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Summary

We introduce the Recurrent Generalized Linear Model (R-GLM), an extension of GLMs based on a compact
representation of the spiking history through a linear recurrent neural network. R-GLMs match the predictive
likelihood of Linear Dynamical Systems (LDS) with linear-Gaussian observations. We also address a disad-
vantage of GLMs, including the R-GLM, that they cannot model instantaneous correlations. The LDS however
allows for extra correlated variability through the new innovation in the latent space. To improve GLMs we
introduce a class of correlated output distributions which can be used with any type of multivariate data: bi-
nary, counts or continuous. The correlated Bernoulli distribution matches the predictive likelihood of Ising
models for static binarized spike data. The correlated Poisson distribution offers significant improvements
in predictive likelihood for GLMs and R-GLMs. We evaluate the performance of the models on a dataset
recorded from a Utah array implanted into motor areas of a macaque monkey during a delayed reaching task.
We report that the R-GLM consistently finds long timescales (of up to several seconds) of correlated activity
similar to those found by LDS and longer than the timescales learnt by standard GLMs (up to 400 ms). Like
all GLMs, the proposed model can be used with any link function and any output distribution. This is unlike
models based on LDS which require careful approximations to be trained with Poisson outputs.

Additional Material

Over the past several years generalized linear models have been used extensively as statistical models of
recorded neural data. However, it was recently shown that models based on latent dynamical systems can better
capture the patterns of variability in spike trains [1]. This is primarily achieved through the long timescales
of correlation which LDS models discover in neural data. These long timescales range from hundreds of
milliseconds to seconds and are caused either by simultaneous external inputs which neurons receive or by
the low-dimensional intrinsic dynamics of the neuronal networks in which they are embedded. To capture the
long timescales with GLM-type models, we propose the R-GLM with the following parametrization:

x1 = b1, xt+1 = Axt +Wyt + bt, yt ∝ Poisson (f (Cxt + Zyt + d)) , (1)

where yt is the vector of spike counts at time t, xt is a vector of hidden units with b1 its initial value and bt a
driving input to the hidden units which provides a compact parametrization of the PSTH of the full population
(see [1]). A,C, Z and W are various transformation matrices but Z is strictly lower triangular to get a well-
defined process, d is a vector of biases for each neuron and f a positive link function. The main difference
from the LDS model is the lack of random innovations in the latent space of xt. Instead, xt is a deterministic
function of the spiking history yt. The R-GLM effectively has no latent variables, so the probability of the
observed spike trains can be written down explicitly in terms of the data and optimized by gradient descent.
Although the resulting likelihood is not convex in R, training R-GLMs is very fast and stable in practice.

It was observed by [1] that an Ising-like model with Poisson outputs cannot be normalized if any of the
interactions are positive, which greatly limits their usefulness in modelling instantaneous correlations. Also
proved in [1], direct instantaneous couplings in a GLM result in ill-defined probabilistic models. Here we
propose to model instantaneous correlations through the strictly lower triangular matrix Z in equation 1. The
process yt given by equation 1 is well defined because the mean of ytj only depends on the values yti up to
i = j − 1. We call the distribution on yt correlated Poisson. If yt was continuous and the noise Gaussian,
the model would be equivalent to full covariance Gaussians. In analogy we can define a correlated Bernoulli
distribution. When trained on binarized data, the correlated Bernoulli distribution matches the performance of
Ising models. The two models gave almost exactly the same likelihoods on test data for all cross-validation
folds, with the correlated Bernoulli slightly but consistently better. Furthermore, the two models have the same
number of parameters.

To compare with LDS, we changed the observation process of the R-GLM to Gaussian and set the link
function to identity. We include a standard coupled GLM model also with Gaussian observations, where the
spike counts of each neuron are projected onto a set of five basis functions before being linearly combined



across neurons [1]. This results in a total of 5q2 interaction parameters, with q the number of neurons, which
we regularize by the L1 norm to obtain good generalization on held-out data. The basis functions we used
were decaying exponentials with timescales .1, 20, 40, 100 and 400 ms (longer timescales did not help).
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Figure 1: Eigenvalues of A.

For LDS and R-GLM we followed [2] and L1-regularized the matrix A away
from the identity matrix. This resulted in stable models and better predictive like-
lihoods. Furthermore, we initialized the LDS optimization with the new method
based on subspace identification proposed in [3] which yielded significant im-
provements over common initialization techniques.

Figure 1 shows the eigenvalues of A for R-GLM and LDS trained on
four minutes of data binned at 10ms. We included in the analysis 85
units. The longest timescales obtained by the two models were 2.6 and
3.4 seconds respectively. The average log likelihood improvement of both
R-GLM and LDS with 40 hidden units over the standard GLM was 0.025

bits/spike. Using self-coupling filters in the R-GLM further improved it by 0.01 bits/spike. The
dynamic models offer more compact parameterizations which helps their generalization performance.
We next evaluated R-GLMs and standard GLMs with correlated Poisson outputs, driving inputs and self-
coupling filters to model refractory effects. Table 1 shows in each line the improvement over the model in the
line above. The proposed correlated Poisson distribution and the recurrent parametrization improve GLMs.

Likelihood
(bits/spike)

fully independent - 3.15
correlated Poisson + 0.175
GLM + 0.225
GLM with corre-
lated Poisson

+ 0.03

R-GLM with corre-
lated Poisson

+ 0.03

To further show that the R-GLM better models the joint dis-
tribution of spike trains than GLMs, we compared the qual-
ity of the samples generated from the two models after train-
ing. The standard GLM was unstable at its best predic-
tive likelihoods and the process diverged on 5-20% of sim-
ulated trials. On those trials where it did not diverge, the
average correlation coefficients were too high and were sim-
ilar to those shown in [1]. In contrast the R-GLM mod-
eled well both instantaneous and time-lagged correlations be-
tween neurons. We followed the procedure of [1] and sep-
arated neurons into four non-overlapping groups based on

their average correlation coefficients to other neurons. Within each group we then averaged all pair-
wise correlations at different time lags. We computed these coefficients for data simulated from the
trained R-GLM and found that they matched very well the time-lag correlations of the real data. Mod-
els based on LDS are also able to capture these statistics as shown in [1] on the same dataset.
To conclude, R-GLMs bring to the GLM toolkit three essential properties enjoyed by latent dynamical systems:
they have a compact parametrization that prevents overfitting, they can model dynamics and they can capture
long timescales in a stable way. Furthermore, R-GLMs are quite modular and should be easy to extend along
various dimensions.
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Figure 2: Average time-lag pair-
wise correlations within four disjoint
groups of neurons. Continuous lines
represent coefficients computed from
real data.
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