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Abstract

We present a dynamic nonlinear generative model for visual motion based on a
latent representation of binary-gated Gaussian variables. Trained on sequences of
images, the model learns to represent different movement directions in different
variables. We use an online approximate inference scheme that can be mapped
to the dynamics of networks of neurons. Probed with drifting grating stimuli and
moving bars of light, neurons in the model show patterns of responses analogous
to those of direction-selective simple cells in primary visual cortex. Most model
neurons also show speed tuning and respond equally well to a range of motion
directions and speeds aligned to the constraint line of their respective preferred
speed. We show how these computations are enabled by a specific pattern of
recurrent connections learned by the model.

1 Introduction

Perhaps the most striking property of biological visual systems is their ability to efficiently cope with
the high bandwidth data streams received from the eyes. Continuous sequences of images represent
complex trajectories through the high-dimensional nonlinear space of two dimensional images. The
survival of animal species depends on their ability to represent these trajectories efficiently and to
distinguish visual motion on a fast time scale. Neurophysiological experiments have revealed com-
plicated neural machinery dedicated to the computation of motion [1]. In primates, the classical
picture of the visual system distinguishes between an object-recognition-focused ventral pathway
and an equally large dorsal pathway for object localization and visual motion. In this paper we pro-
pose a model for the very first cortical computation in the dorsal pathway: that of direction-selective
simple cells in primary visual cortex [2]. We continue a line of models which treats visual motion
as a general sequence learning problem and proposes asymmetric Hebbian rules for learning such
sequences [3, 4]. We reformulate these earlier models in a generative probabilistic framework which
allows us to train them on sequences of natural images. For inference we use an online approximate
filtering method which resembles the dynamics of recurrently-connected neural networks.

Previous low-level generative models of image sequences have mostly treated time as a third dimen-
sion in a sparse coding problem [5]. These approaches have thus far been difficult to map to neural
architecture as they have been implemented with noncausal inference algorithms. Furthermore, the
spatiotemporal sensitivity of each learned variable is determined by a separate three-dimensional ba-
sis function, requiring many variables to encode all possible orientations, directions of motion and
speeds. Cortical architecture points to a more distributed formation of motion representation, with
temporal sensitivity determined by the interaction of neurons with different spatial receptive fields.
Another major line of generative models of video analyzes the slowly changing features of visual
input and proposes complex cells as such slow feature learners [6], [7]. However, these models are
not expressive enough to encode visual motion and are more specifically designed to discover image
dimensions invariant in time.
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A recent hierarchical generative model for mid-level visual motion separates the phases and ampli-
tudes of complex coefficients applied to complex spatial basis functions [8]. This separation makes
it possible to build a second layer of variables that specifies a distribution on the phase coefficients
alone. This second layer learns to pool together first layer neurons with similar preferred directions.
The introduction of real and imaginary parts in the basis functions is inspired by older energy-based
approaches where pairs of neurons with receptive fields in quadrature phase feed their outputs with
different time delays to a higher-order neuron which thus acquires direction selectivity. The model
of [8], and models based on motion energy in general, do not however reproduce direction-selective
simple cells. In this paper we propose a network in which local motion is computed in a more
distributed fashion than is postulated by feedforward implementations of energy models.

1.1 Recurrent Network Models for Neural Sequence Learning.

Another view of the development of visual motion processing sees it as a special case of the general
problem of sequence learning [4]. Many structures in the brain seem to show various forms of se-
quence learning, and recurrent networks of neurons can naturally produce learned sequences through
their dynamics [9, 10]. Indeed, it has been suggested that the reproduction of remembered sequences
within the hippocampus has an important navigational role. Similarly, motor systems must be able
to generate sequences of control signals that drive appropriate muscle activity. Thus many neural
sequence models are fundamentally generative. By contrast, it is not evident that V1 should need
to reproduce the learnt sequences of retinal input that represent visual motion. Although generative
modelling provides a powerful mathematical device for the construction of inferential sensory rep-
resentations, the role of actual generation has been debated. Is there really a potential connection
then, to the generative sequence reproduction models developed for other areas?

One possible role for explicit sequence generation in a sensory system is for prediction. Predictive
coding has indeed been proposed as a central mechanism to visual processing [11] and even as
a more general theory of cortical responses [12]. More specifically as a visual motion learning
mechanism, sequence learning forms the basis of an earlier simple toy but biophysically realistic
model based on STDP at the lateral synapses of a recurrently connected network [4]. In another
biophysically realistic model, recurrent connections are set by hand rather than learned but they
produce direction selectivity and speed tuning in simulations of cat primary visual cortex [13]. Thus,
the recurrent mechanisms of sequence learning may indeed be important. In the following section
we define mathematically a probabilistic sequence modelling network which can learn patterns of
visual motion in an unsupervised manner from 16 by 16 patches with 512 latent variables connected
densely to each other in a nonlinear dynamical system.
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Figure 1: a. Toy sequence learning model with biophysically realistic neurons from [4]. Neurons
N1 and N2 have the same RF as indicated by the dotted line, but after STDP learning of the recur-
rent connections with other neurons in the chain, N1 and N2 learn to fire only for rightward and
respectively leftward motion. b Graphical model representation of the bgG-RNN. The square box
represents that the variable zt is not random, but is given by zt = xt ◦ ht.
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2 Probabilistic Recurrent Neural Networks

In this section we introduce the binary-gated Gaussian recurrent neural network as a generative
model of sequences of images. The model belongs to the class of nonlinear dynamical systems.
Inference methods in such models typically require expensive variational [14] or sampling based
approximations [15], but we found that a low cost online filtering method works sufficiently well to
learn an interesting model. We begin with a description of binary-gated Gaussian sparse coding for
still images and then describe how to define the dependencies in time between variables.

2.1 Binary Gated Gaussian Sparse Coding (bgG-SC).

Binary-gated Gaussian sparse coding ([16], also called spike-and-slab sparse coding [17]1) may
be seen as a limit of sparse coding with a mixture of Gaussians priors [18] where one mixture
component has zero variance. Mathematically, the data yt is obtained by multiplying together a
matrix W of basis filters with a vector ht◦xt, where ◦ denotes the operation of Hadamard or element-
wise product, xt ∈ RN is Gaussian and spherically distributed with standard deviation τx and
ht ∈ {0, 1}N is a vector of independent Bernoulli-distributed elements with success probabilities p.
Finally, small amounts of isotropic Gaussian noise with standard deviation τy are added to produce
yt. For notational consistency with the proposed dynamic version of this model, the t superscript
indexes time. The joint log-likelihood is

Lt
SC =− ‖yt −W · (ht ◦ xt)‖2/2τ2y − ‖xt‖2/2τ2x+

+

N∑
j=1

(
htj log pj + (1− htj) log (1− pj)

)
+ const, (1)

where N is the number of basis filters in the model. By using appropriately small activation prob-
abilities p, the effective prior on ht ◦ xt can be made arbitrarily sparse. Probabilistic inference in
sparse coding is intractable but efficient variational approximation methods exist. We use a very fast
approximation to MAP inference, the matching pursuit algorithm (MP) [19]. Instead of using MP
to extract a fixed number of coefficients per patch as usual, we extract coefficients for as long as the
joint log-likelihood increases. Patches with more complicated structure will naturally require more
coefficients to code. Once values for xt and ht are filled in, the gradient of the joint log likelihood
with respect to the parameters is easy to derive. Note that xtk for which htk = 0 can be integrated
out in the likelihood, as they receive no contribution from the data term in (1). Due to the MAP
approximation, only the W can be learned. Therefore, we set τ2x , τ

2
y to reasonable values, both on

the order of the data variance. We also adapted pk during learning so that each filter was selected
by the MP process a roughly equal number of times. This helped to stabilise learning, avoiding a
tendency to very unequal convergence rates otherwise encountered.

When applied to whitened small patches from images, the algorithm produced localized Gabor-like
receptive fields as usual for sparse coding, with a range of frequencies, phases, widths and aspect
ratios. The same model was shown in [16] to reproduce the diverse shapes of V1 receptive fields,
unlike standard sparse coding [20]. We found that when we varied the average number of coefficients
recruited per image, the receptive fields of the learned filters varied in size. For example with only
one coefficient per image, a large number of filters represented edges extending from one end of the
patch to the other. With a large number of coefficients, the filters concentrated their mass around
just a few pixels. With even more coefficients, the learned filters gradually became Fourier-like.

During learning, we gradually adapted the average activation of each variable htk by changing the
prior activation probabilities pk. For 16x16 patches in a twice overcomplete SC model (number
of filters = twice the number of pixels), we found that learning with 10-50 coefficients on average
prevented the filters from becoming too much or too little localized in space.

1Although less evocative, we prefer the term ‘binary-gated Gaussian’ to ‘spike-and-slab’ partly because our
slab is really more of a hump, and partly because the spike refers to a feature seen only in the density of the
product hixi, rather than in either the values or distributions of the component variables.
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2.2 Binary-Gated Gaussian Recurrent Neural Network (bgG-RNN).

To obtain a dynamic hidden model for sequences of images {yt} we specify the following condi-
tional probabilities between hidden chains of variables ht, xt:

P
(
xt+1,ht+1|xt,ht

)
= P

(
xt+1

)
P
(
ht+1|ht ◦ xt

)
P
(
xt+1

)
= N

(
0, τ2x I

)
P
(
ht+1|ht ◦ xt

)
= σ

(
R ·
(
ht ◦ xt

)
+ b
)
, (2)

where R is a matrix of recurrent connections, b is a vector of biases and σ is the standard sigmoid
function σ(a) = 1/(1 + exp(−a)). Note how the xt are always drawn independently while the
conditional probability for ht+1 depends only on ht ◦ xt. We arrived at these designs based on a few
observations. First, similar to inference in bgG-RNN, the conditional dependence on ht ◦ xt, allows
us to integrate out variables xt, xt+1 for which the respective gates in ht,ht+1 are 0. Second, we
observed that adding Gaussian linear dependencies between xt+1 and xt ◦ ht did not modify qual-
itatively the results reported here. However, dropping P

(
ht+1|ht ◦ xt

)
in favor of P

(
xt+1|ht ◦ xt

)
resulted in a model which could no longer learn a direction-selective representation. For simplic-
ity we chose the minimal model specified by (2). The full log likelihood for the bgG-RNN is
LbgG-RNN =

∑
t

Lt
bgG-RNN where

Lt
bgG-RNN = const− ‖yt −W(xt ◦ ht)‖2/2τ2y − ‖xt‖2/2τ2x

+

N∑
j=1

htj log σ
(
R
(
ht−1 ◦ xt−1

)
+ b
)
j

+

N∑
j=1

(1− htj) log (1− σ
(
R
(
ht−1 ◦ xt−1

)
+ b
)
j
), (3)

where x0 = 0 and h0 = 0 are both defined to be vectors of zeros.

2.3 Inference and learning of bgG-RNN.

The goal of inference is to set the values of x̂t, ĥ
t

for all t in such a way as to minimize the objective
set by (3). Assuming we have already set x̂t, ĥ

t
for t = 1 to T , we propose to obtain x̂T+1, ĥ

T+1

exclusively from x̂T , ĥ
T

. This scheme might be called greedy filtering. In greedy filtering, inference
is causal and Markov with respect to time. At step T +1 we only need to solve a simple SC problem
given by the sliceLT+1

bgG-RNN of the likelihood (3), where xT ,hT have been replaced with the estimates

x̂T , ĥ
T

. The greedy filtering algorithm proposed here scales linearly with the number of time steps
considered and is well suited for online inference. The algorithm might not produce very accurate
estimates of the global MAP settings of the hidden variables, but we found it was sufficient for
learning a complex bgG-RNN model. In addition, its simplicity coupled with the fast MP algorithm
in each Lt

bgG-RNN slice, resulted in very fast inference and consequently fast learning. We usually
learned models in under one hour on a quad core workstation.

Due to our approximate inference scheme, some parameters in the model had to be set manually.
These are τ2x and τ2y , which control the relative strengths in the likelihood of three terms: the data
likelihood, the smallness prior on the Gaussian variables and the interaction between sets of xt,ht

consecutive in time. In our experiments we set τ2y equal to the data variance and τ2x = 2τ2y . We
found that such large levels of expected observation noise were necessary to drive robust learning in
R.

For learning we initialized parameters randomly to small values and first learned W exclusively.
Once the filters converge, we turn on learning for R. W does not change very much beyond this
point. We found learning of R was sensitive to learning rate. We set the learning rate to 0.05 per
batch, used a momentum term of 0.75 and batches of 30 sets of 100 frame sequences. We stabilized
the mean activation probability of each neuron individually by actively and quickly tuning the biases
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b during learning. We whitened images with a center-surround filter and standardized the whitened
pixel values.

Gradients required for learning R show similarities to the STDP learning rule used in [3] and [4].

∂Lt
bgG-RNN

∂Rjk
=
(
ht−1
k xt−1

k

)
·
(
htj − σ

(
R
(
ht ◦ xt

)
+ b
)
j

)
. (4)

We will assume for neural interpretation that the positive and negative values of xt ◦ ht are encoded
by different neurons. If for a given neuron xt−1

k is always positive, then the gradient (4) is only
strictly positive when ht−1

k = 1 and htj = 1 and strictly negative when ht−1
k = 1 and htj = 0. In

other words, the connectionRjk is strengthened when neuron k appears to cause neuron j to activate
and inhibited if neuron k fails to activate neuron j. A similar effect can be observed for the negative
part of xt−1

k . This kind of Hebbian rule is widespread in cortex for long term learning and is used in
previous computational models of neural sequence learning that partly motivated our work [4].

3 Results

For data, we selected about 100 short 100 frame long clips from a high resolution BBC wild life
documentary. Clips were chosen only if they seemed on visual inspection to have sufficient motion
energy over the 100 frames. The clips chosen ended up being mostly panning shots and close-ups
of animals in their natural habitats (the closer the camera is to a moving object, the faster it appears
to move).

The results presented below measure the ability of the model to produce responses similar to those of
neurons recorded in primate experiments. The stimuli used in these experiments are typically of two
kinds: drifting gratings presented inside circular or square apertures or translating bars of various
lengths. These two kinds of stimuli produce very clear motion signals, unlike motion produced
by natural movies. In fact, most patches we used in training contained a wide range of spatial
orientations, most of which were not orthogonal to the direction of local translation. After comparing
model responses to neural data, we finish with an analysis of the network connectivity pattern that
underlies the responses of model neurons.

3.1 Measuring responses in the model.

We needed to deal with the potential negativity of the variables in the model, since neural responses
are always positive quantities. We decided to separate the positive and negative parts of the Gaussian
variables into two distinct sets of responses. This interpretation is relatively common for sparse
coding models and we also found that in many units direction selectivity was enhanced when the
positive and negative parts of xt were separated (as opposed to taking ht as the neural response).
The enhancement was supported by a particular pattern of network connectivity which we describe
in a later subsection.

Since our inference procedure is deterministic it will produce the exact same response to the same
stimulus every time. We added Gaussian noise to the spatially whitened test image sequences, partly
to capture the noisy environments in cortex and partly to show robustness of direction selectivity to
noise. The amount of noise added was about half the expected variance of the stimulus.

3.2 Direction selectivity and speed tuning.

Direction selectivity is measured with the following index: DI = 1 − Ropp/Rmax. Here Rmax
represents the response of a neuron in its preferred direction, while Ropp is the response in the
direction opposite to that preferred. This selectivity index is commonly used to characterize neural
data. To define a neuron’s preferred direction, we inferred latent coefficients over many repetitions
of square gratings drifting in 24 directions, at speeds ranging from 0 to 3 pixels/frame in 0.25
steps. The periodicity of the stimulus was twice the patch size, so that motion locally appeared as
an advancing long edge. The neuron’s preferred direction was defined as the direction in which it
responded most strongly, averaged over all speeds. Once a preferred direction was established, we
defined the neuron’s preferred speed, as the speed at which it responded most strongly in its preferred
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direction. Finally, at this preferred speed and direction, we calculated the DI of the neuron. Similar
results were obtained if we averaged over all speed conditions.
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Figure 2: a. Speed tuning of 16 randomly chosen neurons. Note that some neurons only respond
weakly without motion, some are inhibited in the non-preferred direction compared to static re-
sponses and most have a clear peak in the preferred direction at specific speeds. b. top: Histogram
of direction selectivity indices. bottom: Histogram of preferred speeds. c. For each of the 10
strongest excitatory connections per neuron we plot a dot indicating the orientation selectivity of
pre and post-synaptic units. Note that most of the points are within π/4 from the diagonal, an area
marked by the black lines. Notice also the relatively increased frequency of horizontal and vertical
edges.

We found that most neurons in the model had sharp tuning curves and direction-selective responses.
We cross validated the value of the direction index with a new set of responses (fixing the preferred
direction) to obtain an averaged DI of 0.65, with many neurons having a DI close to 1 (see figure
2(a)). This distribution is similar to those shown in [21] for real V1 neurons. 714 of 1024 neurons
were classified as direction-selective, on the basis of having DI > 0.5. Distributions of direction
indices and optimal speeds are shown in figure 2(a). A neuron’s preferred direction was always
close to orthogonal to the axis of its Gabor receptive field, except for a few degenerate cases around
the edges of the patch. We defined the population tuning curve as the average of the tuning curves
of individual neurons, each aligned by their preferred direction of motion. The DI of the population
was 0.66. Neurons were also speed tuned, in that responses could vary greatly and systematically as
a function of speed and DI was non-constant as a function of speed (see figure 2(b)). Usually at low
and high speeds the DI was 0, but in between a variety of responses were observed. Speed tuning is
also present in recorded V1 neurons [22], and could form the basis for global motion computation
based on the intersection of constraints method [23].

3.3 Vector velocity tuning.

To get a more detailed description of single-neuron tuning, we investigated responses to different
stimulus velocities. Since drifting gratings only contain motion orthogonal to their orientation, we
switched to small (1.25pix x 2pix) drifting Gabors for these experiments. We tested the network’s
behavior with a full set of 24 Gabor orientations, drifting in a full set of 24 directions with speeds
ranging from 0.25 pixels/frame to 3 pixels/frame, for a total of 6912 = 24 x 24 x 12 conditions
with hundreds of repetitions of each condition. For each neuron we isolated its responses to drifting
Gabors of the same orientation travelling at the 12 different speeds in the 24 different directions.
We present these for several neurons in polar plots in figure 3(b). Note responses tend to be high to
vector velocities lying on a particular line.

3.4 Connectomics in silico

We had anticipated that the network would learn direction selectivity via specific patterns of recur-
rent connection, in a fashion similar to the toy model studied in [4]. We now show that the pattern
of connectivity indeed supports this computation.
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The most obvious connectivity pattern, clearly visible for single neurons in figure 3(a), shows that
neurons in the model excite other neurons in their preferred direction and inhibit neurons in the
opposite direction. This asymmetric wiring naturally supports direction selectivity.

Asymmetry is not sufficient for direction selectivity to emerge. In addition, strong excitatory pro-
jections have to connect together neurons with similar preferred orientations and similar preferred
directions. Only then will direction information propagate in the network in the identities of the ac-
tive variables (and the signs of their respective coefficients xt). We considered for each neuron its 10
strongest excitatory outputs and calculated the expected deviation between the orientation of these
outputs and the orientation of the root neuron. The average deviation was 23◦, half the expected de-
viation if connections were random. Figure 2(c) shows a raster plot of the pairs of orientations. The
same pattern held when we considered the strongest excitatory inputs to a given neuron with an ex-
pected deviation of orientations of 24◦. We could not directly measure if neurons connected together
according to direction selectivity because of the sign ambiguity of xt variables. One can visually
assess in figure 3(a) that neurons connected asymmetrically with respect to their RF axis, but did
they also respond to motion primarily in that direction? As can be seen in figure 3(b), which shows
the same neurons as figure 3(a), they did indeed. Direction tuning is a measure of the incoming
connections to the neuron, while figure 3(a) shows the outgoing connections. We can qualitatively
assess recurrence primarily connected together neurons with similar direction preferences.

(a) (b)

Figure 3: a. Each plot is based on the outgoing connections of a random set of direction-selective
neurons. The centers of the Gabor fits to the neurons’ receptive fields are shown as circles on a square
representing the 16 by 16 image patch. The root neurons are shown as filled black circles. Filled
red/blue circles show neurons to which the root neurons have strong positive/negative connections,
with a cutoff at one fourth of the maximal absolute connection. The width of the connecting lines
and the area of the filled circles are proportional to the strength of the connection. A dynamic version
of this plot during learning is shown as a movie in the supplementary material. b. The polar plots
show the responses of neurons presented in a to small, drifting Gabors that match their respective
orientations. Neurons are aligned in exactly the same manner on the 4 by 4 grid. Every small
disc in every polar plot represents one combination of speed and direction and the color of the disc
represents the magnitude of the response, with intense red being maximal and dark blue minimal.
The vector from the center of the polar plot to the center of each disc is proportional to the vector
displacement of each consecutive frame in the stimulus sequence. Increasing disc sizes at faster
speeds are used for display purposes. The very last polar plot shows the average of the responses of
the entire population, when all neurons are aligned by their preferred direction.

We also observed that neurons mostly projected strong excitatory outputs to other neurons that were
aligned parallel to the root neuron’s main axis (visible in figures 3(a)). We think this is related to the
fact that locally all edges appear to translate parallel to themselves. A neuron X with a preferred
direction v and preferred speed s has a so-called constraint line (CL), parallel to the Gabor’s axis.
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When the neuron is activated by an edge E, the constraint line is formed by all possible future
locations of edge E that are consistent with global motion in the direction v with speed s. Due to
the presence of long contours in natural scenes, the activation of X can predict at the next time step
the activations of other neurons with RFs aligned on the CL. Our likelihood function encourages
the model to learn to make such predictions as well as it can. To quantify the degree to which
connections were made along a CL, for each neuron we fit a 2D Gaussian to the distribution of
RF positions of the 20 most strongly connected neurons (the filled red circles in figure 3(a)), each
further weighted by its strength. The major axis of the Gaussians represent the constraint lines of
the root neuron and are in 862 out of 1024 neurons less than 15◦ away from perfectly parallel to the
root neurons’ axis. The distance of each neuron to their constraint line was on average 1.68 pixels.

Yet perhaps the strongest manifestation of the CL tuning property of neurons in the model can be
seen in their responses to small stimuli drifting with different vector velocities. Many of the neurons
in figure 3(b) respond best when the velocity vector ends on the constraint line and a similar trend
holds for the aligned population average.

It is already known from experiments of axon mappings simultaneous with dye-sensitive imaging
that neurons in V1 are more likely to connect with neurons of similar orientations situated as far away
as 4 mm / 4-8 minicolumns away [24]. The model presented here makes three further predictions:
that neurons connect more strongly to neurons in their preferred direction, that connected neurons
lie on the constraint line and that they have similar preferred directions to the root neuron.

4 Discussion

We have shown that a network of recurrently-connected neurons can learn to discriminate motion
direction at the level of individual neurons. Online greedy filtering in the model is a sufficient
approximate-inference method to produce direction-selective responses. Fast, causal and online
inference is a necessary requirement for practical vision systems (such as the brain) but previous
visual-motion models did not provide such an implementation of their inference algorithms. Another
shortcoming of these previous models is that they obtain direction selectivity by having variables
with different RFs at different time lags, effectively treating time as a third spatial dimension. A
dynamic generative model may be more suited for online inference with methods such as particle
filtering, assumed density filtering, or the far cheaper method employed here of greedy filtering.

The model neurons can be interpreted as predicting the motion of the stimulus. The lateral inputs
they receive are however not sufficient in themselves to produce a response, the prediction also has to
be consistent with the bottom-up input. When the two sources of information disagree, the network
compromises but not always in favor of the bottom-up input, as this source of information might be
noisy. This is reflected by the decrease in reconstruction accuracy from 80% to 60 % after learning
the recurrent connections. It is tempting to think of V1 direction selective neurons as not only edge
detectors and contour predictors (through the nonclassical RF) but also predictors of future edge
locations, through their specific patterns of connectivity.

The source of direction selectivity in cortex is still an unresolved question, but note that in the
retina of non-primate mammals it is known with some certainty that recurrent inhibition in the
non preferred direction is largely responsible for the direction selectivity of retinal ganglion cells
[25]. It is also known that unlike orientation and ocular dominance, direction selectivity requires
visual experience to develop [26], perhaps because direction selectivity depends on a specific pattern
of lateral connectivity unlike the largely feedforward orientation and binocular tuning. Another
experiment showed that after many exposures to the same moving stimulus, the sequence of spikes
triggered in different neurons along the motion trajectory was also triggered in the complete absence
of motion, again indicating that motion signals in cortex may be generated internally from lateral
connections [27].

Thus, we see a number of reasons to propose that direction selectivity in the cortex may indeed
develop and be computed through a mechanism analagous to the one we have developed here. If so,
then experimental tests of the various predictions developed above should prove to be revealing.
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