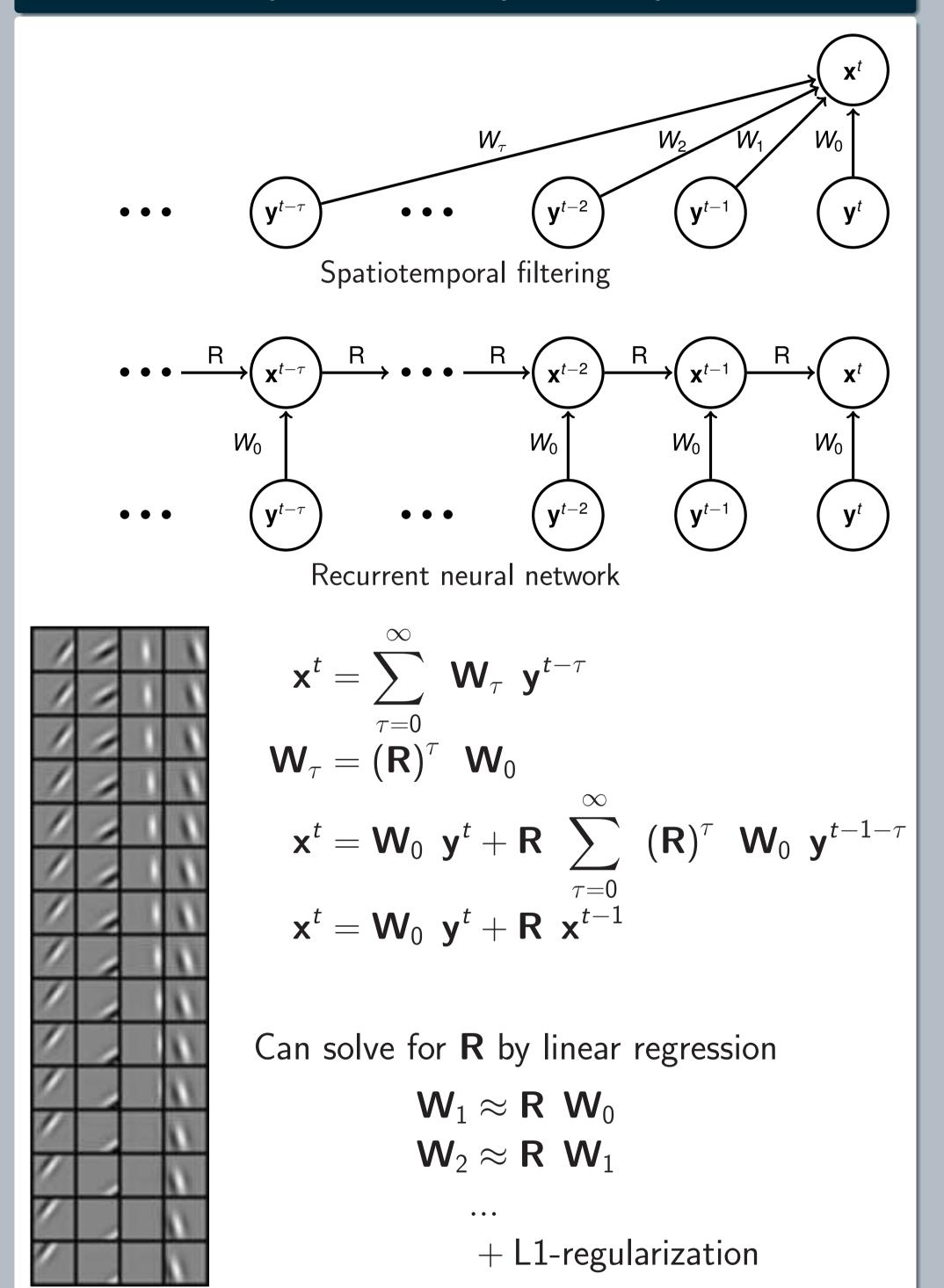
Learning visual motion in recurrent neural networks

Marius Pachitariu, Maneesh Sahani Gatsby Computational Neuroscience Unit, UCL

Space for tablet

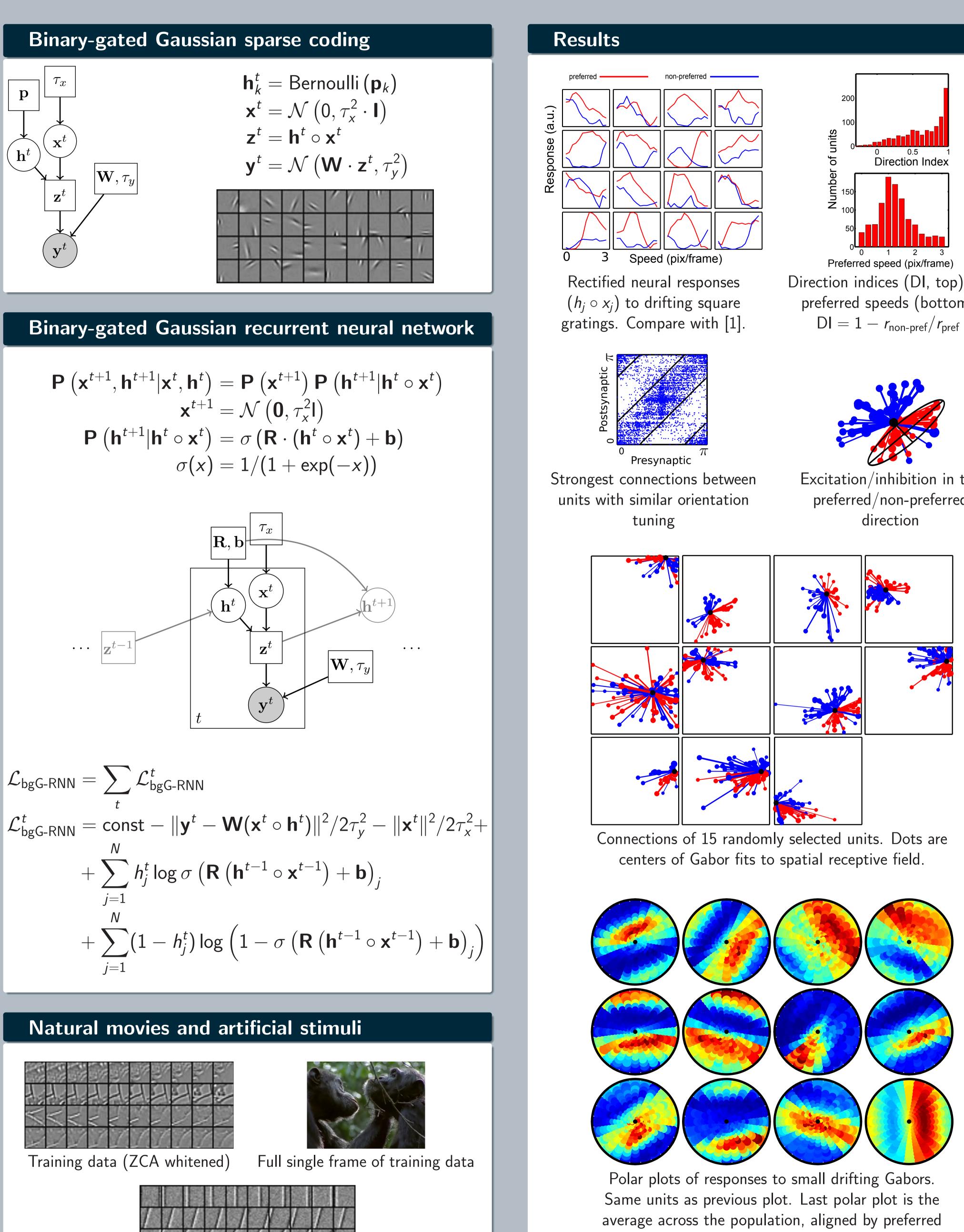
RNN can reparametrize spatiotemporal features



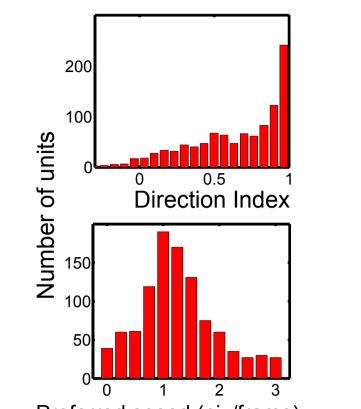
Advantages of RNN

- Does not require copies of the past
- \rightarrow less memory usage
- \rightarrow the brain has short timescales + bottleneck in LGN
- \rightarrow no evidence for true delay lines in cortex
- Fewer parameters \rightarrow important for learning and generalization
- Reduced computational complexity \rightarrow good for high bandwidth data
- Can integrate over long time periods \rightarrow natural visual motion can be slow and noisy

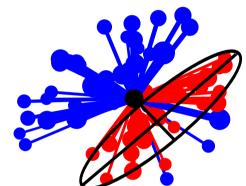
This work was funded by the Gatsby Charitable Foundation.



Test data (whitened)



Direction indices (DI, top) and preferred speeds (bottom). $\mathsf{DI} = 1 - \mathit{r_{\mathsf{non-pref}}} / \mathit{r_{\mathsf{pref}}}$



Excitation/inhibition in the preferred/non-preferred

direction.

Online inference and learning

- likelihood.

Neural sequence learning via STDP

Sequence learning forms the basis of an earlier simple toy but biophysically realistic model [2] based on STDP at the lateral synapses of a recurrently connected network of neurons. The gradient of the likelihood in bgG-RNN results in a similar STDP-like rule. $\frac{\partial \mathcal{L}_{\mathsf{bgG-RNN}}^{t}}{=}$ ∂R_{ik}

Conclusions

- filters.

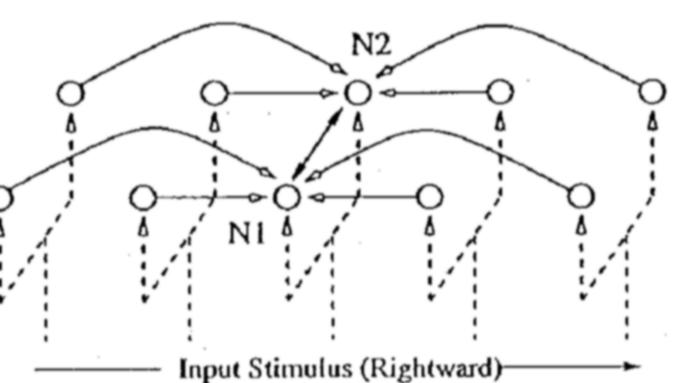
References

- *Systems*, 13, 2000.

learning: optimize the full joint likelihood, EM style • inference: set values of \mathbf{x}^t , \mathbf{h}^t that (ideally) maximize the

• greedy filtering: assuming we have already set $\hat{\mathbf{x}}^t, \hat{\mathbf{h}}^t$ for t = 1 to T, we propose to obtain $\hat{\mathbf{x}}^{T+1}, \hat{\mathbf{h}}^{T+1}$ exclusively from $\hat{\mathbf{x}}^T$, $\hat{\mathbf{h}}^T$ and the new image frame \mathbf{y}^{T+1} .

• inference at each time point becomes a sparse coding problem. For tractability, we use another greedy algorithm for sparse coding inference: matching pursuit. Starting from $\mathbf{h}^t = \mathbf{x}^t = \mathbf{0}$, sequentially choose the next $\mathbf{h}^t_{\mathbf{k}}$ to turn on with its corresponding \mathbf{x}_{k}^{t} such that the greatest increase in likelihood is achieved.



$$= \left(h_k^{t-1} x_k^{t-1}\right) \cdot \left(h_j^t - \sigma \left(\mathbf{R} \left(\mathbf{h}^{t-1} \circ \mathbf{x}^{t-1}\right) + \mathbf{b}\right)_j\right)$$

 Recurrent neural networks can analyze visual motion in an online fashion without delayed inputs.

• Formulating a generative model allows learning the recurrent connections via an STDP rule.

• As a model of V1, the RNN makes testable predictions about the lateral connectivity of neurons. Responses to stimuli may however be similar to those of spatiotemporal

. GA Orban, H Kennedy and J Bullier. Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. Journal of Neurophysiology, 56(2):462-480, 1986. 2. RPN Rao and TJ Sejnowski. Predictive sequence learning in recurrent neocortical circuits. Advances in Neural Information Processing