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Evolution of neural activity in circuits 
bridging sensory and abstract knowledge
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Abstract The ability to associate sensory stimuli with abstract classes is critical for survival. How 
are these associations implemented in brain circuits? And what governs how neural activity evolves 
during abstract knowledge acquisition? To investigate these questions, we consider a circuit model 
that learns to map sensory input to abstract classes via gradient- descent synaptic plasticity. We focus 
on typical neuroscience tasks (simple, and context- dependent, categorization), and study how both 
synaptic connectivity and neural activity evolve during learning. To make contact with the current 
generation of experiments, we analyze activity via standard measures such as selectivity, correla-
tions, and tuning symmetry. We find that the model is able to recapitulate experimental observa-
tions, including seemingly disparate ones. We determine how, in the model, the behaviour of these 
measures depends on details of the circuit and the task. These dependencies make experimentally 
testable predictions about the circuitry supporting abstract knowledge acquisition in the brain.

Editor's evaluation
The findings of the paper are very valuable for neuroscientists studying the learning of abstract 
representations. It provides compelling evidence that neural networks trained on two- way classifi-
cation tasks will develop responses whose category and context selectivity profiles depend on key 
network details, such as neural activation functions and initial connectivity. These results can explain 
apparently contradictory results in the experimental literature, and make new experimental predic-
tions for testing in the future.

Introduction
Everyday decisions do not depend on the state of the world alone; they also depend on internal, 
non- sensory variables that are acquired with experience. For instance, over time we learn that in most 
situations salads are good for us while burgers are not, while in other contexts (e.g., before a long hike 
in the mountains) the opposite is true. The ability to associate sensory stimuli with abstract variables is 
critical for survival; how these associations are learned is, however, poorly understood.

Although we do not know how associations are learned, we do have access to a large number of 
experimental studies addressing how neural activity evolves while animals learn to classify stimuli into 
abstract categories (Asaad et al., 1998; Messinger et al., 2001; Freedman et al., 2001; Freedman 
and Assad, 2006; Reinert et al., 2021). Such experiments have probed two kinds of associations 
between stimuli and categories: fixed associations (Freedman and Assad, 2006; Fitzgerald et al., 
2011; Cromer et al., 2010) (in which, e.g., stimuli are either in category A or in category B), and 
flexible ones (Wallis et al., 2001; Stoet and Snyder, 2004; Roy et al., 2010; Reinert et al., 2021) (in 
which, e.g., stimuli are in category A in one context and category B in another).
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A consistent finding in these experiments is that activity of single neurons in associative cortex 
develops selectivity to task- relevant abstract variables, such as category (Freedman et al., 2001; Fitz-
gerald et al., 2011; Reinert et al., 2021) and context (White and Wise, 1999; Wallis et al., 2001; 
Stoet and Snyder, 2004). Neurons, however, typically display selectivity to multiple abstract variables 
(Rigotti et al., 2013), and those patterns of mixed selectivity are often hard to intepret (Cromer et al., 
2010; Roy et al., 2010; Hirokawa et al., 2019).

Instead of focussing on one neuron at the time, one can alternatively consider large populations 
of neurons and quantify how those, as a whole, encode abstract variables. This approach has led, 
so far, to apparently disparate observations. Classical work indicates that neurons in visual cortex 
encode simple sensory variables (e.g., two opposite orientations) via negatively correlated responses 
(Hubel and Wiesel, 1962; Olshausen and Field, 2004): neurons that respond strongly to a given vari-
able respond weakly to the other one, and vice versa. Those responses, furthermore, are symmetric 
(DeAngelis and Uka, 2003): about the same number of neurons respond strongly to one variable, or 
the other. In analogy with sensory cortex, one can thus hypothesize that neurons in associative cortex 
encode different abstract variables (e.g., categories A and B) via negatively correlated, and symmetric 
responses. Evidence in favour of this type of responses has been reported in monkeys (White and 
Wise, 1999; Cromer et al., 2010; Roy et al., 2010; Freedman and Miller, 2008) and mice (Reinert 
et al., 2021) prefrontal cortex (PFC). However, evidence in favour of a different type of responses 
has been reported in a different set of experiments from monkeys lateral intraparietal (LIP) cortex 
(Fitzgerald et al., 2013). In that case, responses to categories A and B were found to be positively 
correlated: neurons that learn to respond strongly to category A also respond strongly to category B, 
and neurons that learn to respond weakly to category A also respond weakly to category B. Further-
more, responses were strongly asymmetric: almost all neurons displayed the strongest response to 
the same category (despite monkeys did not display behavioural biases towards one category or the 
other).

In this work, we use neural circuit models to shed light on these experimental results. To this 
end, we hypothesize that synaptic connectivity in neural circuits evolves by implementing gradient 
descent on an error function (Richards et al., 2019). A large body of work has demonstrated that, 
under gradient- descent plasticity, neural networks can achieve high performance on both simple and 
complex tasks (LeCun et al., 2015). Recent studies have furthermore shown that gradient- descent 
learning can be implemented, at least approximately, in a biologically plausible way (Lillicrap et al., 
2016; Whittington and Bogacz, 2017; Sacramento et al., 2018; Akrout et al., 2019; Payeur et al., 
2021; Pogodin and Latham, 2020; Boopathy and Fiete, 2022). Concomitantly, gradient- based 
learning has been used to construct network models for a variety of brain regions and functions 
(Yamins and DiCarlo, 2016; Kell et al., 2018; Mante et al., 2013; Chaisangmongkon et al., 2017). 
A precise understanding of how gradient- descent learning shapes representations in neural circuits is 
however still lacking.

Motivated by this hypothesis, we study a minimal circuit model that learns through gradient 
descent to associate sensory stimuli with abstract categories, with a focus on tasks inspired by those 
used in experimental studies. Via mathematical analysis and simulations, we show that the model can 
capture the experimental findings discussed above. In particular, after learning, neurons in the model 
become selective to category and, if present, context; this result is robust, and independent of the 
details of the circuit and the task. On the other hand, whether correlations after learning are posi-
tive or negative, and whether population tuning to different categories is asymmetric or not, is not 
uniquely determined, but depends on details. We determined how, in the model, activity measures 
are modulated by circuit details (activation function of single neurons, learning rates, initial connec-
tivity) and task features (number of stimuli, and whether or not the associations are context depen-
dent). These dependencies make experimentally testable predictions about the underlying circuitry. 
Overall, the model provides a framework for interpreting seemingly disparate experimental findings, 
and for making novel experimental predictions.

Results
We consider classification into mutually exclusive abstract classes which, as above, we refer to as 
categories  A  and   B . We consider two tasks: a simple, linearly separable one (Freedman and Assad, 
2006; Fitzgerald et al., 2011; Cromer et al., 2010) and a context- dependent, nonlinearly separable 

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  3 of 56

one (Wallis et al., 2001; Roy et al., 2010; Reinert et al., 2021; Figure 1A). We assume that for both, 
categorization is implemented with a two- layer circuit, as shown in Figure 1B, and that the synaptic 
weights evolve via gradient descent. Our goal is to determine how the activity in the intermediate 
layer evolves with learning, and how this evolution depends on the task and the biophysical details of 
the circuit. We start by describing the model. We then consider circuits that learn the simple, linearly 
separable, categorization task, and analyze how learning drives changes in activity. Finally, we extend 
the analysis to the context- dependent, nonlinearly separable, task.

Circuit model
We consider a simple feedforward circuit as in Figure 1B. A vector  x , which models the input from 
sensory areas, is fed into an intermediate layer of neurons which represents a higher- level, associative 
area. The intermediate layer activity is given by  y = Ψ(u · x) , where  u  is a all- to- all connectivity matrix. 
That activity projects to a readout neuron, which learns, over time, to predict the category associated 
with each sensory input. The activity of the readout neuron,  z , is taken to be  z = Φ(w · y) , where  w  
is a readout vector. The activation functions  Φ  and  Ψ  are sigmoidals that encapsulate the response 
properties of single neurons; they are parametrized by a threshold and a gain (Figure 1C; Materials 
and methods Circuit).

The goal of the circuit is to adjust the synaptic weights,  u  and  w , so that the readout neuron fires at 
rate  z = zA  when the sensory input is associated with category  A , and at rate  z = zB  when the sensory 
input is associated with  B  (Figure 1B). In the simple categorization task, half the stimuli are associated 
with category  A  and the other half with  B . In the context- dependent task, associations are reversed 
across contexts: stimuli associated with category  A  in context 1 are associated with category  B  in 
context 2, and vice versa (Figure 1A). We use  E(u, w)  to denote the average error between  z  and its 
target value, and assume that the synaptic weights evolve, via gradient descent, to minimize the error. 
If the learning rates are small, the weights evolve according to

 
du
dt

= −ηu
∂E(u, w)

∂u   
(1a)

 
dw
dt

= −ηw
∂E(u, w)

∂w
,
  

(1b)

where  t  represents learning time and  ηu  and  ηw  are learning rates which, for generality, we allow to 
be different.
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Figure 1. Schematics of tasks and circuit model used in the study. (A) Illustration of the two categorization tasks. In the simple categorization task, half 
the stimuli are associated with category A and the other half with category B. In the context- dependent task, associations are reversed across contexts: 
stimuli associated with category A in context 1 are associated with category B in context 2, and vice versa. (B) The circuit consists of a sensory input layer 
( x ), an intermediate layer ( y ), and a readout neuron ( z ). The intermediate ( u ) and readout ( w ) weights evolve under gradient descent plasticity (Equation 
1). (C) The activation functions,  Ψ  and  Φ , are taken to be sigmoids characterized by a threshold and a gain. The gain, which controls the sensitivity of 
activity to input, is the slope of the function at its steepest point; the threshold, which controls activity sparsity, is the distance from the steepest point to 
zero.
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Before learning, the synaptic weights are random. Consequently, activity in the intermediate layer, 

 y , is unrelated to category, and depends only on sensory input. As the circuit learns to associate 
sensory inputs with abstract categories, task- relevant structure emerges in the connectivity matrix  u , 
and thus in the intermediate layer as well. Analyzing how activity in the intermediate layer evolves over 
learning is the focus of this work.

Evolution of activity during the simple categorization task
We first analyze the simple task, for which we can derive results in a transparent and intuitive form. We 
then go on to show that similar (although richer) results hold for the context- dependent one.

In the simple categorization task, each sensory input vector  xs  represents a stimulus (for example, 
an odor, or an image), which is associated with one of the two mutually exclusive categories  A  and  B . 
In the example shown below, we used 20 stimuli, of which half are associated with category  A , and the 
other half are associated with category  B . Sensory input vectors corresponding to different stimuli are 
generated at random and assumed to be orthogonal to each other; orthogonality is motivated by the 
decorrelation performed by sensory areas (but this assumption can be dropped without qualitatively 
changing the main results, see Materials and methods Simple categorization task with structured 
inputs and heterogeneity and Figure 2—figure supplement 4).

We start our analysis by simulating the circuit numerically, and investigating the properties of neural 
activity,  y , in the intermediate layer. A common way to characterize the effects of learning on single- 
neuron activity is through the category selectivity index, a quantity that is positive when activity elic-
ited by within- category stimuli is more similar than activity elicited by across- category stimuli, and 
negative otherwise. It is defined as (Freedman et al., 2001; Freedman and Assad, 2006; Reinert 
et al., 2021) (Materials and methods Simple task: category selectivity)

 
Si = ⟨(ys

i−ys′
i )2⟩s,s′ diff cat−⟨(ys

i−ys′
i )2⟩s,s′ same cat

⟨(ys
i−ys′

i )2⟩s,s′ diff cat+⟨(ys
i−ys′

i )2⟩s,s′ same cat   
(2)

where  y
s
i   represents the activity of neuron  i  in response to sensory input  s , and angle brackets,  ⟨ · ⟩s,s′ , 

denote an average over sensory input pairs. The subscript ‘same cat’ refers to averages over the same 
category (A–A or B–B) and ‘diff cat’ to averages over different categories (A–B).

Before learning, the responses of single neurons to different stimuli are random and unstructured. 
Thus, responses to stimuli paired with category A are statistically indistinguishable from responses to 
stimuli paired with category B (Figure 2A). This makes the category selectivity index zero on average 
(Figure 2B). After learning, the responses of single neurons depend on category: within- category 
responses become more similar than across- category responses, resulting in two separate distribu-
tions (Figure 2E). As a consequence, the category selectivity index for most neuron increases; corre-
spondingly, average selectivity increases from zero to positive values (Figure 2F), thus reproducing 
the behaviour observed in experimental studies (Freedman et  al., 2001; Freedman and Assad, 
2006; Reinert et al., 2021). To determine whether this effect is robust, we varied the parameters that 
describe the task (number of stimuli) and the biophysical properties of the circuit (the threshold and 
gain of neurons, Figure 1C, and the learning rates of the two sets of synaptic weights,  ηu  and  ηw ). 
We found that the selectivity increase is a universal property – it is observed in all circuit models that 
successfully learned the task, independent of the parameters. Activity from a second example circuit 
is shown in Figure 2I, J; additional simulations are shown in Figure 2—figure supplement 1A.

Category selectivity tells us about the behaviour of single neurons. But how does the population 
as a whole change its activity over learning? To quantify that, we compute signal correlations, defined 
to be the Pearson correlation coefficient between the activity elicited by two different stimuli (Cromer 
et al., 2010). Results are summarized in the correlation matrices displayed in Figure 2C, G, K. As the 
task involves 20 stimuli, the correlation matrix is 20 × 20; stimuli are sorted according to category.

As discussed above, before learning the responses of neurons in the intermediate layer are random 
and unstructured. Thus, activity in response to different stimuli is uncorrelated; this is illustrated in 
Figure 2C, where all non- diagonal entries of the correlation matrix are close to zero. Of particular 
interest are the upper- right and lower- left blocks of the matrix, which correspond to pairs of activity 
vectors elicited by stimuli in different categories. The average of those correlations, which we refer to 
as category correlation, is shown to the right of each correlation matrix. Before learning, the category 
correlation is close to zero (Figure 2C). Over learning, the correlation matrices develop structure. 

https://doi.org/10.7554/eLife.79908
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Figure 2. Characterization of activity evolution during the simple categorization task. Results from simulations. The first column (A–D) shows a naive 
circuit (pre- learning); the second (E–H) and third (I–L) columns show two trained circuits (post- learning), characterized by different sets of parameters 
(see below). (A, E, I) Histograms of single- neuron activity in response to stimuli associated with category A (orange) and category B (blue). Left and 
right show two sample neurons from the intermediate layer. Grey dashed lines indicate the average activity across the population. (B, F, J) Histograms 
of category selectivity (Equation 2) across the population of neurons in the intermediate layer. Grey dashed lines indicate the average selectivity across 
the population. In panels F and J, the black vertical lines indicate the initial value of average selectivity. (C, G, K) Signal correlation matrices. Each entry 
shows the Pearson correlation coefficient, averaged over neurons (Equation 72), between activity elicited by different stimuli. In these examples, we 
used 20 stimuli. Diagonal entries (brown) are all equal to 1. Category correlation (namely, the average of the correlations within the off- diagonal blocks, 
which contain stimuli in different categories) is shown on the right of the matrices. In panels G and K, the black horizontal lines near zero indicate the 
initial values of category correlation. (D, H, L) Population responses to categories A and B. Each dot represents a neuron in the intermediate layer, with 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  6 of 56

Correlations become different within the two diagonal, and the two off- diagonal blocks, indicating 
that learning induces category- dependent structure. In Figure 2G, the average correlation within the 
off- diagonal blocks is negative; the category correlation is thus negative (Cromer et al., 2010; Roy 
et al., 2010; Freedman and Miller, 2008). The model does not, however, always produce negative 
correlation: varying model details – either the parameters of the circuit or the number of stimuli – can 
switch the category correlation from negative to positive (Fitzgerald et al., 2013; one example is 
shown in Figure 2K).

To illustrate the difference in population response when category correlation is negative versus 
positive, for each neuron in the intermediate layer we plot the average response to stimuli associ-
ated with category  B  (vertical axis) versus  A  (horizontal axis). Before learning, activity is unstructured, 
and the dots form a random, uncorrelated cloud (Figure 2D). After learning, the shape of this cloud 
depends on category correlation. In Figure 2H, where the category correlation is negative, the cloud 
has a negative slope. This is because changes in single- neuron responses to categories  A  and  B  have 
opposite sign: a neuron that increases its activity in response to category  A  decreases its activity in 
response to category  B  (Figure 2E left), and vice versa (Figure 2E right). In Figure 2L, where the cate-
gory correlation is positive, the cloud has, instead, a positive slope. Here, changes in single- neuron 
responses to categories  A  and  B  have the same sign: a neuron that increases its activity in response 
to category  A  also increases its activity in response to category  B  (Figure 2I, left), and similarly for a 
decrease (Figure 2I, right).

Negative versus positive slope is not the only difference between Figure 2H and L: they also differ in 
symmetry with respect to the two categories. In Figure 2H, about the same number of neurons respond 
more strongly to category  A  than to category  B  (Reinert et al., 2021). In Figure 2L, however, the number 
of neurons that respond more strongly to category  A  is significantly larger than the number of neurons that 
respond more strongly to category  B  (Fitzgerald et al., 2013). Furthermore, as observed in experiments 
reporting positive correlations (Fitzgerald et al., 2013), the mean population activity in response to cate-
gory  A  is larger than to category  B , and the range of activity in response to  A  is larger than to  B . The fact that 
the population response to  A  is larger than to  B  is not a trivial consequence of having set a larger target for 
the readout neuron in response to  A  than to  B  ( zA > zB ): as shown in Figure 2—figure supplement 2B, D, 
example circuits displaying larger responses to  B  can also be observed. Response asymmetry is discussed in 
detail in Materials and methods Asymmetry in category response.

In sum, we simulated activity in circuit models that learn to associate sensory stimuli to abstract cate-
gories via gradient- descent synaptic plasticity. We observed that single neurons consistently develop 
selectivity to abstract categories – a behaviour that is robust with respect to model details. How the 
population of neurons responds to category depended, however, on model details: we observed both 
negatively correlated, symmetric responses and positively correlated, asymmetric ones. These obser-
vations are in agreement with experimental findings (Freedman and Assad, 2006; Fitzgerald et al., 
2013; Cromer et al., 2010; Reinert et al., 2021).

Analysis of the simple categorization task
What are the mechanisms that drive activity changes over learning? And how do the circuit and task 
details determine how the population responds? To address these questions, we performed mathe-
matical analysis of the model. Our analysis is based on the assumption that the number of neurons in 
each layer of the circuit is much larger than the number of sensory inputs to classify – a regime that is 
relevant to the systems and tasks we study here. In that regime, the number of synaptic weights that 
the circuit can tune is very large, and so a small change in each weight is sufficient to learn the task. 

horizontal and vertical axes showing the responses to stimuli associated with categories A and B, respectively, averaged over stimuli. Grey line: linear fit, 
with Pearson correlation coefficient shown in the figure legend. Parameters are summarized in Table 1 (Materials and methods Tables of parameters).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Characterization of activity evolution during the simple categorization task; additional results, part I.

Figure supplement 2. Characterization of activity evolution during the simple categorization task; additional results, part II.

Figure supplement 3. Learning curves.

Figure supplement 4. Simple categorization task with structured inputs and heterogeneity.

Figure 2 continued
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This makes the circuit amenable to mathematical analysis (Jacot et al., 2018; Lee et al., 2019; Liu 
et al., 2020; Hu et al., 2020); full details are reported in Materials and methods Evolution of connec-
tivity and activity in large circuits, here we illustrate the main results.

We start with the simple categorization task illustrated in the previous section, and use the math-
ematical framework to shed light on the simulations described above (Figure 2). Figure 3A shows, 
schematically, activity in the intermediate layer before learning (see Figure 2—figure supplement 
1B for simulated data). Axes on each plot correspond to activity of three sample neurons. Each dot 
represents activity in response to a different sensory input; orange and blue dots indicate activity in 
response to stimuli associated with categories  A  and  B , respectively. Before learning, activity is deter-
mined solely by sensory inputs, which consist of random, orthogonal vectors. Consequently, the initial 
activity vectors form an unstructured cloud in activity space, with orange and blue circles intermingled 
(Figure 3A).

Over learning, activity vectors in Figure 3A move. Specifically, over learning all activity vectors 
acquire a component that is aligned with a common, stimulus- independent direction. Activity after 
learning can thus be approximated by

 ys ≃ ys
0 + csd  (3)

where  y
s
0  indicates initial activity in response to sensory input  s , and  d  indicates the common direction 

along which activity acquires structure. The coefficients  cs , which measure the strength of the compo-
nents along the common direction  d , are determined by category: they are approximately equal to 
 cA  if the sensory input is associated with category  A , and  cB  otherwise. Consequently, over learning, 
activity vectors associated with different categories are pushed apart along  d ; this is illustrated in 
Figure 3B, C, which show activity for the two circuits analyzed in the second and third column of 
Figure 2, respectively. Activity thus forms two distinct clouds, one for each category; the centers of 
the two clouds along  d  are given, approximately, by  cA  and  cB . The mathematical framework detailed 
in Materials and methods Simple categorization task allows us to derive closed- form expressions for 
the clustering direction  d  and the coefficients  cA  and  cB . In the next two sections, we take advantage 
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Figure 3. Analysis of activity evolution during the simple categorization task. Results from mathematical analysis. (A–C) Cartoons illustrating how activity 
evolves over learning. The three columns are as in Figure 2: pre- learning (first column) and post- learning for two different circuits (second and third 
columns). Circles show activity in the intermediate layer in response to different stimuli, displayed in a three- dimensional space where axes correspond 
to the activity of three sample neurons. Orange and blue circles are associated, respectively, with categories A and B. Before learning, activity is 
unstructured (panel A). After learning (panels B and C), the activity vectors develop a component along the common direction  d  (Equation 3), shown 
as a magenta line, and form two clouds, one for each category. The centers of those clouds are indicated by magenta triangles; their positions along  d  
are given, approximately, by  cA  and  cB . The black triangle indicates the center of initial activity. In panel B,  cA  and  cB  have opposite sign, so the clouds 
move in opposite directions with respect to initial activity; in panel C,  cA  and  cB  have the same sign, so the clouds move in the same direction. For 
illustration purposes, we show a smaller number of stimuli (14, instead of 20) than in Figure 2. Simulated data from the circuits displayed in Figure 2 are 
shown in Figure 2—figure supplement 1B.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison between finite- size networks and approximate mathematical description for the simple categorization task, part I.

Figure supplement 2. Comparison between finite- size networks and approximate mathematical description for the simple categorization task, part II.

https://doi.org/10.7554/eLife.79908
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of those expressions to determine how the different activity patterns shown in Figure 2 depend on 
task and circuit parameters.

The fact that activity clusters by category tells us immediately that the category selectivity index of 
single neurons increases over learning, as observed in simulations (Figure 2F, J). To see this quantita-
tively, note that from the point of view of a single neuron,  i , Equation 3 reads

 ys
i ≃ ys

0,i + csdi.  (4)

Since  cs  is category dependent, while di is fixed, the second term in the right- hand side of Equation 
4 separates activity associated with different categories (Figure 2E, I), and implies an increase in the 
category selectivity index (Equation 2; Figure 2F, J). The generality of Equation 4 indicates that the 
increase in selectivity is a robust byproduct of gradient- descent learning, and so can be observed in 
any circuit that learns the categorization task, regardless of model details. This explains the increase in 
selectivity consistently observed in simulations (Figure 2F, J and Figure 2—figure supplement 1A).

Correlations reflect circuit and task properties
While the behaviour of category selectivity is consistent across all circuit models, the behaviour of 
population responses is not: as shown in Figure 2, over learning responses can become negatively 
correlated and symmetric (Figure 2G, H), or positively correlated and asymmetric (Figure 2K, L). The 
reason is illustrated in Figure 3B, C. In Figure 3B, the centers of the category clouds along  d ,  cA  and 
 cB , have, respectively, a positive and a negative sign relative to the center of initial activity (denoted 
by a black triangle). As a consequence, the two clouds move in opposite directions. The population 
thus develops, over learning, negative category correlation (Figure 2G, H): if the activity of a given 
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Figure 4. Category correlation depends on circuit and task properties. (A) Category correlation as a function 
of the threshold and gain of the readout neuron. Grey arrows indicate the threshold and gain that are used in 
panels C and D. The learning rate ratio,  ηw/ηu , is set to 0.4 here and in panels B and D. (B) Category correlation 
as a function of the threshold and gain of neurons in the intermediate layer; details as in panel A. (C) Category 
correlation as a function of the learning rate ratio. The threshold and gain of the readout neuron are given by the 
triangles indicated in panel A, matched by colour. (D) Category correlation as a function of the number of stimuli; 
same colour code as in panel C. In all panels, correlations were computed from the approximate theoretical 
expression given in Materials and methods Simple task: category correlation (Equation 74). Parameters are 
summarized in Table 1 (Materials and methods Tables of parameters).

https://doi.org/10.7554/eLife.79908
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neuron increases for one category, it decreases for the other, and vice versa. Furthermore, if  cA  and 
 cB  have similar magnitude (which is the case for Figure 2G, H), activity changes for the two catego-
ries have similar amplitude, making the response to categories  A  and  B  approximately symmetric. 
In Figure 3C, on the other hand,  cA  and  cB  are both positive; clouds associated with the two cate-
gories move in the same direction relative to the initial cloud of activity. This causes the population 
to develop positive category correlation (Figure 2K, L): if the activity increases for one category, it 
also increases for the other, and similarly for a decrease. Because the magnitude of  cA  is larger than 
 cB , activity changes for category  A  are larger than for  B , making the response to categories  A  and  B  
asymmetric.

This analysis tells us that whether negative or positive category correlation emerges depends 
on the relative signs of  cA  and  cB . We can use mathematical analysis to compute the value and 
sign of  cA  and  cB , and thus predict how category correlation changes over learning (Materials and 
methods Simple task: category correlation). We find that the biophysical details of the circuit play a 
fundamental role in determining category correlation. In Figure 4A, we show category correlation 
as a function of the threshold and gain of the readout neuron (Figure 1C). We find that varying 
those can change the magnitude and sign of correlations, with positive correlations favoured by 
large values of the threshold and gain and negative correlations favoured by small values. Cate-
gory correlation is also affected by the threshold and gain of neurons in the intermediate layer. 
This can be seen in Figure 4B, which shows that larger values of the threshold and gain tend to 
favour positive correlation. An equally important role is played by the relative learning rates of the 
the readout,  w , and the intermediate weights,  u . As illustrated in Figure 4C, increasing the ratio 
of the learning rates,  ηw/ηu , causes the correlation to decrease. Overall, these results indicate that 
category correlation depends on multiple biophysical aspects of the circuit, which in turn are likely 
to depend on brain areas. This suggests that correlation can vary across brain areas, which is in 
agreement with the observation that positive correlations reported in monkeys area LIP are robust 
across experiments (Fitzgerald et al., 2013), but inconsistent with the correlations observed in 
monkeys PFC (Cromer et al., 2010).

Category correlation also depends on the total number of stimuli, a property of the task rather than 
the circuit (Materials and methods Simple task: category correlation, Equation 77). This is illustrated in 
Figure 4D, which shows that increasing the number of stimuli causes a systematic decrease in correla-
tion. The model thus makes the experimentally testable prediction that increasing the number of 
stimuli should push category correlation from positive to negative values. This finding is in agreement 
with the fact that negative correlations are typically observed in sensory cortex, as well as machine- 
learning models trained on benchmark datasets (Papyan et al., 2020) – that is, in cases where the 
number of stimuli is much larger than in the current task.
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Patterns of selectivity are shaped by initial connectivity
We conclude our analysis of the simple categorization task by taking a closer look at category selec-
tivity. We have already observed, in Figure 2F, J, that the category selectivity of neurons in the inter-
mediate layer increase over learning. However, as shown in those figures, the amount it increases 
can vary markedly across the population – a finding that reproduces the variability commonly seen 
in experiments (Freedman and Assad, 2006; Fitzgerald et  al., 2011; Reinert et  al., 2021). The 
model naturally explains this variability: as can be seen in Equation 4, the magnitude of category- 
related activity changes (and, consequently, the magnitude of category selectivity) depends, for a 
given neuron  i , on the magnitude of di. Mathematical analysis (see Materials and methods Simple task: 
computing activity, especially Equation 55) indicates that, for the current task, the category direction 
 d  is approximately aligned with the vector that specifies connectivity between the intermediate and 
the readout neurons,  w , before learning starts; we denote this vector  w0  (Figure 3B, C). As a conse-
quence, only neurons that are initially strongly connected to the readout neuron – that is, neurons for 
which  w0,i  is large – exhibit a large selectivity index (Figure 5B, C).

Why does activity cluster along the initial readout  w0 ? As described above, the output of the circuit, 
 z , depends on the dot product  w · y , where  w  are the readout weights after learning. Consequently, 
the final activity in the intermediate layer,  y , must include a category- dependent component along 
 w . Such a component can be aligned either with the initial readout weights,  w0 , or with the readout 
weights changes. The fact that activity changes are mostly aligned with  w0  indicates that the learning 
algorithm is characterized by a sort of inertia, which makes it rely on initial connectivity structure much 
more heavily than on the learned one. As showed in Materials and methods Evolution of connectivity 
and activity in large circuits, this is a property of networks with a large number of neurons relative to 
the number of stimuli, which are characterized by small weights changes (Jacot et al., 2018).

In terms of biological circuits, Figure 5 predicts that changes in selectivity are determined by the 
strength of synaptic connections a neuron makes, before learning, to downstream readout areas. 
Experiments consistent with this prediction have been recently reported: studies in rodents PFC (Ye 
et al., 2016; Hirokawa et al., 2019) found that all neurons which were highly selective to a given 
abstract variable were characterized by similar downstream projections (i.e., they projected to the 
same area). These experiments would provide evidence for our model if two conditions were met. 
First, neurons in the downstream area should behave as readout neurons: over learning, their activity 
should increasingly depend on the abstract variable. Second, the strength of the synaptic connec-
tions that neurons make to downstream neurons should correlate with selectivity (Figure 5B, C). Both 
predictions could be tested with current experimental technology.

In sum, we analyzed activity in the intermediate layer of circuits that learned the simple categori-
zation task. We found that activity gets reshaped along a common, stimulus- independent direction 
(Equation 3), which is approximately aligned with the initial readout vector  w0 . Activity vectors associ-
ated with different categories develop two distinct clouds along this direction – a fact that explains the 
increase in category selectivity observed in Figure 2F, J. We also found that the sign of the category 
correlation depends on the circuit (threshold and gain of neurons in the intermediate and readout 
layers, and relative learning rates) and on the task (number of stimuli). Modifying any of these can 
change the direction the clouds of activity move along  w0 , which in turn changes the sign of category 
correlation, thus explaining the different behaviours observed in Figure 2G, H and K, L.

Evolution of activity during the context-dependent categorization task
We now consider a more complex categorization task. Here, stimuli–category associations are not 
fixed, but context dependent: stimuli that are associated with category A in context 1 are associated 
with category B in context 2, and vice versa. Context- dependent associations are core to a number of 
experimental tasks (Wallis et al., 2001; Stoet and Snyder, 2004; Roy et al., 2010; McKenzie et al., 
2014; Reinert et al., 2021), and are ubiquitous in real- world experience.

In the model, the two contexts are signaled by distinct sets of context cues (e.g., two different 
sets of visual stimuli) (Wallis et al., 2001; Stoet and Snyder, 2004). As for the stimuli, context cues 
are represented by random and orthogonal sensory input vectors. On every trial, one stimulus and 
one context cue are presented; the corresponding sensory inputs are combined linearly to yield the 
total sensory input vector  xs  (Materials and methods Context- dependent task: task definition). This 
task is computationally much more involved than the previous one, primarily because context induces 

https://doi.org/10.7554/eLife.79908
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nontrivial correlational structure: in the simple task, all sensory input vectors were uncorrelated; in 
the context- dependent task, that is no longer true. For instance, two sensory inputs with the same 
stimulus and different context cues are highly correlated. In spite of this high correlation, though, they 
can belong to different categories – for instance, when context cues are associated with different 
contexts. In contrast, two sensory inputs with different stimuli and different context cues are uncor-
related, but they can belong to the same category. From a mathematical point of view, this correla-
tional structure makes sensory input vectors nonlinearly separable. This is in stark contrast to the 
simple task, for which sensory input vectors were linearly separable (Barak et al., 2013). In fact, this 
task is a generalization of the classical XOR task where, rather than just two stimuli and two context 
cues, there are more than two of each (McKenzie et al., 2014). In the example shown below, we used 
8 stimuli and 8 context cues.

We are again interested in understanding how activity in the intermediate layer evolves over 
learning. We start by investigating this via simulations (Figure 6). As in Figure 2B, F, J, we first measure 
category selectivity (Equation 2). Before learning, activity is characterized by small selectivity, which 
is weakly negative on average (Figure 6A; the fact that average category selectivity is initially weakly 
negative is due to the composite nature of inputs for this task, see Materials and methods Detailed 
analysis of category selectivity). Over learning, the average category selectivity increases (Figure 6D). 
We tested the robustness of this behaviour by varying the parameters that control both the circuit 
(threshold and gain of neurons, learning rates) and task (number of stimuli and context cues). As in the 
simple task, we found that the average category selectivity increases in all circuit models, regardless 
of the parameters (Figure 6G and Figure 6—figure supplement 1A).

While in the simple task we could only investigate the effect of category on activity, in this task we 
can also investigate the effect of context. For this we measure context selectivity which, analogously 
to category selectivity, quantifies the extent to which single- neuron activity is more similar within 
than across contexts (Materials and methods Context- dependent task: category and context selec-
tivity, Equation 122). Context selectivity is shown in Figure 6B, E. We find, as we did for category 
selectivity, that average context selectivity increases over learning – a behaviour that is in agreement 
with experimental findings (Wallis et al., 2001; Stoet and Snyder, 2004). The increase in context 
selectivity is, as for category, highly robust, and does not depend on model details (Figure 6H and 
Figure 6—figure supplement 1A).

Finally, we analyze signal correlations; these are summarized in the correlation matrices displayed 
in Figure 6C, F, I. As we used 8 stimuli and 8 context cues, and all stimuli–context cues combinations 
are permitted, each correlation matrix is 64 × 64. Trials are sorted according to context cue first and 
stimulus second; with this ordering, the first half of trials corresponds to context 1 and the second half 
to context 2, and the off- diagonal blocks are given by pairs of trials from different contexts.

Figure 6C shows the correlation matrix before learning. Here, the entries in the correlation matrix 
are fully specified by sensory input, and can take only three values: large (brown), when both the 
stimuli and the context cues are identical across the two trials; intermediate (red), when the stimuli 
are identical but the context cues are not, or vice versa; and small (white), when both stimulus and 
context cues are different. Figure 6F, I show correlation matrices after learning for two circuits charac-
terized by different parameters. As in the simple task, the matrices acquire additional structure during 
learning, and that structure can vary significantly across circuits (Figure 6F, I). To quantify this, we focus 
on the off- diagonal blocks (pairs of trials from different contexts) and measure the average of those 
correlations, which we refer to as context correlation. Context correlation behaves differently in the 
two circuits displayed in Figure 6F and I: it decreases over learning in Figure 6F, whereas it increases 
in Figure 6I. Thus, as in the simple task, the behaviour of correlations is variable across circuits. This 
variability is not restricted to context correlation: as in the simple task, category correlation is also 
variable (Figure 6—figure supplement 1A), and the population response to categories  A  and  B  can 
be symmetric or asymmetric depending on model details (Figure 6—figure supplement 2A, B).

Analysis of the context-dependent categorization task
To uncover the mechanisms that drive learning- induced activity changes, we again analyse the circuit 
mathematically. The addition of context makes the analysis considerably more complicated than for 
the simple task; most of the details are thus relegated to Materials and methods Context- dependent 
categorization task; here we discuss the main results.

https://doi.org/10.7554/eLife.79908
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Figure 6. Characterization of activity evolution during the context- dependent categorization task. Results from simulations. The first column (A–C) 
shows a naive circuit (pre- learning); the second (D–F) and third (G–I) columns show two trained circuits (post- learning), characterized by different sets of 
parameters. (A, D, G) Histogram of category selectivity (Equation 2) across the population of neurons in the intermediate layer (note that the vertical 
axis has been expanded for visualization purposes). Grey dashed lines indicate the average selectivity across the population. In panels D and G, the 
black vertical lines indicate the initial value of the average selectivity. Note that the distribution of category selectivity is different from the distribution 
observed in the simple task (Figure 2F, J); the distribution is now heavy tailed, with only a fraction of the neurons acquiring strong category selectivity 
(see also Figure 8B). (B, E, H) Histogram of context selectivity (Materials and methods Context- dependent task: category and context selectivity, 
Equation 122), details as in A, D, and G. (C, F, I) Correlation matrices. Each entry shows the Pearson correlation coefficient between activity from 
different trials. There are 8 stimuli and 8 context cues, for a total of 64 trials (i.e., 64 stimulus/context cue combinations). Diagonal entries (brown) are 
all equal to 1. The inset on the top of panel C shows, as an example, a magnified view of correlations among trials with context cues 1 and 8, across all 
stimuli (1–8). To the right of the matrices we show the context correlation, defined to be the average of the correlations within the off- diagonal blocks 
(trials in different contexts). In panels F and I, the black horizontal lines indicate the initial value of context correlation. Parameters are summarized in 
Table 1 (Materials and methods Tables of parameters).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Characterization of activity evolution during the context- dependent categorization task; additional results, part I.

Figure supplement 2. Characterization of activity evolution during the context- dependent categorization task; additional results, part II.

Figure supplement 3. Characterization of activity evolution during the context- dependent categorization task; additional results, part III.

https://doi.org/10.7554/eLife.79908
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Figure 7A shows, schematically, activity before learning (see Figure 6—figure supplement 1D for 
simulated data). Each point represents activity on a given trial, and is associated with a category ( A , 
orange;  B , blue) and a context (1, circles; 2, squares). Before learning, activity is mostly unstructured 
(Figure 7A, Materials and methods Detailed analysis of category selectivity); over learning, though, it 
acquires structure (Figure 7B, C). As in the simple task (Figure 3B, C), activity vectors get re- arranged 
into statistically distinguishable clouds. While in the simple task clouds were determined by category, 
here each cloud is associated with a combination of category and context. As a result, four clouds 
are formed: the cloud of orange circles corresponds to category  A  and context 1; orange squares to 
category  A  and context 2; blue circles to category  B  and context 1; and blue squares to category  B  
and context 2.

The transition from unstructured activity (Figure 7A) to four clouds of activity (Figure 7B, C) occurs 
by learning- induced movement along two directions:  dcat , which corresponds to category, and  dctx , 
which corresponds to context. Activity vectors in different categories move by different amounts along 
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Figure 7. Analysis of activity evolution during the context- dependent categorization task. Results from mathematical analysis. (A–C) Cartoons illustrating 
how activity evolves over learning. Orange and blue symbols are associated with categories A and B, respectively; circles and squares are associated 
with contexts 1 and 2. Before learning, activity is mostly unstructured (panel A). After learning, activity forms four clouds, one for each combination of 
category and context. The center of the activity vectors associated with categories A and B and contexts 1 and 2 are indicated, respectively, by magenta 
and pink triangles. The black triangle indicates the center of initial activity. The cartoons in panels A–B–C refer to the three circuits illustrated in the three 
columns of Figure 6; for illustration purposes, we show a reduced number of stimuli and context cues (4 instead of 8). Simulated data from the circuits 
displayed in Figure 6 are shown in Figure 6—figure supplement 1D. (D) Change in context correlation over learning as a function of the threshold and 
gain of the readout neuron. Grey arrows indicate the threshold and gain that are used in panels E and F. (E) Change in context correlation over learning 
as a function of the ratio of learning rates in the two layers. (F) Change in context correlation over learning as a function of the number of stimuli. 
Correlations in panels D–F were computed from the approximate theoretical expression given in Materials and methods Context- dependent task: 
category and context correlation. Parameters are given in Table 1 (Materials and methods Tables of parameters).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Comparison between finite- size networks and approximate mathematical description for the context- dependent categorization 
task.

https://doi.org/10.7554/eLife.79908
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 dcat ; this causes the orange and blue symbols in Figure 7B, C to move apart, so that activity vectors 
associated with the same category become closer than vectors associated with opposite categories. 
As in the simple task, this in turn causes the category selectivity to increase, as shown in Figure 6D, 
G (Materials and methods Detailed analysis of category selectivity). Similar learning dynamics occurs 
for context: activity vectors from different contexts move by different amounts along  dctx . This causes 
the squares and circles in Figure 7B, C to move apart, so that activity vectors from the same context 
become closer than vectors from different contexts. Again, this in turn causes the context selectivity 
to increase, as shown in Figure 6E, H (Materials and methods Detailed analysis of context selectivity). 
Mathematical analysis indicates that the increase in clustering by category and context is indepen-
dent of model parameters (Figure 6—figure supplement 1B), which explains the robustness of the 
increase in selectivity observed in simulations.

The category- and the context- related structures that emerge in Figure 7B, C have different 
origins and different significance. The emergence of category- related structure is, perhaps, not 
surprising: over learning, the activity of the readout neuron becomes category dependent, as 
required by the task; such dependence is then directly inherited by the intermediate layer, where 
activity clusters by category. This structure was already observed in the simple categorization task 
(Figure 3B, C). The emergence of context- related structure is, on the other hand, more surprising, 
since the activity of the readout neuron does not depend on context. Nevertheless, context- 
dependent structure, in the form of clustering, emerges in the intermediate layer activity. Such 
novel structure is a signature of the gradient- descent learning rule used by the circuit (Canatar 
et al., 2021). The mechanism through which context clustering emerges is described in detail in 
Materials and methods Detailed analysis of context selectivity. But, roughly speaking, context clus-
tering emerges because, for a pair of sensory inputs, how similarly their intermediate- layer repre-
sentations evolve during learning is determined both by their target category and their correlations 
(Equation 27, Materials and methods Evolution of connectivity and activity in large circuits). In the 
simple task, initial correlations were virtually nonexistent (Figure 2C), and thus activity changes 
were specified only by category; in the context- dependent task, initial correlations have structure 
(Figure 6C), and that structure critically affects neural representations. In particular, inputs with 
the same context tend to be relatively correlated, and those are also likely to be associated with 
the same category; their representations are thus clustered by the learning algorithm, resulting in 
context clustering.

While the clustering by category and context described in Figure 7B, C is robust across circuits, 
the position of clouds in the activity space is not. As in the simple task, the variability in cloud position 
explains the variability in context correlation (although the relationship between clouds position and 
correlations is more complex in this case, see Materials and methods Context- dependent categori-
zation task). In Figure 7D–F, we show how context correlation depends on model parameters. This 
dependence is qualitatively similar to that of category correlation in the simple task: context correla-
tion depends on the threshold and gain of neurons (compare Figure 7D and Figure 4A), on the rela-
tive learning rate  ηw/ηu  (compare Figure 7E and Figure 4C), and on the number of stimuli (compare 
Figure 7F and Figure 4D). However, we find that the region of parameter space leading to an increase 
in correlation shrinks substantially compared to the simple task (Figure 6—figure supplement 2C, 
see also Materials and methods Context- dependent task: computing activity); this is in line with the 
observation that correlations decrease to negative values when the complexity of the task increases, 
as shown in Figure 4D.

Patterns of pure and mixed selectivity are shaped by initial activity
As a final step, we take a closer look at single- neuron selectivity. Analysis from the previous sections 
indicates that the average selectivity to both category and context increases over learning. And, as 
in the simple task, the increase is highly variable across neurons (Figure 6D, E and G, H). To deter-
mine which neurons become the most selective to category and context, we analyze the directions 
along which clustering to category and context occurs,  dcat  and  dctx  (Figure 7B, C). In analogy with 
the simple task, neurons that strongly increase selectivity to category are characterized by a large 
component along the category direction  dcat ; similarly, neurons that strongly increase selectivity to 
context are characterized by a large component along the context direction  dctx  (Figure 6—figure 
supplement 3A, B).

https://doi.org/10.7554/eLife.79908
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Analysis in Materials and methods Analysis of patterns of context and category selectivity shows 
that both the category and context directions,  dcat  and  dctx , are strongly correlated with the initial 
readout vector  w0 . As in the simple task, this leads to the prediction that neurons that strongly increase 
selectivity to either category or context are, before learning, strongly connected to the downstream 
readout neuron (Figure 8A).

Although  dcat  and  dctx  are both correlated with  w0 , they are not perfectly aligned (Materials and 
methods Analysis of patterns of context and category selectivity). In principle, then, for a given neuron 
(here, neuron  i ), both  d

cat
i   and  d

ctx
i   could be large (implying mixed selectivity to both abstract variables, 

category and context), or only one could be large (implying pure selectivity to only one abstract 
variable, category or context), or both could be small (implying no selectivity at all). While all combi-
nations are possible in principle, in the model they do not all occur. In Figure 8B, we plot changes 
in context selectivity as a function of changes in category selectivity. We observe that, among all the 
neurons that strongly increase their selectivity, some increase selectivity to both category and context 
(orange sample neuron), and others increase selectivity to category, but not context (yellow sample 
neuron). In contrast, none increases selectivity to context but not category. This makes the following 
experimental prediction: among all the neurons that are strongly connected to the readout, neurons 
with pure selectivity to category and neurons with mixed selectivity to category and context should 
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Figure 8. Patterns of pure and mixed selectivity to category and context. (A) Changes in category selectivity 
(left) and context selectivity (right) as a function of the initial readout connectivity,  w0,i  (in absolute value). Details 
as in Figure 5B, C. (B) Changes in context selectivity as a function of changes in category selectivity. Note the 
logarithmic scale on the  x - axis; this is required by the heavy- tailed behaviour of category selectivity (Figure 6D, 
G). We highlighted two sample neurons: one with strong, pure selectivity to category (yellow) and one with strong, 
mixed selectivity to category and context (orange). (C) Neurons that develop pure and mixed selectivity are 
characterized by different patterns of initial activity. Here, we plot the gain- based measure of activity defined in 
Equation 183 for neurons that belong to the former (left), and the latter (right) group. The former group includes 
neurons for which the change in category selectivity, but not the change in context selectivity, is within the top 
15% across the population. The latter group includes neurons for which the change in both category and context 
selectivity is within the top 15%. Dots show results for the circuit analyzed in panels A and B. Grey lines show 
results for 20 different circuit realizations; note that the slope is positive for all circuits. All panels in the figure show 
results for the circuit displayed in the second column of Figure 6; the circuit displayed in the third column yields 
qualitatively similar results (Figure 6—figure supplement 3C, D).
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be observed, but neurons with pure selectivity to context should not. The asymmetry between cate-
gory and context arises because, in the model, the readout neuron learns to read out category, but 
not context. We show in Figure 6—figure supplement 3E, F that if a second readout neuron, which 
learns to read out context, is included in the circuit, neurons with strong pure selectivity to context 
are also observed.

What determines whether a given neuron develops pure selectivity to category, or mixed selectivity 
to category and context? Analysis reported in Materials and methods Analysis of patterns of context 
and category selectivity indicates that these two populations are characterized by different properties 
of the initial activity. In particular, the two populations are characterized by different initial patterns of 
the response gain (defined as the slope of the activation function, Figure 1C, at the response), which 
measures the local sensitivity of neurons to their inputs. The exact patterns that the response gain 
takes across the two populations is described in detail in Materials and methods Analysis of patterns 
of context and category selectivity (Equation 183); the fact that pure- and mixed- selective neurons 
can be distinguished based on these patterns is illustrated in Figure 8C. Overall, these results indicate 
that initial activity, which is mostly unstructured and task- agnostic, plays an important role in learning: 
it breaks the symmetry among neurons in the intermediate layer, and determines which functional 
specialization neurons will display over learning.

Discussion
How does the brain learn to link sensory stimuli to abstract variables? Despite decades of experimental 
(Asaad et al., 1998; Messinger et al., 2001; Freedman and Assad, 2006; Reinert et al., 2021) and 
theoretical (Rosenblatt, 1958; Barak et al., 2013; Engel et al., 2015) work, the answer to this ques-
tion remains elusive. Here, we hypothesized that learning occurs via gradient- descent synaptic plas-
ticity. To explore the implications of this hypothesis, we considered a minimal model: a feedforward 
circuit with one intermediate layer, assumed to contain a large number of neurons compared to the 
number of stimuli. This assumption allowed us to thoroughly analyze the model, and thus gain insight 
into how activity evolves during learning, and how that evolution supports task acquisition.

We focused on two categorization tasks: a simple one (Figure 2), in which category was determined 
solely by the stimulus, and a complex one (Figure 6), in which category was determined by both the 
stimulus and the context. We showed that, over learning, single neurons become selective to abstract 
variables: category (which is explicitly reinforced) and context (which is not; instead, it embodies the 
task structure, and is only implicitly cued). From a geometrical perspective, the emergence of selec-
tivity during learning is driven by clustering: activity associated with stimuli in different categories is 
pushed apart, forming distinct clusters (Figure 3). In the context- dependent task, additional clustering 
occurs along a second, context- related axis; this results in activity forming four different clouds, one 
for each combination of category and context (Figure 7). While the behaviour of selectivity is highly 
stereotyped, the behaviour of signal correlations and tuning symmetry is not, but depends on details 
(Figure 4). From a geometrical perspective, the variability in correlations and symmetry is due to the 
variability in the position of category and context clusters with respect to initial activity.

Our work was motivated partly by the observation that responses to different categories in monkeys 
area LIP were positively correlated and asymmetric (Fitzgerald et al., 2013) – a finding that seems 
at odds with experimental observations in sensory, and other associative, brain areas (Cromer et al., 
2010; Reinert et al., 2021). It has been suggested that those responses arise as a result of learning 
that drives activity in area LIP onto an approximately one- dimensional manifold (Ganguli et al., 2008; 
Fitzgerald et al., 2013; Summerfield et al., 2020). Our results are broadly in line with this hypoth-
esis: for the simple categorization task, which is similar to Fitzgerald et al., 2013, we showed that 
activity stretches along a single direction (Equation 3, Figure 3C). Analysis in Materials and methods 
Evolution of activity further shows that not only at the end of learning, but at every learning epoch, 
activity is aligned along a single direction; the whole learning dynamics is thus approximately one- 
dimensional. However, in the context- dependent categorization task, activity stretches along two 
dimensions (Figure 7B, C), indicating that one dimension does not always capture activity.

Our analysis makes several experimental predictions. First, it makes specific predictions about how 
category and context correlations should vary with properties of the circuit (threshold and gain of 
neurons, relative learning rates) and with the task (number of stimuli, context dependence) (Figure 4). 
These could be tested with current technology; in particular, testing the dependence on task variables 
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only requires recording neural activity. Second, it predicts that selectivity is shaped by connectivity 
with downstream areas, a result that is in line with recent experimental observations (Glickfeld et al., 
2013; Ye et al., 2016; Hirokawa et al., 2019; Gschwend et al., 2021). More specifically, it predicts 
that, for a given neuron, selectivity correlates with the strength of the synaptic connection that the 
neuron makes to the downstream neurons that read out category (Figure 5B, C and Figure 8A). 
Across all neurons that are strongly connected to downstream readout neurons, selectivity to category 
and context is distributed in a highly stereotyped way: during learning, some neurons develop mixed 
selective to category and context, others develop pure selectivity to category, but none develop pure 
selectivity to context (Figure 8B). Moreover, whether a neuron develops mixed or pure selectivity 
depends on initial activity (Figure 8C).

Previous models for categorization
Previous theoretical studies have investigated how categorization can be implemented in multi- layer 
neural circuits (Barak et  al., 2013; Babadi and Sompolinsky, 2014; Litwin- Kumar et  al., 2017; 
Pannunzi et al., 2012; Engel et al., 2015; Villagrasa et al., 2018; Min et al., 2020). Several of those 
studies considered a circuit model in which the intermediate connectivity matrix,  u , is fixed, and only 
the readout vector,  w , evolves (via Hebbian plasticity) over learning (Barak et al., 2013; Babadi and 
Sompolinsky, 2014; Litwin- Kumar et al., 2017). This model can learn both the simple (linearly sepa-
rable) and complex (nonlinearly separable) tasks (Barak et al., 2013). Because there is no learning 
in the intermediate connectivity, activity in the intermediate layer remains unstructured, and high 
dimensional, throughout learning. This stands in sharp contrast to our model, where learning leads to 
structure in the form of clustering – and, thus, a reduction in activity dimensionality.

One study did consider a model in which both the intermediate and the readout connectivity 
evolve over learning, according to reward- modulated Hebbian plasticity (Engel et al., 2015). This 
circuit could learn a simple categorization task but, in contrast to our study, learning did not lead to 
significant changes in the activity of the intermediate layer. When feedback connectivity was intro-
duced, learning did lead to activity changes in the intermediate layer, and those activity changes led 
to an increase in category selectivity – a finding that is in line with ours. There were, however, several 
notable differences relative to our model. First, learning of the intermediate and readout weights 
occurred on separate timescales: the intermediate connectivity only started to significantly change 
when the readout connectivity was completely rewired; in our model, in contrast, the two set of 
weights evolve on similar timescales. Second, population responses were negatively correlated and 
symmetric; whether positively correlated and asymmetric responses (as seen in experiments, Fitz-
gerald et al., 2013, and in our model) can also be achieved remains to be established. Third, context- 
dependent associations, that are core to a variety of experimental tasks (Wallis et al., 2001; Roy 
et al., 2010; McKenzie et al., 2014; Brincat et al., 2018; Reinert et al., 2021; Mante et al., 2013), 
were not considered. Whether reward- modulated Hebbian plasticity can be used to learn context- 
dependent tasks is unclear, and represents an important avenue for future work.

Gradient-descent learning in the brain
A common feature of the studies described above is that learning is implemented via Hebbian 
synaptic plasticity – a form of plasticity that is known to occur in the brain. Our model, on the other 
hand, uses gradient- descent learning in a multi- layer network, which requires back- propagation 
of an error signal; whether and how such learning is implemented in the brain is an open question 
(Whittington and Bogacz, 2019). A number of recent theoretical studies have proposed biologi-
cally plausible architectures and plasticity rules that can approximate back- propagation on simple 
and complex tasks (Lillicrap et al., 2016; Sacramento et al., 2018; Akrout et al., 2019; Whit-
tington and Bogacz, 2017; Payeur et  al., 2021; Pogodin and Latham, 2020; Boopathy and 
Fiete, 2022). Understanding whether these different implementations lead to differences in activity 
represents a very important direction for future research. Interestingly, recent work has showed that 
it is possible to design circuit models where the learning dynamics is identical to the one studied 
in this work, but the architecture is biologically plausible (Boopathy and Fiete, 2022). We expect 
our results to directly translate to those models. Other biologically plausible setups might be char-
acterized, instead, by different activity evolution. Recent work (Song et al., 2021; Bordelon and 
Pehlevan, 2022) made use of a formalism similar to ours to describe learning dynamics induced 
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by a number of different biologically plausible algorithms and uncovered non- trivial, qualitatively 
different dynamics. Whether any of these dynamics leads to different neural representations in 
neuroscience- inspired categorization tasks like the ones we studied here is an open, and compel-
ling, question.

In this work, we used mathematical analysis to characterize the activity changes that emerge during 
gradient- descent learning. Our analysis relied on two assumptions. First, the number of neurons in the 
circuit is large compared to the number of stimuli to classify. Second, the synaptic weights are chosen 
so that the initial activity in all layers of the network lies within an intermediate range (i.e., it neither 
vanishes nor saturates) before learning starts (Jacot et al., 2018; Chizat et al., 2019; Lee et al., 2019; 
Liu et al., 2020). These two assumptions are reasonable for brain circuits, across time scales ranging 
from development to animals’ lifetimes; a discussion on the limitations of our approach is given in 
Materials and methods Evolution of activity in finite- size networks.

A prominent feature of learning under these assumptions is that changes in both the synaptic weights 
and activity are small in amplitude (Materials and methods Evolution of connectivity and activity in 
large circuits). This has an important implication: the final configuration of the circuit depends strongly 
on the initial one. We have showed, for example, that the selectivity properties that single neurons 
display at the end of learning are determined by their initial activity and connectivity (Figure 5B, C and 
Figure 8A, C). Moreover, the final distribution of selectivity indices, and the final patterns of correla-
tions, bear some resemblance to the initial ones (see, e.g., Figure 6); for this reason, we characterized 
activity evolution via changes in activity measures, rather than their asymptotic, post- learning values. 
Overall, these findings stress the importance of recording activity throughout the learning process to 
correctly interpret neural data (Steinmetz et al., 2021; Latimer and Freedman, 2021).

Circuits that violate either of the two assumptions discussed above may exhibit different gradient- 
descent learning dynamics than we saw in our model (Chizat et al., 2019), and could result in different 
activity patterns over learning. Previous studies have analyzed circuits with linear activation func-
tions and weak connectivity (weak enough that activity is greatly attenuated as it passes through the 
network). However, linear activation functions can only implement a restricted set of tasks (Saxe et al., 
2019; Li and Sompolinsky, 2021; Moroshko et al., 2020; in particular, they cannot implement the 
context- dependent task we considered). Developing tools to analyze arbitrary circuits will prove crit-
ical to achieving a general understanding of how learning unfolds in the brain (Mei et al., 2018; Yang 
and Hu, 2021; Flesch et al., 2022).

Beyond simplified models
Throughout this work, we focussed on two simplified categorization tasks, aimed at capturing the 
fundamental features of the categorization tasks commonly used in systems neuroscience (Freedman 
and Assad, 2006; Fitzgerald et  al., 2011; Wallis et  al., 2001). The mathematical framework we 
developed to analyze those tasks could, however, easily be extended in several directions, including 
tasks with more than two categories (Fitzgerald et al., 2011; Reinert et al., 2021; Mante et al., 
2013) and tasks involving generalization to unseen stimuli (Barak et al., 2013; Canatar et al., 2021). 
An important feature missing in our tasks, though, is memory: neuroscience tasks usually involve 
a delay period during which the representation of the output category must be sustained in the 
absence of sensory inputs (Freedman and Assad, 2006; Fitzgerald et  al., 2011; Wallis et  al., 
2001). Experiments indicate that category representations are different in the stimulus presentation 
and the delay periods (Freedman and Assad, 2006). Investigating these effects in our tasks would 
require the addition of recurrent connectivity to the model. Mathematical tools for analyzing learning 
dynamics in recurrent networks is starting to become available (Mastrogiuseppe and Ostojic, 2019; 
Schuessler et al., 2020; Dubreuil et al., 2022; Susman et al., 2021), which could allow our analysis 
to be extended in that direction.

To model categorization, we assumed a quadratic function for the error  E  (Materials and methods 
Circuit) – an assumption that effectively casts our categorization tasks into a regression problem. This 
made the model amenable to mathematical analysis, and allowed us to derive transparent equa-
tions to characterize activity evolution. Recent machine- learning work has showed that, at least in 
some categorization setups (Hui and Belkin, 2021), a cross- entropy function might result in better 
learning performance. The mathematical framework used here is, however, not well suited to studying 
networks with such an error function (Lee et al., 2019). Investigating whether and how our findings 
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extend to networks trained with a cross- entropy error function represents an interesting direction for 
future work.

Finally, in this study we focussed on a circuit model with a single intermediate layer. In the brain, 
in contrast, sensory inputs are processed across a number of stages within the cortical hierarchy. Our 
analysis could easily be extended to include multiple intermediate layers. That would allow our predic-
tions to be extended to experiments involving multi- area recordings, which are increasingly common 
in the field (Goltstein et  al., 2021). Current recording techniques, furthermore, allow monitoring 
neural activity throughout the learning process (Reinert et al., 2021; Goltstein et al., 2021); those 
data could be used in future studies to further test the applicability of our model.

Bridging connectivity and selectivity
In this work, we considered a circuit with a single readout neuron, trained to discriminate between 
two categories. One readout neuron is sufficient because, in the tasks we considered, categories are 
mutually exclusive (Fitzgerald et al., 2013). We have found that the initial readout weights play a 
key role in determining the directions of activity evolution, suggesting that circuits with different or 
additional readout neurons might lead to different activity configurations. For example, one might 
consider a circuit with two readout neurons, each highly active in response to a different category. 
And indeed, recent work in mouse PFC suggests that two readout circuits are used for valence – one 
strongly active for positive valence, and one strongly active for negative one (Ye et al., 2016). Also, in 
context- dependent tasks, one might consider a circuit with an additional readout for context. We have 
showed in Figure 6—figure supplement 3E, F that this model leads to different experimental predic-
tions for selectivity than the model with only one readout for category (Figure 8B). Altogether, these 
observations indicate that functional properties of neurons are tighly linked to their long- range projec-
tions – a pattern that strongly resonates with recent experimental findings (Hirokawa et al., 2019; 
Yang et al., 2022). Constraining model architectures with connectomics, and then using models to 
interpret neural recordings, represents a promising line of future research.

Materials and methods
Overview
In the main text, we made qualitative arguments about the evolution of activity over learning. Here, 
we make those arguments quantitative. We start with a detailed description of the circuit model 
(Section Model). We then derive approximate analytical expressions that describe how activity in the 
circuit evolves over learning (Section Evolution of connectivity and activity in large circuits). To this 
end, we use an approach that is valid for large circuits. We apply this approach first to the simple task 
(Section Simple categorization task), then to the context- dependent one (Section Context- dependent 
categorization task). Finally, we provide details on the numerical implementation of circuit models and 
analytical expressions (Section Software).

Model
Circuit
We consider a feedforward circuit with a single intermediate layer (Figure  1B). For simplicity, we 
assume that the input and the intermediate layer have identical size  N  , and we consider  N   to be large. 
The sensory input vector is indicated with  x . Activity in the intermediate layer reads

 y = Ψ(k)  (5a)

 k ≡ u · x .  (5b)

Here,  k  represents the synaptic drive and  u  is an  N × N   connectivity matrix. Activity in the readout 
layer is given by

 z = Φ(h)  (6a)

 h ≡ w · y  (6b)

where  h  is the synaptic drive and  w  is an  N  - dimensional readout vector.
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The activation functions  Ψ  and  Φ  are non- negative, monotonically increasing functions that model 
the input- to- output properties of units in the intermediate and readout layer, respectively. In simula-
tions, we use sigmoidal functions,

 Ψ(x) = 1
1+exp(−Θ1(x−Θ2)) ,  (7)

and similarly for  Φ(x)  (Figure 1C). The parameters of the activation functions,  Θ1  and  Θ2 , determine 
the gain and threshold, respectively, with the gain (defined to be the slope at  x = Θ2 ) given by  Θ1/4 . 
Their values, which vary across simulations, are given in Section Tables of parameters.

The synaptic weights,  u  and  w , are initialized at random from a zero- mean Gaussian distribution 
with variance  1/N  . The sensory input vectors  x  are also drawn from a zero- mean Gaussian distribution 
(see Sections Simple task: task definition and Context- dependent task: task definition), but with vari-
ance equal to 1,

 w0,i, u0,ij ∼ N (0, N−1)  (8a)

 xi ∼ N (0, 1)  (8b)

where the subscript ‘0’ on the weights indicates that those are evaluated before learning starts. This 
choice of initialization ensures that, before learning, the amplitude of both the synaptic drive ( h , and 
the components of  k ) and the activity ( z , and the components of  y ) are independent of the circuit size 
(i.e.,  O(1)  in  N  ).

Gradient-descent plasticity
The circuit learns to categorize  P  sensory input vectors  xs  ( s = 1, . . . , P ), with  P ≪ N  . For each input 
vector, the target activity of the readout neuron,  ̃zs , is equal to either  zA  or  zB  (Sections Simple task: 
task definition and Context- dependent task: task definition), which correspond to high and low 
activity, respectively. The weights are adjusted to minimize the loss,  E(u, w) , which is defined to be

 
E(u, w) ≡ 1

2P

P∑
s=1

(̃zs − zs)2

  
(9)

where  zs  is the activity of the readout neuron (Equation 6a) in response to the sensory input  xs . The 
weights are updated according to full- batch vanilla gradient descent. If the learning rates,  ηu  and  ηw , 
are sufficiently small, the evolution of the connectivity weights can be described by the continuous- 
time equations (Equation 1a, Equation 1b)

 
du
dt

= −ηu
∂E(u, w)

∂u   
(10a)

 
dw
dt

= −ηw
∂E(u, w)

∂w   
(10b)

where  t  indicates learning time.

Evolution of connectivity and activity in large circuits
Our goal is to understand how learning affects activity in the intermediate layer,  y . We do that in two 
steps. In the first step, we analyze the evolution of the synaptic weights. In particular, we determine 
the weights after learning is complete – meaning after the loss (Equation 9) has been minimized 
(Section Evolution of connectivity). In the second step, we use the learned weights to determine 
activity (Section Evolution of activity). We work in the large- N   regime, which allows us to make analytic 
headway (Jacot et al., 2018; Lee et al., 2019; Liu et al., 2020). We then validate our large- N   anal-
ysis with finite- N   simulations (Section Evolution of activity in finite- size networks, Figure 3—figure 
supplement 1, Figure 3—figure supplement 2, Figure 6—figure supplement 1, Figure 7—figure 
supplement 1).

Evolution of connectivity
It is convenient to make the definitions
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 u ≡ u0 + ∆u  (11a)

 w ≡ w0 + ∆w  (11b)

where  u0  and  w0  are the initial weights (Equation 8a), and  ∆u  and  ∆w  are changes in the weights 
induced by learning (Equation 10). Using Equation 10, with the loss given by Equation 9, we see that 
 ∆u  and  ∆w  evolve according to

 

d∆u(t)
dt

= −ηu
∂E
∂∆u

= ηu
P

P∑
s=1

ϵs(t) ∂hs

∂∆u  
(12a)

 

d∆w(t)
dt

= −ηw
∂E
∂∆w

= ηw
P

P∑
s=1

ϵs(t) ∂hs

∂∆w  
(12b)

where  ϵs  is proportional to the error associated with sensory input  xs ,

 ϵs ≡
(
z̃s − Φ(hs)

)
Φ′(hs).  (13)

To evaluate the partial derivatives on the right- hand side of Equation 12, we need to express  hs  in 
terms of  ∆u  and  ∆w . Combining Equation 6b with Equation 5 and Equation 11, we have

 hs = (w0 + ∆w) ·Ψ(u0 · xs + ∆u · xs) .  (14)

To proceed, we assume that changes in the connectivity,  ∆u  and  ∆w , are small. That holds in the 
large- N   limit (the limit we consider here) because when each neuron receives a large number of 
inputs, none of them has to change very much to cause a large change in the output (we make this 
reasoning more quantitative in Section A low- order Taylor expansion is self- consistent in large circuits). 
Then, Taylor- expanding the nonlinear activation function  Ψ  in Equation 14, and keeping only terms 
that are zeroth and first order in the weight changes  ∆u  and  ∆w , we have

 hs ≃ hs
0 + w0 ·

[
Ψ′(ks

0) ⊙ (∆u · xs)
]

+ ∆w ·Ψ(ks
0),  (15)

where  ⊙  indicates element- wise multiplication, and we have defined

 ks
0 ≡ u0 · xs

  (16a)

 hs
0 ≡ w0 ·Ψ(ks

0).  (16b)

For now, we assume that the three terms in the right- hand side of Equation 15 are of similar magni-
tude, and that higher- order terms in  ∆u  and  ∆w  are smaller, and so can be neglected. We will verify 
these assumptions post hoc (Section A low- order Taylor expansion is self- consistent in large circuits). 
Inserting Equation 15 into Equation 12, we arrive at

 
d∆u(t)

dt = ηu
P

P∑
s=1

ϵs(t)
[
w0 ⊙Ψ′(ks

0)
]
xs

  
(17a)

 
d∆w(t)

dt = ηw
P

P∑
s=1

ϵs(t)Ψ(ks
0)

  
(17b)

(we used the notation where two adjacent vectors correspond to an outer product; i.e.,  (ab)ij = aibj ).
The only quantity on the right- hand side of Equation 17 that depends on time is  ϵs . Consequently, 

we can immediately write down the solution,

 
∆u(t) = 1

N

P∑
s=1

cs(t)
[
w0 ⊙Ψ′(ks

0)
]
xs

  
(18a)

 
∆w(t) = 1

N

P∑
s=1

cs(t)ηw
ηu

Ψ(ks
0)

  
(18b)

where the coefficients  cs  are found by solving the differential equation

 
P

ηuN
dcs(t)

dt = ϵs(t)  (19)
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with initial conditions  cs(t = 0) = 0 . The right- hand side of Equation 19 depends on time through the 
synaptic drive,  hs  (Equation 13), which in turn depends on  ∆u  and  ∆w  through Equation 15, and thus, 
via Equation 18, on the coefficients  cs(t) . Consequently, Equation 19 is a closed differential equation 
for the coefficients  cs(t) .

In the general case, Equation 19 must be solved numerically. If, however, we are not interested in 
the full learning dynamics, but care only about connectivity and activity once learning has converged 
( t → ∞ ), we can use the fact that dynamics in Equation 17 are guaranteed to converge to a global 
minimum of the error function  E  (Liu et al., 2020). For our loss function and tasks, the minimum occurs 
at  E = 0 . At that point,  zs(t → ∞) = z̃s

 ; equivalently,

 hs(t → ∞) = Φ−1(̃zs),  (20)

where  Φ−1  is the inverse of the activation function of the readout neurons (which exists because  Φ  is 
a monotonically increasing function).

To find  cs(t → ∞) , we simply express  hs(t → ∞)  in terms of  cs(t → ∞) , and insert that into Equa-
tion 20. To reduce clutter, we define (in a slight abuse of notation)  cs  without an argument to be its 
asymptotic value,

 cs ≡ cs(t → ∞) .  (21)

Combining Equation 15 for  hs  with Equation 18 for  ∆w  and  ∆u , we have

 
hs(t → ∞) = hs

0 + w0 ·

(
1
N

P∑
q=1

cq(xq · xs)
[
w0 ⊙Ψ′(kq

0) ⊙Ψ′(ks
0)
])

+ ηw
ηu

1
N

P∑
q=1

cq(Ψ(kq
0) ·Ψ(ks

0)
)
.
  

(22)

We can simplify the second term in the right- hand side by explicitly evaluating the dot product,

 

w0 ·
[
w0 ⊙Ψ′(kq

0) ⊙Ψ′(ks
0)
]

=
N∑

i=1
w2

0,iΨ
′(kq

0,i)Ψ
′(ks

0,i)

≡ N⟨w2
0,iΨ

′(kq
0,i)Ψ

′(ks
0,i)⟩i 

 

 

(23)

where the notation  ⟨.⟩i  indicates an average over the index  i .
Since  N   is large, we can interpret population averages such as Equation 23 as expectations over 

the probability distribution of  w0,i  and  k
s
0,i . An immediate implication is that Equation 23 simplifies,

 

N⟨w2
0,iΨ

′(kq
0,i)Ψ

′(ks
0,i)⟩i = N⟨w2

0,i⟩i⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)⟩i

= ⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)⟩i.   

(24)

For the first equality we used the independence of  w0,i  and  k0,i ; for the second we used the fact that 
the elements of  w0  are drawn from a zero- mean Gaussian with variance  N−1  (Equation 8a). We can 
thus rewrite Equation 22 as

 
hs(t → ∞) = hs

0 +
P∑

q=1
cq⟨xq

i xs
i ⟩i⟨Ψ′(kq

0,i)Ψ
′(ks

0,i)⟩i + ηw
ηu

P∑
q=1

cq⟨Ψ(kq
0,i)Ψ(ks

0,i)⟩i.
  

(25)

Combining this with Equation 20, we conclude that

 
Φ−1(̃zs) − hs

0 =
P∑

q=1

[
⟨xq

i xs
i ⟩i⟨Ψ′(kq

0,i)Ψ
′(ks

0,i)⟩i + ηw
ηu
⟨Ψ(kq

0,i)Ψ(ks
0,i)⟩i

]
cq .

  
(26)

Equation 26 is a  P - dimensional linear system of equations for the coefficients  cs ,  s = 1, . . . , P  (the term 
in brackets is a  P × P  matrix with indices  s  and  q ). For the tasks we consider (Sections Simple cate-
gorization task and Context- dependent categorization task), this system can be solved analytically, 
yielding a closed- form expression for the coefficients  cs .
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Evolution of activity
It is now straightforward to determine how activity in the intermediate layer,  ys(t) , evolves. Inserting 
Equation 18 into Equation 5, and Taylor expanding the nonlinear activation function  Ψ  to first order 
in  ∆u , we arrive at

 
ys(t) ≡ ys

0 + ∆ys(t) ≃ ys
0 +

P∑
q=1

cq(t)vqs

 
 
 

(27)

where

 vqs ≡ ⟨xq
i xs

i ⟩iw0 ⊙Ψ′(kq
0) ⊙Ψ′(ks

0).  (28)

To reduce clutter, we define (following the notation in the previous section)  ys
  without an argument to 

be its asymptotic value:  ys ≡ ys(t → ∞) . Thus, Equation 27 becomes

 
ys ≃ ys

0 +
P∑

q=1
cqvqs.

  
(29)

Because of the term  w0  on the right- hand side of Equation 28, the elements of  vqs  scale as  N−1/2 . 
Thus, changes in activity are small compared to the initial activity, which is  O(1) .

In what follows, we refer to  {vqs}qs  as spanning vectors, and to the coefficients  cq  as the activity 
coordinates. We observe that all spanning vectors have a non- zero overlap with the initial readout 
vector  w0 , as

 vqs · w0 = ⟨xq
i xs

i ⟩i⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)⟩i ≡ ρqs .  (30)

This implies that, for every spanning vector, we can write

 vqs = ρqsw0 + δvqs
  (31)

where  ρ
qs

  is given by Equation 30 (since  w0 · w0 = 1 ) and  δvqs  is a residual component due to the 
nonlinearity of the activation function  Ψ :

 
δvqs = ⟨xq

i xs
i ⟩iw0 ⊙

(
Ψ′(kq

0) ⊙Ψ′(ks
0) − ⟨Ψ′(kq

0,i)Ψ
′(ks

0,i)⟩i1
)

.
  (32)

The notation  1  indicates a vector whose components are all equal to 1:  1 ≡ (1, 1, ..., 1) .

A low-order Taylor expansion is self-consistent in large circuits
To conclude our theoretical derivation, we verify that the approximations we made in Section Evolu-
tion of connectivity are valid in large circuits. Specifically, we show that the approximate expression 
for  hs , Equation 15 (which was derived by Taylor expanding the nonlinear activation function  Ψ ), is 
self- consistent when  N   is large. As a first step, we compute the size of  ∆u  and  ∆w , and show that 
in the large- N   limit they are small compared to  u0  and  w0 , respectively. We then Taylor- expand  Ψ  in 
Equation 14 to all orders, and show that the terms that were included in Equation 15 (zeroth- and 
first- order terms in connectivity changes) are indeed the dominant ones.

Assuming that the term in brackets in Equation 26, when viewed as a  P × P  matrix, is invertible 
(which is generically the case when  P ≪ N  ), it follows that, with respect to  N  

 cs ∼ O(1).  (33)

This result applies to the asymptotic ( t → ∞ ) value of  cs  (Equation 21). We assume, though, that the 
learning process is smooth enough that  cs(t)  remains at most  O(1)  for all  t . Under this assumption, the 
results we derive in this section are valid at any point during learning.

Using Equation 33, along with the fact that  w0,i ∼ O(N−1/2)  while all other variables are  O(1) , we 
see from Equation 18 that

 ∆uij ∼ O(N−3/2)  (34a)

 ∆wi ∼ O(N−1).  (34b)

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  24 of 56

When  N   is large, both are small compared to the initial weights  u0  and  w0 , whose elements are 

 O(N−1/2)  (Equation 8).
Equation 34 suggests that a low- order Taylor expansion is self- consistent, but it is not proof. We 

thus turn directly to Equation 14. The three terms in the right- hand side of Equation 15 are re- written 
in Equation 25, and it is clear from that expression that they are all  O(1) . To determine the size of the 
higher- order terms, we need the complete Taylor expansion of Equation 14. That is given by

 
hs =

∞∑
n=0

1
n! (w0 + ∆w) ·

(
Ψ(n)(ks

0) ⊙ (∆u · xs)n
)
  

(35)

where  Ψ(n)  is the  nth  derivative of  Ψ , and the exponentiation in  (∆u · xs)n
  is taken element- wise. The 

higher- order terms (i.e., the terms not included in Equation 15) are

 
hs

higher order =
∞∑

n=2

N
n! ⟨w0,iΨ

(n)(ks
0,i)(∆u · xs)n

i ⟩i +
∞∑

n=1

N
n! ⟨∆wiΨ

(n)(ks
0,i)(∆u · xs)n

i ⟩i
  

(36)

where we have replaced dot products with averages over indices. Using Equation 18a, and taking 
into account the fact that  w0,i  and  k0,i  are independent, we observe that

 
N
n! ⟨w0,iΨ

(n)(ks
0,i)(∆u · xs)n

i ⟩i ∼ N⟨wn+1
0,i ⟩i × O(1).  (37)

Similarly, this time using both Equation 18a and Equation 18b, we have

 
N
n! ⟨∆wiΨ

(n)(ks
0,i)(∆u · xs)n

i ⟩i ∼ ⟨wn
0,i⟩i × O(1).  (38)

Inserting these into Equation 36 then gives us

 
hs

higher order ∼
∞∑

n=2

1
n! N⟨wn+1

0,i ⟩i × O(1) +
∞∑

n=1

1
n! ⟨w

n
0,i⟩i × O(1).

  
(39)

Finally, using the fact that the  w0,i  are drawn independently from a zero- mean Gaussian with variance 
 N−1  (Equation 8a), we see that  ⟨w

n
0,i⟩i  is proportional to  N−n/2  when  n  is even and  N−(n+1)/2  when  n  

is odd. Consequently, the largest term in the expression for  h
s
higher order  is proportional to  N−1 . The 

higher- order terms can, therefore, be neglected in the large  N   limit.

Evolution of activity in finite-size networks
The equations that describe the evolution of connectivity and activity that were derived in Sections 
Evolution of connectivity and Evolution of activity are accurate if two assumptions are satisfied: (1) the 
circuit is very large ( N ≫ 1 ), and (2) the synaptic weights are initialized to be  O(N−1/2

 ) (Equation 8a), 
which guarantees that synaptic drives and activity neither vanish nor explode at initialization. Both 
assumptions are reasonable for brain circuits, and correspond to rather standard modelling choices in 
theoretical neuroscience.

In this work, we use the analytical expressions derived for large  N   to describe activity evolution in 
finite- size networks. This is a crude approximation, as dealing with finite  N   would require, in principle, 
integrating corrective terms into our equations (Huang and Yau, 2020). How accurate is this approx-
imation? Several machine- learning studies have investigated this question across tasks, architectures, 
and loss functions (Jacot et al., 2018; Chizat et al., 2019; Hu et al., 2020; Geiger et al., 2020; 
Yang and Hu, 2021). Because of the Taylor expansions used in Sections Evolution of connectivity and 
Evolution of activity, for fixed  N  , good accuracy is expected when the amplitude of activity changes is 
small. Via Equation 29, we see that the latter increases with the number of sensory input vectors  P , 
implying that good accuracy is expected when  P  is small. For fixed  P , furthermore, the amplitude of 
activity changes increases with correlations among sensory inputs (Equation 28), implying that good 
accuracy is expected when sensory input correlations are small. As detailed in Sections Simple task: 
task definition and Context- dependent task: task definition, sensory input correlations are smaller 
in the simple than in the context- dependent task, which implies that accuracy in the former task is 
expected to be higher than in the latter. The amplitude of activity changes also depends on the ampli-
tude of activity coordinates  cs  (Equation 29). We show in Sections Simple task: computing activity and 
Context- dependent task: computing activity that activity coordinates are usually smaller in the simple 
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than in the context- dependent task, which again implies that accuracy in the former task is expected 
to be higher than in the latter. Overall, those arguments suggest that good accuracy is expected when 
the task is easy, and thus the training loss converges to zero very quickly (Hu et al., 2020). Finally, we 
expect accuracy to depend on properties of the activation function  Ψ , with accuracy increasing as  Ψ  
becomes more linear in its effective activation range.

In Figure 3—figure supplement 1, Figure 3—figure supplement 2, Figure 6—figure supplement 
1, and Figure 7—figure supplement 1, we evaluate accuracy by performing a systematic comparison 
between approximate analytical expressions (large  N  ) and circuit simulations (finite  N  ). We find good 
agreement for the full range of parameters considered in the study. Specifically, the theory correctly 
predicts qualitatively, and in some cases also quantitatively, the behaviour of all activity measures 
discussed in the main text. As expected, the agreement is stronger in the simple (Figure 3—figure 
supplement 1 and Figure 3—figure supplement 2) than in the context- dependent task (Figure 6—
figure supplement 1 and Figure 7—figure supplement 1).

Simple categorization task
Simple task: task definition
We first consider a simple categorization task. Each stimulus is represented by an input pattern  µ

S
 , 

with  S = 1, . . . , Q , where  Q  is the total number of stimuli. The  µ
S
  are random vectors whose entries 

are drawn independently from a zero- mean, unit- variance Gaussian distribution. Every sensory input 
vector  xs  corresponds to a stimulus,

 xs = µS;  (40)

consequently, the number of sensory input vectors,  P , is equal to  Q  (the upper- case notation  S  is used 
for consistency with the context- dependent task; see Section Context- dependent task: task defini-
tion). To leading order in  N  , sensory input vectors are thus orthonormal,

 
xs·xs′

N = ⟨xs
i x

s′
i ⟩i ≃ δss′  (41)

where  δss′  is the Kronecker delta.
Each stimulus is associated with one among the two mutually exclusive categories  A  and  B : the first 

half of stimuli is associated with  A , the second half with  B . The target value  ̃zs  for the readout neuron 
is thus equal to  zA  for the first half of sensory inputs and  zB  for the second half. Since sensory input 
vectors are approximately orthogonal to each other, they are also linearly separable.

Our goal is to derive explicit expressions for the quantities analyzed in the main text: category 
selectivity (defined in Equation 56), and category correlation (defined in Equation 71). Both quanti-
ties depend on activity in the intermediate layer,  ys

 , after learning, which is given in Equation 29. In 
the next section, we then write down an explicit expression for  ys

 ; after that, we compute category 
selectivity (Section Simple task: category selectivity) and category correlation (Section Simple task: 
category correlation). Further mathematical details are discussed in Sections Simple task: computing 
normalized dot products, Asymmetry in category response and Characterizing variability; a general-
ization of the current task is discussed and analyzed in Section Simple categorization task with struc-
tured inputs and heterogeneity.

Simple task: computing activity
Examining Equation 29, we see that to compute the activity in the intermediate layer,  ys

 , we need 
the asymptotic activity coordinates,  cq , and the spanning vectors,  vqs . We start with the coordinates. 
To compute them, we solve the linear system of equations given in Equation 26. Using Equation 41, 
that system of equations becomes

 
Φ−1(̃zs) − hs

0 = ⟨Ψ′(ks
0,i)

2⟩ics + ηw
ηu

P∑
q=1

⟨Ψ(ks
0,i)Ψ(kq

0,i)⟩icq .
  

(42)

As a first step, we simplify the averages in the right- hand side. The law of large number guaran-
tees that, when  N   is large, the elements of the synaptic drive,  k

s
0,i , are independently drawn from a 

Gaussian distribution. The statistics of this distribution are given by
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⟨ks

0,i⟩i =
N∑

j=1
⟨u0,ij⟩ixs

j = 0
  

(43a)

 
⟨kq

0,ik
s
0,i⟩i =

N∑
j=1

N∑
j′=1

⟨u0,iju0,ij′⟩ix
q
j xs

j′ = ⟨xq
j xs

j ⟩j
  

(43b)

where we have used the fact that, because of Equation 8a,  ⟨u0,iju0,ij′⟩i = δjj′ /N  . Equation 43, combined 
with Equation 41, implies that the  k

s
0,i  have zero mean and unit variance, and are uncorrelated across 

stimuli. In addition, because the statistics of  k
s
0,i  are independent of  s , averages over  i  of any function 

of  k
s
0,i  are independent of  s .

Using these observations, Equation 42 can be written as

 
Φ−1(̃zs) − hs

0 =
(
⟨Ψ′2⟩ + ηw

ηu

(
⟨Ψ2⟩ − ⟨Ψ⟩2

))
cs + ηw

ηu
⟨Ψ⟩2

P∑
q=1

cq

  
(44)

where we used the short- hand notation  ⟨F⟩  to indicate the average of a function  F  whose argument is 
drawn from a zero- mean, unit- variance Gaussian distribution. That is,

 ⟨F⟩ ≡ ⟨F(a)⟩a  (45)

where  a  is a zero- mean, unit- variance Gaussian variable. This average can be computed via numerical 
integration, as detailed in Section Evaluation of averages (Equation 184).

The left- hand side of Equation 44 consists of two terms: the target  Φ
−1(̃zs) , which is fixed by the 

task, and  h
s
0  (representing the synaptic drive of the readout neuron at initialization), which fluctuates 

across model realizations. The presence of the latter term indicates that connectivity and activity 
changes are not fully self- averaging; they are rather tuned to compensate for the initial state of the 
readout neuron. Here, we seek to analyze the average behaviour of the model, and so we drop the 
second, variable term. This approximation is discussed in detail in Section Characterizing variability.

With the variable terms neglected, the left- hand side of Equation 44 can take only two values: 

 Φ
−1(zA)  and  Φ

−1(zB) . Combined with the symmetry of the right- hand side, this implies that the coor-
dinates  cs  themselves can take only two values. Specifically, we have

 

cs =




cA s in category A
cB s in category B .  

(46)

The category- dependent coordinates,  cA  and  cB , are determined by the two- dimensional linear 
system of equations

 Φ−1(zA) = αcA + β(cA + cB)  (47a)

 Φ−1(zB) = αcB + β(cA + cB)  (47b)

where the scalars  α  and  β  are defined as

 
α = ⟨Ψ′2⟩ + ηw

ηu
(⟨Ψ2⟩ − ⟨Ψ⟩2)

  
(48a)

 
β = ηw

ηu

Q
2
⟨Ψ⟩2.

  
(48b)

This system is easily solved, yielding

 
cA = 1

α + 2β
(
Φ−1(zA) + γ

)
  

(49a)

 
cB = 1

α + 2β
(
Φ−1(zB) − γ

)
  

(49b)

where we have defined the shift

 γ = β
α

(
Φ−1(zA) − Φ−1(zB)

)
.  (50)
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Note that  γ  is positive, as  α ,  β > 0  and  Φ
−1(zA) > Φ−1(zB) , which in turn indicates that  cA > cB .

To conclude the derivation of activity, we evaluate the spanning vectors,  vqs  (Equation 28). Because 
the sensory inputs  xs  are orthogonal (Equation 41), spanning vectors with  q ̸= s  vanish. Consequently, 
the activity,  ys

  (Equation 29), reads

 

ys =




ys
0 + cAvss s in category A

ys
0 + cBvss s in category B .  

(51)

Using Equation 31, we can rewrite this as

 

ys =




ys
0 + cAρw0 + cAδvss s in category A

ys
0 + cBρw0 + cBδvss s in category B  

(52)

where we used Equation 30 to define

 ρ ≡ ρss = ⟨Ψ′2⟩ .  (53)

Equation 52 indicates that activity consists of three components. The first one coincide with initial 
activity,  y

s
0 , which for this task is fully unstructured. The second one is a shared component along 

 w0  (whose strength is category dependent, as it is given by  cA  or  cB ). The third one is a non- shared 
component along the residuals  δvss , which represent the components of the spanning vectors that are 
perpendicular to the initial readout  w0 . For the current task, the latter component is orthogonal across 
activity vectors, implying that activity vectors only overlap along  w0 . To leading order in  N  , in fact

 
δvss · δvs′s′ = ⟨xs

i x
s
i ⟩i⟨xs′

i xs′
i ⟩i

[
⟨Ψ′(ks

0,i)Ψ
′(ks

0,i)Ψ
′(ks′

0,i)Ψ
′(ks′

0,i)⟩i − ⟨Ψ′(ks
0,i)

2⟩2
i

]
≃ 0 ,

   (54)

which follows because  k
s
0,i  and  k

s′
0,i  are uncorrelated.

We observe that Equation 52 is similar, but not identical to the expression that we used in the main 
text to describe activity evolution (Equation 3). By setting  d = ρw0 , that reads

 

ys =




ys
0 + cAρw0 s in category A

ys
0 + cBρw0 s in category B .  

(55)

Comparing Equation 52 with Equation 55, we see that the residuals  δvss  were neglected in the 
main text. This could be done because, for the current task (but not for the context- dependent one, 
see Section Context- dependent task: computing activity), residuals are all orthogonal to each other 
(Equation 54). As such, they do not add novel structure to activity, and do not significantly contribute 
to activity measures. This is showed and justified, in detail, in the next sections.

Simple task: category selectivity
In this section, we evaluate the category selectivity of neurons in the intermediate layer (Figure 2B, 
F, J). For each neuron  i , we evaluate the standard selectivity index (Freedman and Assad, 2006), 
defined in Equation 2. We repeat that definition here for convenience,

 
Si = ⟨(ys

i−ys′
i )2⟩s,s′ diff cat−⟨(ys

i−ys′
i )2⟩s̸=s′ same cat

⟨(ys
i−ys′

i )2⟩s,s′ diff cat+⟨(ys
i−ys′

i )2⟩s̸=s′ same cat   
(56)

where the notation  ⟨·⟩s,s′  denotes an average over sensory input pairs associated either with different, 
or the same, category. To evaluate this expression, we assume that the number of stimuli,  Q = P , is 
moderately large ( 1 ≪ Q ≪ N  ). We show that, under this assumption, the category selectivity index 
for each neuron, which is approximately zero at  t = 0 , becomes positive over learning.

We start with

 ys
i = ys

0,i + cs(ρw0,i + δvss
i ) ,  (57)
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which follows from Equation 52. The first term of the right- hand side is  O(1) , while both terms in 
parentheses are  O(N−1/2) . Thus, when evaluating the denominator in Equation 56, to lowest non- 
vanishing order in  N   we can replace yi with  y0,i . Doing that, and expanding the square, we have

 ⟨(ys
i − ys′

i )2⟩s,s′ diff cat + ⟨(ys
i − ys′

i )2⟩s̸=s′ same cat ≃ 4⟨(ys
0,i)

2⟩s −2⟨ys
0,iy

s′
0,i⟩s,s′ diff cat − 2⟨ys

0,iy
s′
0,i⟩s̸=s′ same cat. 

 (58)

Noting that  y
s
0,i = Ψ(ks

0,i) , and using Equation 43, we see that the second two averages in the above 
equation are both equal to  ⟨y

s
0,i⟩

2
s  . Consequently,

 ⟨(ys
i − ys′

i )2⟩s,s′ diff cat + ⟨(ys
i − ys′

i )2⟩s̸=s′ same cat ≃ 4⟨(ys
0,i)

2⟩s − 4⟨ys
0,i⟩

2
s .  (59)

Strictly speaking, this step is accurate only in the large- Q  limit, but is a good approximation even for 
moderate  Q . Since  Q  is moderately large, we can further approximate this as

 ⟨(ys
i − ys′

i )2⟩s,s′ diff cat + ⟨(ys
i − ys′

i )2⟩s̸=s′ same cat ≃ 4⟨Ψ2⟩ − 4⟨Ψ⟩2,  (60)

where averages can be computed as described in Section Evaluation of averages.
For the numerator of Equation 56, the minus sign causes the  (y

s
0,i)

2
  terms to cancel, so we have

 ⟨(ys
i − ys′

i )2⟩s,s′ diff cat − ⟨(ys
i − ys′

i )2⟩s ̸=s′ same cat = 2⟨ys
i y

s′
i ⟩s̸=s′ same cat − 2⟨ys

i y
s′
i ⟩s,s′ diff cat .  (61)

Using Equation 57, we have (for  s ̸= s′ )

 ys
i y

s′
i = ys

0,iy
s′
0,i + cs′ys

0,i(ρw0,i + δvs′s′
i ) + csys′

0,i(ρw0,i + δvss
i ) + cscs′ (ρw0,i + δvs′s′

i )(ρw0,i + δvss
i ) .  (62)

Apart from the first term, and the term proportional to  w
2
0,i , all terms in the right- hand side have essen-

tially random signs. Neglecting those for a moment, we obtain

 ys
i y

s′
i ≃ ys

0,iy
s′
0,i + cscs′ρ2w2

0,i.  (63)

Inserting this into Equation 61, using the fact that  ⟨y
s
0,iy

s′
0,i⟩  is independent of  s  and  s′ , and performing 

a small amount of algebra, we arrive at

 ⟨(ys
i − ys′

i )2⟩s,s′ diff cat − ⟨(ys
i − ys′

i )2⟩s ̸=s′ same cat ≃ w2
0,i(c

A − cB)2ρ2.  (64)

Combining this with Equation 60, and using Equation 53 for  ρ , we arrive at

 
Si ≃

w2
0,i(c

A−cB)2⟨Ψ′2⟩2

4(⟨Ψ2⟩−⟨Ψ⟩2) .
  (65)

We conclude that single- neuron selectivity vanishes at  t = 0  (when  cA = cB = 0 ), and is positive at 
the end of learning. Furthermore, for each neuron, the magnitude of selectivity is determined by the 
magnitude of  w0,i , which measures initial connectivity with the readout neuron. As a result, neurons 
with large initial connectivity develop large selectivity values (Figure 5B, C).

Because of the factor  w
2
0,i , the right- hand side of Equation 65 is  O(N−1) . To derive Equation 65, 

we neglected terms in the numerator that have random sign and thus contribute as noise. The domi-
nant random terms are  O(1)  in  N  , but  O(Q−1)  in  Q . This implies that, in simulated circuits with finite 

 Q , random deviations from Equation 65 occur. For example, Figure 2B shows that selectivity values 
at  t = 0  are small but non- zero; Figure 5B, C, instead, shows that the values of  Si  and  w

2
0,i  are not 

perfectly correlated across the population.
We can, finally, average Equation 65 over neurons, yielding

 
S = ⟨Si⟩i ≃ (cA−cB)2⟨Ψ′2⟩2

4N(⟨Ψ2⟩−⟨Ψ⟩2)  (66)
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where neglected random terms are now  O(N−1/2Q−1) . In Figure  3—figure supplement 1 and 
Figure 3—figure supplement 2, we compare this approximate analytical expression for average cate-
gory selectivity with values measured in finite- size circuits, and find good agreement between the two.

Category clustering
Our derivation of the average category selectivity, Equation 66, was based on several assumptions: 
we assumed that the number of stimuli,  Q , was large, and that terms with random signs could be 
neglected. A different, but related, activity measure is given by category clustering (Bernardi et al., 
2020; Engel et al., 2015). That is defined as

 
S̃ = ⟨⟨(ys

i−ys′
i )2⟩i⟩s,s′ diff cat−⟨⟨(ys

i−ys′
i )2⟩i⟩s̸=s′ same cat

⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff cat+⟨⟨(ys
i−ys′

i )2⟩i⟩s̸=s′ same cat
.
  

(67)

This measure is positive if activity vectors elicited by within- category stimuli are more similar, in 
norm, than activity vectors elicited by across- category stimuli – and negative otherwise. In contrast to 
average category selectivity, category clustering can be evaluated straightforwardly, and for any value 
of  Q . We show this in the following.

By using the statistical homogeneity of activity vectors, we can rewrite

 
S̃ = −⟨⟨ys

i y
s′
i ⟩i⟩s,s′ diff cat+⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same cat

2⟨⟨(ys
i )2⟩i⟩s−⟨⟨ys

i y
s′
i ⟩i⟩s,s′ diff cat−⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same cat

.
  

(68)

Expressions in the form of  ⟨y
s
i y

s′
i ⟩i  are evaluated in Section Simple task: computing normalized dot 

products; the derivation involves lengthy, but straightforward algebra. Using those results (Equation 
90 and Equation 95), we have:

 
S̃ = (cA−cB)2⟨Ψ′2⟩2

4N(⟨Ψ2⟩−⟨Ψ⟩2)+2
[
(cA)2+(cB)2

]
⟨Ψ′4⟩−(cA+cB)2⟨Ψ′2⟩2 .

  
(69)

To the leading order in  N  , we obtain

 
S̃ = (cA−cB)2⟨Ψ′2⟩2

4N
(
⟨Ψ2⟩−⟨Ψ⟩2

)
  

(70)

which is identical to the expression obtained for average category selectivity evaluated with  Q  large 
(Equation 66).

To better understand the relationship between selectivity and clustering, we observe that clustering 
coincide with the average selectivity,  S = ⟨Si⟩i , if the average over the numerator and the denominator 
of  Si  (Equation 56) is factorized. In general, the numerator and the denominator of  Si  are correlated, 
and the average cannot be factorized. We have however shown that, in the limit where both  Q  and  N   
are large,  Si  can be approximated by an expression where the denominator is independent of  i  (Equa-
tion 65). In that regime, the average can be factorized; average category selectivity  S  and category 
clustering  ̃S  thus take very similar values, as quantified by Equation 66 and Equation 70. We conclude 
that, for our activity expressions, average category selectivity and category clustering are expected 
to behave similarly when both  Q  and  N   are large. A detailed comparison between average selectivity 
and clustering within data from simulated circuits is provided in Figure 3—figure supplement 1 and 
Figure 3—figure supplement 2.

Simple task: category correlation
To quantify how the population as a whole responds to the two categories, we evaluate category 
correlation. This quantity, denoted  C , is given by the average Pearson correlation coefficient of activity 
in response to stimuli associated with different categories. We have:

 C = ⟨CsAsB⟩sAsB  (71)

where  sA  and  sB  are indices that denote sensory inputs associated, respectively, with categories  A  and 
 B . The Pearson correlation  CsAsB  is given by

https://doi.org/10.7554/eLife.79908
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CsAsB = ⟨ysA
i ysB

i ⟩i−⟨ysA
i ⟩i⟨ysB

i ⟩i√
⟨ysA

i ysA
i ⟩i−⟨ysA

i ⟩2
i

√
⟨ysB

i ysB
i ⟩i−⟨ysB

i ⟩2
i

= ⟨ysA
i ysB

i ⟩i−⟨Ψ⟩2
√

⟨ysA
i ysA

i ⟩i−⟨Ψ⟩2
√

⟨ysB
i ysB

i ⟩i−⟨Ψ⟩2
.

  

(72)

To go from the first to the second line, we used the fact that, for each sensory input,

 ⟨ys
i ⟩i = ⟨ys

0,i⟩i + cs⟨vss
i ⟩i = ⟨Ψ⟩  (73)

where the second equality follows from  ⟨w0,i⟩i = 0  (Equation 8a), which in turns implies that  ⟨v
ss
i ⟩i = 0  

(Equation 28). Pearson correlation coefficients are displayed in the correlation matrices of Figure 2C, 
G, K.

As we show in Section Simple task: computing normalized dot products, in the large- N   limit,  ⟨y
s
i y

s′
i ⟩i  

only depends on the category  s  and  s′  are in. This makes the average over  sA  and  sB  in Equation 71 
trivial. Using Equation 90 and Equation 95, we arrive at

 
C = cAcB⟨Ψ′2⟩2

√
N
(
⟨Ψ2⟩−⟨Ψ⟩2

)
+(cA)2⟨Ψ′4⟩

√
N
(
⟨Ψ2⟩−⟨Ψ⟩2

)
+(cB)2⟨Ψ′4⟩

.
  

(74)

In Figure 3—figure supplement 1 and Figure 3—figure supplement 2, we compare this approximate 
analytical expression with values measured in finite- size circuits, and find good agreement between 
the two. We can further simplify Equation 74 by Taylor expanding in  N  . To leading order, we obtain

 
C = 1

N
cAcB⟨Ψ′2⟩2

⟨Ψ2⟩−⟨Ψ⟩2 .
  (75)

Before learning,  cA = cB = 0 , and so correlation vanishes. After learning,  C  is non- zero, and its sign is 
given by the sign of the product  cAcB . This has a simple geometric explanation: after mean subtrac-
tion, activity vectors associated with opposite categories only overlap along the direction spanned 
by the initial readout vector  w0 . The coordinates of vectors associated with categories  A  and  B  along 
this direction are proportional, respectively, to  cA  and  cB  (Equation 55). When  cA  and  cB  have oppo-
site sign, activity vectors acquire opposite components along  w0 , which generates negative category 
correlation. When  cA  and  cB  have identical sign, instead, activity vectors acquire aligned components, 
which generates positive category correlation.

To determine how the product  cAcB  depends on parameters, we use Equation 49 for  cA  and  cB  
to write

 
cAcB = 1

(α+2β)2

(
Φ−1(zA) + γ

)(
Φ−1(zB) − γ

)
  (76)

where the (positive) scalars  α  and  β  are defined in Equation 48, and  γ  in Equation 50. Consequently, 
the sign of  cAcB , and thus, the sign of the category correlation  C , depends on the value of the target 
synaptic drives  Φ

−1(zA)  and  Φ
−1(zB)  (Figure 2—figure supplement 2F), as well as on  γ .

In particular, when  Φ
−1(zA)  and  Φ

−1(zB)  have opposite sign, Equation 76 can only be negative, 
and thus category correlation can only be negative. When  Φ

−1(zA)  and  Φ
−1(zB)  have identical sign, 

Equation 76 can be either negative or positive, depending on the value of the shift  γ , and thus cate-
gory correlation can be either negative or positive. For fixed target values  zA  and  zB , the relative sign 
of  Φ

−1(zA)  and  Φ
−1(zB)  depends on the shape of the activation function of the readout neuron  Φ . In 

the example given in Figure 2—figure supplement 2F, we show that the relative sign of  Φ
−1(zA)  and 

 Φ
−1(zB)  can be modified by changing the threshold of  Φ . More in general, changing both the gain and 

threshold of  Φ  can change the sign and magnitude of category correlation (Figure 4A).
What controls the value of the shift  γ  (and, thus, the sign of correlation when  Φ

−1(zA)  and  Φ
−1(zB)  

have identical sign)? Combining Equation 50 for  γ  with Equation 48 for  α  and  β , we have

 
γ = Q⟨Ψ⟩2

2
[

(ηw/ηu)−1⟨Ψ′2⟩+(⟨Ψ2⟩−⟨Ψ⟩2)
](Φ−1(zA) − Φ−1(zB)

)
.
  

(77)

Recall that  Φ
−1(zA) − Φ−1(zB)  is always positive. We observe that  γ  depends on the learning rate 

ratio  ηw/ηu : increasing this ratio increases the value of  γ  and thus, via Equation 76, favours negative 
correlation (Figure 4C). It also depends on the number of stimuli,  Q : increasing  Q  increases the value 
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of  γ , and thus also favours negative correlation (Figure 4D). Finally,  γ  depends on the activation func-
tion of neurons in the intermediate layer,  Ψ , through nonlinear population averages; by computing 
those averages, we find that decreasing the gain and threshold of  Ψ  favours negative correlation 
(Figure 4B).

Alternative definition
For completeness, we observe that an alternative way of quantifying category correlation consists 
of averaging activity over stimuli first (Figure 2D, H and L), and then computing the Person correla-
tion coefficient between averaged responses. The correlation values obtained via this procedure are 
displayed in the legend of Figure 2D, H, L. This alternative definition yields qualitatively identical 
results to Equation 71; we show this below.

We start by defining the category- averaged activity

 yA = ⟨ysA⟩sA  (78a)

 yB = ⟨ysB⟩sB .  (78b)

We then define category correlation as

 

C = ⟨yA
i yB

i ⟩i−⟨yA
i ⟩i⟨yB

i ⟩i√
⟨yA

i yA
i ⟩i−⟨yA

i ⟩2
i

√
⟨yB

i yB
i ⟩i−⟨yB

i ⟩2
i

= ⟨yA
i yB

i ⟩i−⟨Ψ⟩2
√

⟨yA
i yA

i ⟩i−⟨Ψ⟩2
√

⟨yB
i yB

i ⟩i−⟨Ψ⟩2
.
  

(79)

Then, using Equation 90 and Equation 95 from Section Simple task: computing normalized dot 
products, we have

 
⟨yA

i yB
i ⟩i =

(
2
Q

)2 Q/2∑
sA=1

Q/2∑
sB=1

⟨ysA
i ysB

i ⟩i = ⟨Ψ⟩2 + N−1cAcB⟨Ψ′2⟩2 ,
  

(80)

while

 

⟨yA
i yA

i ⟩i =
(

2
Q

)2 Q/2∑
sA=1

[
⟨ysA

i ysA
i ⟩i +

∑
s′A ̸=sA

⟨ysA
i ys′A

i ⟩i

]

= ⟨Ψ⟩2 + 2
Q
(
⟨Ψ2⟩ − ⟨Ψ⟩2) + N−1(cA)2

[
⟨Ψ′2⟩2 + 2

Q
(
⟨Ψ′4⟩ − ⟨Ψ′2⟩2)]

  

(81)

and similarly for  ⟨y
B
i yB

i ⟩i , by replacing  cA  with  cB . Inserting this into Equation 79, we arrive at

 

C = cAcB⟨Ψ′2⟩2
√

2
Q N

(
⟨Ψ2⟩−⟨Ψ⟩2

)
+(cA)2

[
⟨Ψ′2⟩2+ 2

Q

(
⟨Ψ′4⟩−⟨Ψ′2⟩2

)]√
2
Q N

(
⟨Ψ2⟩−⟨Ψ⟩2

)
+(cB)2

[
⟨Ψ′2⟩2+ 2

Q

(
⟨Ψ′4⟩−⟨Ψ′2⟩2

)] .

 
 (82)

Although the denominator of this expression is different from Equation 74, the numerator is identical. 
As the denominators in both expressions are positive, the qualitative behaviour of Equation 82 is 
identical to Equation 74. Furthermore, to leading order in  N  , we obtain

 
C = Q

2N
cAcB⟨Ψ′2⟩2

⟨Ψ2⟩−⟨Ψ⟩2   (83)

which is proportional to Equation 75, with constant of proportionality equal to  Q/2 .

Simple task: computing normalized dot products
We now compute the normalized dot products among pairs of activity vectors; namely

 ⟨ys
i y

s′
i ⟩i = ys·ys′

N .  (84)

Those were used above to derive the behaviour of category clustering (Section Simple task: category 
selectivity) and correlations (Section Simple task: category correlation).
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The dot product takes different values depending on whether or not sensory inputs  s  and  s′  coin-
cide. We start with the former,

 ⟨(ys
i )

2⟩i = ⟨(ys
0,i)

2⟩i + ⟨(∆ys
i )

2⟩i.  (85)

We used the fact that the cross- term  ⟨y
s
0,i∆ys

i ⟩i  vanishes on average,

 ⟨ys
0,i∆ys

i ⟩i = cs⟨ys
0,iv

ss
i ⟩i = cs⟨w0,i⟩i⟨ys

0,iΨ
′(ks

0,i)
2⟩i = 0  (86)

where we used Equation 51 for the first equality, Equation 28 for the second, and Equation 8a for 
the third. By definition,

 ⟨(ys
0,i)

2⟩i = ⟨Ψ2⟩   (87)

while

 ⟨(∆ys
i )

2⟩i = (cs)2⟨(vss
i )2⟩i = N−1(cs)2⟨Ψ′4⟩  (88)

where we have used the fact that, from Equation 28

 ⟨(vss
i )2⟩i = ⟨xs

i x
s
i ⟩

2
i ⟨w2

0,iΨ
′(ks

0,i)
4⟩i = N−1⟨Ψ′4⟩.  (89)

Putting these results together, we have

 

⟨(ys
i )

2⟩i =




⟨Ψ2⟩ + N−1(cA)2⟨Ψ′4⟩ s in category A
⟨Ψ2⟩ + N−1(cB)2⟨Ψ′4⟩ s in category B .  

(90)

Note that activity vectors associated with different categories are characterized by different norms 
(unless coordinates are fine- tuned to be symmetric:  cA = −cB , which occurs when  Φ

−1(zA) = −Φ−1(zB) , 
as in Figure 2E–H). Asymmetry of activity in response to different categories is discussed in detail in 
Section Asymmetry in category response.

For dot products among different activity vectors, we have

 ⟨ys
i y

s′
i ⟩i = ⟨ys

0,iy
s′
0,i⟩i + ⟨∆ys

i∆ys′
i ⟩i.  (91)

with  s ̸= s′ . In this case,

 ⟨ys
0,iy

s′
0,i⟩i = ⟨Ψ⟩2

  (92)

while

 ⟨∆ys
i∆ys′

i ⟩i = cscs′⟨vss
i vs′s′

i ⟩i = N−1cscs′⟨Ψ′2⟩2 ,  (93)

which comes from

 ⟨vss
i vs′s′

i ⟩i = ⟨xs
i x

s
i ⟩i⟨xs′

i xs′
i ⟩i⟨w2

0,iΨ
′(ks

0,i)
2Ψ′(ks′

0,i)
2⟩i = N−1⟨Ψ′2⟩2.  (94)

Putting this together, we arrive at

 

⟨ys
i y

s′
i ⟩i =





⟨Ψ⟩2 + N−1(cA)2⟨Ψ′2⟩2 s, s′ in category A
⟨Ψ⟩2 + N−1(cB)2⟨Ψ′2⟩2 s, s′ in category B
⟨Ψ⟩2 + N−1cAcB⟨Ψ′2⟩2 s, s′ in diff. categories.  

(95)

Equation 95 has a simple geometric interpretation. The first term in the right- hand side,  ⟨Ψ⟩2
 , is 

generated by the overlap between the activity vectors along the direction spanned by the unit vector 
 1 . This component is due to the activation function  Ψ  being positive, and is approximately constant 
over learning. The second term on the right- hand side emerges over learning. This arises because 
activity vectors become aligned, via the spanning vectors (Equation 30), along the direction spanned 
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by the initial readout vector  w0 . Note that the components of activity that are aligned with the residual 
directions  δvss  (Equation 52) do not contribute to the dot product. This can be verified by computing 
the dot product directly from Equation 55, where residuals are neglected, and observing that the 
same result is obtained. This was expected, as we have showed in Equation 54 that, for the current 
task task, residuals are orthogonal to each other.

Asymmetry in category response
In Figure 2L in the main text, activity in response to categories  A  and  B  is asymmetric: the number of 
neurons that respond more strongly to category  A  is significantly larger than the number that respond 
more strongly to category  B . Furthermore, the mean and variance of activity across the population 
are larger in response to  A  than to  B . Such asymmetry is not present at  t = 0  (Figure 2D), and is thus 
a consequence of learning. Asymmetry has been reported in experimental data as well (Fitzgerald 
et al., 2013), where it was referred to as biased category representations. Here, we discuss in detail 
why and how response asymmetry arises in the model. We show that asymmetry is controlled by the 
value of the target readout activity,  zA  and  zB , and also by the shape of the activation functions of the 
intermediate and readout layer,  Ψ  and  Φ .

Figure 2L displays activity in response to categories  A  and  B  averaged over stimuli; those are 
denoted, respectively, by  yA

  and  yB
  (Equation 78). We start deriving an explicit expression for  yA

 , 
from which the mean and variance across the population can be computed. Since initial activity is 
symmetric, we focus on the part of activity that is induced by learning. Combining Equation 51 with 
Equation 28, we have

 ∆yA
i ≡ ⟨∆ysA

i ⟩sA ≃ cA⟨Ψ′2⟩w0,i  (96)

where the last approximate equality follows if  Q  is sufficiently large. The variance across the popula-
tion is, therefore, given by

 ⟨(∆yA
i )2⟩i = N−1(cA)2⟨Ψ′2⟩2.  (97)

For the variance across the population in response to category  B , we simply replace  cA  with  cB .
Consequently, the variances in response to categories  A  and  B  are identical only if  (cA)2 = (cB)2

 . From 
Equation 49, we see that this happens only if  Φ

−1(zA) = −Φ−1(zB) , which yields  cA = −cB . Figure 2H 
shows a circuit where the activation function of the readout neuron,  Φ , was chosen to satisfy this 
relationship. In general, however, the two variances differ, and can have either  (cA)2 > (cB)2

  (the vari-
ance in response to  A  is lather than to  B ), or  (cA)2 < (cB)2

  (the opposite). Figure 2L corresponds to 
the first scenario,  (cA)2 > (cB)2

 ; this was achieved by setting  Φ
−1(zA) > Φ−1(zB) > 0 , which yielded 

 cA > cB > 0 . Figure 2—figure supplement 2A, B correspond to the second scenario,  (cA)2 < (cB)2
 ; 

this was achieved by setting  Φ
−1(zB) < Φ−1(zA) < 0 , which yielded  cB < cA < 0 . Note that in both cases, 

 cA > cB , as it must be (Equation 49).
In Figure 2L, activity in response to category  A  is not only characterized by larger variance, but also 

larger mean. This observation does not emerge immediately from our analysis, since our equations 
predict that the mean of activity changes vanishes both in response to  A  and  B : from Equation 8a, we 
see that in response to category  A ,

 ⟨∆yA
i ⟩i = cA⟨Ψ′2⟩⟨w0,i⟩i = 0  (98)

and similarly for category  B . To understand how Equation 98 can be reconciled with Figure 2L, recall 
that the equations we use for activity changes (Equation 29) provide a linearized estimate of activity 
changes, which is strictly valid only in infinitely wide networks. In finite width networks, a non- zero mean 
response can emerge from higher- order terms in the expansion of Equation 27. The leading higher- 
order terms of this expansion are quadratic, implying that the behaviour of the mean is controlled by 
the second- order derivative of the activation function of neurons in the intermediate layer,  Ψ′′ . When 
the threshold of  Ψ  is positive (so that activity is initialized close to the lower bound of  Ψ ), the second- 
order derivative  Ψ′′  is positive on average. Combined with  (cA)2 > (cB)2

 , this implies that the mean 
of activity in response to category  A  is larger than to  B ; this case is illustrated in Figure 2L. When the 
threshold of  Ψ  is negative (so that activity is initialized close to the upper bound of  Ψ ), the second- 
order derivative  Ψ′′  is negative on average. Combined with  (cA)2 > (cB)2

 , this implies that the mean 
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of activity in response to category  A  is smaller than to  B ; this case is illustrated in Figure 2—figure 
supplement 2C, D.

Finally, Equation 98 suggests that non- vanishing mean activity could also be obtained if the initial 
readout weights  w0,i  have a non- zero mean. This is likely to be verified in the brain, where intra- area 
connectivity is mainly excitatory. We leave the incorporation of non- zero mean connectivity, along with 
Dale’s law, to future investigations.

Characterizing variability
In Section Simple task: computing activity, when computing the value of activity coordinates  cs , we 
neglected the second terms within the left- hand side of Equation 42; because of this, the coordinates 
took on only two values, namely  cA  and  cB  (Equation 46). The neglected terms do not self- average, 
and thus fluctuate at random across model realizations. Had we included these variable terms, Equa-
tion 46 would have read

 

cs =




cA + δs s in category A
cB + δs s in category B  

(99)

where the  δs  obey the linear system of equations

 
−hs

0 = δs
(
⟨Ψ′2⟩ + ηw

ηu

(
⟨Ψ2⟩ − ⟨Ψ⟩2

))
+

P∑
q=1

δq ηw
ηu
⟨Ψ⟩2.

  
(100)

Here, we further characterize the behaviour of the neglected terms  δs . For simplicity, we consider the 
case in which plasticity in the readout weights is much slower than plasticity in the input connectivity 
( ηw ≪ ηu ). In that regime, Equation 100 greatly simplifies, and we obtain

 
δs = − hs

0
⟨Ψ′2⟩ .

  (101)

There are two sources of random fluctuations in  h
s
0 : different realizations of the circuit (via different 

initializations of the intermediate and readout connectivity,  u  and  w ), and different sensory inputs. In 
the following, we show that these two sources of variability can be decomposed, and one can write

 hs
0 = ⟨Ψ⟩κ +

√
⟨Ψ2⟩ − ⟨Ψ⟩2εs

  (102)

where  κ  and  εs  are zero- mean, unit- variance Gaussian variables. For a given circuit realization, the 
value of  κ  is fixed, while the value of  εs  fluctuates across different sensory inputs. Combining Equa-
tion 102 with Equation 99, we conclude that two different forms of variability (one that is frozen for 
a given circuit realization, represented by  κ , and one that is not, represented by  εs ) impact activity 
coordinates  cA  and  cB ; the absolute and relative amplitude of the two contributions is controlled by 
the shape of the activation function  Ψ . Such factorization of variability is illustrated, for an example 
simulated circuit, in Figure 2—figure supplement 2E.

To derive Equation 102, we consider a given circuit realization, and assume that the number of 
stimuli  Q  is sufficiently large, so that averages over stimuli approximately self- average. We start from 
Equation 6b, and compute the mean of of  h

s
0  over sensory inputs, which yields

 
⟨hs

0⟩s =
N∑

i=1
w0,i⟨Ψ(ks

0,i)⟩s = ⟨Ψ⟩
N∑

i=1
w0,i.

  
(103)

By defining  κ ≡
∑N

i=1 w0,i , the first term in the right- hand side of Equation 102 follows. We then 
compute the variance of of  h

s
0  over sensory inputs. By using:

 
⟨(hs

0)2⟩s =
N∑

i=1

N∑
j=1

w0,iw0,j⟨Ψ(ks
0,i)Ψ(ks

0,j)⟩s = ⟨Ψ2⟩ + ⟨Ψ⟩2
N∑

i=1

∑
j̸=i

w0,iw0,j
  

(104)

and, from Equation 103
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⟨hs

0⟩
2
s = ⟨Ψ⟩2

N∑
i=1

N∑
j=1

w0,iw0,j = ⟨Ψ⟩2 + ⟨Ψ⟩2
N∑

i=1

∑
j̸=i

w0,iw0,j
 
 
 

(105)

we conclude that:

 ⟨hs
0

2⟩s − ⟨hs
0⟩

2
s = ⟨Ψ2⟩ − ⟨Ψ⟩2,  (106)

from which the second term in the right- hand side of Equation 102 follows.
Equation 66 and Equation 74 indicate that activity measures such as category selectivity and 

correlation depend on the value of activity coordinates  cA  and  cB . As coordinates are variable (Equa-
tion 99), activity measures are variable as well. Importantly, activity measures involve averages over 
sensory inputs (see Equation 56 and Equation 71). This implies that the two forms of variability 
described by Equation 102 are expected to contribute in different ways: variability originating from 
the second term (which fluctuates across stimuli, and thus can be averaged out) is expected to be 
small, while variability originating from the first term (which is fixed for each circuit realization) is 
expected to be large.

Variability in simulated circuits is quantified in Figure 3—figure supplements 1 and 2, where it 
is represented as error bars. Figure 3—figure supplement 1A and Figure 3—figure supplement 
2A show that variability in  cA  and  cB  is modulated by properties of the activation function  Ψ  (third 
column); this is in agreement with Equation 102, which indicates that the magnitude of variability is 
 Ψ - dependent. Figure 3—figure supplement 1B, C and Figure 3—figure supplement 2B, C show, 
furthermore, that variability in correlation is typically much larger than in average selectivity. This can 
be explained by observing that average selectivity (Equation 66) only depends on the difference 
between  cA  and  cB , so variability originating from the first, frozen term of Equation 102 is expected 
to cancel; this is not the case for correlation (Equation 74), for which the cancellation does not occur.

Simple categorization task with structured inputs and heterogeneity
The circuit and task we considered so far are characterized by several simplifying modelling assump-
tions, which allowed us to analyze activity evolution in great detail and develop useful analytical intu-
ition. One important assumption is that sensory input vectors corresponding to different stimuli are 
orthogonal to each other. This choice was motivated by two observations: first, in many tasks from the 
experimental literature, sensory stimuli are taken to be very different from each other, and thus sensory 
inputs are expected to be uncorrelated (Messinger et  al., 2001; Fitzgerald et  al., 2011; Wallis 
et al., 2001); second, in tasks where sensory stimuli obey a continuous statistical structure (Freedman 
and Assad, 2006), pre- processing from sensory brain regions (Albright, 1984) is expected to decor-
relate, at least partially, inputs to higher- level associative areas. A second important assumption is that 
neurons in the intermediate layer are statistically homogeneous, as they receive statistically identical 
inputs and are characterized by the same nonlinearity  Ψ .

For some tasks and brain regions, those two assumptions might be inaccurate. For example, 
data collected during passive conditions (Fanini and Assad, 2009) indicate that some LIP neurons 
(Freedman and Assad, 2006; Fitzgerald et al., 2011; Fitzgerald et al., 2013) display weak, but 
significant direction tuning, which might be due to structured sensory inputs. Furthermore, activity 
profiles are heterogeneous, with different neurons characterized by different baseline activity levels. 
To investigate whether our findings extrapolate beyond our two simplifying hypotheses, here we 
construct a more biologically grounded model, and use simulations to systematically investigate 
activity evolution in the resulting circuit.

To begin with, we use sensory input vectors characterized by a continuous statistical structure, 
which implies continuous tuning in the intermediate layer activity prior to learning. We set

 
xs =

√
1 − Σ2µs + Σ

[
ξ1 cos(θs) + ξ2 sin(θs)

]
  (107)

where  Σ  is a scalar that measures the fraction of inputs variance that is continuous. We fixed  Σ = 1/3 . 
Like  µ

s
 , entries of the vectors  ξ

1
  and  ξ

2
  are generated at random from a zero- mean, unit- variance 

Gaussian distribution. We furthermore set

 θs = s 2π
Q .  (108)
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With this choice, when  s ̸= s′ , we have  ⟨x
s
i x

s′
i ⟩ = Σ2 cos(2π(s − s′)/Q) , so stimuli with similar values of  s  

are more strongly correlated than stimuli with very different values of  s . As in Freedman and Assad, 
2006, we take  Q = 12 . Similar to the standard task we analyzed so far, sensory inputs with  s = 1, . . . , Q/2  
are associated with category  A , while  s = Q/2, . . . , Q  are associated with category  B . Note that, as in 
the simple categorization task we analyzed so far, sensory input vectors are linearly separable for 
every value of  Σ .

To introduce heterogeneity in the intermediate layer, we add an offset, so Equation 5 becomes

 y = Ψ(k)  (109a)

 k ≡ u · x + b .  (109b)

The entries of  b  are fixed bias terms that control the value of baseline activity for each neuron. We 
generate those entries from a zero- mean Gaussian distribution with standard deviation 0.2.

In contrast to the model we analyzed so far, initial activity is characterized by non- trivial activity 
measures. Specifically, initial population tuning is characterized by non- vanishing category correlation; 
the latter is modulated both by heterogeneity (which tends to increase signal correlations) and the 
continuous inputs structure (which tends to decrease them). For our choice of parameters, these two 
effects roughly balance each other, so that initial activity is characterized by initial correlation that is 
small in magnitude (Figure 2—figure supplement 4A).

We investigated numerically the evolution of activity with learning for this model. Two sample circuits 
are shown in Figure 2—figure supplement 4B, C; extensive analysis is presented in Figure 2—figure 
supplement 4D, E. We find that the behaviour of both category selectivity and correlation is quali-
tatively consistent with the behaviour of the simpler model analyzed so far. Specifically, we find that 
average category selectivity increases over learning Figure 2—figure supplement 4D; this behaviour 
is robust, and does not depend on circuit details. For completeness, we tested two definitions of 
category selectivity. The first one is identical to Equation 56; as initial activity is structured, this gives 
slightly positive initial values; the second one (which is used in related experimental work, Freedman 
et al., 2001; Freedman and Assad, 2006) is again identical to Equation 56 – but pairs of stimuli  ss′  
are subsampled in a way that is tailored to inputs structure to yield vanishing initial selectivity. We 
show in Figure 2—figure supplement 4D that both selectivity definitions give qualitatively similar 
results. Whether category correlation increases or decreases over learning depends, on the other 
hand, on parameters (Figure 2—figure supplement 4B, C, E). Correlation depends on parameters 
in a way that is consistent with the simple task: it is strongly modulated by properties of the readout 
activation function  Φ  (Figure 2—figure supplement 4E, different shades of gray). It also depends on 
the activation function of neurons in the intermediate layer  Ψ  (Figure 2—figure supplement 4E, left). 
Finally, it decreases with the learning ratio  ηw/ηu  (Figure 2—figure supplement 4E, center) and with 
the number of stimuli  Q  (Figure 2—figure supplement 4E, right).

Context-dependent categorization task
Context-dependent task: task definition
The second task we consider is a context- dependent categorization task. On each trial, both a stim-
ulus, and a context cue, are presented to the network. For simplicity, we assume that the number of 
stimuli and context cues is identical, and is equal to  Q . As in the simple task, each stimulus is repre-
sented by an input vector  µ

S
 , with  S = 1, . . . , Q ; each context cue is also represented by an input 

vector, denoted  νC , with  C = 1, . . . , Q . The entries of both vectors,  µ
S
  and  νC , are generated inde-

pendently from a zero- mean, unit- variance Gaussian distribution. The total sensory input on each trial, 
 xs , is given by the linear combination of the stimulus and context cue inputs,

 
xs = 1√

2

(
µSs + νCs

)
.
  (110)

All combinations of stimuli and context cues are permitted; the total number of trials and sensory 
inputs is thus  P = Q2

 . Each trial  s  is thus specified by a stimulus and context index:  s = (SsCs) . In 
contrast to the simple task, sensory input vectors are not orthogonal among each other; using Equa-
tion 110, we see that to the leading order in  N  ,
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⟨xs
i x

s′
i ⟩i ≃





1 Ss = S′s and Cs = C′
s (s = s′)

1/2 Ss = S′s or Cs = C′
s

0 otherwise.   

(111)

The task is defined as follows. When the context cue  C  ranges between 1 and  Q/2 , context takes value 
1. In context 1, the first half of the  Q  stimuli is associated with category  A  ( ̃z = zA ), and the second half 
with  B  ( ̃z = zB ). When the context cue  C  ranges between  Q/2  and  Q , context takes value 2. In context 
2, stimuli- category associations are reversed: the first half of the  Q  stimuli is associated with category 
 B  ( ̃z = zB ), and the second half with  A  ( ̃z = zA ).

Correlations in the sensory inputs (Equation 111) are such that, for every value of  Q , inputs are not 
linearly separable (Barak et al., 2013). For  Q = 2 , the task is equivalent to a classical XOR computa-
tion. We focus however on  Q > 2 , for which each context is signaled by more than one context cue. 
As in experimental work (Wallis et al., 2001; Stoet and Snyder, 2004; Brincat et al., 2018), this 
allows to dissociate the activity dependence on the abstract variable context from the sensory variable 
context cue (see Equation 122 and Equation 123 in Section Context- dependent task: category and 
context selectivity).

We start by writing down explicit expressions for the activity (Equation 29) in the current task 
(Section Context- dependent task: computing activity). We then derive the expressions that quantify 
how activity measures, such as selectivity and correlations, evolve over learning (Sections Context- 
dependent task: category and context selectivity, Context- dependent task: category and context 
correlation and Context- dependent task: computing normalized dot products). These expressions are 
rather complex, and require numerical evaluation. To gain further mathematical insight, in Sections 
Detailed analysis of context selectivity, Detailed analysis of category selectivity and Analysis of 
patterns of context and category selectivity we consider specific cases and quantities, and derive their 
behaviour analytically.

Context-dependent task: computing activity
We start by computing the value of coordinates  cs , which are solution to the linear system in Equa-
tion 26. As in Section Simple task: computing activity (see also Section Characterizing variability), we 
neglect the variable term  h

s
0  in the left- hand side of that equation and, after a small amount of algebra, 

we find that it can be rewritten as

 

Φ−1(̃zs) = cs
(
⟨Ψ′2⟩ + ηw

ηu

(
⟨Ψ2⟩ − ⟨Ψ⟩2

))
+

∑
q∈N(s)

cq
(

1
2 ⟨Ψ

′Ψ′⟩ + ηw
ηu

(
⟨ΨΨ⟩ − ⟨Ψ⟩2

))

+
P∑

q=1
cq ηw

ηu
⟨Ψ⟩2

  

(112)

where we used the short- hand notation  N(s)  to indicate the set of trials that are neighbours to  s  (i.e., 
trials that have either the same stimulus or the same context cue of  s ). We have used the notation  ⟨FF⟩  
to indicate the average over the product of two nonlinear functions,  F , whose arguments are given by 
two zero- mean and unit- variance Gaussian variables with covariance  1/2 . That is,

 ⟨FF⟩ ≡ ⟨F(a)F(b)⟩a,b  (113)

where both  a  and  b  are zero- mean, unit- variance Gaussian random variables with covariance  1/2 . 
Detail on how these averages are computed numerically is given in Section Evaluation of averages 
(Equation 186).

As in the simple task (Equation 46), because the left- hand side can take on only two values, the 
coordinates  cs  can take on only two values,

 

cs =




cA s in category A
cB s in category B .  

(114)

The values of  cA  and  cB  are determined by the same linear system as in Equation 47, except now  α  
and  β  are given by
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α = ⟨Ψ′2⟩ + ηw

ηu
(⟨Ψ2⟩ − ⟨Ψ⟩2) − 2

[
1
2
⟨Ψ′Ψ′⟩ + ηw

ηu
(⟨ΨΨ⟩ − ⟨Ψ⟩2)

]

  
(115a)

 
β = Q

[
1
2
⟨Ψ′Ψ′⟩ + ηw

ηu
(⟨ΨΨ⟩ − ⟨Ψ⟩2)

]
+ ηw

ηu

Q2

2
⟨Ψ⟩2.

  
(115b)

To derive the expression above, we used the fact that every sensory input has  2Q − 2  neighbours, of 
which  Q − 2  are associated with the same category, and  Q  with the opposite one. The final expression 
for  cA  and  cB  is thus given by Equation 49a; that expression depends on  γ , which is given in Equation 
50.

By comparing Equation 115 with Equation 48 we see that, with respect to the simple task, the 
expressions for  α  and  β  include extra terms (shown in square brackets in the right- hand side of Equa-
tion 115). These arise because, unlike in the simple task, different inputs can be correlated (Equation 
111). The extra term in the expression for  β  (Equation 115b) scales with  Q , while the extra term for  α  
(Equation 115a) does not; this indicates the typical value of  γ  (Equation 50), which is proportional to 

 β/α , is larger in this task than in the simple one. This in turn implies that the parameter region where 
one has approximately  cA ≃ −cB  is larger in the current task than in the simple one; this approxima-
tion will later be used in Section Analysis of patterns of context and category selectivity. In the simple 
task, the parameter region where  cA ≃ −cB  coincided with the region where category correlation 
were negative (Equation 74, Section Simple task: category correlation). This suggests that the param-
eter region where correlations are negative, also, is larger in this task than in the simple one. As it will 
be shown in Section Context- dependent task: category and context correlation, however, the expres-
sions for correlations are much more complex in the current task than Equation 74; this hypothesis 
thus needs to be carefully verified – which is done, using numerical integration, in Figure 6—figure 
supplement 2C.

Since this task is an extension of the XOR task, sensory inputs are not linearly separable. This 
shows up as a singularity when the intermediate layer is linear (e.g.,  Ψ(x) = x ). Indeed, in that case, the 
value of  γ  (Equation 50) diverges, which in turn means both  cA  and  cB  diverge (Equation 49). That’s 
because  γ  is proportional to the ratio  β/α , and  α  vanishes, while  β  does not. To see that  α  vanishes, 
we use Equation 115a to write

 

α = 1 + ηw
ηu

(⟨Ψ2⟩ − ⟨Ψ⟩2) − 2
[

1
2 + ηw

ηu
(⟨ΨΨ⟩ − ⟨Ψ⟩2)

]

= ηw
ηu

[
⟨Ψ2⟩ − 2⟨ΨΨ⟩ + ⟨Ψ⟩2

]

= ηw
ηu

[
1 − 2 · 1

2 + 0
]

= 0.
  

(116)

When the activation function  Ψ  is nonlinear, instead, the values of  cA  and  cB  are finite; their magnitude 
depends on how close to linear  Ψ  is in its effective activation range.

To conclude our characterization of activity, we evaluate spanning vectors,  vqs , by combining Equa-
tion 28 and Equation 111. Unlike in the simple task, for each activity vector,  ys

 , there exists more 
than one spanning vector; those are given by  vss , and all vectors  vqs  for which  q ∈ N(s) . Equation 29 
thus reads

 

ys = ys
0 + csvss +

∑
q∈N(s)

cqvqs

= ys
0 + csw0 ⊙Ψ′(ks

0) ⊙Ψ′(ks
0) + 1

2
∑

q∈N(s)
cqw0 ⊙Ψ′(kq

0) ⊙Ψ′(ks
0)

  

(117)

where the second line follows from Equation 28 and the coordinates  cq  take values  cA  or  cB  depending 
on the category  xq  is associated with (Equation 114). Using the notation  s = (SsCs) , Equation 117 can 
also be written in the compact form

 
ySsCs = ySsCs

0 + 1
2

Q∑
S=1

cSCs w0 ⊙Ψ′SCs ⊙Ψ′SsCs + 1
2

Q∑
C=1

cSsCw0 ⊙Ψ′SsC ⊙Ψ′SsCs

 
 
 

(118)

where we used the short- hand notation  Ψ
′SC ≡ Ψ′(kSC

0 ) .
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To isolate the effect of the nonlinearity  Ψ , it will be instructive (see Sections Detailed analysis of 
context selectivity and Detailed analysis of category selectivity) to also compute the synaptic drive,  ks , 
after learning. Using Equation 5b and Equation 18a, it is easy to see that

 
ks ≡ ks

0 + ∆ks = ks
0 + csw0 ⊙Ψ′(ks

0) + 1
2

∑
q∈N(s)

cqw0 ⊙Ψ′(kq
0),

  
(119)

or, equivalently,

 
kSsCs = kSsCs

0 + 1
2

Q∑
S=1

cSCs w0 ⊙Ψ′SCs + 1
2

Q∑
C=1

cSsCw0 ⊙Ψ′SsC.
  

(120)

We conclude with a remark on the geometry of the spanning vectors,  vqs . As in the simple task, those 
include a component that is aligned with the initial readout vector,  w0 , and a residual component that 
is perpendicular to it,  δvqs  (Equation 31). In the simple task, residual components could be neglected 
(Equation 55) because they were orthogonal to each other, and did not contribute to novel activity 
structure. In this task, residual components are not, in general, orthogonal to each other, and thus 
cannot be neglected. In fact, we have

 
δvqs · δvq′s′ = ⟨xq

i xs
i ⟩i⟨xq′

i xs′
i ⟩i

[
⟨Ψ′(kq

0,i)Ψ
′(ks

0,i)Ψ
′(kq′

0,i)Ψ
′(ks′

0,i)⟩i − ⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)⟩i⟨Ψ′(kq′

0,i)Ψ
′(ks′

0,i)⟩i

]
.
 

 (121)

The term in the right- hand side can be non- zero even when  sq  are different from  s′q′ ; this is due 
to Equation 43b and Equation 111, which imply that  k0,i  variables can be correlated among each 
other. The fact that residuals  δvqs  cannot be neglected implies that activity evolution is not effectively 
one- dimensional, as it was the simple task, but higher- dimensional (this is evident in the PC plots in 
Figure 6—figure supplement 1C, D). All the directions along which activity evolve are, however, 
correlated with the initial readout vector  w0  (Equation 30).

Context-dependent task: category and context selectivity
In the present task, we can compute category, as well as context selectivity. In analogy with category 
selectivity, Equation 56, context selectivity is defined as

 
Sctx

i = ⟨(ys
i−ys′

i )2⟩s,s′ diff ctx−⟨(ys
i−ys′

i )2⟩s̸=s′ same ctx, diff ctx cue

⟨(ys
i−ys′

i )2⟩s,s′ diff ctx+⟨(ys
i−ys′

i )2⟩s̸=s′ same ctx, diff ctx cue
.
  

(122)

Note that, in the average over pairs of trials from the same context, we excluded pairs of trials with 
the same context cue. This was done to exclude the possibility that context selectivity increases 
simply because activity in response to the same context cue become more similar over learning. For 
completeness, we also compute

 
Sctx,2

i = ⟨(ys
i−ys′

i )2⟩s,s′ diff ctx−⟨(ys
i−ys′

i )2⟩s̸=s′ same ctx

⟨(ys
i−ys′

i )2⟩s,s′ diff ctx+⟨(ys
i−ys′

i )2⟩s̸=s′ same ctx
,
  

(123)

which we plot in Figure 6—figure supplement 1A, B. Those plots show that the behaviour under this 
definition is similar to that of Equation 122.

We are interested in deriving theoretical expressions for average category and context selectivity, 
obtained by averaging Equation 56 and Equation 122 (or Equation 123) over  i . For the present task, 
that is hard. Consequently, we use results from the simple task (Section Simple task: category selec-
tivity) which indicated that, in the limit  N ≫ Q ≫ 1 , average category selectivity can be approximated 
with the category clustering measure, Equation 67; the latter is equivalent to separately averaging 
the numerator and denominator of selectivity over neurons.

For category, clustering is the same as in the simple task, Equation 67 and Equation 68, which we 
repeat here for convenience,

 

S̃cat = ⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff cat−⟨⟨(ys
i−ys′

i )2⟩i⟩s̸=s′ same cat

⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff cat+⟨⟨(ys
i−ys′

i )2⟩i⟩s̸=s′ same cat

= −⟨⟨ys
i y

s′
i ⟩i⟩s,s′ diff cat+⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same cat

2⟨⟨(ys
i )2⟩i⟩s−⟨⟨ys

i y
s′
i ⟩i⟩s,s′ diff cat−⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same cat   

(124)
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where we used the statistical homogeneity of activity vectors. Similarly, for context selectivity, we may 
write

 

S̃ctx = ⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff ctx−⟨⟨(ys
i−ys′

i )2⟩i⟩s̸=s′ same ctx, diff ctx cue

⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff ctx+⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ same ctx, diff ctx cue

= −⟨⟨ys
i y

s′
i ⟩i⟩s,s′ diff ctx+⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same ctx, diff ctx cue

2⟨⟨(ys
i )2⟩i⟩s−⟨⟨ys

i y
s′
i ⟩i⟩s,s′ diff ctx−⟨⟨ys

i y
s′
i ⟩i⟩s,s′ same ctx, diff ctx cue   

(125)

and

 

S̃ctx,2 = ⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff ctx−⟨⟨(ys
i−ys′

i )2⟩i⟩s̸=s′ same ctx

⟨⟨(ys
i−ys′

i )2⟩i⟩s,s′ diff ctx+⟨⟨(ys
i−ys′

i )2⟩i⟩s̸=s′ same ctx

= −⟨⟨ys
i y

s′
i ⟩i⟩s,s′ diff ctx+⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same ctx

2⟨⟨(ys
i )2⟩i⟩s−⟨⟨ys

i y
s′
i ⟩i⟩s,s′ diff ctx−⟨⟨ys

i y
s′
i ⟩i⟩s̸=s′ same ctx

.
  

(126)

To evaluate those expressions, we need the normalized dot products over activity,  ⟨y
s
i y

s′
i ⟩i . These are 

computed in Section Context- dependent task: computing normalized dot products. Finally, averages 
over trials are performed numerically. The resulting theoretical estimates for  ̃Scat  and  ̃Sctx  are shown in 
Figure 6—figure supplement 1B and Figure 7—figure supplement 1.

In Figure 7—figure supplement 1A–C, we compare theoretical estimates with simulations. Agree-
ment is relatively good, although it is worse than for the simple task; as argued in Section Evolution of 
activity in finite- size networks, that is expected. Note that the values of average selectivity and clus-
tering are not close (this is only verified in the  N ≫ Q ≫ 1  limit, and would require values of  N   larger 
than those used in simulations); the qualitative behaviour of the two quantities is, however, identical. 
In Figure 6—figure supplement 1B, we plot the theoretical estimates across a broad range of task 
and circuit parameters. These theoretical estimates indicate that, in all cases, category (Equation 124) 
and context (Equation 125, Equation 126) selectivity increase. This is in agreement with simulations, 
which are reported in Figure 6—figure supplement 1A.

Context-dependent task: category and context correlation
To quantify how the population as a whole encodes category and context, we evaluate category 
and context correlations. Those quantities, denoted  Ccat  and  Cctx , are given by the average Pearson 
correlation coefficient for trials in different categories and contexts.  Ccat  is defined as in Equation 71. 
Similarly,  Cctx  is defined as

 Cctx = ⟨Cs1s2⟩s1s2  (127)

where  s1  and  s2  are indices that denote, respectively, trials from contexts 1 and 2. Similar to Equation 
72, the Pearson correlation coefficient  Cs1s2  is given by

 
Cs1s2 = ⟨ys1

i ys2
i ⟩i−⟨Ψ⟩2

√
⟨ys1

i ys1
i ⟩i−⟨Ψ⟩2

√
⟨ys2

i ys2
i ⟩i−⟨Ψ⟩2

.
  

(128)

To evaluate these expressions, we use the normalized dot products  ⟨y
s
i y

s′
i ⟩i  that are computed in 

Section Context- dependent task: computing normalized dot products. Averaging over trials is, finally, 
done numerically.

For completeness, we also consider the alternative definition of correlations, where activity is aver-
aged over trials first, and then the Pearson correlation is computed. The alternative definition for 
category correlation is identical to Equation 79. The alternative definition for context correlation is 
given by

 

Cctx = ⟨y1
i y2

i ⟩i−⟨y1
i ⟩i⟨y2

i ⟩i√
⟨y1

i y1
i ⟩i−⟨y1

i ⟩2
i

√
⟨y2

i y2
i ⟩i−⟨y2

i ⟩2
i

= ⟨y1
i y2

i ⟩i−⟨Ψ⟩2
√

⟨y1
i y1

i ⟩i−⟨Ψ⟩2
√

⟨y2
i y2

i ⟩i−⟨Ψ⟩2   

(129)

where we have defined

https://doi.org/10.7554/eLife.79908
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y1 = ⟨ys1⟩s1

y2 = ⟨ys2⟩s2 .  
(130)

For the current task, there exists no simple mathematical relationship between correlations obtained 
from the standard, and the alternative definition. We thus checked numerically the behaviour of both 
quantities; results are reported in Figure 6—figure supplement 1B. As in the simple task, we found 
that the qualitative behaviour of both quantities is not fixed, but depends on task and circuit parame-
ters. This is in agreement with simulations, which are illustrated in Figure 6—figure supplement 1A.

Context-dependent task: computing normalized dot products
To conclude, we illustrate how normalized dot products, Equation 84, are computed for the current 
task. We start from Equation 91, which we repeat here for completeness,

 ⟨ys
i y

s′
i ⟩i = ⟨ys

0,iy
s′
0,i⟩i + ⟨∆ys

i∆ys′
i ⟩i.  (131)

The first term of the right- hand side reads

 

⟨ys
0,iy

s′
0,i⟩i =





⟨Ψ2⟩ Ss = S′s and Cs = C′
s (s = s′)

⟨ΨΨ⟩ Ss = S′s or Cs = C′
s

⟨Ψ⟩2 otherwise,   

(132)

where we used Equation 5 together with Equation 43b and Equation 111. Using Equation 29 
together with Equation 28, the second term of the right- hand side of Equation 131 reads

 
⟨∆ys

i∆ys′
i ⟩i = 1

N

P∑
q=1

P∑
q′=1

cqcq′⟨xq
i xs

i ⟩i⟨xq′
i xs′

i ⟩i⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)Ψ

′(kq′
0,i)Ψ

′(ks′
0,i)⟩i

  
(133)

where sensory input correlations,  ⟨x
q
i xs

i ⟩i , are given in Equation 111.
Because  ⟨x

q
i xs

i ⟩i  can be non- zero even when  s ̸= q  (Equation 111), the number of non- zero terms in the 

sum in Equation 133 is, in general, large. Each term contains an average,  ⟨Ψ
′(kq

0,i)Ψ
′(ks

0,i)Ψ
′(kq′

0,i)Ψ
′(ks′

0,i)⟩i , 
that includes four nonlinear functions. The value of those averages is specified by the correlations 
among the arguments,  k0,i , which in turn depend on the values of  s ,  q ,  s′  and  q′  (Equation 111, via 
Equation 43b). Averages are evaluated numerically; detail on how this is done is given in Section 
Evaluation of averages.

This procedure yields a set of normalized dot products that can be used to evaluate, numerically, 
the expressions for activity selectivity and correlation derived in Sections Context- dependent task: 
category and context selectivity and Context- dependent task: category and context correlation. As 
we rely on numerics, the results we obtain in this way are hard to interpret. For this reason, in the next 
sections we focus on specific cases were results can be obtained analytically; this allows us to extract 
a more intuitive understanding of how activity measures evolve over learning.

Detailed analysis of context selectivity
We start clarifying how context selectivity increases over learning. Results from simulations, and 
numerical integration of Equation 125, indicate that context selectivity increases for the synaptic 
drive,  ks ; this increase is then reflected in the activity,  ys

  (Figure 6—figure supplement 1A, B and 
Figure 7—figure supplement 1B). In this section, we analyze the behaviour of context selectivity 
for the synaptic drive. Focussing on the synaptic drive, instead of activity, allows us to derive results 
analytically. In the following, we start from Equation 125 and show that, for the synaptic drive  ks , the 
value of  ̃Sctx  increases over learning. At the end of this section, we comment on the insights provided 
by such derivation.

We start by simplifying the sums over trials contained in Equation 125, which involve pairs of trials 
 ss′  from the same, or different context. To this end we observe that, because of task symmetries, these 
sums involve a large number of identical terms; for example, the term with  s = (11)  and  s′ = (12)  is 
identical to  s = (21)  and  s′ = (22)  (both pairs of trials are neighbours, and are associated with the same 
category). We thus perform averages over a reduced, and less redundant subset of pairs of trials. 

https://doi.org/10.7554/eLife.79908
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First, we consider only two values of  s : for concreteness, we take  s = (11)  and  s = ((Q̂ + 1)1) , where 
we defined

 Q̂ ≡ Q
2 .  (134)

These  s  trials are associated, respectively, with categories  A  and  B . Second, for each value of  s , we 
consider  s′  trials with context cue equal to  C = 2  and  C = Q̂ + 1 ; these are associated, respectively, 
with context 1 and 2 (note that  C = 1  must be avoided, as trials with the same context cue must be 
excluded, see Equation 125). This allows us to rewrite the averages contained in Equation 125 as

 

⟨⟨(ks
i − ks′

i )2⟩i⟩s,s′ same ctx, diff ctx cue = 1
2Q




Q∑

S̄=1

⟨(k11
i − kS̄2

i )2⟩i +
Q∑

S̄=1

⟨(k(Q̂+1)1
i − kS̄2

i )2⟩i



  

(135a)

 

⟨⟨(ks
i − ks′

i )2⟩i⟩s,s′ diff ctx = 1
2Q




Q∑

S̄=1

⟨(k11
i − kS̄(Q̂+1)

i )2⟩i +
Q∑

S̄=1

⟨(k(Q̂+1)1
i − kS̄(Q̂+1)

i )2⟩i


 .

  
(135b)

The sums over  ̄S  can further be simplified. By using again symmetries, we have:

 

Q∑
S̄=1

⟨(k11
i − kS̄2

i )2⟩i = ⟨(k11
i − k12

i )2⟩i + (Q̂ − 1)⟨(k11
i − k22

i )2⟩i + Q̂⟨(k11
i − k(Q̂+1)2

i )2⟩i.
  

(136)

We can do the same for the other sums, yielding:

 

Q∑

S̄=1

⟨(k(Q̂+1)1
i − kS̄2

i )2⟩i = ⟨(k(Q̂+1)1
i − k(Q̂+1)2

i )2⟩i + (Q̂ − 1)⟨(k(Q̂+1)1
i − k(Q̂+2)2

i )2⟩i + Q̂⟨(k(Q̂+1)1
i − k12

i )2⟩i
 

 (137a)

 

Q∑

S̄=1

⟨(k11
i − kS̄(Q̂+1)

i )2⟩i = ⟨(k11
i − k1(Q̂+1)

i )2⟩i + (Q̂ − 1)⟨(k11
i − k2(Q̂+1)

i )2⟩i + Q̂⟨(k11
i − k(Q̂+1)(Q̂+1)

i )2⟩i
 

 (137b)

 

Q∑

S̄=1

⟨(k(Q̂+1)1
i −kS̄(Q̂+1)

i )2⟩i = ⟨(k(Q̂+1)1
i −k(Q̂+1)(Q̂+1)

i )2⟩i +(Q̂−1)⟨(k(Q̂+1)1
i −k(Q̂+2)(Q̂+1)

i )2⟩i + Q̂⟨(k(Q̂+1)1
i −

k1(Q̂+1)
i )2⟩i.  

 (137c)

It is easy to verify that, before learning starts, the right- hand sides of Equation 135a and Equation 
135b are identical. This implies that the initial value of context selectivity, Equation 125, vanishes 
(Figure 7—figure supplement 1B). To show that context selectivity increases over learning, we thus 
need to show that the numerator of Equation 125 becomes positive over learning. This is equivalent 
to show that Equation 135a is smaller than Equation 135b. Using Equation 136 and Equation 137, 
this condition can be rewritten as

 

Q̂
[
⟨(k11

i − k22
i )2⟩i + ⟨(k11

i − k(Q̂+1)2
i )2⟩i + ⟨(k(Q̂+1)1

i − k(Q̂+2)2
i )2⟩i + ⟨(k(Q̂+1)1

i − k12
i )2⟩i

]
+

⟨(k11
i − k12

i )2⟩i + ⟨(k(Q̂+1)1
i − k(Q̂+1)2

i )2⟩i − ⟨(k11
i − k22

i )2⟩i − ⟨(k(Q̂+1)1
i − k(Q̂+2)2

i )2⟩i <

Q̂
[
⟨(k11

i − k2(Q̂+1)
i )2⟩i + ⟨(k11

i − k(Q̂+1)(Q̂+1)
i )2⟩i + ⟨(k(Q̂+1)1

i − k(Q̂+2)(Q̂+1)
i )2⟩i + ⟨(k(Q̂+1)1

i − k1(Q̂+1)
i )2⟩i

]
+

⟨(k11
i − k1(Q̂+1)

i )2⟩i + ⟨(k(Q̂+1)1
i − k(Q̂+1)(Q̂+1)

i )2⟩i − ⟨(k11
i − k2(Q̂+1)

i )2⟩i − ⟨(k(Q̂+1)1
i − k(Q̂+2)(Q̂+1)

i )2⟩i.  
 (138)

We now use Equation 119 to write

 ⟨(ks
i − ks′

i )2⟩i = ⟨(ks
0,i)

2⟩i + ⟨(ks′
0,i)

2⟩i − 2⟨ks
0,ik

s′
0,i⟩i + ⟨(∆ks

i )
2⟩i + ⟨(∆ks′

i )2⟩i − 2⟨∆ks
i∆ks′

i ⟩i  (139)
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where the terms containing the cross- products between  k
s
i   and  ∆ks

i   vanish on average because of 
Equation 8a. By using the statistical homogeneity of activity across contexts, we can rewrite Equation 
138 as

 

Q̂
[
⟨∆k11

i ∆k22
i ⟩i + ⟨∆k11

i ∆k(Q̂+1)2
i ⟩i + ⟨∆k(Q̂+1)1

i ∆k(Q̂+2)2
i ⟩i + ⟨∆k(Q̂+1)1

i ∆k12
i ⟩i

]
+

⟨∆k11
i ∆k12

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+1)2

i ⟩i − ⟨∆k11
i ∆k22

i ⟩i − ⟨∆k(Q̂+1)1
i ∆K(Q̂+2)2

i ⟩i >

Q̂
[
⟨∆k11

i ∆k2(Q̂+1)
i ⟩i + ⟨∆k11

i ∆k(Q̂+1)(Q̂+1)
i ⟩i + ⟨∆k(Q̂+1)1

i ∆k(Q̂+2)(Q̂+1)
i ⟩i + ⟨∆k(Q̂+1)1

i ∆k1(Q̂+1)
i ⟩i

]
+

⟨∆k11
i ∆k1(Q̂+1)

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+1)(Q̂+1)

i ⟩i − ⟨∆k11
i ∆k2(Q̂+1)

i ⟩i − ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)(Q̂+1)

i ⟩i   
 (140)

or, re- arranging terms,

 

Q̂
{[

⟨∆k11
i ∆k22

i ⟩i + ⟨∆k11
i ∆k(Q̂+1)2

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)2

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k12

i ⟩i

]
−[

⟨∆k11
i ∆k2(Q̂+1)

i ⟩i + ⟨∆k11
i ∆k(Q̂+1)(Q̂+1)

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)(Q̂+1)

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k1(Q̂+1)

i ⟩i

]}
+{[

⟨∆k11
i ∆k12

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+1)2

i ⟩i − ⟨∆k11
i ∆k22

i ⟩i − ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)2

i ⟩i

]
−[

⟨∆k11
i ∆k1(Q̂+1)

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+1)(Q̂+1)

i ⟩i − ⟨∆k11
i ∆k2(Q̂+1)

i ⟩i − ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)(Q̂+1)

i ⟩i

]}
> 0.

 
 (141)

To show that context selectivity increases over learning, we need to verify that the equation above 
holds. To this end, we evaluate analytically the normalized dot products  ⟨∆kSC

i ∆kS′C′

i ⟩i  for each pair 
of trials involved. This is done in the next paragraph; here we simply use those results (Equation 156, 
Equation 157, Equation 158, and Equation 159).

We start evaluating the difference within the first set of curly parenthesis of Equation 141, which 
correspond to the dominant contribution in  Q . By using Equation 159, we see that this can be 
rewritten as

 

[
⟨∆k11

i ∆k22
i ⟩i + ⟨∆k(Q̂+1)1

i ∆k(Q̂+2)2
i ⟩i

]
−

[
⟨∆k11

i ∆k(Q̂+1)(Q̂+1)
i ⟩i + ⟨∆k(Q̂+1)1

i ∆k1(Q̂+1)
i ⟩i

]
.
  (142)

Using Equation 158, this becomes

 
(cA−cB)2

N [A1 −A2].  (143)

We then evaluate the difference within the second set of curly parenthesis. Using Equation 156, 
Equation 157, Equation 158 and Equation 159, it is straightforward to see that that difference 
vanishes. Putting results together, our condition to verify (Equation 141) becomes simply:

 (cA − cB)2[A1 −A2] > 0,  (144)

which is satisfied whenever  A1 −A2 > 0 . This is always verified, as from Equation 150 and Equation 
151 we have

 
A1 =

∑
S+,S′+

⟨S+1, S′+2⟩ = Q
2 ⟨Ψ

′Ψ′⟩ + Q
2

(
Q
2 − 1

)
⟨Ψ′⟩2

 
 
 

(145)

while

 
A2 =

∑
S+,S′−

⟨S+1, S′−2⟩ =
(

Q
2

)2
⟨Ψ′⟩2

 
 
 

(146)

so that

 A1 −A2 = Q
2 (⟨Ψ′Ψ′⟩ − ⟨Ψ′⟩2) > 0  (147)

which concludes our derivation. We remark that Equation 147 vanishes when  Ψ  is linear. This indicates 
that, even if context selectivity also increases for synaptic drives (which are a linear transformation of 
the sensory inputs), this phenomenon is due to the nonlinearity of activation functions.

https://doi.org/10.7554/eLife.79908
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Computing normalized dot products
We now compute the normalized dot product expressions,  ⟨∆kSC

i ∆kS′C′

i ⟩i , for each pair of trials 
involved in Equation 141. We illustrate in detail how one example dot product,  ⟨∆k11

i ∆k12
i ⟩i , is 

computed. Other expressions are computed in a similar way; results are given below (Equation 157, 
Equation 158 and Equation 159).

We start from:

 

⟨∆k11
i ∆k12

i ⟩i = 1
4N

[
∑
S,S′

cS1cS′2⟨Ψ′
i
S1
Ψ′

i
S′2⟩i +

∑
C,C′

c1Cc1C′
⟨Ψ′

i
1C
Ψ′

i
1C′

⟩i

+
∑
S,C′

cS1c1C′
⟨Ψ′

i
S1
Ψ′

i
1C′

⟩i +
∑
C,S′

c1CcS′2⟨Ψ′
i
1C
Ψ′

i
S′2⟩i

]

  

(148)

which was derived from Equation 120 together with Equation 8a. We then rewrite the sums in the 
right- hand side by expanding each index in two set of indices: one running from 1 to  Q/2  (denoted 
by the subscript +), and one running from  Q/2 + 1  to  Q  (denoted by the subscript −). The first sum in 
Equation 148 becomes:

 

∑
S,S′

cS1cS′2⟨Ψ′
i

S1Ψ′
i

S′2⟩i = cA2 ∑
S+,S′+

⟨S+1, S′+2⟩ + cAcB ∑
S+,S′−

⟨S+1, S′−2⟩ + cAcB ∑
S− ,S′+

⟨S−1, S′+2⟩ + cB2 ∑
S− ,S′−

⟨S−1, S′−2⟩
  

(149)

where we have used the short- hand notation  ⟨SC, S′C′⟩ ≡ ⟨Ψ′
i
SC
Ψ′

i
S′C⟩i . We now observe that

 

∑
S+,S′+

⟨S+1, S′+2⟩ =
∑

S−,S′−
⟨S−1, S′−2⟩ ≡ A1

  
(150)

while

 

∑
S+,S′−

⟨S+1, S′−2⟩ =
∑

S−,S′+
⟨S−1, S′+2⟩ ≡ A2

  
(151)

so that

 

∑
S,S′

cS1cS′2⟨Ψ′
i
S1
Ψ′

i
S′2⟩i = (cA2

+ cB2
)A1 + 2cAcBA2.

  
(152)

The second sum in Equation 148 gives:

 

∑
C,C′

c1Cc1C′ ⟨Ψ′
i
1CΨ′

i
1C′

⟩i = cA2 ∑
C+,C′

+

⟨1C+, 1C′
+⟩ + cAcB ∑

C+,C′
−

⟨1C+, 1C′
−⟩+

cAcB ∑
C− ,C′

+

⟨1C−, 1C′
+⟩ + cB2 ∑

C− ,C′
−

⟨1C−, 1C′
−⟩

≡ (cA2 + cB2)A3 + 2cAcBA4   

(153)

by appropriately defining  A3  and  A4 . The third sum gives:

 

∑
S,C′

cS1c1C′ ⟨Ψ′
i
S1Ψ′

i
1C′

⟩i = cA2 ∑
S+,C′

+

⟨S+1, 1C+⟩ + cAcB ∑
S+,C′

−

⟨S+1, 1C−⟩+

cAcB ∑
S− ,C′

+

⟨S−1, 1C+⟩ + cB2 ∑
S− ,C′

−

⟨S−1, 1C−⟩

≡ cA2A5 + cB2A6 + 2cAcBA7   

(154)

and, similarly, the fourth one:

 

∑
C,S′

c1CcS′2⟨Ψ′
i
1C
Ψ′

i
S2⟩i = cA2

A5 + cB2
A6 + 2cAcBA7.

  
(155)

By putting those results together, we conclude that

 ⟨∆k11
i ∆k12

i ⟩i = 1
4N

[
(cA2 + cB2)A1 + 2cAcBA2 + (cA2 + cB2)A3 + 2cAcBA4 + 2cA2A5 + 2cB2A6 + 4cAcBA7

]
.  (156)

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  45 of 56

We can use the same procedure to evaluate dot products for all the remaining pairs of trials. This 
gives:

 

⟨∆k(Q̂+1)1
i ∆k(Q̂+1)2

i ⟩i =
1

4N

[
(cA2 + cB2)A1 + 2cAcBA2 + (cA2 + cB2)A3 + 2cAcBA4 + 2cB2A5 + 2cA2A6 + 4cAcBA7

]

⟨∆k11
i ∆k1(Q̂+1)

i ⟩i = 1
4N

[
2cAcBA1 + (cA2 + cB2)A2 + (cA2 + cB2)A3 + 2cAcBA4 + (cA2 + cB2)A5 + (cA2 + cB2)A6 + 4cAcBA7

]

⟨∆k(Q̂+1)1
i ∆k(Q̂+1)(Q̂+1)

i ⟩i = 1
4N

[
2cAcBA1 + (cA2 + cB2)A2 + (cA2 + cB2)A3 + 2cAcBA4 + (cA2 + cB2)A5 + (cA2 + cB2)A6 + 4cAcBA7

]
  

(157)

while

 
⟨∆k11

i ∆k22
i ⟩i = 1

4N

[
(2cA2

+ 2cB2
)A1 + 4cAcBA2 + 2cA2

A5 + 2cB2
A6 + 4cAcBA7

]
  (158a)

 
⟨∆k(Q̂+1)1

i ∆k(Q̂+2)2
i ⟩i = 1

4N

[
(2cA2

+ 2cB2
)A1 + 4cAcBA2 + 2cB2

A5 + 2cA2
A6 + 4cAcBA7

]
  (158b)

 
⟨∆k11

i ∆k(Q̂+1)(Q̂+1)
i ⟩i = 1

4N

[
4cAcBA1 + (2cA2

+ 2cB2
)A2 + 2cB2

A5 + 2cA2
A6 + 4cAcBA7

]
  (158c)

 
⟨∆k(Q̂+1)1

i ∆k1(Q̂+1)
i ⟩i = 1

4N

[
4cAcBA1 + (2cA2

+ 2cB2
)A2 + 2cA2

A5 + 2cB2
A6 + 4cAcBA7

]

  
(158d)

and

 

⟨∆k11
i ∆k(Q̂+1)2

i ⟩i = ⟨∆k11
i ∆k2(Q̂+1)

i ⟩i = ⟨∆k(Q̂+1)1
i ∆k12

i ⟩i = ⟨(∆k(Q̂+1)1
i ∆k(Q̂+2)(Q̂+1)

i )⟩i

= 1
4N

[
(cA2 + cB2 + 2cAcB)A1 + (cA2 + cB2 + 2cAcB)A2 + (cA2 + cB2)A5 + (cA2 + cB2)A6 + 4cAcBA7

]
. 

 (159)

All the  A  coefficients can easily be evaluated analytically. However, we have shown in the previous 
paragraph that the only coefficients that do not cancel in Equation 141 are  A1  and  A2 ; these two are 
evaluated analytically in Equation 145 and Equation 146.

Extracting intuition
Can we derive a more intuitive picture of why and how context selectivity increases over learning? We 
have seen in the previous paragraphs that context selectivity increases because the difference within 
the first set of curly parenthesis of Equation 141 is positive (while the difference within the second 
set of curly parenthesis vanishes). To simplify the math, we assume that  cA = −cB ; this condition thus 
reads:

 ⟨∆k11
i ∆k22

i ⟩i − ⟨∆k11
i ∆k(Q̂+1)(Q̂+1)

i ⟩i > 0.  (160)

(With respect to Equation 142, we could get rid of pairs of trials with  s = ((Q̂ + 1)1)  because, when 
 cA = −cB , they give identical results to  s = (11) .)

Equation 160 indicates that, over learning, activity from trial  s = (11)  becomes closer (i.e., more 
correlated) to activity from trials with the same category and context, such as  s′ = (22) , than trials with 
the same category but different context, such as  s′ = ((Q̂ + 1)(Q̂ + 1)) . On the contrary, activity from 
trial  s = (11)  becomes equally close to activity from trials with different category and same context, 
such as  s′ = ((Q̂ + 1)2) , and trials with different category and different context, such as  s′ = (2(Q̂ + 1)) . 
This can be seen from Equation 159, from which

 ⟨∆k11
i ∆k(Q̂+1)2

i ⟩i − ⟨∆k11
i ∆k2(Q̂+1)

i ⟩i = 0   (161)

follows.
The geometrical relationships implied by both Equation 160 and Equation 161 can be easily 

verified in Figure 6—figure supplement 1C, which shows the synaptic drive from simulated circuits; 
the middle panel shows a circuit for which we have exactly  cA = −cB . Taken together, Equation 160 
and Equation 161 indicate that the increase in context selectivity comes from activity clustering by 
context over learning; such clustering is, however, category dependent. This leads to the emergence 
of four statistically distinguishable clouds, one for each combination of category and context. This is 
visible in simulated activity from Figure 6—figure supplement 1C, and is illustrated in Figure 7A–C.

https://doi.org/10.7554/eLife.79908
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Detailed analysis of category selectivity
We now provide extra detail on the behaviour of category selectivity. We start explaining why, as 
observed in Figure 6A and Figure 7—figure supplement 1A, initial selectivity does not vanish, but is 
weakly negative. This phenomenon is observed both for the synaptic drive  ks  and the activity  ys

 ; for 
the sake of simplicity, we focus on the former.

Consider for a moment the case  Q = 2  (XOR computation). The geometry of the initial synaptic 
drive is in that case particularly simple, and is illustrated in Figure 6—figure supplement 2D. As can 
be easily verified by using Equation 5b and Equation 110, each synaptic drive is given by the linear 
superposition of two vectors: a vector among  ̃µ

1
  and  ̃µ

2
 , and a vector among  ̃ν1  and  ̃ν2 . Vectors  ̃µ  and 

 ̃ν  are obtained by applying the initial connectivity  u0  to vectors  µ  and  ν  (Equation 110); for example, 

 ̃µ
1 = u0 · µ1

 . In the plane spanned by vectors  ̃µ  and  ̃ν , the geometry of synaptic drives is square like 
(Figure 6—figure supplement 2D). To verify that, observe that the squared distance between consec-
utive vertices is identical – for example,

 ⟨(k11
0,i − k12

0,i)
2⟩i = 2⟨(k11

0,i)
2⟩i − 2⟨k11

0,ik
12
0,i⟩i = 2 − 1 = 1  (162)

where we used Equation 43 together with Equation 111. Opposite vertices have instead double 
squared distance – for example,

 ⟨(k11
0,i − k22

0,i)
2⟩i = 2⟨(k11

0,i)
2⟩i − 2⟨k11

0,ik
22
0,i⟩i = 2 − 0 = 2  (163)

as expected for a square. Importantly, consecutive vertices are associated with different categories, 
while opposite vertices are associated with the same category; this implies that initial category selec-
tivity is negative. In fact, using Equation 162 and Equation 163 into Equation 124 yields:

 S̃cat = 1−2
1+2 = − 1

3 < 0.  (164)

It is easy to see that initial category selectivity is negative also when  Q > 2 . However, its magnitude 
converges to zero as the number of stimuli and context cues,  Q , increases (Figure 7—figure supple-
ment 1A). This is due to the fact that, as  Q  becomes large, both the within- category and the across- 
category averages in Equation 124 become dominated by pairs of trials with different stimulus and 
context cue; activity from those pairs of trials are characterized by identical initial distances (=2, as in 
Equation 163), and thus the two averages become similar.

We now shed light on a second phenomenon: the fact that category selectivity increases over 
learning for the activity  ys

 , but remains identical for the synaptic drive  ks . This is observed both in 
simulations (Figure 6—figure supplement 1B and Figure 7—figure supplement 1A), and in numer-
ical integration of theoretical expressions (Figure 6—figure supplement 1A and Figure 7—figure 
supplement 1A). To see why this happens, we assume that the number of stimuli and context cues,  Q , 
is fairly large ( 1 ≪ Q ≪ N  ). As discussed above, in this limit, initial category selectivity is approximately 
close to zero. To compute selectivity after learning, we use Equation 124, and evaluate the within- 
category and the across- category averages. We compute averages to the dominant terms in  Q , which 
correspond to pairs of trials with different stimulus and context cue. Using the same  s  and  s′  trials as 
in Section Detailed analysis of context selectivity, we obtain

 

⟨⟨(ks
i − ks′

i )2⟩i⟩s,s′ same cat ≃ ⟨(k11
i − k22

i )2⟩i + ⟨(k11
i − k(Q̂+1)(Q̂+1)

i )2⟩i + ⟨(k(Q̂+1)1
i − k(Q̂+2)2

i )2⟩i + ⟨(k(Q̂+1)1
i − k1(Q̂+1)

i )2⟩i

⟨⟨(ks
i − ks′

i )2⟩i⟩s,s′ diff cat ≃ ⟨(k11
i − k(Q̂+1)2

i )2⟩i + ⟨(k11
i − k2(Q̂+1)

i )2⟩i + ⟨(k(Q̂+1)1
i − k12

i )2⟩i + ⟨(k(Q̂+1)1
i − k(Q̂+2)(Q̂+1)

i )2⟩i.   
(165)

To show that category selectivity does not change over learning, we need to show that the two lines 
above are identical. Using Equation 139, this condition can be written as:

 

⟨∆k11
i ∆k22

i ⟩i + ⟨∆k11
i ∆k(Q̂+1)(Q̂+1)

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)2

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k1(Q̂+1)

i ⟩i =

⟨∆k11
i ∆k(Q̂+1)2

i ⟩i + ⟨∆k11
i ∆k2(Q̂+1)

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k12

i ⟩i + ⟨∆k(Q̂+1)1
i ∆k(Q̂+2)(Q̂+1)

i ⟩i,   
(166)

which can now be easily verified by using Equation 158 and Equation 159.
Equation 166 indicates that, on average across contexts, synaptic drives from trials with the same 

category are as close as trials with different category. This geometrical relationship can be easily 
verified in Figure 6—figure supplement 1C, which shows the synaptic drive from simulated circuits. 

https://doi.org/10.7554/eLife.79908
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We focus on the middle panel, where we have  cA = −cB . The four activity clouds corresponding to 
different combinations of category and context values are approximately arranged on the vertices 
of a square; consecutive vertices are associated with different categories, while opposite vertices 
are associated with the same category. To see why Equation 166 holds, note that squared distances 
among synaptic drives associated with different category are approximately identical, while squared 
distances among synaptic drives associated within the same category are either 0 (approximately, 
half of the times), or twice the across- category distance (the other half). It is interesting to observe 
that this square- like configuration, which emerges over learning from an almost unstructured one 
(Figure 6—figure supplement 1C, left), strongly resembles the initial configuration of the XOR task 
(Figure 6—figure supplement 2D).

A fundamental feature of this configuration is that synaptic drives are not linearly separable by 
category. The activity vectors  ys

 , on the other hand, are linearly separable. Before learning, linear 
separability is guaranteed by the nonlinearity  Ψ , which makes activity vectors linearly separable along 
random directions (Barak et al., 2013). After learning, activity vectors become linearly separable also 
along task- relevant directions. In the simplified scenario where  ηw ≪ ηu , the activity vectors become 
linearly separable along  w0 ; in the general case, they become linearly separable along a direction that 
is correlated with  w0 . This is shown in Figure 6—figure supplement 1D the configuration of activity 
is very similar to synaptic drives, but activity vectors associated with different categories clusters, and 
thus become linearly separable, along an emerging, orthogonal direction. This drives the increase in 
category selectivity that was observed both in equations and simulations (Figure 6—figure supple-
ment 1A, B and Figure 7—figure supplement 1A). A further insight on the relationship between 
selectivity and activity geometry is given in the next section.

We conclude with a remark. Although for activity variables category selectivity robustly increases, 
the fact that selectivity is weakly negative before learning implies that asymptotic values can be small, 
or even negative. This is compatible with findings in Bernardi et al., 2020, where very small values 
of category clustering (Equation 124) were observed. This observation stresses the importance of 
measuring, in experimental preparations, neural activity across multiple stages of learning.

Analysis of patterns of context and category selectivity
In this section, we investigate how changes in context and category selectivity are distributed across 
neurons.

In the simple task, we found that the magnitude of selectivity changes for a given neuron,  i , was 
correlated with the magnitude of the  i th entry of the initial readout vector  w0  (Equation 65, Figure 5B, 
C). This vector defines the direction along which clustering by category takes place. In fact, if one 
draws the vector joining the centers of the activity clouds associated with different categories,  yA

  and 

 yB
  (Equation 78), the resulting direction is correlated with  w0  (Equation 96). This direction is indicated 

with  d  in the main text; cloud centers  yA
  and  yB

  are plotted, in Figure 3B, C and Figure 2—figure 
supplement 1B, as magenta triangles.

In analogy with the simple task, we now hypothesize that the magnitude of changes in context and 
category selectivity for a given neuron,  i , is related to the magnitude of the  i th entry of the context 
and category directions,  dctx  and  dcat . Those coincide with the directions along which clustering to 
context and category emerges (Figure 7B, C), and are given by the vectors joining the centers of the 
activity clouds associated with different contexts (Equation 130) and categories (Equation 78). The 
cloud centers for category and context are plotted, in Figure 7B, C and Figure 6—figure supplement 
1C, D, as magenta and pink triangles. This assumption is verified in Figure 6—figure supplement 3A, 
B, which shows that selectivity changes and context and category directions are highly correlated. Our 
reasoning implies that, in order to understand how selectivity changes are distributed across neurons, 
we need to evaluate the entries of the context and category directions; this is done, analytically, in the 
rest of this section.

As we are interested in selectivity changes, we focus on activity changes, and approximate

 dctx ≃ ∆y1 −∆y2
  (167a)

 dcat ≃ ∆yA −∆yB
  (167b)

where, similar to Equation 78 and Equation 130, we have taken

https://doi.org/10.7554/eLife.79908
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 ∆y1 = ⟨∆ys1⟩s1  (168a)

 ∆y2 = ⟨∆ys2⟩s2  (168b)

and

 ∆yA = ⟨∆ysA⟩sA  (169a)

 ∆yB = ⟨∆ysB⟩sB .  (169b)

We start with context. We have seen in Section Detailed analysis of context selectivity that context 
selectivity can also be studied at the level of the synaptic drive  ks , which greatly simplifies the analysis. 
Starting from Equation 120, we thus compute

 

∆k1
i = w0,i

2

[∑
S
⟨cSCs1 Ψ′

i
SCs1 ⟩s1 +

∑
C
⟨cSs1 CΨ′

i
Ss1 C⟩s1

]

= w0,i
2

[∑
S
⟨cSCΨ′

i
SC+⟩C+ +

∑
C
⟨cSCΨ′

i
SC⟩S

]

= w0,iQ
4

[
cA⟨Ψ′

i
S+C+⟩S+,C+ + cB⟨Ψ′

i
S−C−⟩S−,C+, + 2⟨cSCΨ′

i
SC⟩S,C

]
.
  

(170)

As in Section Detailed analysis of context selectivity, indices  S+  and  S−  (and, similarly,  C+  and  C− ) run, 
respectively, from 1 to  Q/2  and from  Q/2 + 1  to  Q . Similarly,

 
∆k2

i = w0,iQ
4

[
cB⟨Ψ′

i
S+C−⟩S+,C− + cA⟨Ψ′

i
S−C−⟩S−,C− + 2⟨cSCΨ′

i
SC⟩S,C

]
.
  (171)

Note that, because of the first two terms in the right- hand sides, Equation 170 and Equation 171 are 
not identical.

To further simplify the analysis, we assume that  cB ≃ −cA . As discussed in Section Context- 
dependent task: computing activity, in the current task, this represents a good approximation for a 
large space of parameters; we verified with simulations that our main results also hold, qualitatively, in 
circuits where this approximation fails (notably, in the circuit illustrated in the third column of Figure 6, 
see Figure 6—figure supplement 3C, D). Combining Equation 167a with Equation 170 and Equa-
tion 171, we then obtain

 

dctx
i = ∆k1

i −∆k2
i = w0,icAQ

4 ⟨⟨Ψ′
i
S+C⟩S+ − ⟨Ψ′

i
S−C⟩S−⟩C

≡ w0,icAQ
4 ⟨DC

i ⟩C   
(172)

where we have defined

 DC
i ≡ ⟨Ψ′

i
S+C⟩S+ − ⟨Ψ′

i
S−C⟩S− .  (173)

Equation 172 indicates that neurons exhibiting a strong increase in context selectivity are character-
ized by: (1) strong readout connectivity, before learning, as quantified by  w0,i , and (2) a large value of 

 D
C
i  , averaged over context cues.  D

C
i   is a function of the response gain function,  Ψ′ , evaluated before 

learning; specifically,  D
C
i   measures the difference in the initial gain in response to the two classes of 

stimuli (the first half,  S+ = 1, . . . , Q/2 , and the second half,  S− = Q/2, . . . , Q ). These predictions, which 
were derived for the synaptic drive  ks , also hold, qualitatively, for the activity  ys

  (Figure 7).
We next compute the category direction  dcat ; we focus again on the synaptic drive  ks  rather than 

activity  ys
 . We observe that, before learning, the centers of synaptic drive vectors associated with 

categories  A  and  B  are perfectly identical. In fact,

 

kA
0,i = ⟨µ̃

SsA
i ⟩sA +⟨ν̃

CsA
i ⟩sA√

2

= ⟨µ̃S
i ⟩S+⟨ν̃C

i ⟩C√
2

,
  

(174)

and an identical expression is obtained for  k
B
0,i . The fact that the centers are identical is due to the fact 

that sensory inputs for the two categories are collinear, and perfectly intermingled (Figure 6—figure 

https://doi.org/10.7554/eLife.79908
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supplement 2D). We now consider the synaptic drive changes over learning. Starting from Equation 
120, we have

 

∆kA
i = w0,i

2

[∑
S
⟨cSCsA Ψ′

i
SCsA ⟩sA +

∑
C
⟨cSsA CΨ′

i
SsA C⟩sA

]

= w0,i
2

[∑
S
⟨cSCΨ′

i
SC⟩C +

∑
C
⟨cSCΨ′

i
SC⟩S

]

= w0,iQ⟨cSCΨ′
i
SC⟩S,C.   

(175)

It is easy to show that  ∆kB
i   yields the same result, implying that the centers for synaptic drive vectors 

associated with categories  A  and  B  remain identical over learning (Figure 6—figure supplement 1C, 
magenta triangles). This happens because the synaptic drive vectors associated with categories  A  and 
 B  remain intermingled, and nonlinearly separable, over learning. We conclude that the category axis 
 dcat  (Equation 167b) vanishes, which is in agreement with the observation that category selectivity 
does not change for synaptic drives (Section Detailed analysis of category selectivity).

To compute  dcat , we thus turn to activity  y . We start from Equation 118, and write

 
∆yA

i =
w0,i

2

[∑
S
⟨cSCsA Ψ′

i
SsA CsA Ψ′

i
SCsA ⟩sA +

∑
C

⟨cSsA CΨ′
i
SsA CsA Ψ′

i
SsA C⟩sA

]

  
(176a)

 
∆yB

i =
w0,i

2

[∑
S
⟨cSCsB Ψ′

i
SsB CsB Ψ′

i
SCsB ⟩sB +

∑
C

⟨cSsB CΨ′
i
SsB CsB Ψ′

i
SsB C⟩sB

]
.
  

(176b)

We then expand indices over stimuli and context cues, which yields

 

∆yA
i = w0,i Q

2

[
cA⟨ΨS+C+

i ΨS̄+C+
i ⟩ + cB⟨ΨS−C−

i Ψ
S̄+C−
i ⟩ + cB⟨ΨS+C+

i Ψ
S̄−C+
i ⟩ + cA⟨ΨS−C−

i Ψ
S̄−C−
i ⟩+

cA⟨ΨS+C+
i ΨS+C̄+

i ⟩ + cB⟨ΨS−C−
i Ψ

S−C̄+
i ⟩ + cB⟨ΨS+C+

i Ψ
S+C̄−
i ⟩ + cA⟨ΨS−C−

i Ψ
S−C̄−
i ⟩

]
 

 (177)

and

 

∆yB
i = w0,iQ

2

[
cA⟨ΨS−C+

i ΨS̄+C+
i ⟩ + cB⟨ΨS+C−

i Ψ
S̄+C−
i ⟩+cB⟨ΨS−C+

i Ψ
S̄−C+
i ⟩ + cA⟨ΨS+C−

i Ψ
S̄−C−
i ⟩+

cA⟨ΨS+C−
i ΨS+C̄+

i ⟩ + cB⟨ΨS−C+
i Ψ

S−C̄+
i ⟩ + cB⟨ΨS+C−

i Ψ
S+C̄−
i ⟩ + cA⟨ΨS−C+

i Ψ
S−C̄−
i ⟩

]
.
 

 (178)

To reduce the clutter, we have removed subscripts after brackets  ⟨.⟩ ; those indicate an average taken 
over all the  S  and  C  indices contained within.

As will become clear shortly, the two centers now differ (Figure 6—figure supplement 1D, magenta 
triangles). To simplify those expressions, we again assume that  cB ≃ −cA ; this allows us to write

 

dcat
i = ∆yA

i −∆yB
i

= w0,icA

2

(
Q
2

)2
×[∑

C+

∑
S+

Ψ′
i
S+C+

(∑
S̄+

Ψ′
i
S̄+C+ −

∑
S̄−

Ψ′
i
S̄−C+

)
−

∑
C+

∑
S−

Ψ′
i
S−C+

(∑
S̄+

Ψ′
i
S̄+C+ −

∑
S̄−

Ψ′
i
S̄−C+

)

−
∑
C−

∑
S−

Ψ′
i
S−C−

(∑
S̄+

Ψ′
i
S̄+C− −

∑
S̄−

Ψ′
i
S̄−C−

)
+
∑
C−

∑
S+

Ψ′
i
S+C−

(∑
S̄+

Ψ′
i
S̄+C− −

∑
S̄−

Ψ′
i
S̄−C−

)

+
∑
S+

∑
C+

Ψ′
i
S+C+

(∑
C̄+

Ψ′
i
S+C̄+ −

∑
C̄−

Ψ′
i
S+C̄−

)
−

∑
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∑
C−

Ψ′
i
S+C−

(∑
C̄+

Ψ′
i
S+C̄+ −

∑
C̄−

Ψ′
i
S+C̄−

)

−
∑
S−

∑
C−

Ψ′
i
S−C−

(∑
C̄+

Ψ′
i
S−C̄+ −

∑
C̄−

Ψ′
i
S−C̄−

)
+
∑
S−

∑
C+

Ψ′
i
S−C+

(∑
C̄+

Ψ′
i
S−C̄+ −

∑
C̄−

Ψ′
i
S−C̄−
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(179)

With a little algebra, we can see that

 

dcat
i = w0,icA
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(180)

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  50 of 56

or, equivalently

 

dcat
i = w0,icAQ

2

[⟨(
⟨Ψi

S+C⟩S+ − ⟨Ψi
S−C⟩S−

)2
⟩

C
+
⟨(

⟨Ψi
SC+⟩C+ − ⟨Ψi

SC−⟩C−

)2
⟩

S

]

= w0,icAQ
2

[
⟨(DC

i )2⟩C + ⟨(DS
i )2⟩S

]
  

(181)

where we have defined

 DS
i ≡ ⟨Ψ′

i
SC+⟩C+ − ⟨Ψ′

i
SC−⟩C− .  (182)

Equation 181 indicates that neurons characterized by a strong increase in category selectivity are 
characterized by: (1) strong readout connectivity, before learning, as quantified by  w0,i , and (2) large 
values of  D

C
i   and/or  D

S
i  , averaged, respectively, over context cues and stimuli.

Note that neurons that are characterized by a strong increase in context selectivity (Equation 
172), which have large  w0,i  and  D

C
i   values, are also characterized by a strong increase in category 

selectivity (Equation 181). On the other hand, neurons with large  w0,i  and  D
S
i   values are characterized 

by a strong increase in category selectivity (Equation 181), but not context (Equation 172). Overall, 
strongly selective neurons can thus be classified in two groups: one displaying mixed selectivity to 
category and context, and one displaying pure selectivity to category. By defining the quantity:

 Gi = ⟨|DC
i |⟩C − ⟨|DS

i |⟩S  (183)

we see that the former group is characterized by larger values of  Gi  with respect to the latter. This is 
verified and illustrated in Figure 8B, C.

Software
Circuit simulations
Simulations were implemented with the Python programming language. Gradient- descent learning 
was implemented with the PyTorch package. We used the SGD optimization function, with loss 
MSELoss. On every learning epoch, the batch included all sensory input vectors. Training stopped 
when the loss function dropped below  10−5 . Learning rates were taken to be  η = 0.1  for input connec-
tivity  u , and  η · ηw/ηu  (with values of  ηu  and  ηw  as indicated in Section Tables of parameters) for readout 
connectivity  w .

Table 1. Table of parameters for figures in the main text.

Figure  N   Q  ηw/ηu  Θ1, Ψ  Θ2, Ψ  Θ1,Φ  Θ2,Φ 

Figures 2, 3 and 
5, first and second 
columns 200 20 0.0 1.0 2.0 1.0 0.0

Figures 2, 3 and 5, 
third column 200 20 0.0 1.0 2.0 1.0 2.0

Figure 4A 200 20 0.4 2.0 2.0 varies varies

Figure 4B 200 20 0.4 varies varies 1.0 2.0

Figure 4C 200 20 varies 2.0 2.0 1.0 varies

Figure 4D 200 varies 0.4 2.0 2.0 1.0 varies

Figure 6A–C, first 
and second columns 600 8 (P = 64) 0.0 1.0 0.0 1.0 0.0

Figure 6A–C, third 
column 600 8 (P=64) 0.0 1.0 0.0 1.0 4.0

Figure 7D 600 8 (P = 64) 0.2 2.5 2.0 varies varies

Figure 7E 600 8 (P = 64) varies 2.5 2.0 1.0 varies

Figure 7F 600 varies 0.2 2.5 2.0 1.0 varies

https://doi.org/10.7554/eLife.79908
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Tables of parameters
We summarize below the parameters chosen for the simulations reported in figures and figure supple-
ments. For figures not included in the tables below (Table 1, Table 2) parameters have been detailed 
in figures captions. We have taken everywhere  zA = 0.75 ,  zB = 0.25  (note that activity variables range 
between 0 and 1).

Evaluation of averages
Evaluating the approximate theoretical expressions for activity measures given in Sections Simple 
categorization task and Context- dependent categorization task requires computing a number of 
Gaussian integrals over nonlinear functions. We compute those averages numerically; details are 
provided below.

The simplest average, which only involves one nonlinear function, was denoted by  ⟨F⟩  (Equation 
45). We rewrite Equation 45 in an integral form, yielding

 
⟨F⟩ ≡

ˆ
DaF(a)

  
(184)

where we have used the short- hand notation

 

ˆ
Da ≡

ˆ ∞

−∞
da exp(−a2/2π)√

2π
.
  

(185)

This integral was computed numerically via Hermite–Gaussian quadrature.
Averages involving two nonlinear functions were denoted by  ⟨FF⟩  (Equation 113). We rewrite 

Equation 113 in an integral form, yielding

 
⟨FF⟩ ≡

ˆ
Da
ˆ

Db1

ˆ
Db2F

(
1√
2

(a + b1)
)

F
(

1√
2

(a + b2)
)

=
ˆ

Da
[ˆ

DbF
(

1√
2

(a + b)
)]2

.
 

 (186)

Table 2. Table of parameters for figure supplements.

Figure supplement  N   Q  ηw/ηu  Θ1, Ψ  Θ2,Ψ  Θ1, Φ  Θ2,Φ 

Figure 2—figure supplement 1A 200 varies varies varies varies varies varies

Figure 2—figure supplement 2E 200 20 0.0 1.0 2.0 1.0 0.0

Figure 3—figure supplement 1, first column varies 20 0.0 1.0 0.0 1.0 0.0

Figure 3—figure supplement 1, second column 200 20 varies 1.0 0.0 1.0 0.0

Figure 3—figure supplement 1, third column 200 20 0.0 1.0 varies 1.0 0.0

Figure 3—figure supplement 2, first column varies 20 0.0 1.0 0.0 1.0 2.0

Figure 3—figure supplement 2, second column 200 20 varies 1.0 0.0 1.0 2.0

Figure 3—figure supplement 2, third column 200 20 0.0 1.0 varies 1.0 2.0

Figure 2—figure supplement 4A, B 200 12 0.0 1.0 2.0 1.0 0.0

Figure 2—figure supplement 4C 200 12 0.0 1.0 2.0 1.0 2.0

Figure 2—figure supplement 4D, E, first column 200 12 0.1 2.0 varies 1.0 varies

Figure 2—figure supplement 4D, E, second column 200 12 varies 2.0 2.0 1.0 varies

Figure 2—figure supplement 4D, E, third column 200 varies 0.1 2.0 2.0 1.0 varies

Figure 6—figure supplement 1A, B 600 varies varies varies varies varies varies

Figure 6—figure supplement 2A 600 8 (P = 64) 0.0 1.0 3.0 1.0 0.0

Figure 6—figure supplement 2B 600 8 (P = 64) 0.0 1.0 3.0 1.0 4.0

Figure 6—figure supplement 2C 600 varies varies varies varies varies varies

Figure 7—figure supplement 1A–C 600 varies 0.0 1.0 0.0 1.0 0.0

Figure 7—figure supplement 1D–F 600 varies 0.0 1.0 0.0 1.0 4.0

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  52 of 56

This integral was computed again via Hermite–Gaussian quadrature.

Averages involving four nonlinear functions, such as  ⟨Ψ
′(kq

0,i)Ψ
′(ks

0,i)Ψ
′(kq′

0,i)Ψ
′(ks′

0,i)⟩i  from Equation 
133 (Section Context- dependent task: computing normalized dot products) were computed instead 
via the function nquad from the Python scipy.integrate package. We start by rewriting the argument 
of the average as:

 Ψ′(kq
0,i)Ψ

′(ks
0,i)Ψ

′(kq′
0,i)Ψ

′(ks′
0,i) = Ψ′

(
1√

2
(aSq + bCq )

)
Ψ′

(
1√

2
(aSs + bCs )

)
Ψ′

(
1√

2
(aSq′

+ bCq′
)
)
Ψ′

(
1√

2
(aSs′

+ bCs′
)
)

.  (187)

For each value of the stimulus index  S  and the context cue index  C ,  aS  and  bC  are two independent, 
zero- mean and unit- variance Gaussian variables. If the values of  S  and  C  are different across the four 
trials  q ,  s ,  q′  and  s′ , then all  a  and  b  variables involved in Equation 187 are different, and the average 
reads

 

⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)Ψ

′(kq′
0,i)Ψ

′(ks′
0,i)⟩i =

´
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´
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´
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´
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DbCq′
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2
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Ψ′

(
1√

2
(aSs + bCs )

)
Ψ′

(
1√

2
(aSq′

+ bCq′
)
)
Ψ′

(
1√

2
(aSs′

+ bCs′
)
)

  
(188)

which simplifies into

 
⟨Ψ′(kq

0,i)Ψ
′(ks

0,i)Ψ
′(kq′

0,i)Ψ
′(ks′

0,i)⟩i =
[ˆ

DaSq

ˆ
DbCqΨ

′
(

1√
2

(aSq + bCq )
)]4

= ⟨Ψ′⟩4.
  

(189)

If the stimulus  S  or the context cue  C  are, instead, identical across two o more trials ( q ,  s ,  q′ , and  s′ ), 

then some of the  a  and  b  variables in Equation 187 are shared across nonlinear functions. This gener-
ates correlations, which determine the final value of the average. For example, assume  Sq = Ss , while 
all other  S  and  C  values are different among each other. Then the average reads

 

⟨Ψ′(kq
0,i)Ψ
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0,i)Ψ

′(kq′
0,i)Ψ
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 (190)

which simplifies into

 ⟨Ψ′(kq
0,i)Ψ

′(ks
0,i)Ψ

′(kq′
0,i)Ψ

′(ks′
0,i)⟩i

= ⟨Ψ′Ψ′⟩ ⟨Ψ′⟩2.  (191)

We considered all the possible configurations of  S  and  C  indices that can occur in the context- 
dependent task, and all the resulting correlation patterns. Then, we used analytics to simplify integrals 
when possible (as in the cases described above). We finally used numerics to evaluate the remaining 
integral expressions.

Acknowledgements
FM would like to thank Friedrich Schuessler for useful discussions.

Additional information

Competing interests
Peter Latham: Reviewing editor, eLife. The other authors declare that no competing interests exist.

https://doi.org/10.7554/eLife.79908


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  53 of 56

Funding

Funder Grant reference number Author

Gatsby Charitable 
Foundation

Francesca Mastrogiuseppe
Naoki Hiratani
Peter Latham

Wellcome Trust 110114/Z/15/Z Francesca Mastrogiuseppe 
Peter Latham

The funders had no role in study design, data collection, and interpretation, or the 
decision to submit the work for publication. For the purpose of Open Access, the 
authors have applied a CC BY public copyright license to any Author Accepted 
Manuscript version arising from this submission.

Author contributions
Francesca Mastrogiuseppe, Conceptualization, Software, Formal analysis, Investigation, Method-
ology, Writing – original draft, Writing – review and editing; Naoki Hiratani, Conceptualization, 
Investigation, Writing – original draft, Writing – review and editing; Peter Latham, Conceptual-
ization, Formal analysis, Supervision, Investigation, Writing – original draft, Writing – review and 
editing

Author ORCIDs
Francesca Mastrogiuseppe    http://orcid.org/0000-0002-7682-5178
Naoki Hiratani    http://orcid.org/0000-0002-8568-2033
Peter Latham    http://orcid.org/0000-0001-8713-9328

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79908.sa1
Author response https://doi.org/10.7554/eLife.79908.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. 
Code is available online at https://github.com/fmastrogiuseppe/EvolutionActivity (copy archived at 
swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a, Mastrogiuseppe, 2022).

References
Akrout M, Wilson C, Humphreys P, Lillicrap T, Tweed D. 2019. Deep learning without weight transport. Advances 

in Neural Information Processing Systems. https://proceedings.neurips.cc/paper/2019/file/f387624df552cea2 
f369918c5e1e12bc-Paper.pdf DOI: https://doi.org/10.48550/arXiv.1904.05391

Albright TD. 1984. Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of 
Neurophysiology 52:1106–1130. DOI: https://doi.org/10.1152/jn.1984.52.6.1106, PMID: 6520628

Asaad WF, Rainer G, Miller EK. 1998. Neural activity in the primate prefrontal cortex during associative learning. 
Neuron 21:1399–1407. DOI: https://doi.org/10.1016/s0896-6273(00)80658-3, PMID: 9883732

Babadi B, Sompolinsky H. 2014. Sparseness and expansion in sensory representations. Neuron 83:1213–1226. 
DOI: https://doi.org/10.1016/j.neuron.2014.07.035, PMID: 25155954

Barak O, Rigotti M, Fusi S. 2013. The sparseness of mixed selectivity neurons controls the generalization- 
discrimination trade- off. The Journal of Neuroscience 33:3844–3856. DOI: https://doi.org/10.1523/ 
JNEUROSCI.2753-12.2013, PMID: 23447596

Bernardi S, Benna MK, Rigotti M, Munuera J, Fusi S, Salzman CD. 2020. The geometry of abstraction in the 
hippocampus and prefrontal cortex. Cell 183:954–967.. DOI: https://doi.org/10.1016/j.cell.2020.09.031

Boopathy A, Fiete I. 2022. How to train your wide neural network without backprop: an input- weight alignment 
perspective. ICML. 2178–2205.

Bordelon B, Pehlevan C. 2022. The Influence of Learning Rule on Representation Dynamics in Wide Neural 
Networks. [arXiv]. DOI: https://doi.org/10.48550/arXiv.2210.02157

Brincat SL, Siegel M, von Nicolai C, Miller EK. 2018. Gradual progression from sensory to task- related processing 
in cerebral cortex. PNAS 115:E7202–E7211. DOI: https://doi.org/10.1073/pnas.1717075115, PMID: 29991597

https://doi.org/10.7554/eLife.79908
http://orcid.org/0000-0002-7682-5178
http://orcid.org/0000-0002-8568-2033
http://orcid.org/0000-0001-8713-9328
https://doi.org/10.7554/eLife.79908.sa1
https://doi.org/10.7554/eLife.79908.sa2
https://github.com/fmastrogiuseppe/EvolutionActivity
https://archive.softwareheritage.org/swh:1:dir:bfb0d590c10a14465a5007746fa1d2fa78698e43;origin=https://github.com/fmastrogiuseppe/EvolutionActivity;visit=swh:1:snp:6ce7a15b74d24a2090715d2b9213091e3dc7e434;anchor=swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a
https://proceedings.neurips.cc/paper/2019/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf
https://doi.org/10.48550/arXiv.1904.05391
https://doi.org/10.1152/jn.1984.52.6.1106
http://www.ncbi.nlm.nih.gov/pubmed/6520628
https://doi.org/10.1016/s0896-6273(00)80658-3
http://www.ncbi.nlm.nih.gov/pubmed/9883732
https://doi.org/10.1016/j.neuron.2014.07.035
http://www.ncbi.nlm.nih.gov/pubmed/25155954
https://doi.org/10.1523/JNEUROSCI.2753-12.2013
https://doi.org/10.1523/JNEUROSCI.2753-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23447596
https://doi.org/10.1016/j.cell.2020.09.031
https://doi.org/10.48550/arXiv.2210.02157
https://doi.org/10.1073/pnas.1717075115
http://www.ncbi.nlm.nih.gov/pubmed/29991597


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  54 of 56

Canatar A, Bordelon B, Pehlevan C. 2021. Spectral bias and task- model alignment explain generalization in 
kernel regression and infinitely wide neural networks. Nature Communications 12:2914. DOI: https://doi.org/ 
10.1038/s41467-021-23103-1, PMID: 34006842

Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang X- J. 2017. Computing by robust transience: how 
the fronto- parietal network performs sequential, category- based decisions. Neuron 93:1504–1517.. DOI: 
https://doi.org/10.1016/j.neuron.2017.03.002, PMID: 28334612

Chizat L, Oyallon E, Bach F. 2019. On lazy training in differentiable programming. Advances in Neural 
Information Processing Systems. .

Cromer JA, Roy JE, Miller EK. 2010. Representation of multiple, independent categories in the primate 
prefrontal cortex. Neuron 66:796–807. DOI: https://doi.org/10.1016/j.neuron.2010.05.005, PMID: 20547135

DeAngelis GC, Uka T. 2003. Coding of horizontal disparity and velocity by MT neurons in the alert macaque. 
Journal of Neurophysiology 89:1094–1111. DOI: https://doi.org/10.1152/jn.00717.2002, PMID: 12574483

Dubreuil A, Valente A, Beiran M, Mastrogiuseppe F, Ostojic S. 2022. The role of population structure in 
computations through neural dynamics. Nature Neuroscience 25:783–794. DOI: https://doi.org/10.1038/ 
s41593-022-01088-4, PMID: 35668174

Engel TA, Chaisangmongkon W, Freedman DJ, Wang X- J. 2015. Choice- correlated activity fluctuations underlie 
learning of neuronal category representation. Nature Communications 6:6454. DOI: https://doi.org/10.1038/ 
ncomms7454, PMID: 25759251

Fanini A, Assad JA. 2009. Direction selectivity of neurons in the macaque lateral intraparietal area. Journal of 
Neurophysiology 101:289–305. DOI: https://doi.org/10.1152/jn.00400.2007, PMID: 18987126

Fitzgerald JK, Freedman DJ, Assad JA. 2011. Generalized associative representations in parietal cortex. Nature 
Neuroscience 14:1075–1079. DOI: https://doi.org/10.1038/nn.2878, PMID: 21765425

Fitzgerald JK, Freedman DJ, Fanini A, Bennur S, Gold JI, Assad JA. 2013. Biased associative representations in 
parietal cortex. Neuron 77:180–191. DOI: https://doi.org/10.1016/j.neuron.2012.11.014, PMID: 23312525

Flesch T, Juechems K, Dumbalska T, Saxe A, Summerfield C. 2022. Orthogonal representations for robust 
context- dependent task performance in brains and neural networks. Neuron 110:1258–1270. DOI: https://doi. 
org/10.1016/j.neuron.2022.01.005, PMID: 35085492

Freedman D J, Riesenhuber M, Poggio T, Miller EK. 2001. Categorical representation of visual stimuli in the 
primate prefrontal cortex. Science 291:312–316. DOI: https://doi.org/10.1126/science.291.5502.312, PMID: 
11209083

Freedman DJ, Assad JA. 2006. Experience- dependent representation of visual categories in parietal cortex. 
Nature 443:85–88. DOI: https://doi.org/10.1038/nature05078, PMID: 16936716

Freedman DJ, Miller EK. 2008. Neural mechanisms of visual categorization: insights from neurophysiology. 
Neuroscience and Biobehavioral Reviews 32:311–329. DOI: https://doi.org/10.1016/j.neubiorev.2007.07.011, 
PMID: 17950874

Ganguli S, Bisley JW, Roitman JD, Shadlen MN, Goldberg ME, Miller KD. 2008. One- Dimensional dynamics of 
attention and decision making in lip. Neuron 58:15–25. DOI: https://doi.org/10.1016/j.neuron.2008.01.038, 
PMID: 18400159

Geiger M, Spigler S, Jacot A, Wyart M. 2020. Disentangling feature and lazy training in deep neural networks. 
Journal of Statistical Mechanics 2020:113301. DOI: https://doi.org/10.1088/1742-5468/abc4de

Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013. Cortico- cortical projections in mouse visual cortex are 
functionally target specific. Nature Neuroscience 16:219–226. DOI: https://doi.org/10.1038/nn.3300, PMID: 
23292681

Goltstein PM, Reinert S, Bonhoeffer T, Hübener M. 2021. Mouse visual cortex areas represent perceptual and 
semantic features of learned visual categories. Nature Neuroscience 24:1441–1451. DOI: https://doi.org/10. 
1038/s41593-021-00914-5, PMID: 34545249

Gschwend O, Yang T, van de Lisdonk D, Zhang X, Sharma R, Li B. 2021. Prefrontal Top- down Projections Control 
Context- Dependent Strategy Selection. [bioRxiv]. DOI: https://doi.org/10.1101/2021.12.14.472559

Hirokawa J, Vaughan A, Masset P, Ott T, Kepecs A. 2019. Frontal cortex neuron types categorically encode 
single decision variables. Nature 576:446–451. DOI: https://doi.org/10.1038/s41586-019-1816-9, PMID: 
31801999

Hu W, Xiao L, Adlam B, Pennington J. 2020. The surprising simplicity of the early- time learning dynamics of 
neural networks. Advances in Neural Information Processing Systems. 17116–17128.

Huang J, Yau HT. 2020. Dynamics of deep neural networks and neural tangent hierarchy. ICML. 4542–4551.
Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual 

cortex. The Journal of Physiology 160:106–154. DOI: https://doi.org/10.1113/jphysiol.1962.sp006837, PMID: 
14449617

Hui L, Belkin M. 2021. Evaluation of Neural Architectures Trained with Square Loss vs Cross- Entropy in 
Classification Tasks. ICLR.

Jacot A, Gabriel F, Hongler C. 2018. Neural tangent kernel: convergence and generalization in neural networks. 
Advances in Neural Information Processing Systems. 8571–8580.

Kell AJE, Yamins DLK, Shook EN, Norman- Haignere SV, McDermott JH. 2018. A task- optimized neural network 
replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. 
Neuron 98:630–644.. DOI: https://doi.org/10.1016/j.neuron.2018.03.044, PMID: 29681533

Latimer KW, Freedman DJ. 2021. Low- Dimensional Encoding of Decisions in Parietal Cortex Reflects Long- Term 
Training History. [bioRxiv]. DOI: https://doi.org/10.1101/2021.10.07.463576

https://doi.org/10.7554/eLife.79908
https://doi.org/10.1038/s41467-021-23103-1
https://doi.org/10.1038/s41467-021-23103-1
http://www.ncbi.nlm.nih.gov/pubmed/34006842
https://doi.org/10.1016/j.neuron.2017.03.002
http://www.ncbi.nlm.nih.gov/pubmed/28334612
https://doi.org/10.1016/j.neuron.2010.05.005
http://www.ncbi.nlm.nih.gov/pubmed/20547135
https://doi.org/10.1152/jn.00717.2002
http://www.ncbi.nlm.nih.gov/pubmed/12574483
https://doi.org/10.1038/s41593-022-01088-4
https://doi.org/10.1038/s41593-022-01088-4
http://www.ncbi.nlm.nih.gov/pubmed/35668174
https://doi.org/10.1038/ncomms7454
https://doi.org/10.1038/ncomms7454
http://www.ncbi.nlm.nih.gov/pubmed/25759251
https://doi.org/10.1152/jn.00400.2007
http://www.ncbi.nlm.nih.gov/pubmed/18987126
https://doi.org/10.1038/nn.2878
http://www.ncbi.nlm.nih.gov/pubmed/21765425
https://doi.org/10.1016/j.neuron.2012.11.014
http://www.ncbi.nlm.nih.gov/pubmed/23312525
https://doi.org/10.1016/j.neuron.2022.01.005
https://doi.org/10.1016/j.neuron.2022.01.005
http://www.ncbi.nlm.nih.gov/pubmed/35085492
https://doi.org/10.1126/science.291.5502.312
http://www.ncbi.nlm.nih.gov/pubmed/11209083
https://doi.org/10.1038/nature05078
http://www.ncbi.nlm.nih.gov/pubmed/16936716
https://doi.org/10.1016/j.neubiorev.2007.07.011
http://www.ncbi.nlm.nih.gov/pubmed/17950874
https://doi.org/10.1016/j.neuron.2008.01.038
http://www.ncbi.nlm.nih.gov/pubmed/18400159
https://doi.org/10.1088/1742-5468/abc4de
https://doi.org/10.1038/nn.3300
http://www.ncbi.nlm.nih.gov/pubmed/23292681
https://doi.org/10.1038/s41593-021-00914-5
https://doi.org/10.1038/s41593-021-00914-5
http://www.ncbi.nlm.nih.gov/pubmed/34545249
https://doi.org/10.1101/2021.12.14.472559
https://doi.org/10.1038/s41586-019-1816-9
http://www.ncbi.nlm.nih.gov/pubmed/31801999
https://doi.org/10.1113/jphysiol.1962.sp006837
http://www.ncbi.nlm.nih.gov/pubmed/14449617
https://doi.org/10.1016/j.neuron.2018.03.044
http://www.ncbi.nlm.nih.gov/pubmed/29681533
https://doi.org/10.1101/2021.10.07.463576


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  55 of 56

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–444. DOI: https://doi.org/10.1038/ 
nature14539, PMID: 26017442

Lee J, Xiao L, Schoenholz S, Bahri Y, Novak R, Sohl- Dickstein J, Pennington J. 2019. Wide neural networks of any 
depth evolve as linear models under gradient descent. Advances in Neural Information Processing Systems. 
8572–8583.

Li Q, Sompolinsky H. 2021. Statistical mechanics of deep linear neural networks: the backpropagating kernel 
renormalization. Physical Review X 11:031059. DOI: https://doi.org/10.1103/PhysRevX.11.031059

Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. 2016. Random synaptic feedback weights support error 
backpropagation for deep learning. Nature Communications 7:13276. DOI: https://doi.org/10.1038/ 
ncomms13276, PMID: 27824044

Litwin- Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF. 2017. Optimal degrees of synaptic connectivity. 
Neuron 93:1153–1164.. DOI: https://doi.org/10.1016/j.neuron.2017.01.030, PMID: 28215558

Liu C, Zhu L, Belkin M. 2020. On the linearity of large non- linear models: when and why the tangent kernel is 
constant. Advances in Neural Information Processing Systems. 15954–15964.

Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context- Dependent computation by recurrent dynamics in 
prefrontal cortex. Nature 503:78–84. DOI: https://doi.org/10.1038/nature12742, PMID: 24201281

Mastrogiuseppe F, Ostojic S. 2019. A geometrical analysis of global stability in trained feedback networks. 
Neural Computation 31:1139–1182. DOI: https://doi.org/10.1162/neco_a_01187, PMID: 30979353

Mastrogiuseppe F. 2022. EvolutionActivity. swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a. 
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:bfb0d590c10a14465a5007746fa1d2fa 
78698e43;origin=https://github.com/fmastrogiuseppe/EvolutionActivity;visit=swh:1:snp:6ce7a15b74d24a20 
90715d2b9213091e3dc7e434;anchor=swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a

McKenzie S, Frank AJ, Kinsky NR, Porter B, Rivière PD, Eichenbaum H. 2014. Hippocampal representation of 
related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 
83:202–215. DOI: https://doi.org/10.1016/j.neuron.2014.05.019, PMID: 24910078

Mei S, Montanari A, Nguyen PM. 2018. A mean field view of the landscape of two- layer neural networks. PNAS 
115:E7665–E7671. DOI: https://doi.org/10.1073/pnas.1806579115, PMID: 30054315

Messinger A, Squire LR, Zola SM, Albright TD. 2001. Neuronal representations of stimulus associations develop 
in the temporal lobe during learning. PNAS 98:12239–12244. DOI: https://doi.org/10.1073/pnas.211431098, 
PMID: 11572946

Min B, Bliss DP, Sarma A, Freedman DJ, Wang XJ. 2020. A Neural Circuit Mechanism of Categorical Perception: 
Top- down Signaling in the Primate Cortex. [bioRxiv]. DOI: https://doi.org/10.1101/2020.06.15.151506

Moroshko E, Woodworth B, Gunasekar S, Lee J, Srebro N, Soudry D. 2020. Implicit bias in deep linear 
classification: initialization scale vs training accuracy. Advances in Neural Information Processing Systems. 
22182–22193.

Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. Current Opinion in Neurobiology 14:481–487. 
DOI: https://doi.org/10.1016/j.conb.2004.07.007, PMID: 15321069

Pannunzi M, Gigante G, Mattia M, Deco G, Fusi S, Del Giudice P. 2012. Learning selective top- down control 
enhances performance in a visual categorization task. Journal of Neurophysiology 108:3124–3137. DOI: 
https://doi.org/10.1152/jn.00208.2012, PMID: 22972954

Papyan V, Han XY, Donoho DL. 2020. Prevalence of neural collapse during the terminal phase of deep learning 
training. PNAS 117:24652–24663. DOI: https://doi.org/10.1073/pnas.2015509117, PMID: 32958680

Payeur A, Guerguiev J, Zenke F, Richards BA, Naud R. 2021. Burst- Dependent synaptic plasticity can coordinate 
learning in hierarchical circuits. Nature Neuroscience 24:1010–1019. DOI: https://doi.org/10.1038/s41593-021- 
00857-x, PMID: 33986551

Pogodin R, Latham P. 2020. Kernelized information bottleneck leads to biologically plausible 3- factor hebbian 
learning in deep networks. Advances in Neural Information Processing Systems. 7296–7307.

Reinert S, Hübener M, Bonhoeffer T, Goltstein PM. 2021. Mouse prefrontal cortex represents learned rules for 
categorization. Nature 593:411–417. DOI: https://doi.org/10.1038/s41586-021-03452-z, PMID: 33883745

Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R, Christensen A, Clopath C, Costa RP, de Berker A, 
Ganguli S, Gillon CJ, Hafner D, Kepecs A, Kriegeskorte N, Latham P, Lindsay GW, Miller KD, Naud R, Pack CC, 
Poirazi P, et al. 2019. A deep learning framework for neuroscience. Nature Neuroscience 22:1761–1770. DOI: 
https://doi.org/10.1038/s41593-019-0520-2, PMID: 31659335

Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, Fusi S. 2013. The importance of mixed selectivity 
in complex cognitive tasks. Nature 497:585–590. DOI: https://doi.org/10.1038/nature12160, PMID: 23685452

Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. 
Psychological Review 65:386–408. DOI: https://doi.org/10.1037/h0042519

Roy JE, Riesenhuber M, Poggio T, Miller EK. 2010. Prefrontal cortex activity during flexible categorization. The 
Journal of Neuroscience 30:8519–8528. DOI: https://doi.org/10.1523/JNEUROSCI.4837-09.2010, PMID: 
20573899

Sacramento J, Ponte Costa R, Bengio Y, Senn W. 2018. Dendritic cortical microcircuits approximate the 
backpropagation algorithm. Advances in Neural Information Processing Systems. 8721–8732.

Saxe AM, McClelland JL, Ganguli S. 2019. A mathematical theory of semantic development in deep neural 
networks. PNAS 116:11537–11546. DOI: https://doi.org/10.1073/pnas.1820226116, PMID: 31101713

Schuessler F, Mastrogiuseppe F, Dubreuil A, Ostojic S, Barak O. 2020. The interplay between randomness and 
structure during learning in rnns. Advances in Neural Information Processing Systems. 13352–13362.

https://doi.org/10.7554/eLife.79908
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1103/PhysRevX.11.031059
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
http://www.ncbi.nlm.nih.gov/pubmed/27824044
https://doi.org/10.1016/j.neuron.2017.01.030
http://www.ncbi.nlm.nih.gov/pubmed/28215558
https://doi.org/10.1038/nature12742
http://www.ncbi.nlm.nih.gov/pubmed/24201281
https://doi.org/10.1162/neco_a_01187
http://www.ncbi.nlm.nih.gov/pubmed/30979353
https://archive.softwareheritage.org/swh:1:dir:bfb0d590c10a14465a5007746fa1d2fa78698e43;origin=https://github.com/fmastrogiuseppe/EvolutionActivity;visit=swh:1:snp:6ce7a15b74d24a2090715d2b9213091e3dc7e434;anchor=swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a
https://archive.softwareheritage.org/swh:1:dir:bfb0d590c10a14465a5007746fa1d2fa78698e43;origin=https://github.com/fmastrogiuseppe/EvolutionActivity;visit=swh:1:snp:6ce7a15b74d24a2090715d2b9213091e3dc7e434;anchor=swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a
https://archive.softwareheritage.org/swh:1:dir:bfb0d590c10a14465a5007746fa1d2fa78698e43;origin=https://github.com/fmastrogiuseppe/EvolutionActivity;visit=swh:1:snp:6ce7a15b74d24a2090715d2b9213091e3dc7e434;anchor=swh:1:rev:a6b7e083ac6d306599b5c29005dc6aa499e2209a
https://doi.org/10.1016/j.neuron.2014.05.019
http://www.ncbi.nlm.nih.gov/pubmed/24910078
https://doi.org/10.1073/pnas.1806579115
http://www.ncbi.nlm.nih.gov/pubmed/30054315
https://doi.org/10.1073/pnas.211431098
http://www.ncbi.nlm.nih.gov/pubmed/11572946
https://doi.org/10.1101/2020.06.15.151506
https://doi.org/10.1016/j.conb.2004.07.007
http://www.ncbi.nlm.nih.gov/pubmed/15321069
https://doi.org/10.1152/jn.00208.2012
http://www.ncbi.nlm.nih.gov/pubmed/22972954
https://doi.org/10.1073/pnas.2015509117
http://www.ncbi.nlm.nih.gov/pubmed/32958680
https://doi.org/10.1038/s41593-021-00857-x
https://doi.org/10.1038/s41593-021-00857-x
http://www.ncbi.nlm.nih.gov/pubmed/33986551
https://doi.org/10.1038/s41586-021-03452-z
http://www.ncbi.nlm.nih.gov/pubmed/33883745
https://doi.org/10.1038/s41593-019-0520-2
http://www.ncbi.nlm.nih.gov/pubmed/31659335
https://doi.org/10.1038/nature12160
http://www.ncbi.nlm.nih.gov/pubmed/23685452
https://doi.org/10.1037/h0042519
https://doi.org/10.1523/JNEUROSCI.4837-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20573899
https://doi.org/10.1073/pnas.1820226116
http://www.ncbi.nlm.nih.gov/pubmed/31101713


 Research article Neuroscience

Mastrogiuseppe et al. eLife 2023;12:e79908. DOI: https:// doi. org/ 10. 7554/ eLife. 79908  56 of 56

Song G, Xu R, Lafferty. J. 2021. Convergence and alignment of gradient descent with random backpropagation 
weights. Advances in Neural Information Processing Systems. 13352–13362.

Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, 
Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora- Lopez C, O’Callaghan J, Park J, 
Putzeys J, et al. 2021. Neuropixels 2.0: a miniaturized high- density probe for stable, long- term brain 
recordings. Science 372:eabf4588. DOI: https://doi.org/10.1126/science.abf4588, PMID: 33859006

Stoet G, Snyder LH. 2004. Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron 
42:1003–1012. DOI: https://doi.org/10.1016/j.neuron.2004.06.003, PMID: 15207244

Summerfield C, Luyckx F, Sheahan H. 2020. Structure learning and the posterior parietal cortex. Progress in 
Neurobiology 184:101717. DOI: https://doi.org/10.1016/j.pneurobio.2019.101717, PMID: 31669186

Susman L, Mastrogiuseppe F, Brenner N, Barak O. 2021. Quality of internal representation shapes learning 
performance in feedback neural networks. Physical Review Research 3:013176. DOI: https://doi.org/10.1103/ 
PhysRevResearch.3.013176

Villagrasa F, Baladron J, Vitay J, Schroll H, Antzoulatos EG, Miller EK, Hamker FH. 2018. On the role of cortex- 
basal ganglia interactions for category learning: a neurocomputational approach. The Journal of Neuroscience 
38:9551–9562. DOI: https://doi.org/10.1523/JNEUROSCI.0874-18.2018, PMID: 30228231

Wallis JD, Anderson KC, Miller EK. 2001. Single neurons in prefrontal cortex encode Abstract rules. Nature 
411:953–956. DOI: https://doi.org/10.1038/35082081, PMID: 11418860

White IM, Wise SP. 1999. Rule- dependent neuronal activity in the prefrontal cortex. Experimental Brain Research 
126:315–335. DOI: https://doi.org/10.1007/s002210050740, PMID: 10382618

Whittington JCR, Bogacz R. 2017. An approximation of the error backpropagation algorithm in a predictive 
coding network with local Hebbian synaptic plasticity. Neural Computation 29:1229–1262. DOI: https://doi. 
org/10.1162/NECO_a_00949, PMID: 28333583

Whittington JCR, Bogacz R. 2019. Theories of error back- propagation in the brain. Trends in Cognitive Sciences 
23:235–250. DOI: https://doi.org/10.1016/j.tics.2018.12.005, PMID: 30704969

Yamins DLK, DiCarlo JJ. 2016. Using goal- driven deep learning models to understand sensory cortex. Nature 
Neuroscience 19:356–365. DOI: https://doi.org/10.1038/nn.4244, PMID: 26906502

Yang G, Hu E. 2021. Feature Learning in Infinite- Width Neural Networks. [arXiv]. https:// arxiv. org/ abs/ 2011. 
14522

Yang W, Tipparaju SL, Chen G, Li N. 2022. Thalamus- driven functional populations in frontal cortex support 
decision- making. Nature Neuroscience 25:1339–1352. DOI: https://doi.org/10.1038/s41593-022-01171-w, 
PMID: 36171427

Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C, Wang A- C, Jennings JH, Adhikari A, 
Halpern CH, Witten IB, Barth AL, Luo L, McNab JA, Deisseroth K. 2016. Wiring and molecular features of 
prefrontal ensembles representing distinct experiences. Cell 165:1776–1788. DOI: https://doi.org/10.1016/j. 
cell.2016.05.010, PMID: 27238022

https://doi.org/10.7554/eLife.79908
https://doi.org/10.1126/science.abf4588
http://www.ncbi.nlm.nih.gov/pubmed/33859006
https://doi.org/10.1016/j.neuron.2004.06.003
http://www.ncbi.nlm.nih.gov/pubmed/15207244
https://doi.org/10.1016/j.pneurobio.2019.101717
http://www.ncbi.nlm.nih.gov/pubmed/31669186
https://doi.org/10.1103/PhysRevResearch.3.013176
https://doi.org/10.1103/PhysRevResearch.3.013176
https://doi.org/10.1523/JNEUROSCI.0874-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30228231
https://doi.org/10.1038/35082081
http://www.ncbi.nlm.nih.gov/pubmed/11418860
https://doi.org/10.1007/s002210050740
http://www.ncbi.nlm.nih.gov/pubmed/10382618
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1162/NECO_a_00949
http://www.ncbi.nlm.nih.gov/pubmed/28333583
https://doi.org/10.1016/j.tics.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30704969
https://doi.org/10.1038/nn.4244
http://www.ncbi.nlm.nih.gov/pubmed/26906502
https://doi.org/10.1038/s41593-022-01171-w
http://www.ncbi.nlm.nih.gov/pubmed/36171427
https://doi.org/10.1016/j.cell.2016.05.010
https://doi.org/10.1016/j.cell.2016.05.010
http://www.ncbi.nlm.nih.gov/pubmed/27238022

	Evolution of neural activity in circuits bridging sensory and abstract knowledge
	Editor's evaluation
	Introduction
	Results
	Circuit model
	Evolution of activity during the simple categorization task
	Analysis of the simple categorization task
	Correlations reflect circuit and task properties
	Patterns of selectivity are shaped by initial connectivity
	Evolution of activity during the context-dependent categorization task
	Analysis of the context-dependent categorization task
	Patterns of pure and mixed selectivity are shaped by initial activity

	Discussion
	Previous models for categorization
	Gradient-descent learning in the brain
	Beyond simplified models
	Bridging connectivity and selectivity

	Materials and methods
	Overview
	Model
	Circuit
	Gradient-descent plasticity

	Evolution of connectivity and activity in large circuits
	Evolution of connectivity
	Evolution of activity
	A low-order Taylor expansion is self-consistent in large circuits
	Evolution of activity in finite-size networks

	Simple categorization task
	Simple task: task definition
	Simple task: computing activity
	Simple task: category selectivity
	Category clustering

	Simple task: category correlation
	Alternative definition

	Simple task: computing normalized dot products
	Asymmetry in category response
	Characterizing variability
	Simple categorization task with structured inputs and heterogeneity

	Context-dependent categorization task
	Context-dependent task: task definition
	Context-dependent task: computing activity
	Context-dependent task: category and context selectivity
	Context-dependent task: category and context correlation
	Context-dependent task: computing normalized dot products
	Detailed analysis of context selectivity
	Computing normalized dot products
	Extracting intuition

	Detailed analysis of category selectivity
	Analysis of patterns of context and category selectivity

	Software
	Circuit simulations
	Tables of parameters
	Evaluation of averages


	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


