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Marr’s three levels of analysis

Levels of analysis

I Computational

I Algorithmic / Representational

I Physical
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Sequential data types

I Movies

I Spike trains

I Language

Marius Pachitariu Learning visual motion with RNNs 4 / 48



Learning visual motion
Statistical models of spike trains

Spatiotemporal filtering
Recurrent neural networks can compute visual motion
Learning in generative RNN

Spatio-temporal filters

I Dominant in both visual neuroscience and
computer vision.

I Caveats:
I not real-time/requires copies of the past
→ bad for real-world systems, like the brain.

I too many parameters
→ bad for learning and generalization.

I high computational complexity
→ bad with high-bandwidth data.
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I lagged LGN cells (Mastronarde, 1987)
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Compact parametrization of ST filters with an RNN

xt

ytyt−1yt−2yt−τ ••••••

W0W1W2Wτ

Spatiotemporal filtering

xtxt−1xt−2xt−τ

ytyt−1yt−2yt−τ

••••••

••••••

W0W0W0W0

RRRRR

Recurrent neural network

xt =
∞∑
τ=0

Wτ yt−τ

Wτ = (R)τ W0

xt = W0 yt + R
∞∑
τ=0

(R)τ W0 yt−1−τ

xt = W0 yt + R xt−1

As a simple example, we fit R
to a diverse bank of
spatiotemporal filters.
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Reconstructions of the ST filters are good
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What do the connections look like?

I Spectrum of R

I Strongest connections to a given neuron (animation).
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Computational complexity and memory requirements

I lx by ly by nt filters (12 by 12 by 30)

I N (1600) ST filters

I Feedforward flops = 2N l2
x l2

y nt

I Recurrent flops = 2N2 + 2N l2
x l2

y

I 5 % non-zero connections in R.

I Recurrent flops = 2 · 0.05 · N2 + 2N l2
x l2

y

I Recurrent flops < Feedforward flops
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Advantages of recurrent neural networks

I the brain already has the hardware

I do not require copies of the past
→ less memory usage
→ the brain has short timescales + bottleneck in LGN
→ no evidence for true delay lines in cortex

I fewer parameters
→ important for learning and generalization

I reduced computational complexity
→ good for high bandwidth data

I can integrate over long time periods
→ natural visual motion can be slow and noisy
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Neural sequence learning via STDP (toy model)

Rao & Sejnowski, NIPS 2000
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Spike and Slab Sparse Coding

I Olshausen&Millman 2000, Rehn&Sommer 2007, Goodfellow&al 2012

zt

xt

ht

yt

p
τx

W, τy

ht
k = Bernoulli (pk)

xt = N
(

0, τ 2
x · I
)

zt = ht ◦ xt

yt = N
(
W · zt , τ 2

y

)
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Spike and Slab Recurrent Neural Network

P
(
ht+1|zt

)
= σ

(
R · zt + b

)
σ(x) = 1/(1 + exp(−x))

zt

xt

ht

yt

ht+1

zt−1

t

R,b
τx

W, τy

. . .. . .

For approximate inference:

I Assuming we have set
x̂t , ĥt for t = 1 to T .

I At T + 1 we only need
to solve an SC
problem.
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Natural movies and artificial stimuli

Training data (ZCA whitened) Full single frame of training data

Test data (whitened)
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Results - Speed tuning

Speed (pix/frame)

R
es
po
ns
e
(a
.u
.)

preferred non-preferred

0 3

Rectified neural responses max(z, 0) to
drifting square gratings.

Orban et al, 1986
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Results - Direction selectivity indices
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Peterson et al, 2004

Gur et al, 2007
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Results - connectomics in silico

Largest outgoing connections of one
unit

Presynaptic
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st
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Connected units are co-oriented
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Results - connectomics in silico

Outgoing connections of 15
randomly chosen DS units (and
animation during learning)

Responses to small drifting Gabors
- polar plots
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Inference and learning

zt

x t
ht

y t

ht+ 1

zt− 1

t

R , b
τx

W , τy

. . .. . .

Lss-RNN =
∑
t

Lt
ss-RNN

Lt
ss-RNN = const− ‖yt −W(xt ◦ ht)‖2/2τ 2

y − ‖xt‖2/2τ 2
x +

+
N∑
j=1

ht
j log σ

(
R
(
ht−1 ◦ xt−1

)
+ b
)
j

+
N∑
j=1

(1− ht
j ) log

(
1− σ

(
R
(
ht−1 ◦ xt−1

)
+ b
)
j

)

For approximate inference, we use greedy filtering:

I Assuming we have already set x̂t , ĥt for t = 1 to T .

I At step T + 1 we only need to solve an sparse coding
problem given by the slice LT+1

ss-RNN.

I We solve the SC problem with standard matching
pursuit / coordinate descent methods.
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Learning of ss-RNN

Rao & Sejnowski, NIPS 2000

Gradients for learning R are similar to the STDP learning rule used in Rao &
Sejnowski, 2000.

∂Lt
ss-RNN

∂Rjk
=
(

ht−1
k x t−1

k

)
·
(

ht
j − σ

(
R
(
ht ◦ xt

)
+ b
)
j

)
.
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DS is learned, OS is not?

I Orientation selectivity (OS) and ocular dominance (OD) do not require
visual experience

I Visual deprivation has little impact on OS and OD

I However, DS does require visual experience in ferrets (Li et al, 2006)
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Conclusions

I Recurrent neural networks can analyze visual motion in an online fashion
without delayed inputs.

I Formulating a generative model allows learning the recurrent connections
via an STDP rule.

I As a model of V1, the RNN makes testable predictions about the lateral
connectivity of neurons.

I Responses to stimuli may however be similar to those of spatiotemporal
filters.
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Statement of the problem
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The equivalent of spatiotemporal filters:
Generalized Linear Models (GLMs)

Pillow et al, 2008.
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Recurrent Generalized Linear Models

xtxt−1xt−2xt−τ

ytyt−1yt−2yt−τ

••••••

••••••

W0W0W0W0

RRRRR

ZZ

predictive RNN

xt = W0 yt + R xt−1

yt ⊥⊥ {yt−1, yt−2, ...} | xt

Similar to state-of-the-art language models: Sutskever et al, 2011, Mikolov et
al, 2011
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Relationship to linear dynamical system (LDS)

xtxt−1xt−2xt−τ

ytyt−1yt−2yt−τ

••••••

••••••

W0W0W0W0

RRRRR

ZZ

R-GLM

xtxt−1xt−2xt−τ

ytyt−1yt−2yt−τ

••••••

••••••

W0W0W0W0

RRRRR

LDS
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Problem: cannot have instantaneous connections in a GLM

I where are instantaneous correlations coming from?

I can add Ising observation model but
I partition function

p(x) =
1

Z
e−xTAx/2−xT b

I not available for Poisson observations
I cannot add nonlinear link function like in GLM
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Our solution: sequential prediction of each neuron

I constrain A to be strictly lower triangular

p(x) = Poisson (f (Ax + b))

I Can do the same with Gaussian observation noise.
→ Equivalent to full covariance Gaussians.

I What about the ordering?

I Can do the same with Bernoulli observation noise.
→ Performance matches Ising model.

I Similar to recent image models: Theis et al, 2011 and Larochelle&Murray,
2011.
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Sampling the correlated Poisson model

Data correlations Model correlations
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Instantaneous noise and recurrence increase the likelihood

Likelihood
(bits/spike)

fully independent - 3.15
correlated Poisson + 0.175
GLM + 0.225
GLM with correlated Pois-
son

+ 0.03

R-GLM with correlated
Poisson

+ 0.03
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R-GLM learns long timescales

0.85 0.9 0.95 1
−0.4

−0.2

0

0.2

0.4

real

im
ag

in
ar

y

R−GLM
LDS

Eigenvalues of the recurrent matrix

Marius Pachitariu Learning visual motion with RNNs 33 / 48



Learning visual motion
Statistical models of spike trains

Recurrent GLM
Instantaneous noise
Results

Samples of model reproduce spatiotemporal correlations in data

LDS and GLM

−100 −50 0 50 100
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time lag (ms)

C
or

re
la

tio
n

Neurons 1−23
Neurons 24−46
Neurons 47−69
Neurons 70−92

R-GLM

Marius Pachitariu Learning visual motion with RNNs 34 / 48



Learning visual motion
Statistical models of spike trains

Recurrent GLM
Instantaneous noise
Results

Samples of model reproduce spatiotemporal correlations in data

LDS and GLM

−100 −50 0 50 100
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time lag (ms)

C
or

re
la

tio
n

Neurons 1−23
Neurons 24−46
Neurons 47−69
Neurons 70−92

R-GLM

Marius Pachitariu Learning visual motion with RNNs 34 / 48



Learning visual motion
Statistical models of spike trains

Recurrent GLM
Instantaneous noise
Results

Hidden units integrate info about stimulus
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Hidden units generate dynamics
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Joint estimation with hand position improves decoding

xtxt−1xt−2xt−τ

ytyt−1yt−2yt−τ

••••••

••••••

W0W0W0W0

RRRRR

ZZ

Task

Mixture of trajectories model

Our result: 6.45 mm.
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Speed profiles

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 10 20
0

5

10

15

Marius Pachitariu Learning visual motion with RNNs 38 / 48



Learning visual motion
Statistical models of spike trains

Recurrent GLM
Instantaneous noise
Results

Conclusions

I Recurrent GLMs with correlated Poisson observations improve statistical
models of spike trains.

I The low dimensional parametrization improves decoding of hand
trajectories from neural data.

I This work was funded by the Gatsby Charitable Foundation.
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The Bayesian Sampling hypothesis

I Bayesian brain hypothesis

I how does the brain do inference: sampling

I interesting data from V1 supports Bayesian sampling hypothesis

I visual word reading time ∼ − log(P(word))

I Bayesian reader (Norris, 2006) collects visual samples until
P(word|visual samples) is large.
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The sequential Bayesian Reader

I Hypothesis: visual word reading time ∼ P(word|history)
I Need two ingredients

I Data
I good language models
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Language modelling: statement of the problem

The Great Gatsby, by F. Scott Fitzgerald
In my younger and more vulnerable years my father gave me some advice that
I’ve been turning over in my mind ever since.
”Whenever you feel like criticizing any one,” he told me, ”just remember that
all the people in this world haven’t had the advantages that you’ve had.”
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The equivalent of spatio-temporal filters and GLMs: N-grams

4-gram (frequency)

I serve as the incoming (92)

I serve as the incubator (99)

I serve as the independent (794)

I serve as the index (223)

I serve as the indication (72)

I serve as the indicator (120)
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Neural network language models

4-gram (frequency)

I serve as the incoming (92)

I serve as the incubator (99)

I serve as the independent (794)

I serve as the index (223)

I serve as the indication (72)

I serve as the indicator (120)

serve as   the    incoming

Neural Network Language Model

ht0 = f

(
t=∞∑
t=1

WT It0−t

)
P(It0) = softmax(ZTht0).
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Recurrent neural network language models

serve as   the    incoming

Neural Network Language Model

serve as   the    incoming

Recurrent Neural Network Language
Model

I State of the art (Mikolov et al
2011).

I Our simplification: linear RNN
(R-GLM).

ht0 = R ht0−1 + WT
0 It0−t.

ht0 =
t=∞∑
t=0

Rt It0−t.
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What are the relevant time scales of language?

I R-GLM learns caching.
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The timescales of language

I Long time scales are good: dynamic R-GLM further adapts parameters at
test time.
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Perplexity results on Penn Corpus (930k tokens, 10k vocab) - single models

Single +KN5+cache x10 x10+KN5+cache

5-gram Kneser-Ney1 141.2 125.7

feedforward NNLM1 140.2 106.6

Log-bilinear LM1 144.5 105.8

RNN1 124.7 97.5 102.1 89.4

dynamic RNN1 123.2 98.0 101.0 90.0

R-GLM(no reg) 137
R-GLM(L1 reg) 125

R-GLM (2DO&CN) 102 94 98.8 92.5

dynamic R-GLM(2DO&CN) 98.4 90.7 95.1 89.1

1 copied from Tomas Mikolov thesis
2 trained with random dropouts and column normalization
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Conclusions

I None yet. Need to collect data.
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