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Rectified neural responses Direction indices (DI, top) and
(hj o x;) to drifting square preferred speeds (bottom).
gratings. Compare with [1]. DI=1-—

oroblem. For tractability, we use another greedy algorithm
for sparse coding inference: matching pursuit. Starting
from h' = x* = 0, sequentially choose the next h; to turn
on with its corresponding x; such that the greatest
increase in likelihood is achieved.

RNN can reparametrize spatiotemporal features
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Neural sequence learning via STDP
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lateral synapses of a recurrently connected network of

neurons. [he gradient of the likelihood in bgG-RNN

results in a similar STDP-like rule.
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Connections of 15 randomly selected units. Dots are
centers of Gabor fits to spatial receptive field.
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Can solve for R by linear regression
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@ Formulating a generative model allows learning the
recurrent connections via an STDP rule.

@ As a model of V1, the RNN makes testable predictions
about the lateral connectivity of neurons. Responses to
stimuli may however be similar to those of spatiotemporal
filters.
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Advantages of RNN

@ Does not require copies of the past
— less memory usage
— the brain has short timescales + bottleneck in LGN 1
— no evidence for true delay lines in cortex if'-:H“ A
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@ Fewer parameters

— important for learning and generalization Polar plots of responses to small drifting Gabors.

Same units as previous plot. Last polar plot is the
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