Linear LIF model for gamma distributions of ISIs
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I DISCUSSION

@ Answer: AHP-like currents.
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AV "' o fie Poisson on average (as measured by Fisher information).
7 — = —V +dW + [+ Fe (xf ING)) Mgl 1) have a ‘constant’ profile, for P8
. (]1_ Wienecke et a.l, 2009 I AHP T . . ] ]
t ong AHP, = 1o @ AHP-like adaptation currents predict these regular point processes
K=4 Rate = 20 Hz ) o | L, under a very simple integrate and fire model. Depending on the

>\4O' —10 Hz >3°' —K=1 2) have an ‘increasing’ profile, timescale of AHP we put in our model, we obtain different profiles of
’g 30| *g? . K= for short AHP. regularity as a function of firing rate, which profiles we see in the

1 (k=101 _ k-1 o ©

ishvish <t U S 10| o "7 M . .
! ? o Betalk. k i S - O - @ The ‘constant’ profile requires long AHP currents.
| x Beta(k, k) 0y 50 00 = % 50 0 150 @ The ‘increasing’ profile does not.
Match moments Time (ms) Time (ms) @ The ‘peaking’ profile might be indicative of 15 Hz oscillations.

Var( 51, ) — ! 151

@ mAHP t tin rat idal cells, with ti
THE MOVING THRESHOLD FEITTING PROCEDURE s o SO g PYTATIRETEETS, WIS

@ mAHP currents are present in spinal cord motor neurons °. These

LINEAR LIF MODEL
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