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To survive, animals must accurately estimate the state of the 
world. This estimation problem is plagued by uncertainty: 
not only is information often extremely limited (for example, 

because it is dark) or ambiguous (for example, a rustle in the bushes 
could be the wind, or it could be a predator), but sensory recep-
tors, and indeed all neural circuits, are noisy. Historically, models 
of neural computation ignored this uncertainty, and relied instead 
on the idea that the nervous system estimates values of quantities in 
the world, but does not include error bars1. However, this does not 
seem to be what animals do—not only does ignoring uncertainty 
lead to suboptimal decisions, it is inconsistent with a large body of 
experimental work2,3. Thus, the current view is that, in many if not 
most cases, animals keep track of uncertainty, and use it to guide 
their decisions3.

Accurately estimating the state of the world is just one problem 
faced by animals. They also need to learn, and, in particular, they 
need to leverage their past experience. It is believed that learning 
primarily involves changing synaptic weights. But estimating the 
correct weights, like estimating the state of the world, is plagued by 
uncertainty: not only is the information available to synapses often 
extremely limited (in many cases just presynaptic and postsynap-
tic activity), but that information is highly unreliable. Historically, 
models of synaptic plasticity ignored this uncertainty, and assumed 
that synapses do not include error bars when they estimate their 
weights. However, uncertainty is important for optimal learning—
just as it is important for optimal inference of the state of the world.

Motivated by these observations, we propose two hypotheses. 
The first, Bayesian plasticity (so named because it is derived using 
Bayes’ rule), states that during learning, synapses do indeed take 
uncertainty into account. Under this hypothesis, synapses do not 
just estimate what their weight should be, they also include error 
bars. This allows synapses to adjust their learning rates on the 
fly: when uncertainty is high, learning rates are turned up; when 
uncertainty is low, learning rates are turned down. We show that 
these adjustments allow synapses to learn faster, so there is likely 
to be considerable evolutionary pressure for such a mechanism. 
And indeed, the same principle has recently been shown to recover 

state-of-the-art adaptive optimization algorithms for artificial neu-
ral networks4.

Bayesian plasticity is a hypothesis about what synapses com-
pute. It does not, however, tell synapses how to set their weights; 
for that, a second hypothesis is needed. Here we propose that 
weights are sampled from the probability distribution describing 
the synapse’s degree of uncertainty. Under this hypothesis, which 
we refer to as synaptic sampling, trial-to-trial variability provides 
a readout of uncertainty: the larger the trial-to-trial variability in 
synaptic strength, the larger the uncertainty. Synaptic sampling is 
motivated by the observation that the uncertainty associated with 
a particular computation should depend on the uncertainty in the 
weights. Thus, to make optimal decisions, the brain needs to know 
something about the uncertainty; one way for synapses to commu-
nicate that is through variability in the postsynaptic potential (PSP) 
amplitude (see Supplementary Note 5 for an extended discussion).

Combined, these two hypotheses make several strong experi-
mental predictions. As discussed below, one is consistent with 
reanalysis of existing experimental data; the others, which are fea-
sible in the not-so-distant future, could falsify one or both hypoth-
eses. We begin by analyzing the first hypothesis that synapses keep 
track of their uncertainty (Bayesian plasticity). Following this, we 
discuss our second hypothesis that synapses sample from the result-
ing distribution (synaptic sampling).

Results
Under Bayesian plasticity, each synapse computes its mean and vari-
ance, and updates both based on the pattern of presynaptic spikes. 
Analogous to classical learning rules, the update rule for the mean 
pushes it in a direction that reduces a cost function. But in contrast 
to classical learning rules, the amount the mean changes depends 
on the uncertainty: the higher the uncertainty, as measured by the 
variance, the larger the change in the mean. The variance thus sets 
the learning rate (Fig. 1). In essence, there is a rule for computing 
the learning rate of each synapse.

To illustrate these ideas, we considered a model of synaptic  
integration in which PSPs combine linearly, as given by equation (1):
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VðtÞ ¼
X

i
wiðtÞxiðtÞ þ ξVðtÞ ð1Þ

where V(t) is the membrane potential, xi(t) is the synaptic input 
from neuron i, wi(t) is the corresponding PSP amplitude and ξV(t) is 
the membrane potential noise. For simplicity, we used discrete time, 
so xi(t) is either 1 (when there is a spike at time t) or 0 (when there is 
no spike), and we took the time step to be 10 ms, on the order of the 
membrane time constant5.

We assumed that the goal of the neuron is to set its weights, wi, so 
that it achieves a ‘target’ membrane potential (denoted Vtar), that is, 
the membrane potential that minimizes some cost to the animal. In 
this setting, the weights are found using a neuron-specific feedback 
signal, denoted f. Critically, this feedback signal contains informa-
tion about the target weights through its dependence on a true error 
signal, δ, that is the difference between the target and actual mem-
brane potential, given by equation (2),

δ  V tar � V: ð2Þ

Our focus is on how to use the feedback signal most efficiently, not 
on where it comes from, which is an active area of research6–10. Thus, 
in most of our analyses, we simply assumed that the neuron receives 
a feedback signal, and ask how to optimally update the weights via 
Bayesian inference.

We considered four learning scenarios. In the first, we simply 
added noise, denoted ξδ, to δ, resulting in the error signal flin = δ + ξδ 
(the subscript ‘lin’ indicates that the average feedback is linear in δ). 
The second scenario corresponds to cerebellar learning, in which 
a Purkinje cell receives a complex spike if its output is too high, 
thus triggering long-term depression11. To mimic the all-or-nothing 
nature of a complex spike12, we used a cerebellar-like feedback sig-
nal: fcb = Θ(δ + ξδ − θ) where Θ is the Heaviside step function. For 
this feedback signal, fcb is likely to be 1 if δ is above a threshold, θ, 
and likely to be 0 if it is below threshold. The third scenario cor-
responds to reinforcement learning, in which the feedback repre-
sents the reward. The reward provides the magnitude of the error 

signal, but not its sign, so the feedback signal is f rl ¼ � δþ ξδj j
I

. In 
the fourth scenario, we moved beyond analysis of single neurons, 
and considered learning the output weights of a recurrent neural 
network. In this scenario, the error signal is δ, without added noise.

The main idea behind Bayesian plasticity is most easily illustrated 
in the simplest possible setting, linear feedback, given by flin = δ + ξδ. 
In that case, there is a well-known learning rule, the delta rule13,14, 
given by equation (3):

Δwi ¼ ηxif lin ð3Þ

This is most easily recognized as the delta rule in the absence of 
noise, so that flin = δ. The change in the weight is the product of a 
learning rate, η; a presynaptic term, xi; and a postsynaptic term, flin. 
Importantly, η is the same for all synapses, so all synapses whose 
presynaptic cells are active (that is, for which xi = 1) change by the 
same amount (the red arrow labeled ‘delta rule’ in Fig. 1).

In the absence of any other information, the delta rule is per-
fectly sensible. However, suppose, based on previous information, 
that synapse 1 is relatively certain about its target weight, whereas 
synapse 2 is uncertain (error bars in Fig. 1). In that case, new infor-
mation should have a larger effect on synapse 2 than synapse 1, so 
synapse 2 should update the estimate of its weight more than syn-
apse 1 (Fig. 1).

Implementing this scheme leads to several features that are not 
present in classical learning rules. First, the variance needs to be 
inferred; second, the change in the weight must depend on the 
inferred variance; and third, because of uncertainty, the ‘weight’ is in 
fact the inferred mean weight. In Supplementary Note 1, we derived 
approximate learning rules that take these features into account (see 
‘Learning rules’ for the exact rules). Using μi and σ2i

I
 to denote the 

inferred mean and variance of the distribution over weights, those 
learning rules are given by equations (4a) and (4b):

Δμi 
σ2i
σ2δ

xi f lin � 1
τ

μi � μprior

� �
ð4aÞ

Δσ2i  � σ4i
σ2δ

x2i � 2
τ

σ2i � σ2prior

� �
ð4bÞ

where σ2δ
I

 is the variance of flin, and τ, μprior and σ2prior
I

 are fixed param-
eters (described shortly). Note that σi corresponds to the length of 
the error bars in Fig. 1.

The update rule for the mean weight (equation (4a)) is similar to 
the delta rule (equation (3)). There are, however, two important dif-
ferences: First, the fixed learning rate, η, that appears in equation (3) 
has been replaced by a variable learning rate, σ2i =σ2δ

I
, which is pro-

portional to the synapse’s uncertainty, as measured by σ2i
I

. Thus, the 
more uncertain a synapse is about its target weight, the larger the 
change in its mean weight when new information arrives—exactly 
what we expect given Fig. 1. Moreover, as the feedback signal gets 
noisier (as measured by the variance of flin), and thus less informa-
tive, the learning rate falls. Second, in the absence of information 
(xi = 0, meaning no spikes), the inferred mean weight, μi, moves 
toward the prior, μprior. That is because we are considering the real-
istic case in which the target weights drift randomly over time due 
to changes in the statistics of the world and/or surrounding circuits. 
(See “Target weights” for a detailed discussion.)

Unlike the update rule for the mean, the update rule for the 
uncertainty, σ2i

I
 (equation (4b)), does not have a counterpart in 

classical learning rules. It does, however, have a natural interpreta-
tion. The first term in equation (4b) reduces uncertainty (note the 
negative sign) whenever the presynaptic cell is active (xi = 1), that is, 
whenever the synapse receives information. The second term has 
the opposite effect: it continually increases uncertainty (up to the 
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Fig. 1 | The delta rule is suboptimal. The error bars denote uncertainty 
(measured by the standard deviation around the mean) in estimates of 
target weights for two synapses, wtar,1 and wtar,2. The first is reasonably 
certain, while the second is less so. The red arrows denote possible 
changes in response to a negative feedback signal. The arrow labeled ‘delta 
rule’ represents an equal decrease in the first and second target weights. 
In contrast, the arrow labeled ‘optimal’ takes uncertainty into account, so 
there is a larger change in the second, more uncertain, target weight. a.u., 
arbitrary units.
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prior uncertainty, σ2prior
I

), independent of presynaptic spikes. That 
term arises because random drift slowly reduces knowledge about 
the target weights.

The learning rules given in equation (4) are approximate; their 
form was optimized for ease of interpretation rather than accuracy. 
However, the more exact learning rules (see Methods and equations 
41, 43 and 47 for the three feedback signals) are not that different. 
In particular, they retain the same flavor: they consist of a presyn-
aptic term (xi) and a postsynaptic term (a function of flin), and the 
effective learning rate is updated on each time step. Moreover, the 
interpretation is the same: the mean is moved, on average, toward 
its true value, with a rate that scales with uncertainty, and whenever 
there is a presynaptic spike the uncertainty is reduced.

To determine whether our Bayesian learning rules are able to 
accurately compute the mean and variance of the weights, we gen-
erated a set of target weights, denoted wtar,i, and used those to con-
struct Vtar, given by equation (5):

V tarðtÞ ¼
X

i
wtar;iðtÞxiðtÞ ð5Þ

Simulations showed that the mean weights track the target weights 
very effectively (Fig. 2). Just as importantly, the synapse’s estimate 
of its uncertainty tracks the difference between its estimate and the 
actual target (the black line should be inside the 95% confidence 
interval (Fig. 2) 95% of the time, and it is very close to that: linear, 
96.1%; cerebellar learning, 95.4%; reinforcement learning, 96.8%). 
Note that the uncertainty was much lower at a high presynaptic fir-
ing rate than at a low rate (Fig. 2). That is because for a low firing rate, 
xi is mainly zero, and so there is little decrease in σ2i

I
 (equation (4b)).

The critical aspect of the learning rules in equation (4) is that 
the learning rate—the change in mean PSP amplitude, μi, per pre-
synaptic spike—increases as the synapse’s uncertainty, σ2i

I
, increases. 

This is a general feature of our learning rules, and not specific to any 
one of them. Consequently, independent of the learning scenario, 
we expect performance to be better than that for classical learning 
rules, which do not take uncertainty into account. To check whether 
this is true, we computed the mean squared error between the actual 
and target membrane potential, V and Vtar, respectively, for classical 
learning rules, and compared it to the Bayesian learning rules (Fig. 3).  
As predicted, the Bayesian learning rules always do better than the 
classical ones, even if the learning rate is tuned to its optimal value. 
This result was robust to model mismatch (Supplementary Note 6).

For the examples so far, we considered a single neuron infer-
ring only its own input weights. We focused on this case primarily 
to illustrate our method in the simplest possible setting. In reality, 
however, the brain needs to optimize some cost function based on 
a feedback signal applied to a recurrent neural network. To inves-
tigate Bayesian plasticity in this, more realistic, regime, we trained 
the output weights of a recurrent neural network to produce a target 
function, using as a feedback signal the difference between the tar-
get function and its network estimate (Fig. 4a). The learning rules 
are very similar to those given by equation (4). However, the target 
weights are not known, so we cannot compare the inferred weights 
to the target weights, as we did in Fig. 2. We can, however, compare 
the mean squared error between the target and actual membrane 
potential, as in Fig. 3. Bayesian plasticity indeed outperformed 
classical learning rules (Fig. 4b,c). Moreover, the effect was much 
larger than in Fig. 3; the mean squared error is about an order of 
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Fig. 2 | Bayesian learning rules track the target weight and estimate uncertainty. a–f, The black line is the target weight, the red line is the mean of the 
inferred distribution, and the red area represents 95% confidence intervals of the inferred distribution. a–c and d–f correspond to the highest and lowest 
presynaptic firing rates used in the simulations, respectively. Consistent with our analysis (equation (9)), higher presynaptic firing rates resulted in lower 
uncertainty. In a and d, linear feedback is given by flin = δ + ξδ. In b and e, cerebellar learning is given by fcb ¼ Θ δþ ξδ � θð Þ

I
. In c and f, reinforcement 

learning (RL) is given by frl = − ∣δ + ξδ∣. See Supplementary Note 3 for simulation details. Note that while the red lilnes are plotted at the same thickness, the 
greater variability in the lower plots may make those lines appear thicker.
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magnitude smaller for the Bayesian than for the classical learning 
rule (note the log scale in Fig. 4c), a result that was highly robust to 
model mismatch (Supplementary Note 7). These simulations sug-
gest that taking into account weight uncertainty has a much larger 
effect in networks than in single neurons.

Figures 3 and 4 indicate that there is a clear advantage to using 
uncertainty to adjust learning rates. But does the brain do this? 
Addressing that question will require a new generation of plastic-
ity experiments. At present, in typical plasticity experiments, only 
changes in weights are measured; to test our hypothesis, it is nec-
essary to measure changes in learning rates, and at the same time 
determine how those changes are related to the synapse’s uncer-
tainty. This presents two challenges: First, measuring changes in 
learning rates is difficult, as weights must be monitored over long 
periods of time and under natural conditions, preferably in vivo. 
Second, we cannot measure the synapse’s uncertainty directly. We 
next discuss two approaches to overcoming these challenges.

The first approach is indirect: use neural activity measured over 
long periods in vivo to estimate the uncertainty a synapse should 

have; then, armed with that estimate, test the prediction that the 
learning rate increases with uncertainty. To estimate the uncertainty 
a synapse should have, we take advantage of a general feature of 
essentially all learning rules: synapses get information only when 
the presynaptic neuron spikes. Consequently, the synapse’s uncer-
tainty should fall as the presynaptic firing rate increases. In fact, 
under mild assumptions, we can derive a very specific relationship: 
the relative change in weight under a plasticity protocol, Δμi/μi, 
should scale approximately as 1= ffiffiffiffi

νi
p

I
 where νi is the firing rate of the 

neuron presynaptic to synapse i, given by equation (6):

Δμi
μi

/ 1ffiffiffiffi
νi

p ð6Þ

a relationship that held in our simulations for firing rates above 
about 1 Hz (Supplementary Note 3). In essence, firing rate is a proxy 
for uncertainty, with a higher firing rate indicating lower uncer-
tainty and vice versa. This prediction could be tested by observ-
ing neurons in vivo, estimating the presynaptic firing rates, then 
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performing plasticity experiments to determine the relative change 
in synaptic strength, Δμi/μi.

The second approach is more direct, but it requires an additional 
hypothesis. While Bayesian plasticity tells us how to compute the 
mean and variance of the weights, it does not tell us what weight to 
use when a spike arrives. But the synaptic sampling hypothesis does; 
it tells us that the mean and variance of the PSP amplitude should be 
equal to the mean and variance of the inferred distribution over the 
target weight, given by equations (7a) and (7b):

PSPmean ¼ μi ð7aÞ

PSP variance ¼ σ2i ð7bÞ

Under our learning rules, the change in mean synaptic weight is 
proportional to the variance, σ2i

I
 (equation (4a)). Consequently, the 

relative change in weight Δμi/μi, is proportional to σ2i =μi
I

; combining 
this with equation (7) gives equation (8):

Δμi
μi

/ PSP variance
PSPmean


Normalized

variability
ð8Þ

where we defined the normalized variability as the ratio of PSP vari-
ance to its mean. We verified that this relationship holds in simula-
tions (Supplementary Note 2).

Equation (8) implies that when the PSP variance is high, learn-
ing rates are also high. Testing that experimentally is technically 
difficult, requiring monitoring the PSP mean and variance for long 
periods in vivo, and comparing normalized variability to changes 
in the mean. However, such experiments are likely to be possible in 
the near future.

A more indirect approach based on this idea, for which we can 
apply current data, makes use of equation (6) to replace the left-hand 
side of equation (8), Δμi/μi, with 1= ffiffiffiffi

νi
p

I
. This gives equation (9):

Normalized

variability
/ 1ffiffiffiffi

νi
p ð9Þ

This is intuitively sensible; as discussed above, higher presynaptic 
firing rates means the synapse is more certain, and synaptic sam-
pling states that higher certainty should reduce the observed vari-
ability. This relationship can be tested by estimating presynaptic 
firing rates in vivo, and comparing them to the normalized variabil-
ity measured using paired recordings. Such data can be extracted 
from experiments by Ko et al.15. In those experiments, calcium sig-
nals in mouse visual cortex were recorded in vivo under a variety of 
stimulation conditions, providing an estimate of the firing rate of 
each imaged neuron; subsequently, whole-cell recordings of pairs of 
identified neurons were made in vitro, and the mean and variance 
of the PSPs were measured. In Fig. 5, we plot the normalized vari-
ability (the ratio of the PSP variance to the mean) versus the presyn-
aptic firing rate on a log–log scale (data were supplied to us by Ko 
et al.15; Supplementary Note 4). On this scale, our theory predicts a 
slope of − 1/2. The normalized variability did indeed decrease as the 
firing rate increased (P < 0.003), and the slope was not significantly 
different from the predicted value of − 1/2 (P = 0.57). This pattern 
was broadly matched by simulations, at least at a sufficiently high 
firing rate (Supplementary Note 3).

An alternative explanation for this result is that increases in fir-
ing rate reduce the normalized variability because of short-term 
effects on release probability. The release probability, denoted by pr, 
scales the variance of the PSP by a factor of pr(1 − pr) and the mean 
by a factor of pr, so the normalized variability (the variance divided 
by the mean) scales as 1 − pr. Consequently, an increase in release 
probability with firing rate would explain the results presented in 

Fig. 5. Such increases do indeed occur16. However, much more com-
mon—especially in rodent layers 2 and 3, where these experiments 
were performed—is a decrease in release probability with firing 
rate17,18. Thus, short-term synaptic plasticity would typically lead to 
an increase, not a decrease, in the normalized variability when fir-
ing rate increases; the opposite of what we observed experimentally.

Discussion
We proposed that synapses do not just keep track of point estimates 
of their weights, as they do in classical learning rules; they also keep 
track of their uncertainty. They then use that uncertainty to set 
learning rates: the higher the uncertainty, the higher the learning 
rate. This allows different synapses to have different learning rates, 
and leads to learning rules that allow synapses to exploit all locally 
available information. This in turn leads to better performance, 
as measured by mean squared error (Figs. 3 and 4b,c), and faster 
learning, which is implicit in Fig. 3 (because the target weights drift, 
fast learning is essential for achieving low mean squared error) and 
explicit in Fig. 4b.

The critical difference between our learning rules and classical 
ones is that the learning rates themselves undergo plasticity. We 
derived three rules, based on three different assumptions about the 
feedback signal received by the neuron, and in all cases the updates 
for the mean had the flavor of a classical rule: the change in the 
mean weight was a function of the presynaptic activity and an error 
signal. Other assumptions about the feedback signal are clearly pos-
sible, and our method can generate a broad range of learning rules. 
Whether or not they can generate all rules that have been observed 
experimentally is an avenue for future research.

The hypothesis that synapses keep track of uncertainty, which we 
refer to as the Bayesian plasticity hypothesis, makes the general pre-
diction that learning rates, not just synaptic strengths, are a function 
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Fig. 5 | Normalized variability versus presynaptic firing rate as a 
diagnostic of our theory. The red line, which has a slope of −1/2, is our 
prediction (the intercept, for which we do not have a prediction, was 
chosen to give the best fit to the data). The blue line was fit by linear 
regression (n = 136 points), and the gray region represents two standard 
errors. The slope of the blue line, −0.62, was statistically significantly 
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−1/2 (P = 0.57, t-test; assumes normality, which was not formally tested). 
The firing rate was measured by taking the average signal from a spike 
deconvolution algorithm45. Units are arbitrary because the scale factor 
relating the average signal from the deconvolution algorithm and the firing 
rate is not exactly one46. Data are from layers 2 and 3 of the mouse visual 
cortex in ref. 15.
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of presynaptic and postsynaptic activity—something that should be 
testable with the next generation of plasticity experiments. In par-
ticular, it makes a specific prediction about learning rates in vivo: 
learning rates should vary across synapses, being higher for syn-
apses with lower presynaptic firing rates.

We also made a second, independent, hypothesis: synaptic sam-
pling. This hypothesis states that the variability in PSP size asso-
ciated with a particular synapse matches the uncertainty in the 
strength of that synapse. This allows synapses to communicate their 
uncertainty to surrounding circuitry—information that is critical if 
the brain is to monitor the accuracy of its own computations. The 
same principle has been applied to neural activity, where it is known 
as the neural sampling hypothesis19–22, which posits that variability 
in neural activity matches uncertainty about the state of the external 
world. The neural sampling hypothesis meshes well with synaptic 
sampling; uncertainty in the weights increases uncertainty in the 
current estimate of the state of the world, and likewise, variability 
in the weights increase variability in neural activity (Supplementary 
Note 5). While there is some experimental evidence for the neural 
sampling hypothesis21–25, it has not been firmly established. Whether 
other proposals for encoding probability distributions with neural 
activity, such as probabilistic population codes3,26, can be combined 
with synaptic sampling is an open question.

By combining our two hypotheses, we were able to make addi-
tional predictions. These focused on what we call the normalized 
variability, that is, the ratio of the variance in PSP size to the mean. 
First, we predicted that plasticity should increase with normalized 
variability, which remains to be tested. Second, we predicted that 
normalized variability should decrease with presynaptic firing rate. 
Reanalyzing data from Ko et al.15, we provided evidence that this 
is indeed the case. In machine learning, the idea that it is advan-
tageous to keep track of the distribution over weights has a long 
history27–29. Especially relevant is a recent study in which, as in our 
scheme, learning rates were reduced when certainty was high30. 
However, rather than updating the uncertainty on every time step, 
as we do, updating occurred only when there was a change in the 
task. This occurs on the timescale of minutes to hours; not the mil-
lisecond timescale on which uncertainty is updated in our model. 
Nevertheless, this approach worked well in settings in which deep 
networks had to learn multiple tasks.

In neuroscience, weight uncertainty was first explored in the 
context of reinforcement learning31. In that work, the weights related 
sensory stimuli to rewards, and weight correlations that developed 
due to Bayesian learning provided an exceptionally elegant explana-
tion of backward blocking. The idea lay dormant for over a decade, 
until it was rediscovered with a slightly different focus, one in which 
knowledge of weight uncertainty is critical for knowledge of com-
putational uncertainty3. Several theoretical studies followed. The 
first of those32 bore some resemblance to ours, in that weights were 
sampled from a distribution. However, the timescale for sampling 
was hours rather than milliseconds, which is too slow to explain 
the spike-to-spike variability in PSP size that is ubiquitous in the 
brain. More recently, Hiratani and Fukai33 postulated that the mul-
tiple synaptic contacts per connection observed in cortex provide a 
scaffolding for constructing a nonparametric estimate of the prob-
ability distribution over synaptic strength. Weight uncertainty has 
also been applied to drift diffusion models34, using methods similar 
to those used in work by Dayan and Kakade31; the main difference 
was that the reward was binary (correct or incorrect) rather than 
continuous. Finally, recent work proposed that short-term plasticity 
is also governed by a Bayesian updating process35. It will be interest-
ing to determine which combination of these schemes is used by 
the brain.

If the Bayesian plasticity hypothesis is correct, synapses would 
have to keep track of, and store, two variables: the mean, as is stan-
dard, but also the variance (or, equivalently, the learning rate), which 

is not. The complexity of synapses36–38, and their ability to use non-
trivial learning rules (for example, synaptic tagging, in which activ-
ity at a synapse ‘tags’ it for future long-term changes in strength39–41, 
and metaplasticity, in which the learning rate can be modified by 
synaptic activity without changing the synaptic strength42–44), sug-
gests that representing uncertainty—or learning rate—is quite pos-
sible. It will be nontrivial, but important, to work out how.

Our framework has several implications, both for the inter-
pretation of neurophysiological data and for future work. First, 
under the synaptic sampling hypothesis, PSPs are necessarily noisy. 
Consequently, noise in synapses (for example, synaptic failures) is 
a feature, not a bug. We thus provide a normative theory for one 
of the major mysteries in synaptic physiology: why neurotransmit-
ter release is probabilistic. Second, our approach allows us to derive 
local, biologically plausible learning rules, no matter what informa-
tion is available at the synapse, and no matter what the statistics 
of the synaptic input. Thus, our approach provides the flexibility 
necessary to connect theoretical approaches based on optimality to 
complex biological reality.

In neuroscience, Bayes’ theorem is typically used to analyze 
high-level inference problems, such as decision-making under 
uncertainty. Here we demonstrated that Bayes’ theorem, being the 
optimal way to solve any inference problem, big or small, could be 
implemented in perhaps the smallest computationally relevant ele-
ment in the brain: the synapse.
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Methods
Description of our model. Previously, we specified how the membrane potential 
depends on the weights and incoming spikes (equation (1)) and how the target 
membrane potential depends on the target weights and incoming spikes (equation 
(5)), and we defined the error signal (equation (2)). Here, we describe how target 
weights, wtar,i, the weights, wi, and the spikes, xi, are generated.

Target weights. The target weights are the weights that in some sense optimize the 
performance of the animal. We do not expect these weights to remain constant 
over time, for two reasons: First, both the state of the world and the organism 
change over time, thus changing the target weights. Second, we take a local, 
single-neuron view to learning, and define the target weights on a particular 
neuron to be the optimal weights given the weights on all the other neurons in 
the network. Consequently, as the weights of surrounding neurons change due to 
learning, the target weights on our neuron also change. While these changes may 
be quite systematic, to a single synapse deep in the brain they are likely to appear 
random.

Motivated by this last observation, in our model we assumed that the target 
weights evolve according to a random process. To ensure that the weights do not 
change sign, we worked in log space, and on each time step, we added a small 
amount of noise to the log of the target weights. Additionally, to ensure that the 
weights did not become too small or too large, we added a small drift toward a 
prior log weight. Specifically, defining (equation (10)):

λtar;i ¼ log jwtar;ij ð10Þ

(note the absolute value sign, which allows the weights to be either positive or 
negative), we let λtar,i evolve according to equation (11):

λtar;iðt þ 1Þ ¼ λtar;iðtÞ �
λtar;iðtÞ �mprior

τ
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2s2prior
τ

s

ξtar;i
ð11Þ

where mprior and s2prior
I

 are the prior mean and variance of λtar,i(t), τ (which is 
dimensionless) is the characteristic number of steps over which λtar,i(t) changes, and 
ξtar,i is a zero-mean, unit variance Gaussian random variable.

We chose the noise process described in equation (11) for three reasons: First, 
wtar,i is equal to either þeλtar;i

I
 (for excitatory weights) or �eλtar;i

I
 (for inhibitory 

weights), and thus cannot change sign as λtar,i changes with learning. Consequently, 
excitatory weights cannot become inhibitory, and vice versa, so Dale’s law is 
preserved. Second, spine sizes obey this stochastic process47, and while synaptic 
weights are not spine sizes, they are correlated48. Third, this noise process gives a 
log-normal stationary distribution of weights, as is observed experimentally49.

The parameters that determine how the weights drift, mprior and s2prior
I

, were 
set to the mean and variance of measured log weights using data from ref. 49 
(Supplementary Note 4). We used a time step of 10 ms, within the range of 
measured membrane time constants. For the linear and cerebellar models, we set 
τ to 105; for reinforcement learning, we set τ to 5 × 105. These values were chosen 
so that uncertainty roughly matched observed variability (Supplementary Note 4). 
For the recurrent network, we do not know the target weights, so we do not know 
the drift rate. Nor do we know the effective drift associated with the fact that the 
optimal weight on one synapse changes as the surrounding circuit changes. We 
therefore tried different drifts in our simulations (data not shown). We found that 
near-zero drift was optimal, so we set τ to ∞.

Synaptic weights. Our inference algorithm computes a distribution over the 
target weights. Given that distribution, there is nothing in the Bayesian plasticity 
hypothesis that tells us how to set the weights when a spike arrives. That is where 
the sampling hypothesis comes in: it tells us to sample the weights, wi, from the 
posterior, given by equation (12):

wi ¼ emiþsiξi ð12Þ

where mi and si are the mean and standard deviation of the posterior distribution 
over the log weights, respectively, and ξi is a zero-mean, unit variance Gaussian 
random variable. The mean and variance of wi under equation (12), for which we 
use μi and σ2i

I
, respectively, are the standard expressions for the mean and variance 

of a log-normal distribution, given by equations (13a) and (13b):

E½wijDi  μi ¼ emiþs2i =2 ð13aÞ

Var ½wijDi  σ2i ¼ μ2i ½es
2
i � 1 ð13bÞ

where Di
I

 is the data seen by the synapse so far (equation (19)).
Earlier, we compared our Bayesian learning rules to classical ones (Figs. 3  

and 4). For classical rules, there is no posterior to sample from, so we could not 
use equation (12). Consequently, for the the classical implementation of linear 
and cerebellar rules, we did not sample; and for Bayesian learning, we used wi = μi. 

The reinforcement learning rule, however, requires sampling for both Bayesian 
and classical learning (equations 47 and 48). We thus assumed that the variance is 
proportional to the mean (as is the case for Poisson statistics). To find the constant 
of proportionality, denoted k, we used data from ref. 49 (Supplementary Note 4). A 
least-squares fit to that data gave k = 0.0877. A naive way to implement this is to 
sample weights using wi ¼ μi þ

ffiffiffiffiffiffi
kμi

p
ξi

I
 with ξi  N 0; 1ð Þ

I
. However, that allows 

wi to change sign; so instead, we sampled the weights using equation (14):

wi ¼ μie
βiþγiξi ð14Þ

and chose βi and γi so that the mean and variance of wi are μi and kμi, respectively. 
As is straightforward to show, these conditions are satisfied when βi and γi are given 
by equations (15a) and (15b):

βi ¼ � log ð1þ k=μiÞ
2

ð15aÞ

γi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1þ k=μiÞ

p
ð15bÞ

Synaptic input. For linear, cerebellar and reinforcement learning, neurons receive 
input from n presynaptic neurons, all firing at different rates. The firing rates, νi 
(i denotes presynaptic neuron), are drawn from a log-normal distribution, using 
a distribution that is intermediate between the narrow range found by some50 and 
the broad range found by others51: a log-normal distribution with median at 1 Hz 
and with 95% of firing rates being between 0.1 Hz and 10 Hz, according to equation 
(16):

log νi  N 0; log
ffiffiffiffiffi
10

p 2
 

ð16Þ

with νi measured in Hz. On each time step, xi is drawn from a Bernoulli 
distribution (so it is either 0 or 1), according to equation (17):

P xið Þ ¼ ðνiΔtÞxi ð1� νiΔtÞ1�xi ð17Þ

Learning rules. Here we outline how a synapse can infer a probability distribution 
over its target weights. This is done using a well-understood class, hidden Markov 
model, for which we can use a standard, two-step procedure: first, the synapse 
incorporates new data using Bayes’ theorem; second, it accounts for random 
changes in the target weight.

While straightforward in principle, in practice there are two difficulties with 
this approach. First, it results in a joint distribution over all synaptic weights. It 
is unclear, however, how synapses could store such a distribution; even with a 
Gaussian approximation, for n synapses there are about n2/2 parameters. And it is 
even less clear how they could compute it, as that would require communication 
among synapses on different dendritic branches. We thus assumed that each 
synapse performs probabilistic inference based only on the data available to it. This 
makes each synapse locally optimal, allowing us to derive local learning rules. It 
is potentially the most important theoretical advance of our analysis. And within 
the Bayesian framework it is straightforward: each synapse simply integrates over 
the uncertainty in the target weights of all the other synapses. Nonetheless, this is 
an unusual approach, and further work is necessary to understand its theoretical 
properties.

The second difficulty is that even with the local approximation, inference is 
intractable, as it requires point-wise multiplication of probability distributions 
and a convolution (equations 20 and 21). To remedy this, we approximated the 
true distribution by a simpler one, a log normal. The log-normal distribution was 
chosen for two reasons: (1) it prevents synapses from changing sign, so Dale’s law is 
respected; and (2) it matches the distribution of the target weights (equation (11)), 
so it produces the correct distribution in the absence of presynaptic spikes.

Single-neuron learning rules: general formalism. The goal of a synapse is to compute 
the probability distribution over synaptic strength given data up to the last time 
step. Here, the data (assumed local, as discussed above) consists of the feedback 
signal f (shorthand for flin, fcb or frl), the presynaptic input xi, and the actual weight 
wi. To reduce clutter, we used di(t) to denote the data at time t, according to 
equation (18):

diðtÞ  ff ðtÞ; xiðtÞ;wiðtÞg ð18Þ

and DiðtÞ
I

 to denote past data, according to equation (19):

DiðtÞ  fdiðtÞ; diðt � 1Þ; diðt � 2Þ; ¼ g ð19Þ

With this notation, the goal of the synapse is to compute P λtar;iðt þ 1ÞjDiðtÞ
� �

I
 in 

terms of P λtar;iðtÞjDiðt � 1Þ
� �

I
. To reduce clutter even further, here and in what 

follows, all quantities without an explicitly specified time index were evaluated at 
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time step t; thus, we will derive an update rule for P λtar;iðt þ 1ÞjDi
� �

I
 in terms of 

P λtar;ijDiðt � 1Þ
� �

I
.

As discussed above, making the approximation that synapses perform inference 
based only on local information, the first step in the derivation of the update rule, 
incorporating new data using Bayes’ theorem, gives equation (20):

P λtar;ijDi
� �

¼ P λtar;ijdi;Diðt � 1Þ
� �

/ P dijλtar;i
� �

P λtar;ijDiðt � 1Þ
� �

ð20Þ

where we used the Markov property: P dijλtar;i;Diðt � 1Þ
� �

¼ P dijλtar;i
� �

I
. (Recall 

that λtar,i is the log of the absolute value of the ith target weight, wtar,i (equation 
(10))). In the second step, the synapse takes into account random changes in the 
target weight, given by equation (21):

P λtar;iðt þ 1ÞjDi
� 

¼
Z

dλtar;iP λtar;iðt þ 1Þjλtar;i
� 

P λtar;ijDi
� 

ð21Þ

The conditional distribution, P λtar;iðt þ 1Þjλtar;i
� �

I
, can be extracted from 

equation (11). Combining both steps takes us from the distribution at time t, 
P λtar;ijDiðt � 1Þ
� �

I
, to the distribution at the time t + 1, P λtar;iðt þ 1ÞjDi

� �

I
.

To make progress analytically, we approximated the true distribution by a 
log-normal one with mean mi and variance s2i ; that is, we assumed equation (22):

λtar;ijDiðt � 1Þ  N mi; s
2
i

� �
ð22Þ

This is the quantity the synapse needs when it sets the actual weight, wi. (Recall 
that quantities with no explicit time dependence are to be evaluated at time t; thus, 
the left-hand side is the probability distribution over λtar,i(t), given data up to the 
previous time step).

Finalizing the calculation requires two steps: (1) insert equation (22) into 
equation (20) and compute P λtar;ijDi

� �

I
; (2) insert the result into equation (21) 

and compute P λtar;iðt þ 1ÞjDi
� �

I
. However, equation (20) takes us out of our 

log-normal model class. To remedy this, we used assumed density filtering52, for 
which posteriors are taken to be log normal with mean and variance chosen to 
produce the distribution closest to the true one, where ‘close’ is measured by the 
Kullback–Leibler divergence between the true and log-normal distributions. This 
can be achieved by matching moments; the mean and variance of the ‘closest’ 
log-normal distribution are given by equations (23a) and (23b):

mi ¼ E½λtar;ijDiðt � 1Þ ð23aÞ

s2i ¼ Var ½λtar;ijDiðt� 1Þ ð23bÞ

We will apply this first to equation (20). Taking the log of both sides of that 
equation gives equation (24):

log P λtar;ijDi
� �

¼ Lðλtar;iÞ þ log P λtar;ijDiðt� 1Þ
� �

þ const ð24Þ

where

Lðλtar;iÞ  log P dijλtar;i
� �

ð25Þ

is the log likelihood of the data at time t given the target weight (equation (25)); 
we suppressed the dependence on di to avoid clutter. Under the log-normal 
assumption, the second term on the right-hand side of equation (24) is Gaussian 
in λtar,i. Motivated by the fact that new data does not provide much information, 
we assumed that the likelihood is a slowly varying function of the target weights, 
allowing us to make a Laplace approximation: we Taylor expand the log likelihood 
around mi, the mean of P λtar;ijDiðt � 1Þ

� �

I
, and work only to second order in 

λtar,i − mi. Also, using equation (22), we have equation (26):

log P λtar;ijDi
� �

¼ L0ðmiÞðλtar;i �miÞ þ L00ðmiÞ ðλtar;i�miÞ2
2 � ðλtar;i�miÞ2

2s2i
þ const

ð26Þ

The right-hand side is now quadratic in λtar,i. Consequently, P λtar;ijDi
� �

I
 is 

Gaussian, with mean and variance given by equations (27a) and (27b):

E½λtar;ijDi ¼ mi þ
s2i L

0ðmiÞ
1� s2i L

00ðmiÞ
 mi þ s2i L

0ðmiÞ ð27aÞ

Var ½λtar;ijDi ¼ s2i þ
s4i L

00ðmiÞ
1� s2i L

00ðmiÞ
 s2i þ s4i L

00ðmiÞ ð27bÞ

To derive the approximation expressions, we assumed s2i jL00ðmiÞj  1
I

. This 
holds in the limit of slowly varying log likelihood, which we assumed throughout 
our analysis.

Equation (27) tells us how to incorporate new data; we now need to incorporate 
random drift, via the integral in equation (21). From equation (11),  

we see that P λtar;iðt þ 1Þjλtar;i
� �

I
 is Gaussian, so the integral is straightforward, 

giving equations (28a) and (28b):

miðt þ 1Þ ¼ 1� 1
τ

� �
E½λtar;ijDi þ

mprior

τ
ð28aÞ

s2i ðt þ 1Þ ¼ 1� 1
τ

� �2

Var ½λtar;ijDi þ
2s2prior

τ
ð28bÞ

Inserting equation (27) into equation (28), and working to lowest nonvanishing 
order in 1/τ, siL0ðmiÞ

I
 and s2i L00ðmiÞ

I
, we arrived at our final update equations (29a) 

and (29b):

Δmi ¼ s2i L
0ðmiÞ �

mi �mprior

τ
ð29aÞ

Δs2i ¼ s4i L
00ðmiÞ �

2ðs2i � s2prior Þ
τ

ð29bÞ

where Δmi ≡ mi(t + 1) − mi and Δs2i  s2i ðt þ 1Þ � s2i
I

. Thus, to update the mean 
and variance, all we have to do is compute the log likelihood and take the first 
and second derivatives. Below, we outline how to do that; additional details 
are provided in Supplementary Note 1. Note that equality in these expressions 
(and many that follow) is shorthand for equality under the assumptions and 
approximations of our model.

Single-neuron learning rules for our three models. According to the above analysis 
(equation (29)), to determine the update rules, we just need the log likelihood of 
the current data, di(t), given the error signal (flin, fcb or frl). Computation of the log 
likelihood is nontrivial, as several approximations are required; however, it is not 
hard to get an intuitive understanding of its form.

Using equation (18) for the data, di, the likelihood (the probability of the data 
given wtar,i) may be written as equation (30):

P dijλtar;i
� �

¼ P f jxi;wi; λtar;i
� �

P xi;wijλtar;i
� �

/ P f jxi;wi; λtar;i
� �

ð30Þ

where we are able to drop the term P xi;wijλtar;i
� �

I
 because without an error signal, 

xi and wi do not provide any information about λtar,i. For all of our feedback signals, 
f is a function of flin; we take advantage of this to write equation (31):

P f jxi;wi; λtar;i
� 

¼
Z

df lin P f jf lin
� 

P f linjxi;wi; λtar;i
� 

ð31Þ

We focus here on computing P f linjxi;wi; λtar;i
� �

I
, and describe the integral in 

Supplementary Note 1. Using equations (1), (2) and (5), we have equation (32):

f lin ¼ ðwtar;i � wiÞxi þ
X

j≠i
ðwtar;j � wjÞxj þ ξV þ ξδ ð32Þ

For synapse i, all the terms in the sum over j are unobserved, and so correspond 
to noise. By the central limit theorem (and the assumed independence of the 
synapses), that noise is Gaussian; we take the added noise, ξV and ξδ, to be Gaussian 
as well, with total variance given by equation (33):

σ20  var ½ξδ þ var ½ξV ð33Þ

Consequently, we may write equations (34) and (35):

f linjwi; xi; λtar;i  N ðwtar;i � wiÞxi; σ2δ;i
� �

ð34Þ

where

σ2δ;i  var
X

j≠i
wtar;j � wj
� 

xj j Diðt� 1Þ
h i

þ σ20 ð35Þ

The quantity σ2δ;i
I

 depends on synapse, i. However, in the limit where there are a 
large number of synapses, that dependence is weak. We thus approximated this by 
including all terms in the sum over j, which we denoted σ2δ

I
, as equation (36):

σ2δ;i  σ2δ  Var
X

j
wtar;i � wj
� 

xj j Diðt� 1Þ
h i

þ σ20 ð36Þ

Under this approximation, we describe equation (37):

f linjwi; xi; λtar;i  N ð± eλtar;i � wiÞxi; σ2δ
� �

ð37Þ

For much of our analysis, we used the value of σ2δ
I

 under the prior. That 
quantity, denoted σ2δ0

I
, is given by equation (38):

σ2δ0  ðσ2prior þ σ2w; prior Þ
X

j
νjΔtð1� νjΔtÞ þ σ20 ð38Þ
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where the term νjΔt(1 − νjΔt) comes from the Bernoulli statistics of xj (equation 
(17)), andσ2prior

I
 and σ2w; prior

I
 are the variances of wtar,i and wi under the prior. The 

latter, σ2w; prior
I

, depends on whether or not we are sampling, according to equation 
(39):

σ2w; prior 
σ2prior Synaptic sampling

k μprior Variance proportional to the mean

(
ð39Þ

The prior mean and variance of the weights in terms of the log weights (equation 
(13) and Supplementary Table 1) are given by equations (40a) and (40b):

μprior  empriorþs2prior=2 ð40aÞ

σ2prior  μ2prior es
2
prior � 1

h i
ð40bÞ

This analysis tells us that the distribution P f linjwi; xi; λtar;i
� �

I
 is Gaussian in 

eλtar;i
I

. To determine the learning rules, all we have to do is insert equation (37) into 
equation (31), perform an integral, take the log, compute the first two derivatives 
and evaluate them at mi (equation (29)). These steps, described in Supplementary 
Note 1, are not completely straightforward, as various approximations must be 
made. However, from a conceptual point of view, the approximations do not add 
much. Thus, here we simply provide the results.

Linear feedback. The Bayesian update rules are given by equations (41a) and (41b):

Δmi ¼
s2i μi
σ2δ0

� �
xif lin �

1
τ

mi �mprior
� �

ð41aÞ

Δs2i ¼ � s4i μ
2
i

σ2δ0

� �
x2i �

2
τ

s2i � s2prior

� �
ð41bÞ

For classical learning, we used the delta rule (equation (3)), according to  
equation (42):

Δwi ¼ η xif lin ð42Þ

Note that we excluded weight drift in the classical learning rate (both here and 
below), as weight drift was derived using Bayesian analysis, and has no classical 
counterpart.

Cerebellar feedback. The Bayesian update rules are given in equations (43a) and 
(43b):

Δmi ¼
s2i μi
σ2δ0

� �
xiσδ0ð2f cb � 1Þ N ðθcbÞ

ΦðθcbÞ
� 1

τ
ðmi �mpriorÞ ð43aÞ

Δs2i ¼ � s4i μ
2
i

σ2δ0

� �
x2i

NðθcbÞ
ΦðθcbÞ

θcb þ
NðθcbÞ
ΦðθcbÞ

� �
� 2

τ
ðs2i � s2prior Þ ð43bÞ

where Φ and (in a slight abuse of notation) N
I

 are the cumulative normal and 
normal functions, respectively, according to equations (44a) and (44b):

ΦðzÞ 
Z z

�1
du

e�u2=2

ð2πÞ1=2
ð44aÞ

NðzÞ  e�z2=2

ð2πÞ1=2
ð44bÞ

and θcb is given in terms of the threshold θ, as equation (45):

θcb  ð1� 2f cbÞ
θ

σδ0
ð45Þ

For classical learning, we absorbed most of the prefactor in the above mean update 
into a fixed learning rate, described in equation (46):

Δwi ¼ ηð2f cb � 1Þxi
NðθcbÞ
ΦðθcbÞ

ð46Þ

Reinforcement learning. The Bayesian update rules are described in equations (47a) 
and (47b):

Δmi ¼
s2i μi
σ2δ

� �
f 2rl
σ2δ

� 1

� �
x2i ðμi � wiÞ �

1
τ
ðmi �mpriorÞ ð47aÞ

Δs2i ¼ � s4i μ
2
i

σ2δ

� �
1� f 2rl

σ2δ

� �
x2i �

2
τ
ðs2i � s2prior Þ ð47bÞ

This learning rule appears nonlocal, as it depends on σ2δ
I

, which in turn depends 
on all the synapses (equation (36)). However, we made it local by changing the 
feedback signal to ð1� f 2rl=σ

2
δÞ=σ2δ

I
. For classical learning, we again absorbed most 

of the prefactor into the learning rate, according to equations (48):

Δwi ¼ ηxiðf rl tanhððμi � wiÞxif rl=σ2δÞ � ðμi � wiÞxiÞ ð48Þ

Note that ‘tanh’ appears in the classical, but not Bayesian, learning rules. 
That is because, for the Bayesian learning rules, we made the approximation 
tanhððμi � wiÞxif rl=σ2δÞ  ðμi � wiÞxif rl=σ2δ
I

. This approximation, however, made 
the classical learning rule unstable.

Recurrent neural network learning rules. So far, we have focused on single neurons. 
Here we generalize to the more realistic scenario in which the output weights of 
a recurrent network are trained to produce a time-dependent target function. We 
will assume that the network, which contains N neurons, evolves according to 
equations (49a), (49b) and (49c):

τm
dvi
dt

¼ �vi þ
XN

j¼1
Jijxj þ AiVðtÞ þ IiðtÞ ð49aÞ

xj ¼ tanhðvjÞ ð49bÞ

VðtÞ ¼
XN

j¼1
wjxj ð49cÞ

We interpret vi as the membrane potential and xj as the firing rate relative to 
baseline. The recurrent weights, Jij, and feedback weights, Ai, are fixed. Parameters 
of the network and details of the simulations are available in Supplementary Note 3.

The goal of the network is to minimize the distance between V(t) and some 
target function, denoted Vtar(t); that is, to minimize the error δ(t), defined, as in 
equation (2), to be (equation (50)):

δðtÞ  V tarðtÞ � VðtÞ ð50Þ

As with single neurons, we used a Bayesian approach. There are, however, two 
important differences: First, we do not know the target weights (we do not specify 
them; instead, they must be learned). We assumed, however, that target weights 
exist, meaning we can write equation (51):

δðtÞ ¼
X

j
ðwtar;jðtÞ � wjðtÞÞxjðtÞ ð51Þ

The second difference is that the feedback signal, δ(t), is a continuous function of 
time. Consequently, information at times t and t + dt is largely redundant. To deal 
with this redundancy, we make several approximations. First, rather than updating 
the weights continuously, we update them at times separated by Δt. Bayes’ theorem, 
described in equation (20), then becomes equation (52):

P wtar;ijDi
� �

/ P dijwtar;i;Diðt � ΔtÞ
� �

P wtar;ijDiðt � ΔtÞ
� �

ð52Þ

where, as in the single-neuron case, the data for synapse i is the presynaptic input, 
xi, the actual weight, wi, and the error signal, δ. To derive this expression, we made 
two simplifications: (1) we did not add noise to the error signal, so the synapses see 
δ rather than flin, and (2) we did not enforce Dale’s law, so the weights can change 
sign. Because of the latter simplification, we let the weights, rather than the log 
weights, have a Gaussian distribution; that is why equation (52) is written in terms 
of wtar,i rather than λtar,i.

In one respect, the analysis is simpler than it was for single neurons. Because 
the target weights do not evolve over time (see comments at the end of ‘Target 
weights’), we can avoid the integral in equation (21). However, in another respect, 
it is more complicated; as just discussed, the likelihood (the first term on the 
right-hand side of equation (52) depends on past data. An exact treatment in this 
regime is beyond the scope of this work. Instead, we chose the time step, Δt, so it is 
much larger than the correlation time of δ(t), allowing us to drop the dependence 
on Diðt � ΔtÞ

I
 in the likelihood, giving us equation (53):

P dijwtar;i;Diðt � ΔtÞ
� �

 P dijwtar;i
� �

/ P δjxi;wi;wtar;i
� �

ð53Þ

where, as in equation (30), we used the fact that without an error signal, xi and wi 
do not provide any information about wtar,i.

While this gives us a very good approximation to the likelihood if Δt is large, 
large Δt means that updates would be made very rarely, and so learning would 
be slow. We thus made a second approximation, to optimize our learning rule 
(via numerical simulation, as discussed below) with respect to Δt. This gives us 
approximate Bayesian update rules, which presumably could be improved upon. 
However, as we will see, the approximate update rules already outperform the 
classical ones by an order of magnitude. Thus, any improvement would only make 
the case for Bayesian plasticity stronger.

To find an expression for P δjxi;wi;wtar;i
� �

I
, we again write δ as in equation (32) 

(but without noise, so ξδ = 0, which reduces σ20
I

 (equation (33)). Now however, we 
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are interested in the log likelihood with respect to the target weights wtar,i, rather 
than the log of the target weights λtar,i (as mentioned above). Thus, the distribution 
over δ simplified relative to equation (37) is given by equation (54):

δjwi; xi;wtar;i  N ðwtar;i � wiÞxi; σ2δ
� �

ð54Þ

As above, we made the approximation σ2δ;i � σ2δ
I

 (equation (36)). It is now 
straightforward to write down the log likelihood, according to equation (55):

Lðwtar;iÞ ¼ � ðδ� wtar;i � wi
� �

xiÞ2

2σ2δ
þ const ð55Þ

The first and second derivatives evaluated at wtar,i = μi are given by equations (56a) 
and (56b):

L0ðμiÞ ¼
ðδ� μi � wið ÞxiÞxi

σ2δ
 δxi

σ2δ
ð56aÞ

L00ðμiÞ ¼ � x2i
σ2δ

ð56bÞ

(We are justified in dropping the term (μi − wi)xi because it is a factor of 
ffiffiffi
n

p
I

 smaller 
than δ. That follows because σ2δ

I
, which is the variance of δ, is OðnÞ

I
 (equation 

(36)).) Inserting these expressions into equation (29) (with τ taken to ∞ because, as 
discussed in ‘Target weights’, we are assuming the target weights do not drift over 
time), we have equations (57a) and (57b):

Δμi ¼
σ2i
σ2δ

δxi ð57aÞ

Δσ2i ¼ � σ4i
σ2δ

x2i ð57bÞ

where Δμi = μi(t + Δt) − μi(t) and similarly for Δσ2i
I

.
Primarily for convenience, we made a third approximation, which is to update 

the weights continuously rather than at discrete points separated by Δt. To do that, 
we simply make the approximation Δμi ≈ Δt dμi/dt, and similarly for Δσ2i

I
. This 

allows us to turn the update rules into ordinary differential equations (58a)  
and (58b):

dμi
dt

¼ 1
Δt

σ2i
σ2δ

δxi ð58aÞ

dσ2i
dt

¼ � 1
Δt

σ4i
σ2δ

x2i ð58bÞ

Then, defining equation (59):

ηi 
σ2i
σ2δΔt

ð59Þ

inserting this into into equation (58) and, in our fourth approximation, ignoring 
the time dependence in σ2δ

I
, those equations simplify to equations (60a) and (60b):

dμi
dt

¼ ηi δxi ð60aÞ

dηi
dt

¼ �η2i x2i ð60bÞ

Optimizing over Δt corresponds to optimizing over the initial value of ηi, which 
we assumed is the same for all i. This optimization is performed via numerical 
simulations.

For the classical learning rules, we dropped equation (60b) and fixed ηi to the 
same value for all synapses.

Reporting Summary. Further information on research design is available in the 
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