
Extracting regions of interest from biological images
with convolutional sparse block coding

Marius Pachitariu1, Adam Packer2, Noah Pettit2, Henry Dagleish2,
Michael Hausser2 and Maneesh Sahani1

1Gatsby Unit, UCL UK {marius, maneesh}@gatsby.ucl.ac.uk
2The Wolfson Institute for Biomedical Research, UCL UK {a.packer,

noah.pettit.10, henry.dalgleish.09, m.hausser}@ucl.ac.uk

Abstract

Biological tissue is often composed of cells with similar morphologies replicated
throughout large volumes and many biological applications rely on the accurate
identification of these cells and their locations from image data. Here we develop
a generative model that captures the regularities present in images composed of
repeating elements of a few different types. Formally, the model can be described
as convolutional sparse block coding. For inference we use a variant of convolu-
tional matching pursuit adapted to block-based representations. We extend the K-
SVD learning algorithm to subspaces by retaining several principal vectors from
the SVD decomposition instead of just one. Good models with little cross-talk
between subspaces can be obtained by learning the blocks incrementally. We
perform extensive experiments on simulated images and the inference algorithm
consistently recovers a large proportion of the cells with a small number of false
positives. We fit the convolutional model to noisy GCaMP6 two-photon images
of spiking neurons and to Nissl-stained slices of cortical tissue and show that it re-
covers cell body locations without supervision. The flexibility of the block-based
representation is reflected in the variability of the recovered cell shapes.

1 Introduction

For evolutionary reasons, biological tissue at all spatial scales is composed of repeating patterns.
This is because successful biological motifs are reused and multiplied by evolutionary pressures. At
a small spatial scale eukaryotic cells contain only a few types of major organelles like mitochondria
and vacuoles and several dozen minor organelles like vesicles and ribosomes. Each of the organelles
is replicated a large number of times within each cell and has a distinctive visual appearance. At
the scale of whole cells, most tissue types like muscle and epithelium are composed primarily of
single cell types. Some of the more diverse biological tissues are probably in the brain where gray
matter contains different types of neurons and glia, often spatially overlapping. Repetition is also
encouraged at large spatial scales. Striate muscles are made out of similar axially-aligned fibers
called sarcomers and human cortical surfaces are highly folded inside the skull producing repeating
surface patterns called gyri and sulci.

Much biological data at all spatial scales comes in the form of two- or three-dimensional images.
Non-invasive techniques like magnetic resonance imaging allow visualization of details on the order
of one millimeter. Cells in tissue can be seen with light microscopy and cellular organelles can
be seen with the electron microscope. Given the stereotypical nature of biological motifs, these
images often appear as collections of similar elements over a noisy background, as shown in figure
1(a). We developed a generative image model that automatically discovers the repeating motifs, and
segments biological images into the most common elements that form them. We apply the model
to two-dimensional images composed of several hundred cells of possibly different types, such as

1

(a) (b)

Figure 1: a. Mean image of a two-photon recording of calcium-based fluorescence. b. Same image
as in (a) after subtractive and divisive normalization locally.

images of cortical tissue expressing fluorescent GCaMP6, a calcium indicator, taken with a two-
photon microscope in vivo. We also apply the model to Nissl-stained cortical tissue imaged in slice.
Each experimental exposure can contain hundreds of cells and many exposures are usually taken
over a single experimental session. Our main aim is to automate the cell detection stage, because
tracing cell contours by hand can be a laborious and inexact process, especially given the multitude
of confounds usually present in these images. One confound clearly visible in figure 1(a) is the
large variation in contrast and luminance over a single image. A second confound, also visible in
figure 1(a), is that many cells tend to cluster together and press their boundaries against each other.
Assigning pixels to the correct cell can be difficult. A third confound is that calcium, the marker
which the fluorescent images report, is present in the entire neuropil (in the dendrites and axons of
the cells). Activation of calcium in the neuropil makes a noisy background for the estimation of cell
somata. Given such large confounds, a properly-formulated image model might in principle resolve
ambiguities that the human eye cannot.

1.1 Background on automated extraction of cell somata
Histological examination of biological tissue with light-microscopy is an important application for
techniques of cell identification and segmentation. Most algorithms for identifying cell somata
from such images are based on hand-crafted filtering and thresholding techniques. For example,
[1] proposes a pipeline of as many as fourteen separate steps, each of which is meant to deal with
some particular dimension of variability in the images. Our approach is to instead propose a fully
generative model of the biological tissue which encapsulates our beliefs about the stereotypical
structure of such images. Inference in the model inverts the generative model — or in other words
deconvolves the image and — thereby replaces the filtering and thresholding techniques usually
employed. Learning the parameters of the generative model replaces the hand-crafting of the filters
and thresholds.

For the particular image type we use here, fluorescent images of neuronal tissue, the approach of
[2] is closer in spirit to our methodology of model design and inference. The authors propose an
independent components analysis (ICA) model of the movies which expresses their beliefs that all
the pixels belonging to a cell should brighten together. The model effectively uses the temporal cor-
relations between pixels to segment each image, much like [3] but the pipeline of [3] is manual and
not model-designed like that of [2]. Both of these studies are different from our approach, because
we aim to recover cell bodies from single images alone. The method of [2] applies well to small
fields of view and large coherent fluorescence fluctuations in single cells, but fails when applied to
our data with large fields of view containing hundreds of small neurons. The failure is due to long-
range spatial correlations between many thousands of pixels which overcome the noisy correlations
between the few dozen pixels belonging to each cell. Consequently, the independent components
extracted by the algorithm of [2]1 have large spatial domains as can be seen in supplemental figure
1. Our approach is robust to large non-local correlations because we analyze the mean image alone.

1available online at http://www.snl.salk.edu/∼emukamel/

2

One advantage is that the resulting model can be applied not just to data from functional imaging
experiments but to data from any imaging technique.

1.2 Background on convolutional image models
Although our application of convolutional sparse coding to biological images is novel, similar image
models have been proposed in the literature for image datasets commonly used in object recognition
experiments [4], [5], [6], [7], [8]. A starting point for our model was the convolutional matching
pursuit (MP) implementation of [5] (but see [6] for more details). The authors show that convolu-
tional MP learns a diverse set of basis functions from natural images. Most of these basis functions
are edges, but some have a globular appearance and others represent curved edges and corners.
Their implied generative model of an image is to pick out randomly a few basis functions and place
them at random locations. While this is a poor generative model for natural images, it is much
better suited to biological images which are composed of many repeating and seemingly random
distributed elements of a few different types.

One disadvantage of convolutional MP as described by [6] is that it uses fixed templates for each
dictionary element. Although it seems like the cells in figure 1(b) might be well described by
a single ring shape, there are size and shape variations which could be better captured by more
flexible templates. In general, we expect the repeating elements in a biological image to have similar
appearances to a first approximation, but patterned variability is unavoidable. A better model of
a single image of a cell might be to assume that it was generated by combining a few different
prototypes with different coefficients, effectively interpolating between the prototypes. We group
the prototypes related to a single object into blocks and every image is formed by activating a small
number of such blocks. We call this model sparse block coding. Note that the blocking principle is
common in natural image modelling, where Gabor filters in quadrature are combined with different
coefficients to produce edges of different spatial phases. Independent subspace analysis (ISA [7])
also entails distributing basis functions into non-overlapping blocks. However, in our formulation
the blocks are either activated or not, while ISA assumes a continuous distribution on the activations
of each block. This property of sparse block coding makes it valuable in making hard assignments
of inferred cell locations, rather than giving a continuous coefficient for each location.

Closer to our formulation, [8] have used a similar sparse block coding model on natural movie
patches and added a temporal smoothness prior on the activation probabilities of blocks in consec-
utive movie frames. The expensive variational iterative techniques used by [8] for inference and
learning in small image patches are computationally infeasible for the convolutional model of large
images we present here. Instead, we use a convolutional block pursuit technique which is a simple
adaptation of standard matching pursuit and has similarly low computational complexity even for
arbitrarily large blocks and arbitrarily large images.

2 Model
2.1 Convolutional sparse block coding
Following [8], we distinguish between identity and attribute variables in the generative model of
each object in an image. An object can be a cell, a cell fragment or any other spatially-localized
object. Identity variables hk

xy , where (x, y) is the location of the object and k the type of object,
are Bernoulli-distributed with very small prior probabilities. Each of the objects also has several
continuous-valued attribute variables xklxy , with l indexing the attribute. In the generative model
these attributes are given a broad uniform probability and specify the coefficients with which a set
of basis functions Akl are combined at spatial location (x, y) before being linearly combined with
objects generated at other locations. The full description of the generative process is best captured
in terms of two-dimensional convolutions by the following set of equations

hk
xy ∼ Bernoulli(p)

xkl
xy ∼ N

(
0, σ2

x

)
y ∼

∑
k,l

Akl ∗
(
xkl ◦ hk

)
+ ε,

where ε ∼ N (0, σy), σy is the (small) noise variance for the image, σx is the (large) prior vari-
ance for the coefficients, p is a small activation probability specific to each object type, hk and
xkl represent the full two-dimensional maps of the binary and continuous coefficients respectively,

3

“◦” represents the elementwise or Hadamard product and “∗” denotes two-dimensional convolution
where the result is taken to have the same dimensions as the input image. 2 The joint log-likelihood
(or negative energy) can now be derived easily

L (x,h, A) = −
‖y −

∑
k,lAkl ∗

(
xkl ◦ hk

)
‖2

2σ2
y

−
∑

klxy (xkl
xy)2

2σ2
x

+∑
kxy

(
hk
xy log(p) + (1− hk

xy) log(1− p)
)

+ constants (1)

In practice, we used σx = ∞ as we found that it gave similar results to finite values of σx. This
model can be fit by alternately optimizing the cost function in equation 1 over the unobserved vari-
ables x and h and the parameters A. The prior bias parameter p will not be optimized over but
instead will be adjusted so as to guarantee a mean number of elements per image. We also set
‖Akl‖ = 1 without loss of generality, since the absolute values of x can scale to compensate.

2.2 Inference by convolutional block pursuit
Given a set of basis functions Akl and an image y, we would like to infer the most likely locations
of objects of each type in an image. This inference is generally NP-hard but good solutions can
nonetheless be obtained with greedy methods like matching pursuit (MP). In standard matching
pursuit, a sequential process is followed where at each time step a basis function Akl is chosen
which if activated most increases the log-likelihood of equation 1. In our model, at each time step
we activate a full block k which includes multiple templates Akl. Due to the quadratic nature of
equation 1, for a proposal hk

xy = 1 we can easily compute the MAP estimate for each xk
xy given

the current residual image yres = y −
∑
k,l

Akl ∗
(
xkl ◦ hk

)
. Here we understand xk

xy as a vector

concatenating xkl
xy for all l. The MAP estimate for xk

xy is

x̂k
xy =

(
(Ak)TAk

)−1
vk
xy

vk
xy(l) =

(
Ākl ∗ yres

)
xy

where Ākl is the basis function Akl rotated by 180 degrees and the matrix Ak contains as columns
the vectorized basis functions Akl. The corresponding increase in likelihood in equation 1 is

δLk
xy =

(
vk
xy

)T
x̂kl
xy

2σ2
y

− log
p

1− p
.

Inference stops when the activation penalty log
p

1− p
from the prior overcomes the data term for all

possible objects k at all possible locations (x, y).

A simple trick common to all matching pursuit algorithms [9], [6] allows us to save computation
when sequentially calculating vklxy = Ākl ∗ yres by keeping track of v and updating it after each
new coefficient is turned on:

vnew = v −G(....),(k.xy)x̂
k
xy,

where G is the grand Gram matrix of all basis functions Akl
xy at all positions (x, y), and the indexing

means that every dot runs over all possible values of that index. Because the basis functions are
much smaller in length and width than the entire image, most entries in the Gram matrix are actually
0. In practice, we do not keep track of these and instead keep track only of G(k′l′x′y′),(klxy) for
|x − x′| < d and |y − y′| < d, where d is the width and length of the basis function. We also keep
track during inference of x̂ and δLk

xy and only need to update these quantities at positions (x, y)
around the extracted object. These caching techniques make the complexity of the inference scale
linearly with the number of objects in each image, regardless of image or object size.

Thus, our algorithm benefits from the computational efficacy of matching pursuit. One additional
computation lies in determining the inverse of (Ak)TAk for each k. This cost is negligible, since

2In other words, the convolution uses “zero-padding”.

4

each block contains a small number of attributes and we only need to do the inversions once per iter-
ation. Every iteration of block pursuit requires updating v, x̂ and δLk

xy locally around the extracted
block, which is several times more expensive than the corresponding update in simple matching
pursuit. However, this cost is also negligible compared to the cost of finding the best block at each
iteration. The single most intensive operation during inference is the loop through all the elements
in all the convolutional maps to find the block which most increases the likelihood if activated. All
the other update operations are local around the extracted block, and thus negligible. In practice for
the datasets we use, a model can be learned in minutes on a modern processor and inference on a
single large image takes under one second.

2.3 Learning with block K-SVD
Given the inferred active blocks and their coefficients, we would like to adapt the parameters of the
basis functions Akl so as to maximize the cost function 1. This can most easily be accomplished
by gradient descent (GD). Unfortunately, for general dictionary learning setups gradient descent
can produce suboptimal solutions, where a proportion of the basis function fail to learn meaningful
structure [10]. Similarly, for our block-based representations we found that gradient descent often
mixed together subspaces that should have been separated (see fig 2(c)). We considered the option
of estimating the subspaces in each Ak sequentially where we run a couple of iterations of learning
with a single subspace in each Ak and then every couple of iterations we increase the number of
subspaces we estimate for Ak. This incremental approach always resulted in demixed subspaces
like those in figure 2(a). Note also that the standard approach in MP-based models is to extract
a fixed number of coefficients per image, but in our database of biological images there are large
variations in the number of cells present in each image so we needed the inference method to be
flexible enough to accomodate varying numbers of objects. To control the total number of active
coefficients, we adjusted during learning the prior activation probability p whenever the average
number of active elements was too small or too large compared to our target mean activation rate.

Although incremental gradient descent worked well, it tended to be slow in practice. A popular
learning algorithm that was proposed to accelerate patch-based dictionary learning is K-SVD [10].
In every iteration of K-SVD, coefficients are extracted for all the image patches in the training
set. Then the algorithm modifies each basis function sequentially to exactly minimize the squared
reconstruction cost. The convolutional MP implementation of [6] indeed uses K-SVD for learning
and we here show how K-SVD can be adapted to block-based representations.

At every iteration of K-SVD, given a set of active basis functions per image obtained with an infer-
ence method, the objective is to minimize the reconstruction cost with respect to the basis functions
and coefficients simultaneously [10]. We consider each basis function Akl sequentially, extract all
image patches {yi}i where that basis function is active and assume all coefficients for the other basis
functions are fixed. In the convolutional setting, these patches are extracted from locations in the
images where each basis function is active [6]. We add back the contribution of basis function Akl

to each patch in {yi}i and now make the observation that to minimize the reconstruction error with
a single basis function Âkl we must find the direction in pixel space where most of the variance in
{yi}i lies. This can be done with an SVD decomposition followed by retaining the first principal
vector Âkl. The new reconstructions for each patch yi are yi − Âkl(Âkl)T yi and with this new
residual we move on to the next basis function to be reestimated.

By analogy, in block K-SVD we are given a set of active blocks per image, each block consisting of
K basis functions. We consider each block Ak sequentially, extract all image patches {yi}i where
that block is active and assume all coefficients for the other blocks are fixed. We add back the
contribution of block Ak to each patch in {yi}i and like before perform an SVD decomposition
of these residuals. However, we are now looking for a K-dimensional subspace where most of
the variance in {yi}i lies and this is exactly achieved by considering the first K principal vectors
returned by SVD. The reconstructions for each patch are yi − Âk(Âk)T yi where Âk are the first
K principal vectors. On a more technical note, after each iteration of K-SVD we centered the
parameters spatially so that the center of mass of the first direction of variability in each block was
aligned to the center of its window.

Although K-SVD was an order of magnitude faster than GD and converged in practice, we noted
that in the convolutional setting K-SVD is biased. This is because at the step of re-estimating a
block Ak from a set of patches {yi}i, some of these patches may be spatially overlapping in the

5

(a) (b) (c) (d) (e)

Figure 2: a. Typical recovered parameters with incremental gradient descent learning on GCaMP6
fluorescent images. Each column is a block and is sorted in the order of variance from the SVD
decomposition. Left columns capture the structure of cell somatas, while right columns represent
dendrite fragments. b. Like (a) but with incremental block K-SVD. Similar subspaces are recovered
with ten times fewer iterations. c. and d. Typical failure modes of learning with non-incremental
gradient descent and block K-SVD, respectively. The subspaces from (a) appear mixed together. e.
Subspaces obtained from Nissl-stained slices of cortex.

full image. Therefore, the subspaces in Ak are driven to explain the residual at some pixels multiple
times. One way around the problem would be to enforce non-overlapping windows during inference,
but in our images many cell pairs touch and would in fact require overlapping windows. Instead,
we decided to fine-tune the parameters returned by block K-SVD with a few iterations of gradient
descent which worked well in practice and in simulations recovered good model parameters with
little further computational effort.

3 Results
3.1 Qualitative results on fluorescent images of neurons
The main applications of our work are to nissl-stained slices and to fields of neurons and neuropil
imaged with a two-photon microscope (figure 1(a)). The neurons were densely labeled with a flu-
orescent calcium indicator GCaMP6 in a small area of the mouse somatosensory (barrel) cortex.
While the mice were either anesthetized or awake, their whiskers were stimulated which activated
corresponding barrel cortex neurons, leading to an influx of calcium into the cells and consequently
an increase in fluorescence which was reported by the two-photon microscope. Although cell somas
receive a large influx of calcium, dendrites and axons can also be seen. Individual images of the
fluorescence can be very noisy purely due to the low number of photons released over each expo-
sure. Better spatial accuracy can be obtained at the expense of temporal accuracy or at the expense
of a smaller field of view. In practice, cell locations can be identified based on the mean images
recorded over the duration of an entire experiment, in our case 1000 or 5000 frames. Using 18 im-
ages like the one in figure 1(b) we learned a full model with two types of objects each with three
subspaces. One of the object types, the left column in figure 2(a) was clearly a model of single
neurons. The right column of figure 2(a) represented small pieces of dendrite that were also highly
fluorescent. Note how within a block each of the two objects includes dimensions of variability that
capture anisotropies in the shape of the cell or dendritic fragments. Figure 3(a) shows in alternating
odd rows patches from the training set identified by the algorithm to contain cells and the respective
reconstructions in the even rows. Note that while most cells are ring-shaped, some appear filled and
some appear to be larger and the model’s flexibility is sufficient to capture these variations. Figure
2(c) shows a typical failure for gradient based learning that motivated us to use incremental block
learning. The two subspaces recovered in figure 2(a) are mixed in figure 2(c) and the likelihood
from equation 1 is correspondingly lower.

3.2 Simulated data
We ran extensive experiments on simulated data to assess the algorithm’s ability to learn and infer
cell locations. There are two possible failure modes: the inference algorithm might not be accurate
enough or the learning algorithm might not recover good parameters. We address each of these
failure modes separately. We wanted to have simulated data as similar as possible to the real data so
we first fitted a model to the GCaMP6 data. We then took the learned model and generated a new

6

(a) (b)

Figure 3: a. Patches from the GCaMP6 training images (odd rows) and their reconstructions (even
rows) with the subspaces shown in figure 2(b). b. One area from a Nissl-stained image together with
a human segmentation (open circles) and the model segmentation (stars).

dataset from it using the same number of objects of each type and similar amounts of Gaussian noise
as the real images. To generate diverse shapes of cells, we fit aK-dimensional multivariate Gaussian
to the posteriors of each block on the real data and generated coefficients from this model for the
simulated images. Supplemental figure 6 shows an example of such an image and it can be seen to
resemble images in the training set. However, note that for this type of data we are not modelling
some of the structured variability in the noise, for example the blood vessels and dendrites visible in
figure 1(b).

3.2.1 Inference quality of convolutional block pursuit
We kept the ground truths for the simulated dataset and investigated how well we can recover cell
locations when we know perfectly what the simulation parameters were. There is one free parameter
in our model that we cannot learn automatically which is the average number of extracted objects
per image. We varied this parameter and report ROC curves for true positives and false positives as
we vary the number of extracted coefficients. Sometimes we observed that cells were identified not
exactly at the correct location but one or a few pixels away. Such small deviations are acceptable
in practice, so we considered inferred cells as correctly identified if they were within four pixels of
the correct location (cells were 8-16 pixels in diameter). We enforced that a true cell could only
be identified once. If the algorithm made two predictions within four pixels of a true cell, only
the first one of these was considered a true positive. Figure 4(a) reports the typical performance of
convolutional block pursuit. We also investigated the quality of inference without considering the
full structure of the subspaces in each object. Using a single subspace per object is equivalent to
matching pursuit and we see that performance was much worse and saturated at a smaller number
of true positives because the model could not recognize some of the variations in cell shape.

3.2.2 Learning quality of K-SVD + gradient descent
We next tested how well the algorithm recovers the generative parameters. We assume that the
model knows how many object types there are and how many attributes each object type has. To
compare the various learning strategies we could in principle just evaluate the joint log-likelihood
of equation 1. However the differences, although consistent, were relatively small and hard to in-
terpret. More relevant to us is the ROC performance in recovering correctly cell locations. Block
K-SVD consistently recovers good parameters but does not perform quite as well as the true param-
eters because of its bias (figure 4(b)). However refinement with GD consistently recovers the best
parameters which approach the performance of the true generative parameters. We also asked how
well the model recovers the parameters when the true number of objects per image is unknown, by
running several experiments with different mean numbers of objects per image. The performance of
the learned subspaces is reported in figure 4(c). Although the correct number of elements per image
was 600, learning with as few as 200 or as many as 1400 objects resulted in equally well-performing
models. If performance on simulated data is at all indicative of behavior on real data, we conclude
that our algorithm is not sensitive to the only free parameter in the model.

7

0 10 20
0

50

100

150

200

False positives

T
ru

e
 p

o
s
it
iv

e
s

Inference with
known parameters

B1P (MP)
B2P
B3P
B3P−learn
Oracle

(a)

0 10 20
100

110

120

130

140

150

160

170

False positives

T
ru

e
 p

o
s
it
iv

e
s

Learning + Inference
B3P

K−SVD

K−SVD + GD
known
parameters

(b)

0 10 20
100

110

120

130

140

150

160

170

False positives

T
ru

e
 p

o
s
it
iv

e
s

Learning with
X elements per image

X = 200

400

600 (true)

800

1000

1200

1400
known
parameters

(c)

0 20 40
0

50

100

150

200

False positives

T
ru

e
 p

o
s
it
iv

e
s

Compare against Human3
GCaMP6 fluorescence

BP1
BP2
BP3
Human1
Human2
Oracle

(d)

0 50 100
0

50

100

150

200

250

300

False positives

T
ru

e
 p

o
s
it
iv

e
s

Compare against Human3
Nissl stains

BP1
BP2
BP4
Human 1
Human 2
Oracle

(e)

Figure 4: ROC curves show the model’s behavior on simulated data (a-c) and on manually-
segmented GCaMP6 images (d) and Nissl-stained images (e) . a. Inference with block pursuit
with all three subspaces per object (B3P) as well as block pursuit with only the first or first two
principal subspaces (B1P and B2P). We also show for comparison the performance of B3P with
model parameters identified by learning. Notice the small number of false negatives when a large
proportion of the cells are identified. The cells not identified were too dim to pick out even with a
large number of false negative, hence the quick saturation of the ROC curve. b. Ten runs of block
K-SVD followed by gradient descent. Refining with GD improved performance. c. Not knowing
the average number of elements per image does not make a difference on simulated data.

3.3 Comparison with human segmentation on biological images
We compare the segmentation of the model with manual segmentations on one example each of the
GCaMP6 and Nissl-stained images (figures 4(d) and 4(e)). The human segmenters were instructed
to locate cells in approximately the order of confidence, thus producing an ordering similar to the
ordering returned by the algorithm. As we retain more cells from that ordering we can build ROC
curves showing the agreement of the humans with each other, and of the model’s segmentation to
the humans’. We found that using multiple templates per block helped the model agree more with
the human segmentations. In the case of the Nissl-stain, block coding with four templates identified
fifty more cells than matching pursuit. Although the model generally performs below inter-human
agreement, the gap is sufficiently small to warrant practical use. In addition, a post-hoc analysis
suggests that many of the model’s false positives are in fact cells that were not selected in the manual
segmentations. Examples of these false positives can be seen both in figure 3(b) and in figures in
the supplementary material. As we anticipated in the introduction, a standard method based on
thresholded and localized correlation maps only reached 25 true positives at 50 false positives and
is not shown in figure 4(d).
4 Conclusions
We have presented an image model that can be used to automatically and effectively infer the loca-
tions and shapes of cells from biological image data. This application of generative image models is
to our knowledge novel and should allow automating many types of biological studies. Our contri-
bution to the image modelling literature is to extend the sparse block coding model presented in [8]
to the convolutional setting where each block is allowed to be present at any location in an image.
We also derived convolutional block pursuit, a greedy inference algorithm which scales gracefully
to images of large dimensions with many possible object types in the generative model. For learning
the model, we extended the K-SVD learning algorithm to the block-based and convolutional repre-
sentation. We identified a bias in convolutional K-SVD and used gradient descent to fine-tune the
model parameters towards good local optima.

On simulated data, convolutional block pursuit recovers with good accuracy cell locations in sim-
ulated biological images and the learning rule recovers well and consistently the parameters of the
generative model. Using the block pursuit algorithm recovers significantly more cells than simple
matching pursuit. On data from calcium imaging experiments and nissl-stained tissue, the model
succeeds in recovering cell locations and learns good models of the variability among different cell
shapes.

8

References
[1] M Oberlaender, VJ Dercksen, R Egger, M Gensel, B Sakmann, and HC Hege. Automated three-

dimensional detection and counting of neuron somata. J Neuroscience Methods, 180:147–160, 2009.

[2] EA Mukamel, A Nimmerjahn, and MJ Schnitzer. Automated analysis of cellular signals from large-scale
calcium imaging data. Neuron, 63:747–760, 2009.

[3] I Ozden, HM Lee, MR Sullivan, and SSH Wang. Automated three-dimensional detection and counting of
neuron somata. J Neurophysiol, 100:495–503, 2008.

[4] K Kavukcuoglu, P Sermanet, YL Boureau, K Gregor, M Mathieu, and Y LeCun. Learning convolutional
feature hierarchies for visual recognition. Advances in Neural Information Processing, 2010.

[5] K Gregor, A Szlam, and Y LeCun. Structured sparse coding via lateral inhibition. Advances in Neural
Information Processing, 2011.

[6] A Szlam, K Kavukcuoglu, and Y LeCun. Convolutional matching pursuit and dictionary training. arXiv,
page 1010.0422v1, 2010.

[7] A Hyvarinen, J Hurri, and PO Hoyer. Natural Image Statistics. Springer, 2009.

[8] P Berkes, RE Turner, and M Sahani. A structured model of video produces primary visual cortical
organisation. PLoS Computational Biology, 5, 2009.

[9] SG Mallat and Z Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on
Signal Processing, 41(12):3397–3415, 1993.

[10] M Aharon, M Elad, and A Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

9

