenvalues (in the background-whitened space) in each model. This leads (in the unwhitened space)to a mixture model, analogous to the mixture of factor analyzers model of Ghahramani and Hinton(1996). We will not explore this any further here, turning instead to a non-Gaussian generalization.Hierarchical Gaussian mixturesAs was pointed out above, there is no a priori reason to expect the intrinsic variability to be Gaussiandistributed. While such a model may provide a successful approximation in certain examples, it isinsu�cient to account for all of the observed data. Therefore, we will now investigate a non-parametric alternative.The mixture model, which we have taken as the basic statistical model underlying probabilis-tic cluster analysis, has another rôle in the statistical literature. A mixture of relatively simplecomponents (such as Gaussians) is often used to approximate a more complicated density, aboutwhich little is known a priori. Such an approach is called \non-parametric" because there is noexplicit generative model of the density. It is not suggested that the data are in fact generated byany sort of mixture process. Rather, the mixture model is being used as an extremely exible sub-strate for density approximation. (Compare the use of radial basis function networks in the functionapproximation literature).Our alternative, then, is to �t an hierarchical mixture model in which the generative dis-tribution for each cell is itself a mixture. We shall employ a mixture of Gaussians, each with acovariance matrix equal to that of the measured background noise. In a sense, this approximationmay be viewed as identifying a small handful of \canonical" spike shapes, which span the range ofpossibilities. The generative process selects one of these shapes and then adds background noise toproduce the observed spike waveform. In fact, the intrinsic waveform of the spike (before additionof the background) is not discrete in this fashion. This problem is mitigated by the fact that theGaussian density provides signi�cant probability mass in the region in between the selected points.We may think of the model as \tiling" the true density with a small set of identically shaped ellipses,the shape being set by the background covariance.Let us write down the density that results from such a model. Suppose there are M clusters,with mixing proportions �m. Each cluster is modeled by a mixture of P Gaussians, with mixing pro-portions �m;p, means �m;p and unit covariances (we assume that we have whitened the background



122process). The parameter set for the model is � = f�mg [ f�m;pg [ f�m;pg. We have,P� (X ) =Xi Xm �mXp �m;p(2�)�d=2e� 12kxi��m;pk2 (5.16)If we distribute the factor �m into the sum over p and write  m;p = �m�m;p it becomes clear thatthis density is identical to that derived from a mixture of R = M � P Gaussians. Indeed, anyhierarchical mixture in which the total number of Gaussians is R, even if there are unequal numbersof components used to describe each cell, will yield the same form of the density.This poses a serious problem from the point of view of model selection. Conventional modelselection procedures may indicate the correct density from among a group of candidates. But, howare we to decide which components belong to which cell? Probabilistically, any such assignmentwould be equally valid, including the \at" option in which every component represents a singlecell. In short, from a probabilistic point of view, there is no such thing as a hierarchical mixture!We may choose to exploit additional information in order to group the Gaussians.One approach is as follows. Begin by �tting a mixture of a large number of Gaussians (all withunit variance) to the data. The actual number is not of great importance, provided it is signi�cantlylarger than the number of cells expected. It may be chosen arbitrarily, or by a model selectionmethod. Then, form a graph, with one node for each Gaussian. An edge between two Gaussians isincluded if the densities exhibit a signi�cant degree of overlap, that is, if the distance between theirmeans is smaller than some chosen threshold. Each of the connected subgraphs that results is takento represent a single cell. Such an approach would be similar in spirit, although di�erent in detail,to that proposed by Fee et al : (1996a) (a detailed discussion of the relationship to their method isoutlined in section section 5.14).Alternatively, the additional information might be encoded as a prior on the parameters withina group. For example, we might expect that the means of the components that describe a single cellwill lie close together, and will themselves be drawn from a Gaussian density of small variance.In both these approaches, one or more control parameters must be chosen arbitrarily: either theoverlap threshold for the graph formation, or the form and extent of the prior. In many cases, theseparameters may be chosen anywhere within a fairly broad range of values, with identical results.However, it is in the case when the waveforms from two or more cells are very similar, and wherethe model selection procedure is thus most important, that the results become most sensitive to thechoice of parameters.In section 5.10.2 we will introduce a third approach to the resolution of the ambiguity in thehierarchical mixture likelihood, suitable for modeling variability intrinsic to bursts of action poten-tials. There, a dynamic model is proposed, in which the components representing a single cell aretied together by a learnt Markov transition structure. In that view, components belong to the same



123cell provided that the timing of spikes that fall within them is consistent with a simple burst model.5.10 Dynamic ModelsIn the models discussed thus far each spike waveform is generated independently of all others. Weturn now to models in which the latent variables are dependent on each other.5.10.1 Refractory periodOne simple feature of the �ring process has not yet been accounted for in any of our models. Thisis the occurrence of the refractory period, a short period after each action potential during whichthe cell that �red will not �re again. As it stands, the mixture model has no representation of thetime of any event. We will discuss shortly a model in which time is explicitly represented. For themoment, though, it is possible to account for the refractory period by a simple modi�cation to thebasic mixture model. The method presented in the following may be applied to any of the variousmixture models we discussed above; for simplicity we shall develop it in the case of the simpleGaussian mixture of section 5.8.The joint data log-likelihood for such a model was given in section 2.6`X ;Z (�) =Xi Xm zm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (2.17)In the refractory case this expression remains valid for most data and parameter values; the exceptionis provided by sequences of zm;i that violate the refractory constraint by assigning to the same cellevents that fall within a refractory period of each other, for which the log-likelihood diverges to�1. In taking the expected value of the log-likelihood, however, the probability of such a sequenceis 0, and so we can discount this possibility. The expected log-likelihood under the distributionP�n�1 (Z j X ) retains the general mixture form of (2.8)Qn(�) = Xi Xm Ezm;ijxi;�n�1 [zm;i] log�mP�m (xi)= Xi Xm snm;i�log�m � 12 log j2��mj � 12(xi � �m)T��1m (xi � �m)� (5.17)except that, as we will see below, the expected values of the zm;i are di�erent from before. Toremind ourselves of this di�erence we use the notation snm;i for these new responsibilities, reservingthe symbols rnm;i for the responsibilities in the non-refractory case.To obtain the new responsibilities, consider �rst the simple case where only two spikes have beenobserved and the second appears within a refractory period of the �rst. We have a joint distribution



124over zm;1 and zm0;2 with P (zm;1; zm0;2) =8<: 0 if m = m0rnm;1rnm0;2=Z otherwise (5.18)where Z = PmPm0 6=m rnm;1rnm0;2 is an appropriate normalizing constant. The expected values weseek are then just the marginals of this joint distribution, for example,snm;1 = Xm0 6=m rnm;1rnm0;2=Z = rnm;1(1� rnm;2)=Z (5.19)where we have used the fact that P rnm0;i = 1.This result easily generalizes to the case of many spikessnm;i = rnm;iZi Yi;j refractory(1� rnm;j) (5.20)where Zi is the appropriate normalizer and the product is taken over all spikes that are fall withinone refractory period (before or after) the i spike.The M-step is still a weighted Gaussian estimation as before, the weights now being the newresponsibilities snm;i.5.10.2 Sparse hidden Markov modelsBurstsThe intrinsic variability of spike waveforms is not entirely random for all cells. Many pyramidalcells, both in neocortex and in the hippocampus, sometimes �re action potentials in bursts. Actionpotentials within a burst are closely spaced (as little as 1ms apart), and the cell does not haveenough time to recover from one before the next begins. Thus, the membrane currents associatedwith later action potentials are likely to be smaller, and a smaller portion of the dendritic membranewill participate in such spikes. As a result, the spike waveforms recorded later in the burst may bequite di�erent from those associated with isolated action potentials.In this section we will construct a statistical model to describe the change in action potentialduring a burst. At �rst glance, one might think that a su�cient model would have the expectedspike waveform depend on the immediately preceding interval. In fact, the situation is considerablymore complex than this. For example, the third spike in a regular burst will usually be smaller thanthe second, even though the preceding interval is the same. At the same time, it is true that aftera longer interval the cell has had more time to recover and so the spike waveform is closer to thenormal case.



125Faced with the complexity of the mechanisms underlying the change in spike waveform during aburst, we will not attempt a biophysical model. Instead, we will use a simple statistical model thatwill capture the variation empirically.A statistical modelThe statistical model that we consider is a constrained version of the Hidden Markov Model (HMM).Each cell is modeled by a single HMM, which is independent of all of the others. In practice, it isoften useful to use HMMs to model only a subset of the cells in a recording | those that exhibitbursts | and use Gaussians or other static distributions to describe the others.The output symbols of the underlying Markov model are either complete spike waveforms rep-resented as vectors (the events of the previous discussion) or a zero vector. The vast majority ofsymbols in any string generated from the Markov model will, in fact, be zero and so these models aresparse in the sense of chapter 4. The observed vector is the sum of the Markov model output and arandom vector drawn from the background process. Thus one may think of the output distributionsof the states of the HMM as Gaussians, centred either on zero or on a mean waveform which is tobe learned. The output density is thus identical to that of the hierarchical Gaussian mixture modeldiscussed in section 5.9.2. The di�erence is that events are not chosen from this density indepen-dently. This change in the model provides another approach to breaking the ambiguity inherent inthe hierarchical model.A Markov model describes a discrete time process. We choose to discretize time in fairly largesteps, usually 0.5ms. The measured output symbol for any given time-bin is a spike waveform if theidenti�ed time (that is, the peak or centre of mass) of some event falls within that bin. Otherwise,the output symbol is taken to be 0.The transition matrix of the Markov model is constrained so as to embody the structure expectedfrom a bursting cell. This constrained structure is sketched in the left-hand part of �gure 5.10. Eachof the grey circles in this �gure represents a state of the HMM. The left column of states all have zerooutput symbol and represent the cell in a non-�ring state. States in the right column represent �ringevents in the cell and have non-zero output distributions. These distributions are indicated on thestylized event feature plot to the right. Each state is associated with a Gaussian output distributionindicated by an elliptical boundary. Together, these distributions \tile" one of the elongated clustersin the data set.Each heavy arrow in the HMM diagram represents an allowed transition: where there is no arrowthe transition probability is set to 0 and remains at this value throughout the learning process. Thestates are arranged in a \ladder" with states lower down the ladder corresponding to greater recent�ring (and therefore greater inactivation of channels). The upper left-hand state is the \ground"state, in which the cell will be found after a long period of inactivity. Only two transitions are



126

Figure 5.10: The HMM transition structurepossible from this state: the cell either �res an action potential, making the transition to the stateon the right, or else remains in the same state. Once in the �ring state, the cell makes a transitionto a non-�ring state below the ground state, thus preserving the memory of the recent �ring. Fromthis state, the cell can �re again, with a di�erent output distribution, in which case it subsequentlymoves further down the ladder of states; it can remain in the same state; or it can make a transitionup the ladder. This basic pattern is repeated for each of the rungs of the ladder.Some features of this structure are worth pointing out. The only way for the cell to transitiondown the ladder is to �re. Once it �res it must enter a non-�ring state and so cannot spike insuccessive time-bins; for 0.5ms bins this e�ectively enforces a short refractory period. If the cell�nds itself some distance down the ladder, but does not subsequently �re for a number of time-steps, it will relax back to the ground state with an exponential decay pro�le.Learning with HMMsA learning algorithm for mixtures of sparse HMMs was discussed in section 4.4. Sparse HMMs werede�ned in that section to produce two types of output: either a null symbol, �, or a numerical value.When considering mixtures of sparse HMMs we introduced a third type of output, the symbol c=,which was detected when two or more of the component HMMs emitted non-null outputs in thesame time-step.In the current application an output is de�ned for each 0.5ms time-bin as follows. If no event



127has its peak (or centre of mass) within the bin the observation is taken to be �. In most cases,if an event does peak within the bin, the observation is the reduced vector representation of thatevent. However, if the event has been classed as an outlier, then the symbol c= is observed. Outlierevents are identi�ed in three ways during our procedure. First, the waveform may exhibit a doublepeak or other heuristically excluded property during event extraction. Second, the event may falloutside the principal subspace during dimensionality reduction. Finally, it may be assigned withhigh probability to the outlier mixture component. This last poses a problem, since we cannot knowbefore �tting is complete which events are to be classi�ed in this way; but we also cannot �t themixture of HMMs accurately without knowing which observations are collisions. In practice, thiscircularity is resolved by dynamically marking as a collision any event that is assigned to the outliercluster with a probability that exceeds some set threshold on a given iteration.Given these de�nitions, the learning algorithms of section 4.4 can be employed to optimize themixture parameters.5.11 Mixed ModelsThere is no reason to expect that all of the foreground cells present in a particular recording willexhibit the same type or degree of variability. A single site may yield some cells that tend to �re inbursts of action potentials; some that �re isolated, but stochastically variable spikes; and some thatexhibit no detectable intrinsic variability at all. Thus, it is often useful to be able to combine thethree types of waveform model we have discussed in this chapter | the �xed covariance Gaussianof the simple mixture model; the mixture of Gaussians of the hierarchical mixture model; and thesparse hidden Markov model | in a single overall mixture.The framework in which to do so is provided by the mixture of sparse hidden Markov modelsdiscussed above, and at greater length in section 4.4. In particular, we observe that both the single,�xed covariance Gaussian and the mixture of �xed covariance Gaussians may both be expressed asspecial cases of the sparse HMM, with transition matrices constrained di�erently from the \ladder"of �gure 5.10.The simple �xed-covariance Gaussian model is equivalent to a two-state HMM. One state (say,the �rst) has null output, the other has an output distribution given by the Gaussian model. Toreproduce the basic model exactly, the columns of the transition matrix must be identical. Theaugmented transition matrix (including the initial state probabilities; see section 4.1.1) is of theform Tm = 0BBB@ 0 0 01� �m 1� �m 1� �m�m �m �m 1CCCA (5.21)



128Here �m represents the �ring probability per time-step associated with the mth model of the overallmixture. It is related to the mixing probability �m as follows. Suppose the total number of eventsin the training data (with collisions counted twice) is N and the total number of HMM time-stepsis T . Given the stationarity assumption of the mixture, we expect there to be �mN spikes from themth cell in this data, and so the probability of a spike per time-step is �m = �mN=T .The transition matrix given in (5.21), allows for the cell to �re in adjacent time-bins with prob-ability �2. In fact, it is convenient to exploit the HMM transition structure to enforce a refractoryperiod without requiring the scheme of section 5.10.1. In section 5.10.2 we achieved this by requiringthat the model return to a null state after �ring. For 0.5ms time-steps, this enforced a short, butreasonable refractory period. Thus, we alter the transition matrix toTm = 0BBB@ 0 0 01� �m 1� �m 1�m �m 0 1CCCA (5.22)The value of the �ring probability �m must now be corrected. The new relationship is �m =�mN=(T � �mN).The mixture of Gaussians model for a single cell is implemented similarly. For a P componentmixture the HMM now contains P + 1 states, one with null output (again, we take this to be �rst)and the others with output distributions corresponding to the components of the mixture. If themixing probabilities of the cell model are �p;m and the overall mixing probability of this cell modelwithin the hierarchical mixture is �m we de�ne densities by �p;m = �p;m�mN=(T � �p;m�mN).We write �m =Pp �p;m. Then the augmented transition matrix, corrected to enforce a refractoryperiod, is given by Tm = 0BBBBBBBBB@
0 0 0 � � � 01� �m 1� �m 1 � � � 1�1;m �1;m 0 � � � 0... ... ... . . . ...�P;m �P;m 0 � � � 0

1CCCCCCCCCA (5.23)
Having converted each non-Markov model into a sparse hidden Markov model whose transitionmatrix embodies the appropriate structure, we can then proceed to learn the parameters using thealgorithm described in section 4.4. In general, learning in such a model is more computationallyexpensive than in the basic mixture models. Thus, if no cells in a given data set appear to �re inbursts, so that the ladder-structure HMMs will not be needed, it is preferable to use the mixturemodel directly, possibly with the refractory modi�cation of section 5.10.1. However, once the pa-rameters are learned, the corresponding SHMMs can be constructed by the procedure given in this



129section. These SHMMs can then be used for on-line spike recognition, as described in section 5.13.5.12 On-line LearningIn many applications of spike sorting, recognition must be carried out in close to real time. Inscienti�c experiments, for example, feedback in the form of sensory stimulus changes or even neuralstimulation might need to be triggered within milliseconds of a particular pattern of action potentialsbeing recorded. In neural prosthetic applications, neural activity needs to be transformed into a\motor" action on a similar time scale.For the most part, such demands constrain the inference, or spike recognition, stage of sorting(to be discussed below) rather than the learning. We may collect an initial segment of data withoutthe real time demands, train on these data o�-line and then perform on-line inference.However, it is useful to update the parameter estimates as more data are collected. For onething, these updates will re�ne the estimates, yielding progressively more reliable data. As a result,it might be possible reduce the length of the initial training segment, leading to a smaller trainingdown-time prior to on-line recognition.More important, though, is the fact that in almost all recording situations, the parameters arelikely to drift over time. Such drift generally occurs due to minute changes in the relative positionsof the cells and electrodes, thus changing the recorded spike waveforms. Even without such physicaldisplacement, however, the statistics of spiking of the di�erent cells, which enter into the models inthe form of mixing parameters or transition probabilities in the HMM, may change. For example,cells may switch between more or less bursty modes of �ring in association with varying levels ofdrowsiness (or anesthesia) in the subject.In this section we discuss techniques for on-line parameter adaptation. Similar techniques willallow both re�nement of the estimates as new data come in, as well as tracking of slow drift in theparameters. We discuss these techniques as though the parameters are to be updated each time anew spike is observed. In practice this level of immediacy is unnecessary, and it is more e�cient tocollect spikes for a short period (say 1s) and apply the updates in a batch form.5.12.1 Incremental EMWe showed in section 1.8 (following Neal and Hinton 1998) that the free energy interpretation of EMcan be used to justify some variants on the basic algorithm. One of these is an incremental versionin which the parameters are updated one data point at a time. This approach is valid in caseswhere both the observations xi and the latent variables yi are independent and drawn from �xeddistributions, and so the conditional distribution P� (Y j X ) factorizes over the yi. Of the modelswe have discussed here, this is true only of the mixtures.



130The iterations for the incremental EM algorithm, in the notation of section 1.8, are as follows.IE-step: Choose some i. Maximize Fi(pi; �n�1) and leave the remaining pj ; j 6= i unchanged.pni (yi) = Pn�1 (yi j xi) (5.24)pnj (yj) = pn�1j (yj)M-step: Maximize F with respect to � holding p constant.For a mixture model, the probability distribution pni (yi) is simply the set of responsibilities rni;m,m = 1 : : :M and the M-step involves maximizing the weighted log-likelihood Pi rni;mP�m (xi) foreach component.The on-line version of this algorithm is di�erent only in that there is no choice of i. The dataare simply handled, one by one, as they arrive from an unlimited stream. The M-step update onlyinvolves, of course, the data collected to this point. We shall assume that the initial parameter valueschosen are very close to the true values, being the result of training on a separate, o�-line, data set.This assumption means that even though data are not revisited, the responsibilities assigned to themremain reasonably valid. An alternative approach is outlined in the next section.Fortunately, for Gaussian mixtures (and indeed many other mixture models) it is not necessaryto store all of the past responsibilities and observations in order to update the parameters in theM-step. We derive the M-step update rule for a general mixture of unconstrained Gaussians; theresult for the various constrained Gaussian models used for spike sorting will follow immediately.The usual M-step updates for a Gaussian mixture, given N data points, are�nm = PNi=1 rnm;iN (5.25)�nm = PNi=1 rnm;ixiPNi=1 rnm;i (5.26)�nm = PNi=1 rnm;i(xi � �nm)(xi � �nm)TPNi=1 rnm;i (5.27)The (N + 1)th data point, x� arrives, triggering the (n + 1)th update of the parameters. Wecalculate the responsibilities, rm� of each of the components for this point in the usual fashion.According to the incremental EM algorithm, then, the new estimate for �m is�n+1m = 1N + 1 N+1Xi=1 rn+1m;i = 1N + 1  NXi=1 rnm;i + rm�! = NN + 1�nm + 1N + 1rm� (5.28)where we have used the fact that rn+1m;i = rnm;i for all i < N + 1. Similarly, we �nd that (writing



131Rnm =PNi=1 rnm;i = N�nm)�n+1m = 1Rn+1m N+1Xi=1 rn+1m;i xi = 1Rn+1m  NXi=1 rnm;ixi + rm;�x�! = RnmRn+1m �nm + 1Rn+1m rm�x� (5.29)Finally, the corresponding result for �n+1m follows by rewriting (5.27) as�nm = PNi=1 rnm;ixixTiPNi=1 rnm;i � �nm�nmT (5.30)from which we �nd that�n+1m = RnmRn+1m ��nm + �nm�nmT�+ 1Rn+1m rm� x� xT� � �n+1m �n+1m T (5.31)5.12.2 Parameter adaptationWhen the update algorithms described above are used in an on-line fashion (without revisiting anydata), the impact of each succeeding point on the parameter estimates grows progressively smaller.If the parameters are varying slowly, this is an unfortunate state of a�airs, since information aboutthe new values will be incorporated at an ever decreasing pace. Indeed, even if the parameters arestable, but the initial estimate of the model was far from the true value, this state of a�airs is nottoo promising. The reason (stated here in terms of the incremental EM algorithm for mixtures,although it applies equally to the HMM) is that the responsibilities that were calculated for the �rstfew data points become increasingly inaccurate as the model is optimized. While the e�ect of theseearly values on the estimate is diluted by ever more incoming data, leading to the correct result inthe limit, convergence would be more rapid if we had a mechanism to \forget" them. (Note that theincremental EM algorithm as described by Neal and Hinton (1998) avoids this problem by revisitingall the data with some probability).Notice that each of the update rules derived in the previous section (5.28), (5.29), (5.31) has theform of a weighted sum of old information and new. The form of amnesia we seek can be achievedby the simple measure of adjusting the weights in this sum to favour the new data.One approach is suggested by Nowlan (1991). In this view, the optimal parameter values aremaintained by a group of su�cient statistics; for the mixture of Gaussians, these statistics areRnm = Pi rnm;i, Snm = Pi rnm;ixi and SSnm = Pi rnm;ixixTi . Knowing the values of these statisticsat any iteration n we can calculate the parameter values �nm = Rnm=PmRnm, �nm = Snm=Rnm and�nm = SSnm=Rnm � �nm�nmT . The update rules derived in the previous section can then be easilyexpressed in terms of these su�cient statisticsRn+1m = Rnm + rm� ; Sn+1m = Snm + rm� x� ; SSn+1m = SSnm + rm� x� xT� (5.32)



132The proposal made by Nowlan (1991) introduces a factor  < 1 to regulate the decay of olderinformation. The su�cient statistic update rules are replaced with these:Rn+1m = Rnm + rm� ; Sn+1m = Snm + rm� x� ; SSn+1m = SSnm + rm� x� xT� (5.33)We can thus derive the parameter update rules under this approach. If we write Nne for PmRnmwe obtain, �n+1m = Rn+1mPmRn+1m = Rnm + rm�Pm (Rnm + rm�) = Nne �nm + rm�Nne + 1 (5.34)and �n+1m = Sn+1mRn+1m = Rnm�nm + rm� x�Rn+1m = Nne �m�nm + rm� x�Rn+1m (5.35)with a similar result for the covariance update. Comparison with (5.28) and (5.29) suggests thatthe term Nne plays the rôle of an e�ective number of data. Note that Nn+1e = Nne + 1. Thus ifNne = (1� )�1 then Nn+1e = Nne and otherwise Nn+1e > Nne . The e�ective number of data climbsuntil it reaches the value (1� )�1 and then remains constant. Thus we may think of this approachas limiting the e�ective number of data used.Such an approach is seen to be reasonable in situations where the parameters change at a ratelinked to the number of data measured (or in the case where such adaptation is needed to speedon-line convergence given poor initial parameter values). In the spike sorting example, however, weexpect the parameter variation to occur at a rate constant in time, even if the overall spike ratevaries. We would like the e�ective number Nne to be dependent on the recent �ring rate of the cellsbeing recorded.The formulation in terms of an e�ective number of data makes this easy. We replace the termNne in the above by a �ring-rate dependent term that varies in time Ne(t). The dependency on�ring rate might set Ne(t) to the number of spikes recorded within a window. It should be borne inmind that this approach is di�erent to simply using only the last Ne(t) data points to estimate theparameter values. The estimates are based on all previous data; however, the estimate derived fromthese data is weighted as though it was derived from only Ne(t) points.5.12.3 Limited look-ahead forward{backwardThe scheme described in the previous section is appropriate for on-line adaptation of the parametersof mixture models, whether of the simple Gaussian type, or more elaborate. What about the dynamichidden Markov model, proposed in section 5.10.2? At �rst glance, the situation appears impossible.Recall that to perform even a single E-step of the learning algorithm requires a traversal throughall of the data by the forward{backward algorithm. It would seem, then, that we cannot even beginto learn the parameters of the model until all of the data have been collected.



133Of course, this is not exactly true. If the parameters were stationary we would expect thatparameter estimates derived from a moderately long sequence of data would be reasonable, anda�ected only marginally by the incorporation of additional observations. The critical point is thatthe inuence of later observations on earlier state and transition estimates is diminished by mixingin the Markov chain. Thus, although in principal the backward pass of the inference algorithmshould begin at the very end of the data set, if it is instead begun earlier, only the immediatelypreceding state estimates (those within one mixing time) will be substantially incorrect. This featureis exploited by Boyen and Koller (1999) in the context of general dynamic probabilistic networks.For the sparse hidden Markov model the situation is further improved, because, as was argued insection 4.3.2, long stretches of null observations tend to \reset" the model. \Long," in this context,refers to the mixing time of the null-state restricted Markov chain; in the spike sorting context thisis the time taken for a cell to reset after a burst and thus may well be on the order of 20ms.The incremental approach to learning the HMM thus involves re-running the backward pass ofthe forward{backward algorithm only as far back as the last segment of moderate silence. To beconservative, one might discount state estimates in the M-step until they become \protected" by astretch of nulls, although in practice this rarely makes any di�erence. In any case, if one realigns thenotion of the \current" time to the last estimate that can be trusted, we may think of this procedureas taking into account a short sequence of data in the future. Thus the name limited look-aheadforward{backward algorithm.As new state information becomes available it is combined with the earlier information by aprocedure analogous to (5.29) and (5.31), with the state estimates snp;m;i replacing the responsibilities.The update of the transition matrix is similar in spirit to (5.28), but di�ers slightly. We write tpq;m;�for the new transition estimate and Snq;m =PN�1i=0 snq;m;i to obtainTn+1pq;m = PN+1i=1 tn+1pq;m;iPNi=0 sn+1q;m;i = PNi=1 tnpq;m;i + tpq;m�Sn+1q;m = Snq;mSn+1q;m Tnpq;m + 1Sn+1q;m tpq;m�: (5.36)For non-stationary parameters we can implement adaptive rules by weighting the updates by ane�ective data size just as in (5.33) and following. In this case, since a new estimate is generated atevery time-step whether a spike occurred or not, we do not need to worry about varying the e�ectivenumber of data, and we simply choose a �xed value of the decay constant .5.13 Spike Time DetectionGiven the model structure and parameters, the third and �nal stage of the spike sorting process isthe inference of the �ring times. To perform this inference accurately, and in particular to resolveoverlapped spikes, we will return to the full superposition model (5.2), using the distributions for



134the �ring indicators cm;� and waveforms Sm;� derived from the learnt mixture model. Many, ifnot most, previous spike sorting approaches have not made this distinction: inference is performedon extracted events using a cluster assignment model and is not actively distinguished from thelearning of the model. Such an approach leaves three issues unresolved. First, the threshold-basedevent detection heuristic of section 5.5 can be improved upon once the true spike shapes have beendetermined. Second, if all events are to be clustered, the sorting process must occur o�-line, rulingout experiments in which rapid feedback about the cells' responses is needed. Third, the clusteringprocedure has discarded the superposed events, or else collected them into an unresolved overlapcluster, rather than resolving them into their constituent spike forms.The correct solution to the inference problem involves a search through all possible combinationsof spike arrival times, and is computationally prohibitive. Lewicki (1994) suggests that with opti-mized programming techniques, and suitable, but severe approximations, it is possible to completethis search in close to real time on a computer workstation. We shall not review his implementationhere; the interested reader is referred to the cited paper. Instead, we discuss an alternative setof approximations that lead to a straightforward, single-pass, greedy algorithm. This approach isparticularly well-suited to parallel implementation on arrays of digital signal processors (DSPs).We shall derive the procedure in the context of the sparse hidden Markov models of section 5.10.2,where the output distribution of each component is either null or a Gaussian of �xed covariance (setby the background). As was seen in section 5.11, other cell models that we have considered canalso be expressed in this form, and so the detection method we discuss will apply equally well tothe simple Gaussian model of section 5.8 or to the hierarchical Gaussian mixture of section 5.9.2. Itwill not, however, apply to the unconstrained Gaussian model of section 5.9.2 without considerablemodi�cation.The basic structure of the scheme is as follows. At each time-step we begin by estimating theprior probability distribution over the states of each SHMM, based on our estimates of the statesat the preceding time-step. Using these probabilities, and the data recorded around the given pointin time, we obtain the occupancy likelihoods for each of the �ring states of each of the models,along with the likelihood that no spike was observed. We accept the event associated with thelargest likelihood. If this optimal likelihood is for no spike, then we re-derive the posterior statedistribution for each model as though a null symbol was observed. If, on the other hand, the optimallikelihood is due to one of the �ring states, we assume that the appropriate model is, in fact, tobe found in that state. The corresponding mean spike waveform is subtracted from the recordeddata; and again the likelihoods of the remaining models having �red, or of there having been nosecond spike are calculated. This is repeated until no more spikes remain to be accounted for at thistime-step. The initial state probabilities for the next step are then inferred by transitions from theposterior estimates of the states at the current time.



135This is a recursive procedure similar to the forward step of the coupled forward{backward al-gorithm. We will examine in detail a single step of the procedure in analogy to the treatment ofsection 4.4.2.We assume that at the (i� 1)th time-step, the current state probability estimates are given byEp;m;i�16. Since the Markov transitions are taken to be independent, these are propagated forwardto provide initial estimates of the probabilities at the ith step by the relation~Ep;m;i = TmEp;m;i�1 (5.37)We need to assess the probability of a spike being present on this time-step. However, we areno longer dealing with pre-extracted and aligned spike waveforms and so the spike, if any, may haveoccurred at any point within the time interval under study. We can measure the probability by themaximal output of a simple matched �lter. Suppose that the pth component of the mth model has anon-null output distribution, with mean waveform (transformed into the time domain from whateversubspace was used to �t) given by Sp;m(t). We assume that the background has been whitened,so that the covariance of this output distribution, and all the others, is I . The joint log-likelihoodof a spike having been generated from this particular component (that is, that the state variableym;i = p) at a particular time � , under the observed trace V (t), islogP (V (t) j ym;i = p; �)/ �12 Z dt (V (t)� Sp;m(t� �))2= Z dt V (t)Sp;m(t� �)� 12 Z dt V (t)2 � 12 Z dt Sp;m(t� �)2 (5.38)while the likelihood that there was no spike is simplylogP (V (t) j �) / �12 Z dt V (t)2 (5.39)The spike time � will be assumed to lie within the short interval under consideration for this time-step. The integrals over t extend through all time; although we will soon drop the integral of V (t)2,and the others can be limited to the support of Sp;m(t � �). Note that the �nal term in (5.38) is,in fact, independent of the spike time � ; we will therefore write �p;m = R dt Sp;m(t)2 for the totalpower in the waveform associated with the distribution (p;m).We can combine these expressions with our prior expectations of each state given by ~Ep;m;i, anddrop the common term that depends only on V (t) to obtain the following weighted matched-�lter6We adopt the same conventions for subscripts as we did in section 4.4, so that p refers to the state, m to themodel and i� 1 to the time-step.



136outputs: Fp;m;i(�) = Z dt V (t)Sp;m(t� �) � 12�p;m + log ~Ep;m;i=� (5.40)F�;i(�) = log X�p;m=1 ~Ep;m;i=� (5.41)where � is the length of the time-step. The �rst of these is calculated only for non-null states, whilethe sum in the second is over all null states. Up to a shared constant term, these two expressionsindicate the posterior probabilities of a spike having occurred at time � from component (p;m) (5.40)and of no spike having occurred (5.41), respectively. The �rst of these may be seen to be result ofa matched �lter with impulse response Sp;m(��) being applied to the data.It is here that we make our greedy step. We select the single largest probability from among thevalues (5.40) and (5.41), over all times � within the time-step window (in fact, if this maximum liesat the boundary of the interval we extend the search to the closest peak in the �lter value). If thisis F�;i we assume no spike occurred in the interval. In this case the new state estimates are givenby Ep;m;i = �p;m ~Ep;m;iPp�p;m ~Ep;m;i (5.42)in agreement with (4.43).If, however, the maximum is achieved by one of the �lter outputs, say Fp�;m�;i(��), we assumethat the corresponding spike really did occur. In this case we set Ep�;m�;i to 1 and all otherstate probabilities for the m�th model to 0. We then subtract from the data stream the waveformSp;m(t � ��) and recalculate the �lter outputs to see if perhaps another spike occurred as well. Inpractice, since the �lters are linear, we can actually subtract the appropriate �ltered version of thewaveform directly from the �lter output. The procedure is then repeated, with the m�th modeldiscounted. We continue to subtract and repeat until no further spikes are detected.The procedure described here yields reasonable results in many cases. In the context of non-trivial HMM transition matrices, however, it can be improved upon by the use of the standard Viterbidecoding algorithm of HMM theory, adapted in a manner similar to the coupled forward{backwardalgorithm discussed in section 4.4. In particular, we note that the forward pass of the decoding doesnot need to be run to completion before the backward pass (in which the most probable states areidenti�ed) can begin. Instead, the optimal sequence can be determined each time a block of nulls ofsu�cient length is encountered (see section 4.3.2).



1375.14 Comparison with Previous WorkSpike sorting is by no means a new problem. Extracellular recording has been a routine electrophys-iological method for decades, and single units have been isolated from voltage traces for many years.Nonetheless, it is only quite recently, as multiple electrode recording has become more widespreadand as fast computers have become easily available, that interest in fully automatic spike sortinghas arisen, and a full statistical analysis of the problem has not, to date, been carried out.In this section, we review some previous approaches, both manual and automatic, used or pro-posed for spike sorting. The discussion of prior art has been postponed to this late stage becauseit is now, armed with the full statistical analysis of the problem, that it will be possible to prop-erly understand the techniques proposed and their shortcomings, if any. We shall �nd that mostapproaches to be discussed will address only a subset of the issues brought out in our treatment.This review of earlier work does not purport to be exhaustive. As might be expected of a subjectso fundamental to experimental neuroscience, hundreds of papers have been published on spikesorting. The few that are mentioned below have been selected on two bases: �rst, they are the bestexamples of the di�erent common classes of algorithm; and second, in many cases they have beenquite inuential in the creation of the current work. In some cases, mention of earlier work hasalready been made in the course of the development above, in which case only a note to that e�ectwill appear here.5.14.1 Window discriminatorsThe most basic tool for the detection of spikes in extra-cellular recording is a simple threshold deviceknown as a Schmidt trigger. In the last few decades a slightly more sophisticated version of thisvenerable tool has come into use, known as the window discriminator, and it is this that we shalldescribe here. The discriminator is usually a hardware device | although the same functionalitycan easily be implemented on a computer | designed to identify spikes from a single cell. Theampli�ed signal from the electrode is compared to a manually-�xed threshold applied to either thesignal voltage or to its derivative. Each time the threshold is triggered, the subsequent waveformis displayed on an oscilloscope (or computer) screen. Observing these waveforms, the user sets anumber of time-voltage windows that bracket the waveforms that he wishes to identify as foregroundspikes. Any triggered waveform that passes through all of these windows is accepted as a spike, andthe time of occurrence is logged.These devices have typically been used in conjunction with manual isolation of a single spike,so that all that needs to be done with the windows is to distinguish this single waveform from thebackground. However, software versions of the same device may allow multiple sets of windows tobracket spikes of di�erent shapes (or more than one hardware discriminator may be used on the



138same signal), and in some cases spikes from more than one cell can be reasonably detected in thismanner.We can view this procedure as a special case of the manual clustering approach to be describedbelow. The trigger simultaneously extracts and aligns the waveforms. As can be seen from �g-ure 5.5C, as long as the threshold crossing is detected in the analogue signal (that is, there is no,or else only extremely fast, sampling involved) this procedure yields reasonably well-aligned spikes;alignment to a centre of mass is, however, very slightly better. The time-positions of the windowsrelative to the threshold crossing select the dimensions of the waveform space used to cluster, andthe voltage-extents of the windows set the cluster boundaries within this space. Thus, the clusteringis constrained to occur within an axis-aligned subspace and the cluster boundaries are constrainedto be rectangular. One advantage to this scheme over many standard clustering packages is that itallows the user to select the appropriate dimensions from among all of the axial directions. Anotheradvantage (in terms of manual clustering) is that the high-dimensional space of waveforms is com-pactly visualized on a two-dimensional screen. Nonetheless, the restrictions on subspace dimensionsand on cluster shape can be quite restrictive.5.14.2 Manual clusteringThe advent of multi-wire electrodes, and the availability of commercial software, has popularized theuse of clustering approaches to spike sorting. The basic framework of these approaches is as follows.Event waveforms are extracted using a fairly basic threshold trigger. In general, no attempt is madeto resample or to realign the event. These waveforms are then grouped into clusters, sometimes byan ad hoc clustering algorithm, but often by having the operator draw out the cluster boundariesin various two-dimensional projections. There is no separate spike-detection phase; membership ofthe clusters, along with the recorded time of threshold crossing, fully speci�es the estimated spikeidentity and time. Examples of procedures of this sort have been described by Abeles and Goldstein(1974), Gray et al : (1995), Rebrik et al : (1998) and many others.In general, the clustering is carried out in a subspace of reduced dimension. Above, we pointed outthat window discriminators can be viewed as selecting a subset of event coordinates for clustering.Other techniques that have been employed are those that were described in section 5.7.2; hand-picked features, often derived from the spike waveform in a non-linear fashion, are common (see,for example, products from DataWave Technologies), while PCA has also been used (Abeles andGoldstein 1974; Gray et al : 1995). In section 5.9.1 we also discussed some proposals to reducedimensionality in such a way as to suppress spike-shape variability.Frequently, the cluster shapes are constrained to be rectangular; we pointed out above that thisis implicit in the window discrimination approach to clustering, while in many explicit clusteringpackages it appears to be imposed as a matter of programming convenience. Other computer pack-



139ages allow elliptical (for example, the latest product from DataWave Technologies) or more generalpolygonal (such as the program xclust, written by M. Wilson) boundaries.In detail, these techniques can certainly be improved in the light of the analysis that has appearedhere. Event alignment, discussed in section 5.7.1, would reduce the apparent cluster noise; projectioninto the noise-whitened robust principal component space, discussed in section 5.7.2, would improveseparation. On the issue of the quality of the resultant clustering, however, we expect that the humaneye is a su�ciently sophisticated pattern recognition engine to yield fairly accurate results, providedthat it is assisted by a proper presentation of the data. One of the advantages to this approach isthat it obviates the need to �nd explicit general models of the spike-shape variability. The operatorcan, instead, assess the pattern of variability on a cell-by-cell basis. (Of course, clustering packageswhich restrict the cluster boundaries to be rectangular can hamper this exibility.)The di�culties in such methods fall into four groups. First, if the cluster assignments providethe �nal estimates of spike identity there is no way to resolve overlapped waveforms. Second, thelack of a probabilistic underpinning reduces the degree to which the quality of the solution can beassessed. With probabilistic methods the likelihood of the optimal �t can provide some indicationof whether the data have been reasonably modeled or not. Furthermore, a probabilistic techniqueleads to \soft" or \fuzzy" clusters, which, in turn, lend themselves to the assessment of the degreeof con�dence with which any given assignment can be made. Both of these features are lackingthe \hard" clustering schemes that are commonly used. The third set of issues arises from the factof human intervention. Spike assignments generated in this fashion may be not be reproducibleacross di�erent experimenters. Further, the need for considerable experimenter input limits thedegree to which the method can be scaled. As we acquire the technology to record from hundredsof electrodes at once, the need for an operator to examine waveforms from each one becomes aprohibitive obstacle. Finally, clustering schemes such as these cannot operate on-line in real time.Thus, they are inappropriate for experiments in which immediate feedback is needed, nor can theybe used in neural prosthetic applications.5.14.3 Automatic techniquesGaussian modelsLewicki (1994) provides an analysis of the problem that is closest in spirit to that provided here. Themodel described is based on a single spike waveform per cell, with added spherical Gaussian noise.While the algorithms are derived from an explicitly Bayesian point of view, the resulting steps aresimilar to those that we describe in section 5.8. Many of the details, however, are di�erent. Thus,Lewicki treats the alignment of the waveform within the sampled event as a latent variable and re-estimates its value on each �tting iteration, while we attempt to eliminate the variation in alignment



140by the technique described in section 5.7.1. His model contains no explicit outlier component, andinstead low occupancy models need to be inspected and possibly rejected by the operator.A signi�cant di�erence lies in his approach to the model selection problem. Rather than thecascading model selection procedure that we have proposed, which might be viewed as a form ofdivisive clustering, he initially �ts a mixture with more components than expected and then fusesadjacent clusters together based on the calculation of an approximate Bayes factor.The most signi�cant shortcoming in Lewicki's proposal is the lack of more sophisticated modelsfor the spike distribution from a single cell. We described in section 5.9 the reasons that we mightexpect a single Gaussian to be an inadequate model. Similar concerns led Fee et al : (1996a) (seebelow) to abandon the explicitly probabilistic approach. The methods described in this dissertationdemonstrate that more powerful models capable of modeling the intrinsic variability in the spikewaveforms, can, indeed, be implemented within the probabilistic point of view, thereby gaining allof the advantages implied by that approach.Agglomerative clusteringIn response to Lewicki (1994), Fee et al : (1996a) argue, as we did in section 5.9, that in many casesthe distribution of waveforms from a single cell does not appear to be Gaussian. They thereforepropose an agglomerative clustering scheme which is ad hoc in the sense of not being probabilisticallyfounded. The scheme is as follows.Events are extracted and aligned to a centre of mass calculated in a manner similar, thoughnot identical, to (5.7). The resultant vectors are �rst partitioned into small clusters by a \recursivebisection" algorithm somewhat similar to divisive k-means. These clusters are then agglomeratedinto larger groups. Two clusters are grouped together if they exhibit a large \boundary interaction";that is, roughly, if the density of points in the region of the boundary between them exceeds somethreshold.This may be viewed as an ad hoc version of the hierarchical mixture model described in sec-tion 5.9.2. The hierarchical mixture provides all the advantages, described above, of the \soft"probabilistic approach. Furthermore, the agglomeration procedure proposed in section 5.9.2 is moresatisfying in that it requires explicit overlap of the components. This is made possible by the use of amixture model, in which the component densities are able to overlap, rather than k-means clusteringin which the clusters are compelled to be disjoint.ART networksAnother proposal that has appeared in the literature is the use of a generic neural network classi�er.Oghalai et al : (1994) suggest the application of an ART-2 network (the acronym ART comes fromthe adaptive resonance theory of Carpenter and Grossberg 1987a, 1987b, 1990). This is a neural



141network architecture designed for unsupervised clustering problems, and as such appears to be alikely candidate. Closer inspection, however, reveals some weaknesses. In particular, ART impliesan odd distance metric in which clusters whose centers have smaller L1 norms are favoured. Fur-thermore, as each incoming vector is classi�ed, the center is updated by taking the point-by-pointminimum of the old center and the new point. Neither of these details seems to match the noisecharacteristics we have seen. ART is also a sequential clustering scheme, in which the order in whichthe data are presented is important. Moore (1989) has argued that it is particularly sensitive tonoise in the data. Overall it cannot be thought of as any better than any of the ad hoc clusteringschemes discussed in section 2.1.5.14.4 Spike time detectionSome authors have made the same distinction between clustering and spike time detection that wehave. In general, they have been motivated by a desire to correctly identify overlapped spikes withinthe recording, although these techniques may often bring with them the additional bene�ts that wedescribed in section 5.13.Lewicki (1994) proposes that the space of all possible waveform overlaps can be searched by theintroduction of some approximations and the use of e�cient programming techniques. It should benoted that in making this claim, he is addressing detection in the context of a Gaussian clusteringmodel that yields a single mean waveform for each cell. For the more complex distributions, involvingmultiple components for each cell, the computational di�culty is further increased. Nonetheless, insituations where adequate computational power is available, this is an attractive approach. However,the greedy approximation made in section 5.13 is expected to exhibit slightly improved scaling.Roberts and Hartline (1975) (see also Roberts 1979) propose an \optimal" linear �ltering algo-rithm, similar to the standard Wiener matched-�lter. Expressed in the frequency domain, the �lterused to detect the mth spike shape is given by the transform of the associated waveform divided bythe sum of the power in the other waveforms and the noise. This �lter has the property of respondingminimally to the other waveforms (and to noise), while maintaining its output in response to thetarget waveform at a �xed level. In essence, the �lters transform the data to a basis in which thedi�erent spike shapes are orthogonal; in this basis overlaps are easily identi�ed.In the context of the tetrode recordings described here, this approach has not proven to bevery successful. The problem seems to be that spike shapes from di�erent cells are spectrallysimilar enough that the attempted orthogonalization is impossible. The matched �ltering techniquedescribed in section 5.13 di�ers from this one in that no e�ort is made to orthogonalize the targets.Instead, the interaction between the �lters is handled explicitly by subtracting the waveform withthe largest response from the data and re-�ltering. While slower, this approach yields more reliableresults.



142It should be noted that Gozani and Miller (1994) report success with this technique. Theirrecordings were made with multiple hook electrodes arranged along a nerve bundle. Spike waveformsmight have di�ered in their propagation velocity along this nerve, a feature which would havefacilitated orthogonalization. For cortical tetrode data, or other data recorded within neuropil witha multi-tip electrode, di�erences in propagation velocity are quite unlikely to be detected.
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Chapter 6 Doubly Stochastic Poisson Models6.1 IntroductionIn this chapter we turn from the study of models of spike waveforms, to models of the arrival timesof the action potentials invoked in response to an experimental stimulus. The work described herewas carried out jointly with J. Linden. The methods that will be discussed have been applied todata1 collected from the lateral intraparietal area in two macaques during �xation and saccade tasksinvolving visual and auditory targets. A detailed discussion of this application is presented by Linden(1999).6.1.1 Point processesIn chapter 5 we examined a variety of statistical models that described the spike waveforms recordedby extracellular electrodes. While the shape of the waveform provided us with information aboutthe identity of the neuron in which the associated action potential occurred, it is not actually usedby the nervous system to transmit information between neurons. Instead, from the point of view ofthe neuron, the action potential is an all-or-nothing pulse: any information that needs to be relayedbetween cells is carried in the occurrence and timing of the pulses alone.Statistically, we may view a train of action potentials or spikes2 from a single neuron as theoutcome of a stochastic point process. The theory of such processes has been studied extensivelyin the statistics literature (Cox and Lewis 1966; Cox and Isham 1980; Snyder and Miller 1991). Theoutcome of a point process may be represented in one of two ways: either as a sequence of N eventtimes f�i : i = 1 : : :Ng or as a sequence of T counts fxt : t = 1 : : : Tg. The count xt indicates thenumber of events that fall within the small interval [t�; (t+ 1)�); thus Pt xt = N and 0 � ti < T�.We will always take the intervals to be of the same length, given by the bin width, �. In thischapter we will be concerned solely with the counting representation. It will frequently be useful tocollect the counts xt into the vector, x.A prominent distribution, that plays a rôle in point-process theory quite similar to that of theGaussian in continuous random variable theory, is the Poisson process. In particular, this is themaximum entropy distribution for a given density of events. Under the Poisson distribution for acounting process each of the counting random variables is independent. A single parameter, �t, the1The data were collected by J. Linden and Dr. A. Grunewald, in Dr. R. A. Andersen's laboratory.2For the purposes of this chapter we need not distinguish between the two.



144mean or rate of the process, characterizes the distribution of the variable xtP�t (xt) = e��t�xttxt! (6.1)Thus the probability of the count vector x, given a rate vector � isP� (x) = TYt=1 e��t�xttxt! (6.2)If �t is the same for each interval the Poisson process is called homogeneous. In this chapter wewill be primarily concerned with inhomogeneous processes.6.1.2 Spike response variabilityMany neurophysiological experiments are conducted as follows. A stimulus is presented to an an-imal subject and the times of action potentials in one or more neurons in the subject's brain arerecorded. The stimulus may well elicit some trained behaviour from the animal: action potentialsare recorded for the entire duration of experimental interest around both the stimulus presentationand behavioural event, if any. The same stimulus (and, presumably, behaviour) is then repeatedover many di�erent experimental trials, often randomly interleaved with other, similar, stimuli. Oneach repetition, the times of the action potentials that arise in the same neurons are noted. Theresult is a database of stimulus-response pairs for each cell.The neurons of interest in a given experiment usually alter their patterns of �ring during thetrial, in a manner linked to the presentation of the stimulus or to the execution of the behaviour (orboth). Such neurons appear to be related to the processing of either the stimulus or the behaviouralresponse. However, very rarely does a neuron respond to multiple trials in an exactly repeatablemanner; this is particularly true of cells in the cerebral cortex of mammals, such as those to bemodeled here. This variability in the response of a neuron is what leads us to treat the pattern ofspikes as the output of a stochastic process.Spike trains observed in response to the same stimulus have often been modeled as independentlydrawn from a single inhomogeneous Poisson process (Perkel et al : 1967). In detail such a modelmust be wrong. Both the refractory period and the presence of bursts violate the independenceassumption of the Poisson counting process. However, in situations where the counting intervals aresu�ciently large, it has been thought to be a reasonable approximation.Poisson processes, including those with inhomogeneous rate, have the property that the distribu-tion of counts retains the form (6.1) whatever the choice of the counting interval. In particular, wemight select the interval [0; T ), to obtain the total spike count during a trial. Provided the originalprocess is Poisson, this count will still be distributed according to (6.1). That distribution has the



145property that its variance is equal to its mean.In practice, the variance in spike count from across repeated, experimentally identical, trials isoften larger than can be accounted for by the simple Poisson model (Tolhurst et al : 1981; Dean 1981;Tolhurst et al : 1983; Vogels et al : 1989; Softky and Koch 1993; Gershon et al : 1998; Shadlen andNewsome 1998). This same result is apparent in the data to be modeled here (Linden 1999), wherethe ratio between variance and mean (known as the Fano factor) appears to be closer to 1.5 than to1. One possible source of this additional variance across trials might be slow changes in the overallexcitability of neurons or of the cortical area. A number of recent reports have provided direct orindirect evidence for this idea (Brody 1998; Oram et al : 1998; also see Tomko and Crapper 1974;Rose et al : 1990; Tolhurst et al : 1981; Arieli et al : 1996). Such slow variation in neuronal excitabilitymight result in an apparently stochastic scaling of the underlying inhomogeneous Poisson rate. Thishypothesis will form the basis of the model to be discussed here.6.2 The Generative ModelThe generative model for a spike train x, output by a given cell in response to given experimentalconditions, is as follows. The cell-stimulus pair is taken to specify a non-negative intensity pro�le,�, that describes the time-course of the cell's response to the stimulus. This pro�le is scaled by alatent variable, s, which is drawn from a gamma distribution with unit mean, and which is meantto represent the excitability of the neuron on a given trial. The action potential times are thengenerated by an inhomogeneous Poisson process with rate vector � = s�.This model is known in the point process literature as an inhomogeneous Polya process (seeSnyder and Miller 1991). It is a special case of the doubly stochastic Poisson process: \doublystochastic" because the Poisson rate is itself a random variable (Cox 1955; Snyder and Miller 1991).Clearly, any such process is a latent variable model. Other examples of doubly stochastic Poissonprocesses have also been used to model neural spike data by other investigators; for example, someauthors have taken the rate to be a piecewise constant function generated from a Markov chain(Radons et al : 1994; Abeles et al : 1993; Seidemann et al : 1996; Gat et al : 1997). The present choiceis, in part, appealing for its simplicity and relative tractability. As can be seen from the applicationsdiscussed by Linden (1999), it can produce useful results.The standard form of the gamma density (for the scale s) depends on two parameters � and �.It is given by P�;� (s) = 1�(�)�� s��1e�s=� (6.3)It may be easily veri�ed that the mean of this distribution is ��. Thus, our requirement that thedistribution have unit mean constrains the parameters such that � = 1=�, and we obtain instead



146the single parameter density P� (s) = ���(�)s��1e�s� (6.4)We will refer to the parameter � as the stability, since as it grows the variability in spike countdrops.Combining this with the expression for the inhomogeneous Poisson process probability (6.2), weobtain the joint density of a spike train x being observed along with a scale factor s.P�;� (x; s) =  TYt=1 e�s�t(s�t)xtxt! !� ���(�)s��1e�s�� (6.5)The scale, s, is not directly observable, making this a latent variable model. While we mayapproach learning in this model by the EM algorithm that we have used before, in this case it provesto be useful to obtain a closed form for the marginal distribution function of x, by integrating thejoint density of (6.5) with respect to s. The resultant marginal isP�;� (x) =  TYt=1 �xttxt!!��(X + �)�(�) ���(� + �)�(X+�) (6.6)Here, � and X are the sums of the elements in the corresponding vectors: � = PTt=1 �t andX =PTt=1 xt.We assume that a set of spike trains, X = fx1 : : : xNg, collected from the same cell under identicaltrial conditions, is obtained by drawing each one independently from this distribution. We use thesubscript n to identify the spike train and write Xn for the corresponding total spike count. Thus,we obtain the log-likelihood of the parameters � and � under the set of observations X ,`X (�; �) = logZ+ NXn=1 TXt=1 xnt log�t + log��(Xn + �)�(�) �+ � log�� (Xn + �) log(� + �)! (6.7)where the normalizing constant Z absorbs terms independent of the parameters.As it stands, this model has a large number of independent degrees of freedom in its parameters.In particular, for small counting intervals and reasonable experimental durations, the vector � mayhave hundreds of elements. It is impractical to expect reasonable parameter estimates from thesmall amounts of data that can usually be collected. Therefore, we impose a prior density onthe parameters. The prior introduces inter-dependencies between the elements of �, reducing thee�ective number of degrees of freedom.The stability parameter, � is taken to be independent of the intensity function and is distributedaccording to the density e�1=�. As a result, small values of � are subject to a slight penalty. Inpractice, this prior is vague enough to have little e�ect on the parameter estimates and is included



147only for completeness.The prior distribution of the intensity function is a stationary Gaussian process with zero meanand covariance matrix C. The stationarity indicates that we have no prior belief about the courseof the intensity function during the experiment. In mathematical terms, it requires that the matrixC be T�oplitz (that is, diagonally striped).The resultant log posterior can be written:logP (�; � j x1; : : : ; xN ) = logZ � 12�TC�1�� 1�+ NXn=1�xTn log�� (Xn + �) log(� + �) + � log�+ log��(Xn + �)�(�) �� (6.8)where Z has now absorbed, in addition, the normalization term of the Gaussian.The reduction in degrees of freedom is achieved by choice of a suitable prior. We select a matrixwhich is based on an auto-covariance function that is Gaussian3 in shape: that is, the covariancebetween two elements of the intensity vector �s and �t under the prior is of the formCst = exp�� (s� t)22�2 � (6.9)The quantity �, which is chosen a priori, reects the expected time-scale of changes in the intensityfunction, expressed in terms of the counting interval length �. Thus, this choice of prior covarianceexpresses a belief in the smoothness of the underlying intensity function.If � is fairly large, the matrix C will be ill-conditioned. As such, the inverse that appears in (6.8)creates a numerical instability. This can be resolved by diagonalizing the covariance matrix. Recallthat the eigenvectors of any T�oplitz matrix are the basis vectors of the discrete Fourier transform(DFT), and so C is diagonalized by the DFT matrix F�st = 1pT exp(�2�i(s�1)(t�1)=T ). Rather thanuse this complex form, it will be convenient to introduce a real transform matrix which separatesthe real and imaginary parts. Such a matrix is given byF̂st = 1pT �8>>><>>>: 1 if s = 1cos(2� s2 (t�1)T ) if s > 1 and is evensin(2� (s�1)2 (t�1)T ) if s > 1 and is odd (6.10)We have assumed that T , the total number of counting intervals, is even.Thus, the matrix F̂CF̂T is diagonal, representing the independence of the Fourier components ofa stationary process. The ill-conditioning now reveals itself in the presence of one or more diagonalelements that are very close to zero. Thus, in the frequency domain, the ill-conditioning of C is3It is important to distinguish between the Gaussian distribution of the prior and the Gaussian shape of theauto-covariance. One does not imply the other.



148easy to interpret; it reects the fact that in certain frequencies very little power is expected underthe prior. In e�ect, the prior imposes a band-limitation on the intensity function. The particularchoice of Gaussian auto-covariance function, for example, leads to a half-Gaussian shaped fall-o� inexpected power as frequency increases from 0, with the highest frequencies e�ectively excluded. It isimportant to realize, however, that the imposition of this prior is not equivalent to simply �lteringthe intensity function by the expected frequency pro�le.We now restrict the transform matrix to a rectangular form F in which rows corresponding to theeigenvalues of C that fall below some low threshold have been eliminated. Thus the matrix FCFT isalso diagonal, but is of order less than T and is well-conditioned. We will also apply this restrictedtransform to the intensity function. In doing so, we force the power of the intensity function to zeroat those frequencies at which the expected power is vanishingly small.We proceed to rewrite the posterior (6.8) in terms of this transformed intensity function. Inpractice, it proves to be useful to represent the intensity function by the transformed logarithm� = F log� (where the logarithm is taken to apply element by element). The introduction of thelogarithm enforces the requirement that the intensity be positive; this would otherwise be di�cultto ensure when working in the frequency domain. The log-posterior now becomeslogP (�; � j x1; : : : ; xN ) = logZ � 12e�TFReFT� � 1� + hxiT FT��(hxiT 1+N�) log(e�TF1+ �) +N� log�+ NXn=1 log��(Xn + �)�(�) � (6.11)where hxi represents the sum of the di�erent observations, 1 is a vector of T ones introduced toindicate summation of elements, and R = FT(FCFT)�1F. Exponentiation of a vector term is takento apply element by element.6.3 OptimizationWe have presented a latent variable model for spike generation. In principle, we might employthe EM algorithm to �nd the maximum-likelihood | or, given the prior, maximum a posteriori| parameter estimates, as we have done with the other latent variable models discussed in thisdissertation. Inspection of the joint probability (6.5), however, suggests that this may not be aseasy as in our earlier examples. The latent variable, s, will enter into the joint log-likelihood in thelogarithm. Thus, calculation of the expected value of this likelihood requires not only the �rst one ortwo moments of the latent variable posterior, as in our previous examples, but also the expectationof log s.To avoid this, we optimize the marginalized posterior (6.11) directly by numerical gradient-basedmethods. Conceptually, this may be thought of as a simple gradient ascent algorithm, although, in



149practice, better results are obtained by use of a quasi-second order method (see, for example, Presset al : 1993). Such optimizations can be e�ciently executed using numerical methods software suchas the MATLAB package.6.4 Goodness of FitWhile the basic structure of the statistical model described in this chapter has been chosen toembody our beliefs about the origin of neuronal variability, the exact densities used (that is, thegamma and Poisson) have by and large been selected arbitrarily. Both are high entropy distributions,which is appropriate in situations where little constraining knowledge is available, but it must beadmitted that, to a signi�cant extent, the choice has been driven by mathematical expediency. Insome details, we must expect the model to be incorrect. As was already pointed out, both therefractory period and the tendency of some cells to �re in bursts, violate the independence of countsassumption inherent in the Poisson process. Similarly, we have no guarantee that the scaling willbe gamma distributed, nor even that the variability due to excitability can be expressed entirely asmultiplicative scaling (on this last point see Linden 1999).In this section we will investigate through Monte-Carlo means the degree to which the model isappropriate to describe a given set of spike trains recorded in mammalian cortex. These data werecollected by J. Linden and A. Grunewald from area LIP of 2 macaque monkeys. For data collectionprocedures and further information the reader is referred to Linden (1999).In general, such goodness of �t testing is a di�cult problem. We have encountered the issueof model selection repeatedly in this dissertation, where the best of a group of competing modelsneeds to be selected. In this case, though, there is no clear alternative. Based solely on the singlemodel and the available data, we would like to decide whether or not the model is acceptable;that is, whether it is plausible that the data are indeed distributed in the manner speci�ed. Thegeneral framework for making such decisions falls within the Neyman-Pearson signi�cance testingliterature that is fundamental to traditional developments of statistical theory (see, for example,Hoel et al : 1971). Many speci�c tests have been developed for particular simple distributions (someexamples may be found in Zar 1998). For one dimensional data a general technique, known as theKolmogorov-Smirnov test, is available to assess the validity of an arbitrary distribution (see, forexample, Press et al : 1993). This can be extended into a small number of dimensions (Fasano andFranceschini 1987), but for more complicated models, describing higher dimensional data, as in thecurrent instance, such straightforward techniques are not available.Instead, we approach the problem by a novel Monte-Carlo technique, asking whether the obtainedlikelihood of the best �t model for the observed data matches corresponding values obtained forsimulated data known to be generated from the distribution. The steps of the procedure are as



150follows.� Given a set of observed spike trains X o = fxo1 : : : xoNg, �nd the MAP parameter estimates �oand �o.� Calculate the likelihood on the observed data`o = `X o (�o; �o) (6.12)� Repeat for s = 1 : : : S:{ Generate a set of simulated spike trains from the optimized modelX s = fxs1 : : : xsNg � iid P�o;�o (x) (6.13){ Re-�t the model to the simulated data X s to obtain new MAP estimates �s; �s.{ Obtain the optimal likelihood on the simulated data`s = `X s (�s; �s) (6.14)� Find the rank of the observed likelihood within the set of simulated likelihoodsro = jfs : `s < `ogj (6.15)If this procedure is repeated a number of times | each time starting with a di�erent set ofobserved spike trains, perhaps derived from a di�erent cell | and if the model represents the correctfamily of distributions, we would expect the resultant ranks to be uniformly distributed between 0and S.Two points about the process might require elucidation. First, the simulated data are generatedusing the MAP parameter values so that the likelihoods measured in the simulations are drawn fromthe same region of the parameter space as the true likelihoods. Likelihoods under simulated datataken in an an entirely di�erent parameter regime might be quite di�erent. Second, the likelihoodsunder the simulated data need to be evaluated at the re-�t parameter values so as to avoid a biasdue to over-�tting. If this were not done, we would expect the observed likelihoods `o to be largerthan the simulated values, as the parameters would be perfectly tailored to the observed data alone.In principle, we may now test for uniformity of the ranks by a Kolmogorov-Smirnov or other,more specialized, hypothesis test. In practice it is obvious from inspection that, in this case, theranks are not uniformly distributed. Figure 6.1 shows the ranks obtained using di�erent groups of
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Figure 6.1: Distributions of likelihood rankscells under di�erent stimulus conditions. Each panel represents a set of spike trains collected underidentical experimental conditions. Only spike trains from cells that appeared to be responsive underthe speci�c conditions were used (the number of these is given by the quoted value of N in eachpanel), and a single set was taken from each such cell. In each case, the number of simulations, S,was 100.It is clear from the distributions in �gure 6.1 that the ranks are far from uniformly distributed.This suggests that the model we have developed in this chapter is not, in fact, an accurate descriptionof the recorded data. However, had the model been entirely o� base, we might have expected thesimulated data to almost always have yielded higher best-�t likelihoods than the real observations.For example, if the smoothing invoked by the prior were too severe then the derived intensity functionwould be greatly inaccurate for the real data, leading to much lower probabilities. Clearly, this is notthe case either; almost half the time `s is smaller than `o. Thus, we conclude that while the model



152is not correct, it is reasonably capable of describing the data. In particular, it would be di�cult totell, simply by looking at the optimal likelihood, whether a given set of spike trains were genuineneural data or simply simulations.A further point of interest in �gure 6.1 is that the distributions of ranks obtained for the fourdi�erent experimental conditions | and frequently, from di�erent cells | are extremely similar.We might take this as evidence that the statistics of the spike trains from these di�erent cells andunder these di�erent experimental conditions are actually the same. Thus, while our current modelis inadequate, we might hope that by some re�nement we can, in fact, �nd an appropriate model.6.5 Clustering Spike TrainsIt is often a matter of scienti�c interest to ask whether the cells within a given area of the brain fallinto clusters based on the time-courses of their responses to a given stimulus. If such clusters areapparent, they may indicate the presence of distinct sub-populations of neurons that play di�erentrôles in the neural computation.A common di�culty encountered when attempting to apply traditional clustering techniquessuch as the k-means algorithm or its variants, to spike trains, is the problem of �nding a suitablemetric. Such algorithms require a notion of distance between two spike trains, but how is sucha distance to be de�ned? One approach has been to smooth the spike trains, by binning or byconvolving with a Gaussian kernel, and then to sample each such smoothed spike train to obtaina vector representation (see, for example, Richmond and Optican 1987; Optican and Richmond1987; McClurkin et al : 1991). These vectors are then treated as though they were embedded inthe standard Euclidean inner-product space. There is, however, no a priori reason to expect sucha distance to be an appropriate metric for spike train clustering. This point is discussed at somelength by Victor and Purpura (1997), who propose an alternative metric, though also on an ad hocbasis.Fortunately, we can avoid this problem. In chapter 2 we saw that, in many cases, the generativemodeling approach to clustering is to be preferred. In particular, this is true if we are interested inidentifying the process from which the observed data arose, rather than simply grouping the datathemselves. The appropriate generative model in such situations is the mixture model given by theweighted sum of M component distributions:P� (x) = MXm=1�mP�m (x) (6.16)The parameters of the mixture decompose into independent and disjoint sets � = (�1 : : :�M ; �1 : : : �M ),where the parameters �m describe the mth component or cluster. Learning algorithms for such mix-



153tures were discussed at length in chapters 2 and 3.Such an approach e�ectively sidesteps the issue of identifying a suitable metric within the spaceof spike trains. The clusters are no longer described within the observation space; instead, theyare described by the parameters �m which live in a di�erent space altogether. We no longer needto compute the separation between two spike trains: we need only �nd the \distance" between aspike train and the cluster parameters. A natural candidate for such a distance is obvious: theprobability of the spike train under the cluster model. Thus, the probabilistic treatment espousedthroughout this dissertation allows us to rigourously arrive at a unique clustering solution from onlya few explicitly stated assumptions about the distributions of spike trains.To this point, we have regarded each spike train xn as a separate observation; now, we will insteadtreat all of the spike trains collected from the same cell under the same experimental conditions asa single outcome of the generative model. For the ith cell-experiment pair we can collect the Niindividual count vectors into a matrix Xi, in which each count vector appears as a column. Carefulinspection of the probability (6.7) reveals that, in fact, we are only interested in the marginal sumsof this matrix. Thus, we compute and store the following su�cient statistics: the sum of the countvectors Xi1, the vector of total spike counts XTi 1, and the total of all the elements 1TXi1. In theseexpressions the vector 1 should be taken to contain either T or Ni ones as appropriate.We can then write the form of the mth component probability distribution, written in terms ofthe Fourier domain intensity �m and the stability �m,Pm (Xi) / e�TmFXi1�Ni�mm (e�TmF1+ �m)�(1TXi1+Ni�m) exp �1T log��(XTi 1+ �m1)�(�m) �� (6.17)In the �nal factor, the gamma function and the logarithm should be taken to apply element byelement. We have left out a factor given by the product of the factorials of each of the elements inXi. This factor is identical across all of the component distributions and thus has no impact on anyof the optimization algorithms and need never be computed.We then �t a mixture model for the entire ensemble of recordings taken across multiple cellsX = fXig, given by P� (X ) = QiPm Pm (Xi). In doing so, we assume that a \cluster" of spiketrains are such that they may have arisen from exactly the same intensity function, although withpossibly di�erent scalings. The \extent" of the cluster is de�ned by the model, as well as by thelearned value of the stability parameter.For the single component model, the introduction of the prior was important to achieve regular-ized estimation. In the mixture, this regularization is, if anything, more important as the complexityof the model has increased. We choose the prior on the parameter set f�mg [ f�mg to factor overthe di�erent components; that is, the intensity function and stability for one component are a prioriindependent of those of any other component distribution. For any one component we choose the



154priors on �m and �m to be exactly as before. The covariance matrix C is taken to be common toall of the clusters. The mixing parameters �m are subject to a uniform prior: this does not a�ectthe results of the estimation and will be not be written explicitly.The basic EM algorithm suitable for learning in such models was described in section 2.4. Werecall that the E-step involves computation of responsibilities according to (2.9)rm;i = �mPm (xi)Pl �lPl (xi) (6.18)where, the component distributions are given by (6.17). The M-step update of the mixing probabil-ities is common to all mixture models (2.12)�m  Pi rm;ijX j (6.19)The update of the component parameters in the maximum likelihood context of chapter 2 was givenby (2.15) �m  argmax�m Xi rm;i logP�m (Xi) (6.20)where �m stands for the parameters of the mth component. In the present example, however, wehave a non-trivial prior distribution on the component parameters. Given our assumption that theprior factorizes over the di�erent models, we can correct (6.20) by the addition of the log-prior forthe mth model to the right hand side. The updated parameters of the mth component are thusobtained by optimizing the expressionQ(�m; �m) = logZ � 12e�TmFReFT�m � 1�m+Xi rm;i h�TmFXi1� (1TXi1+N�m) log(e�TmF1+ �m)+N�m log�m + 1T log��(XTi 1+ �m)�(�m) �� (6.21)As before, this optimization must be performed numerically, and thus, the computational cost ofthe M-step is considerably greater than that of the E-step. It is useful to recall the Generalized EM(GEM) algorithm, mentioned briey in section 1.8, in which the M-step is only partially completed;that is, the free energy is increased by the update of the parameters, but not necessarily maximized.This generalization shares the guaranteed convergence with the standard EM algorithm, but is moree�cient. In the present case, this partial completion is equivalent to executing only a limited numberof steps of the numerical optimization at each M-step.The GEM algorithm described above was run on a subset of the data described previously, thatwas collected from di�erent cells under the same experimental conditions. The results are shown
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Figure 6.2: Clusters of spike trains
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Figure 6.3: Responsibilities of the di�erent models.in �gure 6.2. The size of the model was determined by the BIC penalized likelihood procedure(see section 1.3), which yielded a mixture of �ve components. The intensity function learned foreach of these components is shown by the heavy black line in each panel of the �gure. The mixingprobabilities are indicated by the percentage �gures above each panel. Cells have been assigned tothe most likely cluster (that is, the one with the largest responsibility for the data from the cell),and the corresponding spike trains then shown in the background of the appropriate panel. Therepresentation is similar to the conventional spike raster diagram: each row of dots represents asingle trial; the presence of a dot time indicates that at least one spike was counted in a 5ms windowaround that time; the size of the dot indicates the number of spikes. The horizontal black linesseparate spike trains from di�erent cells.Do the spike trains classi�ed in �gure 6.2 really fall into �ve distinct clusters? The fact thatBIC model selection rejected the option of more components in the mixture suggests that this maywell be the case. As a further reassurance we can examine the posterior assignment probabilities,or responsibilities (6.18), under the maximum likelihood solution. These values indicate the suretywith which each data point is assigned to each cluster. If the components tended to share theresponsibility for each spike train it would suggest that the clusters were not well separated. Theresponsibilities of each of the �ve component models are shown in �gure 6.3. Each line shows theassignment probabilities of one model, indicated by the number above the line, for all of data; thedata have been reordered to group spike trains assigned to the same cluster together. In all cases,only one model has high responsibility, very close to 1. This suggests that the clusters shown in�gure 6.2 really are well separated.6.6 SummaryIn this chapter we have introduced a latent variable model to describe spike trains generated by aneuron under constant experimental conditions. The model is designed to capture certain recentobservations about the statistics of neural responses: in particular, the fact that the variability in



157cortical spike trains is often greater than that predicted by the Poisson process assumption, andthat in many cases this greater variability might result from changes in the overall excitability ofthe neuron or cortical area. Although the EM algorithm involves a di�cult E-step, it proves to bepossible to �t the model by direct numerical optimization.Using a Monte-Carlo goodness of �t procedure, we saw that the model does not describe thestatistics of spiking exactly. However, the maximal likelihood values for the best-�t model underreal neural data are quite similar to the values under simulated data generated from the model itself.Thus, we conclude that model is a reasonable, but not exact description.The statistical model provides a rigorous foundation on which to base two analyses of neuraldata. First, maximum a posteriori optimization of the model with a suitable prior imposed on theparameters, leads to a smoothed estimate of the underlying spike-rate intensity. This techniqueprovides a solid statistical basis for the smoothing, as well as correctly accounting for biases thatmight be introduced by any variable excitability. Second, by use of a mixture of such models, we areable to identify clusters of cells whose spike trains in response to the same stimuli are similar. Adhoc methods for clustering spike trains su�er from the serious di�culty of the absence of a naturalmetric. In contrast, the probabilistic procedure avoids the issue of a distance measure entirely, andleads to a natural clustering algorithm.
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