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Abstract

A remarkable demonstration of the flexibility of mammalian motor systems is primates’
ability to learn to control brain-computer interfaces (BCIs). This constitutes a completely
novel motor behavior, yet primates are capable of learning to control BCIs under a wide
range of conditions. BCIs with carefully calibrated decoders, for example, can be learned with
only minutes to hours of practice. With a few weeks of practice, even BCIs with randomly
constructed decoders can be learned. What are the biological substrates of this learning
process? Here, we develop a theory based on a re-aiming strategy, whereby learning operates
within a low-dimensional subspace of task-relevant inputs driving the local population of
recorded neurons. Through comprehensive numerical and formal analysis, we demonstrate
that this theory can provide a unifying explanation for disparate phenomena previously
reported in three different BCI learning tasks, and we derive a novel experimental prediction
that we verify with previously published data. By explicitly modeling the underlying neural
circuitry, the theory reveals an interpretation of these phenomena in terms of biological
constraints on neural activity.

Introduction

A core property of mammalian motor systems is their capacity to adapt to novel environments.
Through learning, mammals are able to tailor their movements to an astonishing variety of
previously unexperienced tasks, often needing only minutes to hours of practice to do s0 1272 A
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particularly remarkable demonstration of this is offered by brain-computer interfaces (BCIs),
where the movement of a cursor on a screen is determined by cortical activity via an external
decoder.3%710% Despite the unfamiliarity of this motor task, human and non-human primates
are capable of learning to control BCIs under a wide range of conditions, often with little practice.
With a carefully calibrated BCI decoder, proficient control of the BCI cursor can be learned after
only minutes of experience.j..l..'.—.—'."..‘.l..‘.‘..‘._.—’.‘).. But even effectively random BCI decoders can be learned as
well, provided the subject undergoes a more extensive training procedure (e.g. a few
weeks).!2Z:18% The purpose of this study is to develop a theory of the algorithm(s) underlying

this learning process.

Previous models of motor cortical BCI learning have postulated that synaptic plasticity within
170203
required for a recurrent network to solve a BCI reaching task...==. 2 and the plasticity rules by which
that connectivity might be learned=-".==. 2 can account for slow and fast learning of different BCI
decoders. However, a fundamental limitation of synaptic plasticity is the curse of dimensionality:
motor cortex contains trillions of synapses, so learning via optimization of their weights would
entail solving an extremely high-dimensional optimization problem. In the best of cases - when
the objective function and its gradient are explicitly known - solving such problems typically
requires vast amounts of training data. In the case of BCI learning, the subject’s motor system has
no explicit access to the BCI decoder, so the relationship between internal neural activity and
movement — and, by extension, task performance - is unknown. This means that gradients of task
performance w1th respect to internal biological parameters must be estimated through trial and
2 which is notoriously slow in high dimensional spaces Moreover, this
estimation problem is made even more difficult by the biological constraints of neurons and
synapses, which impose noise in the learning signals available to each synapse..z..‘.l...cf‘y.. and preclude
synaptic plasticity rules from back-propagating gradients through the many layers of neural
circuitry.22 % (2727 These considerations suggest that BCI learning by synaptic plasticity in motor

cortex should be slow and highly limited.

Such slow and limited learning is inconsistent with the strikingly fast and flexible learning
observed in many BCI experiments, where non-human primates are observed to achieve
proficient control after only a single session of 10’s to 100’s of trials of practice.!! % 1452:28%,
Moreover, the hypothesis that motor cortex undergoes substantial synaptic changes over learning
is inconsistent with two additional observations. First, the statistical structure of motor cortical
activity remains remarkably conserved after learning: the repertoire of activity patterns employed
for BCI control is unchanged after training on a new decoder for a few hours, 8,225

single neuron tuning to manual reaches also remains largely unchanged after performing a BCI
reaching task..3...1..f—'.?. Second, learning a BCI task can occur without interfering with natural limb

control3! % (but see32 D)

Together, these observations suggest that synaptic plasticity in motor cortex is not the primary
mechanism underlying BCI learning, at least for the short timescales of learning observed in the
studies cited above. Instead, they suggest that the brain might take a more parsimonious learning
strategy, in which (1) learning is reduced to a low-dimensional optimization problem to enable
data-efficient learning, and (2) the motor cortical machinery for natural movements is kept intact.

A learning strategy that satisfies these two criteria is that of “re-aiming”!! 2122332 or “intrinsic

variable learnmg”.?’..‘? ................... & Under this strategy, the animal exploits the pre-existing motor cortical
circuitry by learning an association between intended BCI movements and internal motor
commands that would otherwise be used during natural motor behavior. For example, if the BCI
decoder were such that motor cortical activity generated during a leftward arm reach would lead
to an upward BCI movement, then the animal would learn to employ the motor command usually
reserved for leftward arm reaches to achieve this upward BCI movement (fig. 1a @). This strategy

satisfies criteria 1 and 2 above: the dimensionality of the learning problem is kept low because
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both BCI movements - typically movements of a 2D or 3D cursor — and natural motor
commands3Z412 are low-dimensional, and the motor cortical circuit can be kept intact because

the patterns of activity used for manual and BCI control are the same.

decoder. However, this evidence has typically been interpreted through the lens of a feed-forward
spatial tuning curve model of motor cortex, which does not take into account the influence of
additional motor variables beyond reach direction, and omits biological constraints on the
dynamics of cortical circuits. Here, we address these limitations by modeling motor cortex as a
non-linear recurrently connected network of neurons and modeling re-aiming as an optimization
over low-dimensional motor commands driving this network. Via simulation and analysis, we
derive predictions of this theory about how neural activity and behavior should change under a
pure re-aiming learning strategy, for three distinct BCI learning tasks. These predictions reveal a
potentially unifying explanation of disparate phenomena observed in BCI learning.

Results

2.1 Re-aiming as optimization of low-

dimensional inputs to motor cortex
We begin by modeling motor cortex as a recurrent neural network driven by an upstream
population of neurons (fig. 1b @),

N M
(’1.’1’@' Frag rin ;
P = + ZH-'?-_}- T + Z Wiiug, (1a)
4=1 J=1
ri = ¢(x;) = max(0, z;), (1b)

where rq, 1y, ..., ry and uy, U, ..., Uy, denote the firing rates of the motor cortical and upstream
neurons, respectively. A rectified linear activation function ®(+) is used to ensure that firing rates
are strictly non-negative. We assume that firing rates are low at the start of each trial of BCI
control, and thus set the initial conditions to 0, x;(t = 0) = 0. The weights Wi and W} represent the
strengths of the synaptic connections between neurons within motor cortex and from the
upstream population to motor cortex, respectively. To avoid making any strong commitments
about the structure of these connections, we use randomly connected networks throughout the
main text; simulations with other, more realistic, connectivity patterns yield similar results (see
Supplementary Figure S1@).

Next, we consider the upstream inputs to motor cortex, {u;()}. Inspired by recent models and
theories of motor cortex, 2% 462 we assume that the rich intrinsic dynamics of the local motor
cortical circuit suffice to generate the complex patterns of cortical activity necessary to execute a
given motor behavior. Which behavior is executed at a given time is selected by an upstream
“motor command” that drives motor cortex via these upstream inputs. These inputs are therefore
assumed to fluctuate on a much slower timescale than the motor cortical firing rates they drive. In
the analysis presented below, we take these to be constant in time; results for more complex input

dynamics are presented in Supplementary Materials Section S.1.6 (3.

Motivated by the fact that motor behaviors are generally low-dimensional, 22%41 % we assume

that the motor commands setting these inputs also have low dimensionality. We formalize this by
representing the motor command as a K-dimensional vector, 8 € R X, constituted by K < N
command variables 04, 0,, ..., Og. These command variables could correspond to extrinsic motor
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Figure 1

The re-aiming learning strategy.

a. Re-aiming strategy for BCI learning. If activity evoked by imagining a leftward planar movement moves the BCI cursor
right, then the animal learns to use this motor command to move the cursor to the right. Critically, the space of imagined
planar movements is low-dimensional.

b. Proposed model of re-aiming. Upstream inputs to motor cortex, u;, depend on a low-dimensional motor command vector,
6 (depicted here as two-dimensional). The BCI readout, y, is a 2D linear readout of motor cortical firing rates through a
decoding matrix, D. Re-aiming is formalized as identifying the motor command, 0, that ensures the BCI readout gets as close
as possible to a given target readout, y* (cf. equation 43).
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variables, such as reach speed or direction, or to more abstract motor-related information, such as
parameters of prepared, observed, or imagined movements. Fundamentally, we make no
commitments as to the nature of these intrinsic command variables beyond them influencing the
upstream activity driving motor cortex. This assumption is formalized by having the upstream
firing rates depend on the low-dimensional motor command via a set of encoding weights, Uj;,

K
ui(0) = c’i(ZUiﬂj)» (2)
j=1

The rectified linear activation function, @(+), is again used here to enforce non-negative firing
rates. For simplicity, we set the encoding weights Uj; randomly.

During BCI control, motor cortical firing rates, r(t) = (r{(t) -y () € R N, are directly translated to
behavior of an external effector (e.g. a cursor on a screen) through a linear readout,

y(t) =D (r(t) —c). (3)

As is typically done in BCI experiments with linear decoders, we include a constant offset ¢ to
center the strictly positive firing rates (see Methods Section 4.8 2). The readout, y(t), determines

behavior in the BCI task by specifying, for example, the position.‘.‘.zg‘)..’f‘.?@. or

velocity 12126214215 2492 of a cursor. Regardless of how exactly how the readout maps to
cursor movements, performing a given task (e.g. moving the cursor towards a target) demands a
particular sequence of target readouts, which we denote by y*(t). A subject learning to perform a
BCI task with a given decoder must therefore find a way to generate motor cortical activity

patterns that will produce these target readouts.

Our hypothesis is that subjects do so only by optimizing the upstream motor commands, 8. A key
feature of this learning strategy is that it reduces the dimensionality of the learning problem. That
reduction can be huge: from the number of synaptic weights to the number of command variables
specifying the motor command, K — a factor that can easily reach 10°. Moreover, not all K
command variables need to be optimized — we will argue below that, in certain settings, subjects
may be optimizing only a subset of the task-relevant command variables, sometimes as few as 2.
Such a reduction in the number of optimized parameters allows efficient learning in the absence
of gradient information. However, it also limits the space of available solutions to the BCI task.
Here we develop a formal theory of re-aiming to understand the implications of these limitations,
and, importantly, show that they are consistent with empirical data.

We analyze a simplified model of re-aiming in which the motor command, 0, is optimized to
produce a target readout, y*, at a single endpoint time, topq,

M
G(y*) = 9&1,13_’,'1ni;1_ Hy(ﬁmd:ﬂ) - y* : + l—r u;(0)2. (4)

? K i=1

The vector y(tanq; 0) is the BCI readout at time t,,,4 resulting from driving the model motor cortical
network with the motor command 6. The integer g denotes the number of command variables
optimized by re-aiming; for simplicity, the remaining command variables that are not optimized,
Oz 10 0s -5 x , are set to 0. The second term on the right-hand side quantifies the metabolic cost
of the upstream firing rates induced by the motor command, 0, included in the objective function

to ensure that only biologically plausible solutions are allowed.

following, we analyze these optimal motor commands to evaluate whether this hypothesis is
consistent with empirical observations from BCI learning experiments. The question of how
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subjects might learn these optimal motor commands is left for future work. We also briefly
acknowledge here that equation 4 constitutes an incomplete description of the true BCI learning
problem, since controlling the BCI effector’s movement typically requires specifying a whole
sequence of readouts over time (rather than at just one target time, t,,4) and relies on closed-loop
feedback of the effector’s state.22%~22% That said, this simplified model of re-aiming will prove
useful to intuit general principles of the re-aiming learning strategy, which, as we show in
Supplementary Materials Section S.1.6 (2, extend to more complex settings such as closed-loop

control. After all, being able to produce a target readout at a fixed future time is, loosely, a pre-
requisite to solving the full closed-loop control problem.

2.2 Re-aiming implies neural constraints on short-term learning

We begin by modelling the BCI experiment designed by Sadtler et al. (2014).!4% In this task,
subjects learn to perform center-out movements with a 2D cursor on a screen, with the velocity of
learning, subjects first engage in a “calibration task”, in which neural activity is recorded while the
subject passively views center-out cursor movements to eight radial targets (fig. 2a@). Sadtler et
al. observed that neural responses to these stimuli occupy a low-dimensional subspace, termed the
“intrinsic manifold”. This subspace - identified via linear dimensionality reduction - is
subsequently used to construct three types of BCI decoders.

First, a “baseline decoder” is constructed by fitting the decoding matrix, D, to the neural responses
from the calibration task such that these activity patterns suffice to move the cursor towards the
corresponding target in each trial. By construction, the baseline decoder is well aligned with the
intrinsic manifold, such that activity patterns within this subspace can produce large readouts
through this decoder (fig. 2b2). Sadtler et al. found that, with this baseline decoder, non-human
primate subjects can easily perform center-out cursor movements to the targets instantly, with no
learning time required.

Next, the decoding matrix of the baseline decoder is perturbed and the subject is prompted to
perform the same center-out cursor movements with the perturbed decoder. Two types of
perturbations are used, which either preserve or disrupt the baseline decoder’s alignment with
the intrinsic manifold: within-manifold perturbations (WMPs) randomly re-orient the baseline
decoder within the intrinsic manifold, whereas outside-manifold perturbations (OMPs) randomly
re-orient the baseline decoder outside the intrinsic manifold (fig. 2b ™2). WMPs alter how neural
activity within the intrinsic manifold subspace gets mapped to readouts, such that activity patterns
in this subspace suffice to perform the task. Under an OMP, on the other hand, activity patterns
within the intrinsic manifold are limited in the extent of readouts they can produce, so new
activity patterns outside of the intrinsic manifold are needed to proficiently perform the task.

Sadtler et al. found that with 1-2 hours of practice (a few hundred trials), non-human primates can
learn to successfully move the cursor to the targets with WMP decoders. In contrast, such short-
term learning does not typically occur with OMP decoders, under which relatively little
improvement is observed over this timespan. Here we argue that this limitation of short-term BCI
learning is consistent with a re-aiming learning strategy. This low-dimensional learning strategy
can account for the rapid learning achievable with WMPs, as well as the much slower learning
exacted by OMPs.

To demonstrate this, we follow the experimental protocol outlined above, but with simulations of
our motor cortical model (equations 1-2 @) rather than with animals. Our starting point, as with
the experiments, is to estimate the intrinsic manifold from motor cortical firing rates recorded
during the calibration task, in which the subject passively views center-out cursor movements to
each of the eight radial targets, y; .We simulated neural responses to these stimuli by driving the
model network with command variables set to the cursor’s constant velocity on each trial: the first
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Figure 2

BCI learning task of Sadtler et al. (2014).

a. Schematic of task structure. Subjects first engage in a “calibration task” whereby they passively observe center-out cursor
movements on a screen. Recorded neural activity in motor cortex is used to construct the baseline decoder and estimate the
intrinsic manifold. Subjects are then instructed to perform center-out cursor movements under BCI control, first using the
baseline decoder and then with a perturbed decoder, constructed by perturbing the baseline decoder. This perturbation can
either preserve the baseline decoder’s alignment with the intrinsic manifold (a within-manifold perturbation, or WMP) or
disrupt it (an outside-manifold perturbation, or OMP).

b. Low-dimensional illustration of the intrinsic manifold and its relationship to the decoders (defined in equation 3 %) used
in this task. Colored dots represent activity patterns recorded during different trials of the calibration task, colored by the
cursor velocity presented on that trial. The cursor velocities of these stimuli are depicted by color-matched arrows in the inset
in the top right, with the cursor targets used in the subsequent cursor control task depicted by green diamonds. The evoked
neural activity patterns reside predominantly within the two-dimensional plane depicted by the gray rectangle, the so-called
intrinsic manifold. Three hypothetical one-dimensional decoders are depicted by colored arrows, labelled baseline decoder,
WMP, and OMP. The corresponding component of the linear readouts, y;, from these decoders can be visualized by
projecting individual activity patterns onto the corresponding decoder vector. This is illustrated for one activity pattern
marked in green, whose projections onto each of the three decoders is shown. Because this activity pattern resides close to
the intrinsic manifold, it yields a large readout (i.e. far from the origin, at the intersection of the three decoders) from the
baseline decoder and WMP, which are both well aligned with the intrinsic manifold. In contrast, this activity pattern’s readout
through the OMP is much weaker (i.e. its projection onto this decoder is much closer to the origin), since this decoder is
oriented away from the intrinsic manifold. It is important to keep in mind that this illustration is a simplified cartoon of the
true task, in which the intrinsic manifold is higher-dimensional (8-12D instead of 2D) and the BCI task depends on two
readouts (y4, y,) rather than one.
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two command variables, 6; and 6, set to the coordinates of the given target, y;,and the remaining
command variables, 03, 0, ..., O, set to 0. We then used Principal Components Analysis (PCA) to
find the minimal subspace containing 95% of the variance over the resulting firing rates, which
we found to be 8-dimensional (fig. 3g ). We then defined the intrinsic manifold to be this
subspace and used it to construct the baseline decoder and the two types of perturbed decoders
(WMPs and OMPs), following the procedures of Sadtler et al. (see Methods Section 4.8 ().

Our hypothesis is that subjects learn to control the cursor by re-aiming with the same two
command variables driving the calibration task responses, 6; and 8,. We thus model BCI learning
by optimizing 6, and 6, with respect to the re-aiming objection function (equation 4%, with

K = 92),leaving the remaining command variables fixed to 0 as in the calibration task (65 =6, = ...
= 0 = 0). As only two variables need to be optimized, learning should proceed very efficiently. The
motor commands available for BCI control, however, are now severely constrained: only two
command variables are free to change, and they are bounded by the metabolic cost incurred by
the upstream firing rates (the second term in equation 4 ).

To see how this affects performance in this BCI learning task, we simulate re-aiming for WMP and
OMP decoders. For each decoder and target readout, we solve equation 4% with i _ 9 (setting
tend = 1000 ms, roughly matching the ~700-1000 ms target acquisition times observed in
experiments, and setting y to its largest possible value guaranteeing good performance with the
baseline decoder, cf. Methods Section 4.3 ) and drive the motor cortical network with the
resulting optimal motor commands, é(y;).The optimal motor commands for the baseline decoder
and an example WMP and OMP are shown in fig. 3a(2, as vectors in 6;-0, space. The readouts
produced by driving motor cortex with these motor commands, y(t...;8(y;)),are shown in adjacent
panels to the right (fig. 3b (@), with the corresponding target readouts underlaid. We find that, for
the baseline decoder and WMP, most of these optimally driven readouts reach their targets; for the
OMP, on the other hand, most of them fall far short. In fig. 3d 2, we repeat this simulation for 100
randomly sampled WMP and OMP decoders (see Methods Section 4.8 for the sampling
procedure, closely matching that used by Sadtler et al.), and in each case quantify re-aiming
success using the mean squared error between the optimally driven readouts and their
corresponding targets. We find that the mean squared error is consistently lower for WMP
decoders than for OMP decoders, as it was for the representative examples in fig. 3b (2.

Why does re-aiming fail to produce good readouts through OMPs? The answer lies in the
constraints the re-aiming strategy imposes on the set activity patterns available in motor cortex
for BCI control. To visualize and characterize these, we consider the reachable manifold : the set of
all motor cortical activity patterns at a fixed endpoint time, r(t,,q; €), that can be reached by a
motor command, 6, which is accessible by re-aiming; that is, with 6, = 0 for all k > 2 and with its
norm, ||0], constrained by the quadratic metabolic cost (which we enforce here with a hard upper
bound, ||| < Spax Set to the maximum norm of the re-aiming solutions to all sampled decoder
perturbations; cf. Methods Section 4.4(2). A large set of these accessible motor commands are
shown in fig. 3e(@, and the corresponding activity patterns they generated are shown to the right
in fig. 3f @, projected down to three dimensions via PCA. Note that, despite the accessible motor
commands being two-dimensional, the reachable manifold occupies more than two dimensions of
state space, due to non-linearities in the dynamics of the motor cortical network. The three-
dimensional projection in fig. 3f 2 in fact contains about 80% of the variance over the N -
dimensional activity patterns, revealing that the reachable manifold occupies in a moderately low-
dimensional linear subspace — higher than that of the motor commands giving rise to it (two-
dimensional) but significantly lower than that of its ambient state space (N -dimensional).

In fact, the reachable manifold is almost completely contained within the intrinsic manifold
subspace. This is quantified in fig. 3g @, which reveals that the eight dimensions of the intrinsic
manifold subspace capture almost 100% of the variance in reachable activity patterns. This is
unsurprising given that both the activity patterns in the reachable manifold and the activity
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Figure 3

Re-aiming with two command variables suffices to learn good
solutions for within-but not outside-manifold perturbations.

a. Optimal motor commands, d(y?) for the baseline decoder and one example WMP and OMP, plotted in 84-6, space. The
shade of green indexes the target readout, ¥} ,that each motor command is optimized for, corresponding to the target
readouts plotted in the adjacent panel (green diamonds in fig. 3b &).

b. Readouts generated at time t,,q by the optimal motor commands shown in the previous panel (fig. 3a @), i.e. ¥(tena: 8(y})
.Green diamonds mark the eight target readouts for the center-out cursor control task, set to the directions of the eight
radial cursor targets used by Sadtler et al. (2014).

c. Readouts from each of the reachable manifold activity patterns plotted in fig. 3f 3, with matched marker colors and sizes.
The diamonds denote the eight target readouts as in fig. 3b2. Note that the reachable readouts closest to the targets do
not necessarily match the readouts produced by the optimal motor commands (fig. 3b @), as the optimal motor commands
are optimized to minimize the metabolic cost of the upstream input as well the readout error (cf. equation 4%).

d. Distribution of mean squared error achieved by the optimal motor commands for 100 randomly sampled WMP’s and
OMP'’s. The mean squared error achieved by the optimal motor commands for the baseline decoder from which these
perturbations are derived is marked by the vertical dashed black line. Target readouts are unit norm, so a mean squared
error of 1.0 is equivalent to producing readouts at the origin.

e. Motor commands covering a range of angles on the 8; - 8, plane and 5 norms, |@]] € {0.1, 0.4, 0.7, 1.0, S5}, With 5,0, =
1.25 (see Methods Section 4.4 & for how this was chosen). The motor commands used to simulate the calibration task are
indicated by the pink/purple squares. All other command variables, 03, 8y, ..., By, are fixed to 0.

f. Activity patterns in the reachable manifold at endpoint time to, = 1000ms. Each ring of activity patterns is generated by the
corresponding ring of color- and size-matched motor commands in the previous panel. This ensemble of N - dimensional
activity patterns is projected onto its top three principal components. The black line is drawn to facilitate visualization of the
3D structure of this conical manifold. Note that the points in this plot should not be thought of as spatiotemporal trajectories
of activity; rather, they depict activity patterns at the same timepoint generated by different motor commands.

g. Purple curve: cumulative variance in reachable manifold activity patterns along each intrinsic manifold dimension
(equation 25 (2). Gray curve: cumulative variance in calibration task neural responses. By construction, the intrinsic manifold
contains 95% of the total variance of the calibration task neural responses (Methods Section 4.8%).
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patterns evoked by the calibration task — which define the intrinsic manifold - are generated by
similarly low-dimensional motor commands 6, in which only two command variables (8¢, 6,) are
non-zero. Fig. 3e @ shows this directly by overlaying the calibration task inputs on the accessible
motor commands. Ultimately, what this entails is that there are virtually no reachable activity
patterns outside of the intrsinsic manifold; no activity patterns outside of the intrinsic manifold
are accessible via re-aiming. This explains why this learning strategy would fail to produce large
readouts through OMPs.

To confirm this, in fig. 3c @ we visualize the set of readouts reachable by re-aiming, for the
baseline decoder, WMP, and OMP from fig. 3a @ and 3b . Specifically, we plot the readouts from
each of the reachable activity patterns shown in fig. 3f 2, providing a comprehensive
visualization of the space of readouts that can be reached through each decoder by re-aiming. As
expected from the fact that the reachable manifold resides solely within the intrinsic manifold, we
see that the readouts reachable under the baseline and WMP decoders cover a wider area than
those reachable under the OMP decoder. The targets are thus enclosed by the baseline and WMP
decoder reachable readouts, but remain out of reach of the OMP decoder. The re-aiming learning
strategy therefore fails to solve the task with this OMP decoder, as none of the motor commands
accessible under this learning strategy can reach the target readouts.

We conclude that re-aiming with only two variables (6, and 6,) can lead to successful BCI control
with WMP decoders but not with OMP decoders. This offers an explanation for why only WMPs
are learnable on the short timescale of a single experimental session. Because such low-
dimensional re-aiming can’t succeed for OMPs, subjects must resort to an alternative — and
presumably higher-dimensional - learning strategy, explaining why it requires substantially more

training to learn these.!2%

2.3 Re-aiming predicts biases in short-term learning

A close look at fig. 3c (@ reveals an important difference between the baseline and the WMP
decoders: the readouts reachable with the baseline decoder cover the readout space symmetrically
while those reachable with the WMP decoder do not (compare figs. 3ci @ and 3cii@). In other
words, larger readouts are reachable in some directions than in others. Such biases in reachable
readouts are not unique to this particular WMP decoder; fig. 4a ™ reveals similar asymmetries in
the readouts reachable through three other representative WMP decoders.

The direction of this bias is moreover predictable: typically, the largest reachable readouts are in
the direction of D (arrow overlaid on each plot), where 7 is the centroid of the reachable
manifold. This bias arises because of the non-negativity of firing rates, which permits the
population firing rate, r, to grow widely away from the origin, but shrink towards the origin only
up to a point, where it is truncated by the non-negativity. It is this property that endows the
reachable manifold its conical structure (fig. 3f @), whose centroid, 7*, dictates the direction in
which firing rates can grow the most under the re-aiming strategy. The projection of this direction
through a given decoder, D ,thus determines the direction in which the largest readouts can be
reached by re-aiming (see Supplementary Materials Section S.1.2 % for a more detailed analysis).
In Supplementary Figure S1d 2, we show that - as long as firing rates are constrained to be non-
negative (Supplementary Materials Section S.1.3 @) - this bias arises across a large variety of
motor cortical connectivity patterns and dynamics, suggesting that it is an unavoidable
consequence of the re-aiming learning strategy. The absence of such a bias in experimental data
would therefore provide strong evidence against this theory of BCI learning.
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Figure 4

Re-aiming predicts biases in readouts after short-term
learning of within-manifold perturbation (WMP) decoders.

a. Readouts reachable through four representative WMP decoders, using the same color conventions as in fig. 3¢®. In each
case, the four loops correspond to four distinct motor command norms, chosen to aid visualization. The leftmost panel
corresponds to the example WMP decoder shown in fig. 3cii? . The projection of the reachable manifold centroid, 1T ,is
overlaid as an open arrow, arbitrarily rescaled for visibility.

b. Maximal cursor progress in each target direction as a function of angle with [}, for the four example WMP decoders in
panel a.

c. Maximal cursor progress in each target direction as a function of angle with TJ¥ ,for all 100 sampled WMPs (Pearson r =
-0.66, p <.001, N = 8 target directions x 100 sampled WMPs = 800). As was done for the experimental data in the next panel,
the reachable manifold centroid, I*, is estimated using simulated mean firing rates during baseline decoder control (see
Methods Section 4.6 ).

d. Maximal cursor progress in each target direction as a function of angle with T}y ,for all 46 sessions of WMP learning
across three monkeys (Pearson r = -0.41, p <.001, N = 8 target directions x 46 experimental sessions with WMP control = 368).
Maximal cursor progress is estimated using the average cursor progress over the 50 contiguous trials with lowest acquisition
times. The reachable manifold centroid, I, is estimated using mean firing rates over trials of baseline decoder control (see
Methods Section 4.6 2).
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To quantify this experimental prediction, we used the “cursor progress” metric, p, introduced by
Golub et al. (2018) to measure the degree to which a given readout, y, pushes the BCI cursor in a
given target direction, y*,

&

X Yy 5
PYY) =Y T (5)
Iyl
We then predict the maximum achievable cursor progress in each target direction,
P (y") =max p(y(fena:0):¥7),
6, .62 (6)

subject to ||€] < Smax,

where, as above, 6, and 0, are the two command variables optimized by re-aiming and s, is the
bound on motor command norms imposed by the metabolic constraint in equation 4% (cf.
Methods Section 4.42). In fig. 4b 2, we plot this maximal cursor progress for each target
readout, p™* (y!),as a function of the target readout’s angle from )y ,for each of the four example
WDMPs. The negative correlation in each case confirms our above observation: higher cursor
progress is reachable in target directions more aligned with ¥ .In fig. 4c@, we plot the maximal
cursor progress in each target direction for all 100 sampled WMP decoders, revealing a
statistically significant negative correlation across all sampled decoders (Pearson r = -0.66, p <
.001).

Does this predicted negative correlation also hold in the empirical data? To test this, we estimated
the maximal cursor progress and reachable manifold centroid in each experimental session of
WMP control. Maximal cursor progress in each target direction, p™*(y}),was estimated using the
average cursor progress in that target direction over the 50 contiguous WMP control trials with
fastest target acquisition times (see Methods Section 4.6(%). The reachable manifold centroid, 1
,was estimated using mean motor cortical firing rates during the block of baseline decoder control
(see Methods Section 4.6 @), which in our model is highly correlated with the true reachable
manifold centroid. We then replicated fig. 4c @ by plotting the empirically measured maximal
cursor progress for each target direction as a function of the angle between the target direction
and Pt ,using our empirical estimates of maximal cursor progress and 7 from each
experimental session. The data over all sessions are plotted in fig. 4d (2, revealing a significant
negative correlation (Pearson r = -0.41, p <.001) akin to that observed in our model. This confirms
the existence of a statistically significant bias in the same direction predicted by our model of re-
aiming.

2.4 Long-term BCI learning by generalized re-aiming

Although non-human primates struggle to control OMP decoders within a single experimental

session (a few hundred trials), 4. they can in fact learn to do so when trained over multiple days

(thousands of trials).'®%. In this long-term learning paradigm, new motor cortical activity patterns
emerge that allow the subjects to achieve good performance with OMP decoders. Could re-aiming

play a role in the emergence of novel activity patterns over these longer timescales?

Since re-aiming with the two command variables evoked by the calibration task, 6; and 6, is not
sufficient to produce the activity patterns required for OMP control, additional command
variables will be required. We refer to a learning strategy that uses additional command variables
as “generalized re-aiming”, and demonstrate below that this strategy can in fact achieve good
performance with OMP decoders. Moreover, it can account for why learning is slower for these
decoders: the search for optimal motor commands takes place in a higher-dimensional space
beyond the narrow 2D space of command variables evoked by the calibration task.
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To simulate generalized re-aiming, we simply increase the number of command variables used for
fig. 5a@ we plot the mean squared error achieved by the re-aiming solutions for each OMP
decoder for each value of j .We find that as j increases, a lower mean squared error is achieved,
demonstrating that this learning strategy can be effective for OMP learning. For this model motor
cortical network, re-aiming with about 15-20 command variables suffice to achieve a mean
squared error as low as that achievable with WMP decoders using j — 9.For other motor cortical
models with different connectivity, fewer than 10 command variables suffice (Supplementary
Figure S1e@). These values of j comfortably fall in the range of the total number of extrinsic
motor variables known to influence motor cortical activity..??.‘.@.‘.??@. However, they may be too
limitations (e.g. on memory, motivation, and noise), which mlghtexplamwhy primates seem to
only be able to learn to control OMP decoders when provided with a structured incremental

training paradigm.’2%.

Why generalized re-aiming works can be understood by looking at how increasing i changes the
set of activity patterns reachable by re-aiming. A larger number of learnable command variables
permits a more diverse set of upstream inputs, which in turn implies that a more diverse set of
activity patterns are reachable. This diversity is quantified in fig. 5b @ by the participation ratio
of the covariance of the reachable manifold (see Methods Section 4.4(%, equation 17 3). The
participation ratio measures the extent to which variability is spread out over many dimensions

as j rises, the participation ratio of the reachable manifold covariance increases, indicating it
occupies more and more dimensions of state space. That said, the participation ratio does begin to
saturate at around j — op,reflecting the fact that the reachable manifold is ultimately limited by
the smooth dynamics of the motor cortical network.

This expansion in the reachable manifold leads to the inclusion of new activity patterns that are
useful for OMP control. We can see this in fig. 5¢ @, which shows the readouts reachable through
the same OMP visualized in fig. 3ciii @ . The readouts reachable under different values of i are
plotted with different colors, revealing how re-aiming with a larger number of command variables
allows the target readouts to be reached. As the reachable manifold expands, more and more
activity patterns occupying dimensions relevant to OMP control become reachable, such that a
wider set of readouts become reachable.

2.5 Illusory credit assignment by generalized re-aiming

We now turn to a different class of BCI decoder perturbation, termed the credit assignment
rotation perturbation.?!%. :
as summing together the N columns of the decoding matrix D (termed the “decoding vectors®),
each one weighted by the activity of the corresponding neuron (fig. 6a @, top). Under a credit
assignment rotation perturbation, the decoding vectors of a random subset of neurons (the
“rotated neurons”) are rotated by a given angle (fig. 6a ™, bottom). Errors induced by this decoder
perturbation can be corrected by adjusting only the responses of the rotated neurons, while
leaving the responses of the “non-rotated” neurons unchanged. But doing so would require solving
the so-called credit assignment problem:?.?.@. identifying which neurons’ decoding vectors were
rotated — a tall order given that the subject has no explicit knowledge about the BCI decoder or the

few motor cortical neurons (among millions) it records from.

Despite these challenges, multiple studies have shown that non-human primates can learn to
control such decoder perturbations..1..1.@.’.1.39.’9.1.9. These studies used the same 2D cursor control
task described above (fig. 2a(2), in which subjects first control a BCI cursor using a baseline
decoder fit to motor cortical activity recorded during a calibration task, and then learn to control

the cursor using a perturbed decoder with rotated decoding vectors. Subjects’ motor cortical
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Figure 5

Generalized re-aiming produces good solutions for outside-manifold perturbations (OMPs).

a. Mean squared error achieved by generalized re-aiming solutions for all sampled OMP decoders, plotted as a function of
the number of command variables used for re-aiming, f¢ . Lighter blue points show the mean squared error for individual
OMP decoders, darker open circles show the median over all sampled OMPs. For reference, dotted horizontal lines show the
mean squared error achieved by re-aiming solutions with ' = 2 for the baseline decoder (black) and for WMP decoders
(red); for WMP decoders, the median over all sampled decoders is shown with shading marking the upper and lower
quartiles (corresponding to the values plotted in the red histogram in fig. 3d 2.

b. Participation ratio of the reachable manifold covariance (a measure of the effective dimensionality of the reachable
manifold; see Methods Section 4.4, equation 16 (2) as a function of the number of command variables used for re-aiming,
K.

c. Convex hull of OMP readouts reachable with different number of command variables, [ ,for the same OMP decoder
shown in fig. 3c 2. The innermost ring (K =2) corresponds to the convex hull of the reachable readouts plotted in fig.
3ciii@.
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Figure 6

Generalized re-aiming solutions reproduce motor cortical tuning
changes observed under credit assignment rotation perturbations.

a. Alinear BCI readout (equation 32) can be interpreted as summing together columns of the decoding matrix D, each
weighted by the firing rate of the corresponding neuron (the centering term ¢ has been dropped here for simplicity). These
columns are called the neurons’ decoding vectors, and they are plotted on the axes below the equation. Under a credit
assignment rotation perturbation, the decoding vectors of a subset of neurons (marked in purple) are rotated by a fixed
angle (in this case 75° counter-clockwise). The neurons’ decoding vectors under this perturbed decoder are shown by dashed
green arrows. The neurons whose decoding vectors are rotated are termed “rotated” neurons (in purple), the rest of the
neurons that are recorded by the BCI are termed “non-rotated” neurons (in pink). Neurons that are not recorded by the BCI
(i.e. whose decoding vectors are just a vector of 0's, not depicted here) are termed “indirect” neurons.

b. Tuning curve of a representative example rotated neuron of our model, during cursor control with the baseline decoder
(black) and with a credit assignment rotation perturbation (green). The dots show the time-averaged activity over ty g =
1000ms while the motor cortical network is driven by the re-aiming solutions for each respective decoder, using & — 2 for
the baselme decoder and f{ = ¢ for the perturbed decoder. Curves show tuning curves fit to these responses (Methods

_) The vertical dotted gray lines mark the preferred direction under each decoder, with an arrow labeling the
change in preferred direction.

c. Tuning curve of a representative example non-rotated neuron of our model, under the same two decoders. All conventions
exactly as in the previous panel. Note that this neuron’s preferred direction changes less than that of the rotated neuron in
the previous panel.

d. Mean squared error achieved by generalized re-aiming solutions for 100 random credit assignment rotation perturbations,
plotted as a function of the number of command variables used for re-aiming, K .Light green dots denote individual decoder
perturbations, overlaid darker open circles denote medians over all 100 sampled decoder perturbations. Black dotted
horizontal line shows the mean squared error achieved by re-aiming solutions to the unperturbed baseline decoder with
K=2-

e. Average change in preferred direction of rotated, non-rotated, and indirect neurons between simulated cursor control with
the baseline decoder and each perturbed decoder, plotted as a function of the number of command variables used for re-
aiming, K .For each decoder perturbation, the changes in preferred direction are averaged over all neurons in each sub-
population, and the median over all sampled perturbations is plotted. Error bars mark the upper and lower quartiles. Positive
angles indicate a counter-clockwise rotatation, consistent with the direction of rotation of the decoding vectors of the rotated
neurons.
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activity changes after learning to control the perturbed decoder, and this can be characterized by
the change in neurons’ tuning to cursor direction during BCI control with the baseline and
perturbed decoders. Each of these studies found that, after learning, tuning curves of both rotated
(fig. 6b @) and non-rotated neurons (fig. 6¢ @) shift in the same direction as the decoding vectors.
For example, if the decoding vectors are rotated counter-clockwise, tuning curves also shift
counter-clockwise. Notably, however, tuning curves of rotated neurons shift more on average than
those of non-rotated neurons (compare the simulated examples in fig. 6b(# and fig. 6c2). This
observation could be interpreted to support the hypothesis that the motor system is able to solve
the credit assignment problem: it has identified which neurons’ decoding vectors were rotated,
and accordingly modified their responses more so than the others’ (e.g. via Hebbian
plasticitylz..@.). Here we consider an alternate hypothesis: that this phenomenon could arise from
generalized re-aiming, a global learning strategy entirely unconcerned with modifying individual
neurons.

To test this, we follow the same procedure as above: we simulate motor cortical activity during the
calibration task, use it to construct a baseline decoder, and then sample 100 random credit
procedures of Zhou et al. (2019), the perturbed decoders are constructed by applying a 75°
counter-clockwise rotation to a random selection of 50% of the columns of the decoding matrix, D.
For each decoder, we then compute the optimal motor commands for each target (equation 42)
and drive the network with them to simulate center-out cursor movements learned by re-aiming.
By comparing neurons’ directional tuning under the optimal motor commands for the baseline
decoder and the perturbed decoder, we can determine how directional tuning would change after

learning by re-aiming.

Reflecting the fact that the baseline decoder is easy to learn, we used j — 9 to compute re-aiming
solutions for it. For the perturbed decoders, we simulated generalized re-aiming with 2 to 6
command variables. We find that re-aiming with about f — ¢ command variables is necessary to
achieve the same performance as with the baseline decoder (fig. 6d ). That said, re-aiming with
only i — o suffices to achieve a relatively low mean squared error (around 0.1; compare to fig.

3d @), suggesting ordinary 2D re-aiming could still be a viable learning strategy for this task.

As in the experiments, we measured neurons’ preferred directions (i.e. the direction at the tuning
curve peak, cf. fig. 6bZ and fig. 6c2) under the optimal motor commands for the baseline
decoder and for each perturbed decoder, and calculated each neuron’s change in preferred
direction. We then averaged the change in preferred direction separately over rotated and non-
rotated neurons. Figure 6e @ shows the median of this average change in preferred direction over
all sampled perturbed decoders, as a function of the number of command variables used for re-
aiming, i .Consistent with the experimental results, we find that re-aiming leads to a global
counter-clockwise shift in motor cortical tuning curves congruent with the rotation of the
decoding vectors. Importantly, we find that generalized re-aiming with 7 - 9 command variables
replicates the credit assignment effects seen in the experiments, whereby the preferred directions
of rotated neurons shift on average more than their non-rotated counterparts. This is true despite
the fact that the credit assignment problem was never truly solved: no neuron-specific parameters
were modified under this learning strategy.

Because we have complete access to the full population of neurons in our motor cortical model, we
can also measure tuning changes in the sub-population of “indirect” neurons not recorded by the
BCI (i.e. neurons whose decoding vectors in D comprise a vector of 0’s). These are plotted in fig.

6e (@ with a gray line. Under generalized re-aiming, indirect neurons’ tuning curves shift less on
average than rotated neurons’. Whether they shift more or less than non-rotated neurons’ tuning
curves, on the other hand, depends on the specific value of j and varies considerably across
different perturbed decoders.
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These two results are roughly consistent with the observations of Zhou et al. (2019), who examined
this phenomenon in two non-human primate subjects. They found that, in both subjects, the
average change in tuning curves was larger for rotated neurons than for indirect neurons, as
predicted by our model. But when comparing non-rotated neurons to indirect neurons, they found
that the average change in tuning curves was larger for the former in one subject and larger for
the latter in the second subject, consistent with the variability observed in our simulations. To our
knowledge, this is the only experimental study on indirect neurons’ responses before and after
learning a credit assignment rotation perturbation; more studies are needed to fully test the
predictions of our model.

An important additional prediction of our model is that credit assignment effects do not arise
under ordinary 2D re-aiming (fig. 6e ™2, i — 9). This is consistent with prior modeling work
showing that two-dimensional re-aiming does not suffice to account for empirically observed
changes in motor cortical tuning curves after learning a credit assignment perturbation..?!?..'.—.—’."..
Interestingly, it is also consistent with recent experimental work showing that differences between
rotated and non-rotated neurons seem to arise gradually over multiple days of training..@l.@. Our
model suggests that this timecourse of learning reflects a change in learning strategy, whereby
subjects initially engage in low-dimensional re-aiming to rapidly reduce gross cursor movement

errors, and then turn to generalized re-aiming to further refine

BCI control over a longer timescale, resulting in more marked credit assignment effects later in
learning. We briefly remark, however, that Zhou et al. did not observe changes in the preferred
directions of non-rotated neurons after the first day of training. In our simulation, on the other
hand, the non-rotated neuron tuning curves shift back towards their starting values under the
baseline decoder as the number of re-aimed command variables increases (see decreasing pink
line in fig. 6e ). This discrepancy between our model and the experimental data could be
explained by subjects using suboptimal re-aiming solutions deviating from the optimal one
predicted by our model, possibly due to the difficulty of solving this optimization problem when
K = 2,0r due to the lack of motivation to find it (since even g — o suffices to achieve relatively
low error, fig. 6d ). This could also explain why the amount of change in preferred directions is
significantly larger in our simulation (30 - 60°) than in the experimental data (20 - 40°).

2.6 Operant conditioning of individual neurons by re-aiming

The third and final BCI task we study is the operant conditioning of individual motor cortical
neurons. In this task, subjects are rewarded for simply increasing the activity of one group of
motor cortical neurons over another.28Z:232-56 The fact that primates and rodents are capable
of solving such tasks is often cited as evidence that the motor system can learn to specifically
modulate the responses of individual neurons. Classical models of single-neuron operant
conditioning have argued that these changes happen via reward-modulated plasticity at their
synapses.l?@.’.@z-@. Here we explore the extent to which these observations could instead be

explained by re-aiming.

We begin by considering the classic operant conditioning task of Fetz and Baker (1973). In this
task, the subject is rewarded for increasing the firing rate of one neuron - termed the “target”
neuron — while simultaneously decreasing that of another neuron - termed the “distractor”
neuron. Remarkably, Fetz and Baker found that non-human primates are often able to do this with
only minutes of practice. Moreover, the identity of the target and distractor neurons could be
flipped midway through a recording session, and the subject would subsequently adapt to this
new target assignment within tens of minutes, increasing the activity of the neuron whose activity
was previously suppressed. Could low-dimensional re-aiming explain this behavior?
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The answer depends on the reachable manifold. If the reachable manifold contains activity
patterns in which neuron a is more active than neuron b, as well as activity patterns in which
neuron b is more active than neuron q, then good re-aiming solutions will exist for both target
assignments. This is illustrated in fig. 7a 2, which shows two neurons’ endpoint firing rates,
ri(teng)> at various points on the reachable manifold, following the same conventions as in fig.
3f@. On this plane, activity patterns below the diagonal are rewarded when neuron a is the target
neuron; activity patterns above the diagonal are rewarded when neuron b is the target neuron.
Because there are reachable activity patterns on both sides of the diagonal, good re-aiming
solutions exist for both target assignments. We calculated optimal re-aiming solutions for each
target assignment by maximizing the firing rate difference between the target and distractor
neurons, subject to a metabolic cost (equation 29 (3). The activity produced by these optimal
solutions are marked by the open red and green circles. These evidently satisfy each target
assignment, with neuron a achieving a higher firing rate under one re-aiming solution (green
circle) and neuron b achieving a higher firing rate under the other (red circle).

More generally, we can think of this plot as a particular two-dimensional projection of the
reachable manifold, specified by the pair of neurons a and b. A given neuron pair thus admits
good re-aiming solutions for this task whenever the corresponding projection of the reachable
manifold covers the appropriate side(s) of the diagonal. Framed in this way, it is easy to intuit that
for most random pairs of neurons a good solution will generally exist for at least one target
assignment — random two-dimensional projections of the reachable manifold are unlikely to lie
exactly on the diagonal. We verify this intuition by sampling 500 random pairs of neurons from
our model motor cortical network (see Methods Section 4.10 2) and checking whether the re-
aiming solutions for the two target assignments produce higher firing rates for the target neuron
than for the distractor neuron. The difference in the two neurons’ firing rates produced by the
optimal re-aiming solutions are plotted in fig. 7b ™. For most neuron pairs, we see that at least
one of the two neurons can be activated more than the other. In many cases, both neurons can be
activated more than the other, meaning that both target assignments could be learned by re-
aiming.

For some neuron pairs, however, the optimal re-aiming solutions do not produce a large
difference in firing rates under either target assignment. These infelicitous neuron pairs are ones
where the two neurons are highly correlated across all activity patterns on the reachable
manifold, such that the relevant projection doesn’t deviate strongly from the diagonal and no good
re-aiming solutions exist. One such example is shown in the inset on the right, where the
reachable manifold lies largely right on the diagonal, and thus both re-aiming solutions lead to
near-0 difference in firing rates. A different kind of exampe is shown in the inset on the top, where
the two neurons are correlated in such a way that the reachable manifold resides on only one side
of the diagonal. In this case, a good re-aiming solution exists for one target assignment but not for
the other. These observations reveals a tight relationship between neural correlations and operant
conditioning performance: the more correlated a pair of neurons is across reachable activity
patterns, the more difficult it should be to selectively activate one more than the other by re-
aiming.

Is this prediction of our model consistent with experimental observations? Without empirical
access to the reachable manifold, we cannot directly measure correlations across reachable
activity patterns. But if we assume that neural activity during a prior “calibration task” is driven
by the same command variables used subsequently for re-aiming — as we did in our simulation of
WMP/OMP learning -, then we should expect neural correlations during this calibration task to
approximately match correlations across the reachable manifold used for re-aiming. This predicts
that neural correlations during a prior calibration task should be predictive of subsequent operant
conditioning performance. This prediction is in fact consistent with observations from a study by
Clancy et al. (2014), in which the conditioned neurons’ correlation was measured during a period
of spontaneous behavior (the “calibration task”) just prior to performing operant conditioning.
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Figure 7

Operant conditioning of individual neurons by re-aiming.

a. Activity of two model neurons at various points on the reachable manifold, at to,q = 1000ms with K — 2, following the
same conventions as fig. 3f(2. As in that figure, each ring of activity patterns is generated by the corresponding ring of color-
and size-matched motor commands in fig. 3e & . Activity patterns below the diagonal are ones where neuron a is more active
than neuron b, satisfying the task demands when neuron a is the target neuron; the reverse holds for activity patterns above
the diagonal. The green and orange open circles denote the activity patterns produced by the optimal re-aiming solutions for
the two respective target assignments. Note that, due to the metabolic cost term in the re-aiming objective function, these do
not necessarily correspond to the points on reachable manifold that are furthest away from the diagonal.

b. Difference in activity produced by re-aiming solutions for each target assignment (at time t,,q = 1000 ms, the endpoint
time the re-aiming solutions were optimized for), for 500 random pairs of neurons from the same model motor cortical
network used in previous simulations. Each dot corresponds to one pair of neurons. The pair of neurons shown in previous
panel is marked by an open circle. Two additional examples are marked by open circles. Insets show the activity of those
neuron pairs at various points on the reachable manifold, following same conventions as the previous panel.

c. Difference in activity (at t,,q = 1000 ms) produced by the re-aiming solutions optimized for neuron a being the target, for
the same 500 random pairs of neurons, plotted as a function of the correlation between the two neurons during simulated
spontaneous behavior. The three example pairs of neurons highlighted in the previous panel are again highlighted here with
open circles. A quantitatively similar trend is observed for rj, - r, with re-aiming solutions optimized for neuron b being the
target (data not shown).

d. Activity of indirect neurons (at t,,q = 1000 ms) for the same neuron pairs and re-aiming solutions in previous panel, plotted
as a function of correlation with neuron a during simulated spontaneous behavior. A quantitatively similar trend is observed
for correlations with neuron b with re-aiming solutions optimized for neuron b being the target (data not shown).
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Consistent with our model’s prediction, they observed that the stronger the correlation during
spontaneous behavior prior to operant conditioning, the worse the mouse tended to perform the
subsequent operant conditioning task.

To quantify this prediction, we simulated the experiment of Clancy et al. We first simulated motor
cortical activity during spontaneous behavior by driving the model motor cortical network with
randomly sampled motor commands in which only two command variables, 6; and 6,, were
allowed to vary (all other command variables were set to 0). We sampled 50 such motor
commands to simulate 50 bouts of spontaneous activity (cf. Methods Section 4.10%). For each
conditioned pair of neurons, we measured their correlation coefficient over all activity across the
50 bouts, and then simulated re-aiming with the same two command variables, 6, and 6,. We
quantified the efficacy of re-aiming with the firing rate difference between the target and
distractor neurons at the optimized endpoint time, t,,4. Mirroring the experimental results of
Clancy et al.,, we find that the spontaneous activity correlations are weakly but significantly
predictive of re-aiming efficacy (fig. 7c ). We briefly remark here that the operant conditioning
task of Clancy et al. differs from our simulations in that pairs of ensembles of up to 11 neurons
were conditioned, rather than pairs of single neurons. In Supplementary Materials Section
S.1.42, we show that the same results hold in this setting as well.

Finally, we consider what happens to the “indirect” neurons — neurons that are neither a target
nor a distractor. Clancy et al. observed that, after learning, indirect neurons strongly correlated
with the target neuron during spontaneous behavior remained highly active during performance
of the subsequent operant conditioning task (supplementary figure 9a in®2%). This is consistent
with our model of re-aiming, in which re-aiming tends to drive indirect neurons proportionally to
their correlation with the target neuron during spontaneous behavior (fig. 7d @). Our model is
not, however, consistent with another observation by Clancy et al.: indirect neurons that were
moderately correlated with the target neuron were highly active only in the early stages of
learning, but by the end of learning became silent. A possible explanation for this inconsistency is
that subjects re-aim with f - 2 command variables. If spontaneous behavior during the
calibration period were driven by more than 2 command variables, we would expect subjects to
re-aim with more as well. Given the complexity of spontaneous behavior, this is a reasonable
explanation, but we leave for future work a more comprehensive study of generalized re-aiming
with f - 2 command variables in operant conditioning tasks.

Discussion

In this study, we proposed and investigated the hypothesis that motor cortical BCI learning
proceeds via a learning strategy we refer to as generalized re-aiming. Under this strategy, internal
motor commands are manipulated to control the BCI using the same motor cortical circuitry used
during natural motor behaviors. Because only a few command variables need to be manipulated
to achieve this goal, learning can proceed rapidly and flexibly, and, because the motor cortical
circuitry is conserved, the operation of motor cortex during natural motor control is conserved as
well.

To study the neural and behavioral consequences of this learning strategy, we formulated a
mechanistic model of re-aiming in which the internal command variables specify upstream inputs
to motor cortex. By analyzing how these inputs get transformed into motor cortical activity
patterns through the circuit’s nonlinear recurrent dynamics, we were able to demonstrate that re-
aiming can in fact account for a wide range of experimental observations about BCI learning. This
model can explain the different timescales of learning required for different BCI
decoders,J..A.'.E—/.’T.’J.?..‘:—’.‘T. selective changes in motor cortical tuning curves over learning,.?.l..q"..’.l.2....C.’.‘,..’§.1....Cf’y..
and the seemingly astonishing ability of mammals to flexibly modulate the activity of single
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neurons via operant conditioning.gg.@.'ﬁg."C.f’,..’.?.su?. The model also makes a novel experimental
prediction about behavioral biases during short-term learning (fig. 42 ), which we were able to
corroborate in previously published data.'"> The success of this model at replicating these
empirical phenomena provides an explanation in terms of the biological dynamics of neural

circuits.

3.1 Intrinsic variable learning vs. individual neuron learning

An important debate in the BCI learning literature has been whether human and non-human
primates are able to precisely learn and control the contribution of individual neurons to a given
BCI decoder readout — the so-called “individual neuron learning” hypothesis. Several studies have

been directly aimed at testing this hypothesis, leading to evidence in favor....=2. %2220 20 and
against it.34%.35% The alternative hypothesis is often referred to as “intrinsic variable
learning”,?.'.—.—’.".. whereby subjects learn to control the BCI using the same constrained set of activity

patterns usually used for natural motor control, unable to independently control the activity of
single neurons. Our model of re-aiming is a particular formalization of this latter hypothesis, with
the command variables 8.6z,. .., fl; acting as the so-called intrinsic variables.

Our simulations of generalized re-aiming show that many experimental results traditionally
attributed to some form of individual neuron learning.....=.22"2 can be accounted for by intrinsic
variable learning. In particular, even classical single neuron operant conditioning results can be
reproduced by our model. Our simulations show that the dynamics of recurrently connected
neural circuits are capable of generating the activity patterns required by these BCI tasks, without

the need to optimize parameters specific to individual neurons or synapses...G.8  This suggests

. . . . . cps . 7 7 .
caution in underestimating the role of macroscopic cognitive strategies®?"2:’%". when observing

what may look like highly specific, microscopic, changes to the activity of single neurons.

3.2 The role of synaptic plasticity in BCI learning

All the results we replicated here have been previously replicated by various models of synaptic
plasticity within motor cortex. As argued in the introduction, however, learning by optimizing
synaptic parameters entails solving an extremely high-dimensional optimization problem with no
access to explicit gradients, which would limit learning to be slow and brittle. Several of these
previously proposed models worked around this problem by using small and simplified feed-
forward models of motor cortex'.Z:%8% or biologically implausible learning rules...=.o%0 sl
few have demonstrated that, for simple tasks like operant conditioning, biologically plausible
learning rules can in fact succeed in biologically relevant regimes despite these obstacles.'8 %67,
However, to our knowledge, none have comprehensively accounted for all three sets of
experimental results considered here, including the observed effects on non-recorded neurons

and the dependence of operant conditioning performance on neural correlations.

That said, the present study does not by any means rule out the possibility that synaptic plasticity
within motor cortex may play an important role in BCI learning; rather, it reveals the surprising
capabilities of a pure re-aiming strategy. The true mechanisms underlying BCI learning most likely
comprise a mixture of both re-aiming as well as synaptic plasticity, and future work will be needed
to tease apart the contributions of these two learning mechanisms and understand how they are
coordinated.

One natural possibility is that synaptic plasticity operates on a much slower timescale than
reaiming.zg..'?. This could help explain selective changes to motor cortical responses that only arise
late in learning and are not replicated by our model. For example, Clancy et al. (2014) observed in
their operant conditioning experiments that indirect neurons not strongly correlated with the
target neuron become silent late in learning..‘f::.‘..‘._.—’.’.. Ganguly et al. (2011) similarly observed that
indirect neurons become less tuned to reach direction after days of practice with a given BCI

decoder. Jarosiewicz et al. (2008) reported a similar effect in rotated neurons after a credit
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assignment rotation perturbation (although note that this effect seems to disappear when
increasing the proportion of neurons rotated, see [12, 61]). These selective changes in tuning
strength are not reproduced by our model of re-aiming (Supplementary Figure S5a ), but
previous theoretical work has demonstrated that they can be reproduced by reward-modulated

Hebbian plasticity in a simplified model of motor cortex.)75Z

An additional set of observations that are not well accounted for by our model come from a few
recent studies demonstrating long-term changes in motor cortical activity after short-term
learnmg In particular, Losey et al. (2024) found that motor cortical activity during
baseline decoder control changed before and after learning a WMP within a single experimetal
session. Our model could account for this if the upstream population driving motor cortex
encoded not only the motor commands relevant for control but also additional Variables indexing
the current behavioral context, == 2. ora memory trace of the current task.”:".=.

3.3 The “intrinsic manifold” of population activity

A simple but important takeaway from this study is that the low-dimensional structure of activity
in a population depends not only on the intrinsic dynamics and connectivity within that
population, but also on the structure of its upstream input. The observation that population
activity is confined to a low-dimensional subspace — often termed the “intrinsic
manifold”14Z:19%2.76C2 or the “neural modes”>2%. — does not mean that the circuit connectivity
prevents it from generating activity patterns outside of this subspace. It is likely that many more
activity patterns outside of this subspace are accessible, but that only a low-dimensional subset are

accessed by the inputs evoked by the subjects’ behavior during the recording session.8052.77%

This insight leads to a novel interpretation of the observation that outside-manifold perturbations
require a longer time to learn than their within-manifold counterparts.m.g‘)..’.?.@@. Previous models
of this phenomenon have assumed that the longer learning time reflects the challenge of
modifying the motor cortical connectivity to permit the production of activity patterns outside of
the intrinsic manifold.!2%2.20%.68C2.71C2 our simulations demonstrate that this isn’t necessary,
and that in many cases it may suffice to simply exploit additional input dimensions beyond those
evoked by the calibration task (fig. 5a 2, Supplementary Figure S1e®). Under this model of
learning, the longer learning time required for OMPs reflects the fact that these new input
dimensions need to be discovered from scratch, as the calibration task provides little prior

information about them.

Another important aspect of the intrinsic manifold that this study highlights is its nonlinear
structure. Because firing rates are bounded from below by 0, activity patterns are confined to the
positive orthant of state space. This constraint imposes a conical structure on population activity
within the intrinsic manifold (fig. 3f 2, Supplementary Figure S2 @), which we show in
Supplementary Materials Section S.1.3 @ is in fact necessary to account for experimentally
observed behavioral biases in WMP learning. Given the strong behavioral repercussions this
structure can have on BCI control, understanding and identifying such nonlinear structure in
motor cortical activity may prove crucial both for understanding BCI learning as well as for
designing better BCI decoders.

3.4 The role of the calibration task in BCI learning

From a more practical perspective, our theory of re-aiming highlights the role of the calibration
task in BCI learning. The calibration task is typically seen as a way to calibrate the decoding
parameters; that is, as a source of information for constructing the BCI decoder. Here we suggest
that it additionally serves as a source of information for the subject itself, that is, for the BCI
learner.:. & For example, in modeling WMP learning, we assumed that subjects re-aimed with
the two command variables modulated by the calibration task; in modeling operant conditioning,
we assumed that subjects re-aimed with the same command variables driving spontaneous

~
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behavior prior to the operant conditioning task. If any other two command variables had been
optimized instead, the re-aiming strategy would not have succeeded in solving the task. It is the
prior information provided by the calibration task that allows efficient learning by telling the
subject which command variables to re-aim with. This hypothesis is consistent with various BCI
learning studies demonstrating that subjects learn to control BCIs using the same patterns of

activity evoked by the task they were engaged in just prior to BCI 1earning..1§@.’g99.

Importantly, it predicts that the calibration task can influence subjects’ ability to learn a given BCI
decoder, and therefore that careful design of this task could help improve subjects’ learning speed.
For example, the calibration task should evoke changes in as few command variables as necessary,
so that subjects subsequently re-aim by optimizing only those 5 ~ x command variables and
avoid wasting time exploring modifications to other command variables. A prediction of our
model is that learning should be slower when the calibration task evokes changes in more
command variables.

3.5 How are the re-aiming solutions learned?

The theory presented here treats the question of what solutions subjects learn, and makes no
claims about how they are learned and subsequently maintained. That said, a strong assumption
we made in motivating the re-aiming learning strategy was that learning could operate within the
low-dimensional space of the command variables. It is this low dimensionality that we claimed
would be critical for efficient learning; if the command variables were learned by simply
optimizing the connectivity of an upstream circuit, then the limitations of learning by synaptic
plasticity would also apply to learning by re-aiming.

One intriguing resolution to this problem would be that the command variables are stored and
updated in the activity — rather than the synapses — of an upstream circuit, as in the pre-frontal
cortex model of Wang et al. (2018).-.=. Z In this model, a recurrent neural network implicitly stores
a behavioral policy in its internal state, which, through the network’s dynamics, is updated over
time as it interacts with the environment and observes which actions are rewarded in which
states. A similar architecture might operate upstream of motor cortex, whereby an upstream
circuit continually stores and updates a sensorimotor policy for selecting low-dimensional motor
commands. This learning circuit would likely encompass additional populations beyond those
directly driving motor cortex, such as the basal ganglia, which are well known to play an

important role in BCI learning.84%-812-83%

We finally remark that the short timescale of WMP learning closely mirrors that of motor
adaptation, in which subjects adapt their natural movements to a systematic environmental
perturbation. Learning these tasks typically requires 100’s of trials of practice, 200,850,712, 7382
similar to the time it takes non-human primates to learn WMPs. Neural recordings during these
tasks have suggested that changes in neural activity during motor adaptation are driven by
changes in the preparatory input from dorsal pre-motor cortex to primary motor cortex./ 845,
Moreover, changes in the preparatory state of motor cortex (presumably set by upstream
1nputs..§..‘._71. 4424600 ) have been shown to play a critical role in motor adaptation tasks under
manual control’3%. as well as BCI control.32%2. ~ These results are consistent with the idea that,
much like in our model of re-aiming, motor adaptation involves modifications to the inputs
driving motor cortex while motor cortex itself remains unchanged. Our model of re-aiming may

thus be relevant to more general and naturalistic forms of sensorimotor learning beyond BCIs.

Methods
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4.1 Motor cortical dynamics

Motor cortical activity was simulated by integrating equation 1 using a standard 4th order Runge-
Kutta method with step size 0.1ms, implemented with the torchdiffeq Python package.fg.?.‘?.’)..
Reachable activity patterns, r(to,g; 8), were computed by integrating this equation from the initial

condition at time ¢ = 0 to the endpoint time ¢ = t,,,4, With constant inputs determined by the given

Y(teng; 0)-

In all simulations in the main text, sparse random recurrent weights, W;;° were used: only 10% of
these weights were set to non-zero values, which were independently sampled from a zero-mean
Gaussian, -#(0, 1/N), where N is the total number of motor cortical neurons in the network. Input
weights were all sampled from a zero-mean Gaussian, Wj; ~ A(0,1/M), where M is the total
number of inputs. Encoding weights were sampled randomly from the standard Gaussian
distribution, Ul-j ~ .#(0, 1) (any normalization is taken care of by the metabolic cost term in
equation 44 when computing re-aiming solutions). Other connectivity patterns are considered in
Supplementary Figure S1@. We used 7 = 200ms, as in the motor cortical model of Hennequin et
al. (2014). To enable efficient numerical simulation, network size was set to N = M = 256.
Simulations with larger networks (up to N = M = 2048 neurons) produced similar results (data not
shown).

4.2 Computing re-aiming solutions
Concatenating the command variables into a j -dimensional vector that contains only the

command variables being optimized, 8 = |, 4 ... 0z |,we can treat equation 42 as an

optimization over all  -dimensional vectors g in gk .We can simplify this optimization problem
by first analytically solving for the optimal magnitude of ¢, |8 given its direction. Once we have
this optimal magnitude, all that remains is an optimization over its direction — an optimization
over unit vectors on the f -dimensional unit hypersphere. This is a (K — 1)-dimensional manifold
that, importantly, is bounded, so we can hope to find the optimal direction efficiently by brute-
force search, avoiding the difficulties of non-convex gradient-based optimization in high
dimensions.

Formally, we decompose the re-aiming optimization (equation 4(%) into an optimization of the
norm, s, and direction, g,,0f g,

o — p - M —
3,60 = arg min |y (£enai 560) — y*||2 + _ﬁ ui(s00)>, (7)

3‘90 t=1
subject to s > 0, [|Bo]| = 1.
We can analytically solve for the optimal magnitude, §, by exploiting two simplifications afforded
to us by the rectified linear activation function @(+) of the motor cortical dynamics (equation

1b@). The first is the scale-invariance of the activation function (®(sx) = s®(x) for any s > 0), which
accordingly endows the motor cortical dynamics with scale invariance,

r(t; s0) = sr(t;8), s> 0, (8)
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whenever x;(0) = 0 (see Supplementary Materials Section S.2.12 for a formal proof), which we
assumed to be the case in our simulations. The second simplification is to approximate the
quadratic cost term by its large M limit

L o= (o2 I o~ oo |16
— . ~ i = il —_ B (
27 2w~ lim ; w(0) =" ©)

i=1

The equality holds whenever the encoding weights (Ul-j in equation 2(@) are independent and
identically distributed with zero mean and unit variance, as they are here, so that the law of large
numbers can be invoked to replace the sum with an expectation over the encoding weight
distribution (the factor of 1/2 arises from the fact that only half of each axis counts towards the
expectation due to the linear rectification, see Supplementary Materials Section S.2.2(% for a
formal proof). Inserting these two equations into equation 7% together with the BCI readout
equation 3@, we obtain

s, AHU :}11’}_’;!_]111[ ”SDI‘(tmd:gU) —Dc—y"

5,8y

> e
=g 10
+ 58 (10)

subject to s > 0, ||6o]| = 1.

It is then straightforward to solve for § in terms of g,,yielding the following closed set of
equations:

s f (De+y") - Dr(fm.: gn) )
5(0y) =¢ = 11
@~ (s "

(=1

:é(,} —Dc—y*

8, = argmin [|3(60)Dr(t.,, I* + 25(60)? (12)
Ay

subject to ||§U|| =1,

where the -notation denotes the Euclidean dot product. We have thus reduced what was an
optimization over all vectors in g% (equation 42) to an optimization over all vectors living on
the j -dimensional unit hypersphere (equation 122).

We can therefore approximately solve this new optimization problem via brute-force search, by
simply uniformly sampling a large number of 4,’s on the unit hypersphere and identifying the one
that produces the smallest value of the loss function in equation 127 . Evaluating r(.,..,6,) for a
large number of g,’s can be done efficiently by using a GPU to integrate in parallel the dynamics
driven by each g,,Note that, once these activity patterns have been calculated, they can be re-used
to perform the brute-force search optimization for any given value of y, without having to again
integrate the dynamics.

For simulations with 5 — 2, this brute-force search algorithm sufficed to produce good re-aiming
solutions. In this case, the relevant hypersphere is the unit circle, from which it is straightforward
to sample densely and uniformly. For simulations of generalized re-aiming, however, we took an
additional step to ensure the obtained solutions were as good as they could be even for the larger
values of j, where it becomes more difficult to sample densely from the corresponding unit
hypersphere. We first performed a brute-force search over 217 vectors sampled uniformly from
the unit hypersphere, as just described, to obtain an initial estimate of the re-aiming solution. This
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initial estimate was then used as a starting point for the L-BFGS algorithm,"s??. which we then
applied to minimize the re-aiming loss function (equation 4%) with respect to the raw command

variables 01,02, .., % . We found that this additional step was essential when g > 10.

In all simulations in the main text, we used an endpoint time of t,,4 = 1000 ms, reflecting the
typical time it takes for trained primates to complete center-out reaches under BCI
control.))Z:'4% The results of simulations with other endpoint times are shown in
Supplementary Figure S1b . To simulate a center-out reaching task, the target readouts y* were
set to eight equally spaced unit vectors on the unit circle (cf. fig. 3¢ ). Mean squared error is

calculated as

8
1 ~ 2
mean squared error = 3 z ||y(f.‘__,“.;9(yf)) —-vil, (13)
i=1
where yi,¥3,..., vs correspond to the eight radial target readouts. Because the targets are unit

norm, a mean squared error of 1.0 corresponds to that achieved by readouts at the origin.

In the case of operant conditioning, there is no “target readout” per se, as subjects are simply
instructed to modulate firing rates as much as possible in a given direction. In this case, a different
re-aiming objective was used, see the section “Simulation of operant conditioning” for details.

4.3 Setting the metabolic cost weight

The metabolic cost weight parameter y was picked to ensure that low mean squared error would
be achieved under the baseline decoder with g — 9.We calculated re-aiming solutions with g — o
for the baseline decoder under a wide range of values of y. We took advantage of the fact that the
brute-force search algorithm outlined above allows us to easily evaluate solutions for different
values of y with only a single forward pass of the model. Once we had re-aiming solutions for each
value of y, we calculated the error achieved by these re-aiming solutions for each target readout,
and found the largest value of y that permitted a squared error of less than .05 for each of the
eight targets. y was then fixed to this value for simulations with all the decoder perturbations.

4.4 Characterizing the reachable manifold

The reachable manifold is the set of activity patterns at time t,,,4 that can be generated by any
motor command allowable under the re-aiming strategy. We assume that these allowable motor
commands are bounded, reflecting the fact that (i) actual extrinsic motor variables are finite and
bounded and (ii) upstream firing rates are bounded. Formally, we enforce this by assuming an
upper bound on the motor command norm, 0| < S,,x- In our simulations of short-term learning
of WMP’s and OMP’s, we set the value of this bound to the maximum norm over all 2D re-aiming
solutions to all decoders. Specifically, we computed re-aiming solutions for each target readout
and decoder perturbation (8 target readouts x (100 WMP’s + 100 OMP’s + baseline decoder) = 1,608
re-aiming solutions) with f — 9 ,calculated their norms, and set sy, to their maximum. For the
randomly connected network presented in the main text, we found this value to be approximately
1.25.

In figure 3f 2, we drove the motor cortical network with motor command vectors with five
distinct norms, |0 € {0.1, 0.4, 0.7, 1.0, s;,,,x}, chosen to aid visualization of the reachable manifold.
We picked 256 equally spaced angles between 0 and 277 and constructed 2D vectors with each
angle and each norm to obtain the command variable pairs, 84, 8,, shown in fig. 3e® (all other
command variables were set to zero). We then simulated the motor cortical network with each of
these motor commands to obtain a large ensemble of activity patterns on the reachable manifold,
r(teng; 0), and projected these onto their top three principal components to obtain the
visualization in figure 3f 2. Figure 3c @ plots the readouts of each of these activity patterns from
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three different decoders. Figure 4a @ plots the readouts from four different WMP decoders, in this
case using activity patterns generated from motor commands with four different norms equally
spaced between 0.1 and s,,,,x (thus producing four loops of readouts instead of five). In figure
7a(Z, five motor command norms equally spaced between .1 and the maximum norm of the re-
aiming solutions for that pair of neurons were used. These choices were all made to aid
visualization of the reachable manifold’s structure.

To obtain the centroid, y,and covariance, X,, of the reachable manifold for g — 9, we computed
expectations over a uniform distribution on the reachable manifold. Note that an expectation over
uniformly distributed activity patterns on the reachable manifold is not the same as an
expectation over activity patterns generated by uniformly distributed command variables. These
two distributions of activity patterns are related via the Jacobian of the mapping from command
variables, 0, 6, to activity patterns, r(t.,q; 6), which was used to derive the following two
expressions for 1 and X, (see Supplementary Materials Section S.2.3® for full mathematical

derivation):

2w .

2 [y ro(@)llro(@)llllro ()|l sinw(p) de ,

r— g'sma‘x o P . (1-1:)

o lra(@)lllro(w) | sinw(y) de
2w T ] . :
1 ro(w)ro(w)” |lro(@)||||rs (@) || sinw(y) de
E?- - Esf\ax 0 U(Y) 0(‘:’) ” 0(1")”” 0(‘:’)” (‘r’) W+ —I_'fT, (15)

27 ¥
Jo " Ilro(@)llIrg (@) | sinw(e) dep

where ry(¢) is the population activity at time t,,q generated by a pair of non-zero command
variables 0, 6, with angle ¢ and unit norm, r(y) is its derivative with respect to ¢, and w(¢) is
the angle between ry(¢) and rj(y). We used a finite-differences approximation for the derivative
ry(¢) and computed these integrals numerically by summing over a dense range of values of ¢ €
[0, 277]. This estimate of the reachable manifold centroid, 1*,is plotted in figures 4a, 4b(#, and
S2a(?. This estimate of the reachable manifold covariance, £,, is used for the variance explained
curve plotted in figure 3g 2.

Analagous calculations for - 2 quickly become numerically intractable, as the derivatives and
integrals become multivariate as the number of polar coordinates increases. We thus chose to
characterize the dimensionality of the reachable manifold under generalized re-aiming by the
covariance over activity patterns produced by uniformly distributed motor commands, which we
denote by Zg. As already noted, this is not the same as the covariance over activity patterns
uniformly distributed on the reachable manifold manifold, but these two covariances are strongly
related. This covariance is given by (see Supplementary Materials Section S.2.4 % for derivation)

il o2 T

Ty = Smax <r(!,\_,,d:§o}r(!‘.,,d: é"o)”">§ = li" <r(:,0,m:§0)>§u <r(!,‘,,“l:§o)>e

3 A )

0

where ()5, denotes an expectation over a uniform distribution on the unit-norm (& -1)-sphere.
These expectations were estimated numerically by uniformly sampling 217 vectors 4, ¢ k¥ from
the unit hypersphere, setting the j non-zero command variables to these values, calculating the
activity patterns generated by these motor commands at time to,,q = 1000msS, r(t...; 6s) ,and then
averaging over the resulting ensemble of activity patterns.
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This estimate of the reachable manifold covariance, Zg, is used to compute the participation ratio
plotted in figure 5b @ as a function of j ,using the formula

2
v
ticipation ratio of Sp = 120 (Z"ZI Ai) (17)
participation ratio o 0= 3 G = N 7 s
Tr [] T A

i=1 "¢

where A4, Ay, ..., Ay are the eigenvalues of Zy.

4.5 Quantifying biases in BCI readouts

To quantify behavioral biases, we used the maximal cursor progress metric defined in equation
6. This equation was solved by again exploiting the same re-parameterization of the motor
commands we used for calculating re-aiming solutions (equation 7 @). Specifically, we decompose

the vector of non-zero command variables, 6 = [(;] 0y ... nﬁ},into a magnitude and direction,

6 = s6, where s >0 and |, = 1. Plugging in the readout equation (equation 3) into the
definition of cursor progress (equation 5 ) and exploiting the scale invariance of the motor
cortical dynamics (equation 82), we have that the maximal cursor progress is given by

s — {D (85(80)x (tenas 80) — <) -y*} (18)

o

subject to |6y = 1,

where

3,(0p) = arg max {.SDI‘(IQMZ_ éu) : y*} o : (19)
8

subject to 0 < 5 < s,
Since i — 9 in these simulations (and thus 4, is just a 2D unit vector), we were able to effectively
solve the optimization problem in equation 18 @ by brute-force search over densely and
uniformly sampled g,’s from the unit circle.

4.6 Re-analysis of data from Sadtler et al. (2014)

To quantify behavioral biases in the experimental data, we estimated the maximal cursor progress
in each experimental session by using the cursor progress values observed in the window of 50
contiguous trials of WMP control with shortest average reach completion times. At each timestep
in each trial, we calculated the cursor progress in the direction of the target relative to the cursor’s
position at that time. We then binned the per-timestep relative target directions into 45° bins
centered at the eight radial reach target angles, and averaged the cursor progresses in each bin to
obtain an average cursor progress for each target direction. We take these averages to be estimates
of the subject’s maximal cursor progress with that session’s WMP decoder, as they are taken from
the 50 trials with fastest reaches.

To predict the maximal cursor progress in each session from the target direction angle with Dy
,we sought an estimate of the reachable manifold centroid, 7 ,that could be empirically measured
from the recorded neural activity, without access to the underlying reachable manifold. To do this,
we noticed that, in our model, the time- and trial-averaged population activity generated by the re-
aiming solutions for the baseline decoder — which we denote by - was highly correlated with the
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true reachable manifold centroid, 1*.We therefore used § to estimate y*,since 3 can be easily
estimated in the experimental data by simply averaging motor cortical activity during the baseline
decoder control block in each session. We calculated target-specific means by averaging motor
cortical activity over all trials and time during reaches to each target, and then averaged these
target-specific means over targets to obtain .This was the estimate of the reachable manifold
centroid - and its projection through the respective WMP decoder in each session, D¢ -used in the
analysis presented in figure 4d 2.

To keep the analysis of the data and the model consistent, we also used an analogous estimate of
the reachable manifold centroid for the analysis of the model in figure 4c 2. In this case, y was
measured by simulating reaches to each target by driving the motor cortical network dynamics
with the re-aiming solutions for the baseline decoder, and then averaging the motor cortical firing
rates over all time and over all eight reach directions. We found that the resulting negative
correlation was similar regardless of whether the true reachable manifold centroid, 1 ,(data not
shown) or its estimate, 3 ,was used.

4.7 Simulation of the calibration task

The calibration task was simulated by setting the first two command variables 64, 8, to the
coordinates of the reach direction y; being presented in each trial (a 2D unit vector pointing in
one of eight equally spaced angles), and setting all other command variables to zero (83=0, = ... =
0k = 0). To simulate noise in the neural responses, we added noise in the dynamics, in the motor
commands, and in the initial conditions on each trial. At each timestep, zero mean Gaussian noise
with standard deviation 0.05 was sampled and added to the single neuron potentials x;(t) and to
the two command variables 6, 0,. Initial conditions in each trial were sampled randomly from a
0-mean isotropic Gaussian with standard deviation 0.1. The network was driven for 1000ms in
each trial, matching the duration of each trial in the experiment.

For simulations with WMPs and OMPs, we simulated 10 trials of each reach direction, replicating
the structure of the calibration task used by Sadtler et al. (2014). For simulations with credit
assignment rotation perturbations (fig. 6 @), the calibration task was identical except that only a
single trial of each reach direction was simulated, to mimic the decoder initialization procedure of
Zhou et al. (2019). Note that in all cases re-aiming with i — 2 command variables implies re-
aiming with the same two command variables driving the calibration task neural responses, 6,
and 0,.

4.8 Within- and outside-manifold perturbations

In the BCI system used by Sadtler et al. (2014) and Oby et al. (2019), 96-channel microelectrode
arrays were used to record neural activity. Spikes were detected by threshold crossings in the
recorded voltage signals at each electrode, resulting in a series of spike trains at each electrode.
Spike trains at each electrode could therefore contain spikes from multiple neurons near the
electrode site, as no spike sorting was performed. In total, about 100 neurons were likely to have
been recorded, constituting a small fraction of the total population of neurons in motor cortex. To
simulate this, we ensured that the BCI decoder in our simulations only had access to a linear
mixture of firing rates from N,. = 99 neurons (so as to be divisible by £ + 1 = 9, to group neurons by
modulation depth, see below). This was done by first multiplying the firing rates with a N,. x N
“recording matrix”, H, which had the following tri-diagonal structure

0 if j > N,
Hij = { &; ~ Unif(0,1) ifj < N,andi—-3<j<i+3 (20)
0 else
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Thus, each “neural unit” in the vector Hr is composed of a linear mixture of seven neurons, with
“neural units” with adjacent indices mixing together overlapping sets of neurons.

Following Sadtler et al., we next z-scored the activity recorded by each neural unit with respect to
its statistics during the calibration task,

y = DS 'H(r — ¢) (21)

D

where c is an N -dimensional vector with the mean firing rate of each neuron and S, is an N,. x N,.
diagonal matrix with the standard deviation of each “neural unit”, measured from the simulated
activity during the calibration task. Readouts, y, were obtained by decoding from the N,-
dimensional vectors of z-scored mixed firing rates. It is the 2 x N, effective decoding matrix, Dy,
that is perturbed by the WMP and OMP decoder perturbations (see below). Note that the full 2 x N
decoding matrix, D, is such that only its first N,. columns are non-zero, reflecting the fact that only
a subset of the full population of motor cortical neurons is recorded by the BCI.

For the baseline decoder, the effective decoding matrix Dy was constructed following the methods
of Sadtler et al., with the exception that we used Principal Components Analysis instead of Factor
Analysis to estimate the intrinsic manifold. This choice was made purely for the sake of numerical
convenience, as Principal Components Analysis has a closed-form solution that can be computed
more efficiently. The full procedure for estimating the intrinsic manifold and constructing the
baseline decoder is outlined in detail in Supplementary Materials Section S.3 2. In short, the
baseline decoder effective decoding matrix can be expressed as a product of a 2 x £ matrix K and
an £ x N, matrix L, where £ is the dimensionality of the intrinsic manifold,

Di = KL. (22)

The matrix L projects N,-dimensional activity patterns down to the £-dimensional intrinsic
manifold; its rows span the subspace defined by the intrinsic manifold (Supplementary Materials
Section S.3.2(%, equation 71 @). In our simulations we used £ = 8, as we found that the top 8
principal components contained 95% of the variance in the simulated calibration task responses.
The matrix K then translates the resulting £-dimensional dimensionality-reduced activity patterns
into 2-dimensional BCI readouts. This matrix is fit to the calibration task data, by fitting a Kalman
filter that accurately decodes the calibration task stimuli from the dimensionality-reduced
calibration task neural responses at each timestep and trial (Supplementary Materials Section
S.3.2(7, equation 72 ().

Within-manifold perturbations (WMPs) perturb the baseline decoder in such a way that the row
space of L remains intact, so as to conserve the decoder’s relationship with the intrinsic manifold.
This is done by simply shuffling the rows of L without modifying them, via pre-multiplication with
arandom £ x £ permutation matrix P,

D™ — KPL. (23)

Outside-manifold decoders, on the other hand, directly disrupt the row space of L. This is done by
randomly shuffling the components of each of its rows, via post-multiplication with a random N,. x
N, permutation matrix P,

DgMP = KLP. (24)
It is important to keep in mind that both WMPs and OMPs can change the readouts in complex

ways, beyond a simple rotation like that depicted by the cartoon in figure 2b @ (for examples, see
fig. 4a@ here and supplementary figure 2@ in22t2). Once the baseline decoder was constructed,
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we randomly sampled 100 within-manifold and 100 outside-manifold perturbations by randomly
selecting 100 € x £ and N,. x N,. permutation matrices, respectively.

To minimize any differences between these two types of decoder perturbations that would go
beyond their opposing relationship to the intrinsic manifold, we imposed several restrictions on
the selected permutation matrices, as was done by Sadtler et al. (see Supplementary Materials
Section S.3.3(3 for details). First, we enforced that the mean principal angle between the row
space of the baseline effective decoding matrix and the row space of each perturbed effective
decoding matrix was between 60° and 80°. Second, we enforced that population activity produced
by the re-aiming solutions for the baseline decoder would produce readouts through each
perturbed decoder that resulted in a mean squared error between 0.6 and 0.8. Finally, we fit
tuning curves to the neural activity generated by the re-aiming solutions for the baseline decoder,
and asked how much the preferred directions would need to change to produce the same readouts
under the perturbed decoder, following the same procedure employed by Sadtler et al. We
enforced that this change be between 30° and 45°. We typically found that about 100-200
permutations out of all possible permutation matrices satisfied these criteria. We then randomly
sampled 100 of them.

Following the procedure used by Sadtler et al. with monkey L, we did not consider all possible N,. x
N, permutation matrices for OMPs (as there are 99! of them). Rather, we grouped all N, neural
units into ¢ groups, and then considered all £-dimensional permutations of these groups (of which
there are 8!). In other words, rather than permuting all N,. columns of L, £ groups of columns were
permuted. This ensured that the total number of possible decoder perturbations was the same for
WMPs and OMPs. The £ groups were assigned as follows: for each neural unit in Hr, we fit a cosine
assigned the N,/(£ + 1) neurons with smallest modulation depths to a small-modulation group not
to be permuted, and randomly assigned the remaining neurons to £ high-modulation groups to be
permuted; following Sadtler et al., the small-modulation group was never permuted to avoid cases
in which an inactive or noisy neuron could get assigned a large decoding weight.

In figure 392, we define the “dimensions” of the intrinsic manifold as a set of orthonormal basis
vectors fy, f,, ..., f, spanning the intrinsic manifold (Supplementary Materials Section $.3.1%). We
then calculated the variance explained by each dimension by

.
variance explained by dimension i = ——— (25)

]

For the gray curve, X was set to the sample covariance of the simulated calibration task responses.
For the purple curve, X was set to the reachable manifold covariance X, (defined in equation
152). In each case, the cumulative variance explained was calculated by ordering the dimensions
by variance explained and then summing them in that order.

4.9 Credit assignment rotation perturbations

In the BCI system used by Zhou et al. (2019), recorded activity was sorted by matching spike
waveforms to identify spikes from single neurons, resulting in the identification of 10-12
individual neurons. Importantly, each neuron had reliable tuning to reach direction during the
calibration task. In our simulation, we modelled this by randomly choosing 80 neurons, fitting
tuning curves to their activity during the calibration task, and selecting only those with
modulation depth greater than 0.5 (see below for how modulation depth is measured). This
typically resulted in 10-15 neurons being included in the BCI decoder (i.e. being assigned non-zero
weights in the decoding matrix D); no “recording matrix” H was used in these simulations. For the
particular network model used in the simulations reported in the main text, this selection
procedure resulted in N, = 11 neurons being included.
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Tuning curves were fit to time-averaged simulated firing rates in the calibration task, ry,...,Tg
,in response to presentation of each of the eight radial reach targets, yi. ..., v (cf. section
“Simulation of the calibration task”). An N x 3 matrix of tuning weights, T, was fit to predict these

average responses from the respective reach target coordinates,

-1

8 8 8
T = m-g%mn Y olEs =Ty = | D owyy | | D3] ; (26)
i=1 j=1

i=l1

where ¥; is a 3D vector with the coordinates of the direction of the jth reach target, ¥7,as its first
two components and a constant 1 in its third component, included to model baseline tonic firing
rates of each neuron. Thus, only the first two columns of the tuning weight matrix T model how
the ith neuron’s firing rate depends on the reach target’s direction, whereas its third column
models activity independent of the reach target. To extract from these weights the directional
tuning of neuron i, we take the 2D vector comprising the first two components of the ith row of .
We notate this 2D vector by m;p;, where p; is a unit vector pointing in its direction and m; is its
norm. The angle of p; is neuron #’s preferred direction, and m; is its modulation depth.

Following the methods of Zhou et al. (2019), the baseline decoder was constructed as follows. First,
raw firing rates were baseline-subtracted and normalized by their modulation depths,

rnm'm p— M (r _ c) 2 (2?)

where c is given by the third column of T, containing the baseline firing rates estimated from the
linear regression fit (equation 26 (), and M is an N,. x N diagonal rectangular matrix containing
the inverse modulation depths m™! for each of the N, neurons recorded by the BCI on the diagonal
across the first N,. columns 0 everywhere else. These normalized firing rates were then
transformed into 2D readouts by a 2 x N, effective decoding matrix Dg* containing the preferred
direction vectors p; of each of the N, recorded neurons in their corresponding columns. More
precisely, the ith column of D§™, d;,is given by

J\L p: if neuron i is recorded by BCI
di=4" (28)

0 else,

where the scaling constant k is chosen to minimize the mean squared error between the readouts
from the calibration task activity and the target readouts. This is the classic population vector

,which has non-zero weights only in the N,. columns corresponding to the N,. recorded neurons.

Credit assignment rotation perturbations were constructed by simply picking a random subset of
the columns of D§** and rotating them. In our simulations, we picked a random 50% of these
columns and rotated them 75° counter-clockwise, as was done in the decoder perturbations used
by Zhou et al. (2019). We sampled 100 random perturbations in this way, in each case rotating a
different subset of columns. The normalization matrix M and baseline subtraction parameters c
are kept the same for all decoders.

To measure the tuning changes predicted by re-aiming, we simulated cursor reaches with each
decoder by driving the motor cortical network with the re-aiming solutions for that decoder. In
each case, noise was applied to the dynamics, exactly as in the calibration task. We then fit tuning
curves to each neuron’s time-averaged activity, using linear regression exactly as described in
equation 267, and extracted the preferred direction of each rotated, non-rotated, and indirect
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neuron. For each perturbed decoder, we then determined each neuron’s change in preferred
direction by calculating the difference between its preferred direction under the re-aiming
solutions for the perturbed decoder and its preferred direction under the re-aiming solutions for
the baseline decoder (cf. figures 6b, 6c ). These changes were then averaged over all neurons in
each sub-population (rotated, non-rotated, or indirect). Figure 6e 2 shows the percentiles (median
and quartiles), over all 100 sampled decoder perturbations, of this average tuning change. An
analagous analysis of the changes in modulation depth is shown in Supplementary Figure S5a

4.10 Simulation of operant conditioning

In an operant conditioning task, there is no “target readout” per se. The objective is to simply
increase the activity of one neuron over another, as much as possible. We can thus express the
objective as maximizing the difference in firing rate between the two neurons, which can be
thought of as a one-dimensional linear readout from the population. Formally, we calculate
readouts in this task by a dot product between the firing rate vector r and a decoding vector d
which has a +1 for the target neuron, a -1 for the distractor neuron, and 0’s everywhere else. This
one-dimensional readout indicates how much more active the target neuron is than the distractor
neuron. The goal in an operant conditioning task is to maximize this readout.

Adding in a metabolic cost, the objective function we use for re-aiming is

s = arg £ S
0 = argmax {d T (tona; 0) U Zu } (29)

@1.02..... 04z

Letting 6 = [01 Oy ... 04 denote the non-zero command variables, we again re-parameterize this

optimization problem into an optimization over the magnitude, s, and direction, 4,,0f g,

i M
8,80 = arg max {d P boial 980 i Z wi( sﬂu } subject to s > 0, ||8]| = 1 (30)
3.90
A arg max {sd 5 o £ 59) = %sg} subject to s > 0, [|6o]| = 1,  (31)
3.50

where the approximation follows from the application of the scale invariance of the network
dynamics (equation 8 %) and the mean-field approximation of the metabolic cost (equation 92).
This approximation allows us to analytically solve for the optimal magnitude §,

.%(50) =argmax < sd - r(im,d;gfj) -

8

(d r (b é’u)) . (32)

b2 |2
=3 [ i

subject to s > 0

which in turn allows us to solve for the optimal direction, 4,,via optimization over the g -
dimensional unit hypersphere,

8y = arg max { {(80)d - s 90) % (50)2} subject to [|@o|| = 1 (33)
é‘n -
= arg max {@ (d S (W 50)) } subject to ||@o]| = 1, (34)
By
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where the second equality follows from plugging in equation 32 and simplifying. In all our
operant conditioning simulations, we used f — 2,which enabled us to easily solve this
optimization problem via brute force search over the unit circle. As in other simulations, we used
teng = 1000ms.

Note that the optimal readout achieved by the re-aiming solution is

. N . " 2
d -1 (tea;0) = d -1 (tena; $(80)80) = .a(é'n)(d .r(x‘,.m,:én)> - lo (d-r(r‘.‘,,ld:éwo)) : (35)

!

Thus, changing the exact value of y only re-scales the re-aiming solutions and the readouts they
produce. We thus simply set it to y = 1 in all our simulations of this task.

In classic operant conditioning experiments,?.?.@. neurons selected for operant conditioning had to
be active prior to the conditioning task to be identified by the recording electrode. We imposed a
similar constraint in our simulation by first driving the network with 50 random K = 100-
dimensional motor commands for t,,q = 1000ms, and identifying the 50% of neurons with highest
average firing rate over motor commands and time. The neuron pairs used for operant
conditioning were sampled from this sub-population.

To simulate neural activity during a baseline period of spontaneous behavior prior to operant
conditioning, we used a similar procedure but now driving the network with 50 random f -
dimensional motor commands, with 7 — 9.This allowed us to ask whether operant conditioning
performance under re-aiming could be predicted from correlations arising during spontaneous
behavior driven by the same command variables used subsequently for re-aiming. In figure 7c¢ &,
correlations were measured by correlation coefficient between the two conditioned neurons. In
figure 7d (2, correlation coefficients between each indirect neuron and the target neuron are
plotted against the firing rate of the indirect neuron at t,, = 1000ms when driving the network
with the re-aiming solution.
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4.11 Table of simulation parameters

Parameter name/description ’ Notation ‘ Value

Recurrent neural network dynamics ‘

number of neurons in motor cortical network N 256
number of neurons in upstream population M 256
recurrent weights Wise Y (0,1/N)
input weights Wi Y N(0,1/M)
encoding weights Ui M N(0,1)
network dynamics time constant T 200ms

WMP and OMP decoders

calibration task network dynamics noise - Y (0,0.05%)
calibration task command variable noise - v (0,0.052)
calibration task initial condition noise - N (0,0.12)
calibration task trial duration - 1000ms
number of recorded neurons used to fit the decoders N, 99

. dimensionality of intrinsic manifold 4 8
bounds on principal angle between perturbed decoders and baseline decoder - [60°,80°]
bounds on mean squared error of perturbed decoder readouts - [0.6,0.8]
bounds on preferred direction change imposed by perturbed decoders - [30°,45°]

Re-aiming optimization

endpoint time P 1000ms

maximum baseline decoder squared error, which sets v (Methods Section 4.3) - .05

Credit assignment rotation perturbations

minimum modulation depth for neuron to be recorded - 0.5
number of recorded neurons N, 11
fraction of decoding vectors rotated - 50%
decoding vector rotation angle - 75° CCW

Operant conditioning

command variables driving bouts spontaneous activity 01,062 N (0,1/2)

duration of bouts of spontaneous activity - 1000ms

Supplementary Matrials

S.1 Extended modeling results

S.1.1 Structured motor cortical connectivity

In addition to the randomly connected network architecture used in the results presented in the
main text, we simulated re-aiming in the task of Sadtler et al. (2014) with alternative motor
cortical connectivity profiles, described below. In each case, we simulated the calibration task,
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sampled decoder perturbations, and computed re-aiming solutions as described in the main text,
except for a few minor modifications noted below. Results of these simulations are shown in
figure S12.

Random excitatory/inhibitory (E/I) connectivity

arandom sparse and balanced E/I recurrent connectivity matrix was constructed following the
sampling procedure described in.28% In short, all ex1316 citatory weights had the same strength,
all inhibitory had the same strength (re-scaled relative to the excitatory weights to account for the
different number of excitatory and inhibitory neurons), and each row of the weight matrix was
enforced to be 0 mean to enforce so-called E/I balance. We used a sparsity of 10% (i.e. only 10% of
weights were non-zero), with 80% of the neurons in the population being excitatory. Input and
encoding weights were sampled randomly as for the randomly connected network in the main

text.
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Figure S1

Each column shows simulation results for a different network: (1) the randomly connected
network used in the main text; (2) another randomly connected network, with weights sampled
in exactly the same way; (3) a network with random E/I connectivity; (4) a network with
inhibition-optimized E/I connectivity; (5) network with connectivity optimized for delayed center-
out reaching.

a. Eigenspectra of recurrent weight matrices of each network, plotted on the complex plane. Note that the optimized network
has low-rank connectivity: almost all eigenvalues are clustered at 0. Dashed vertical line marks the linear stability boundary of
areal value of 1.0.

b. Mean squared error achieved by re-aiming solutions for different endpoint times, to4, for each decoder. Lighter markers
correspond to individual decoders, darker open markers (connected by lines) show medians over all decoders. Note that the
metabolic cost weight, y, is fixed to the same value, which was picked to guarantee low error under the baseline decoder for
tend = 1000ms only (see Methods Secti 2). Thus, the error rises as the endpoint time decreases below this, as higher
magnitude motor commands are necessary to achieve low error faster. However, note that the difference between baseline
decoder, WMPs, and OMPs remains the same even at these lower values of tog.

c. Calibration task response and reachable manifold variance cumulatively accounted for by each dimension of the intrinsic
manifold, as in fig. 3g @ . Intrinsic manifold was found to be about 12-dimensional with inhibition-optimized connectivity and
about 6-dimensional with connectivity optimized for delayed center-out reaching.

d. Maximal cursor progress for each target and WMP as a function of target direction angle with T ,as in fig. 4c2.

e. Mean squared error achieved for each OMP by re-aiming with different numbers of command variables, K, asin fig.
5a.

Jorge A Menéndez et al., 2025 eLife. https://doi.org/10.7554/eLife.106309.1 37 of 75


https://doi.org/10.7554/eLife.106309.1
https://doi.org/10.7554/eLife.106309.1

7 eLife

Inhibition-optimized excitatory/inhibitory connectivity

a sparse and balanced E/I recurrent connectivity matrix was constructed following the
optimization procedure described in8% short, the excitatory weights were initialized to be
very strong, and then inhibitory weights were optimized to ensure the dynamics were stable (by
minimizing the spectral abscissa of the full connectivity matrix). Half of the neurons were
assigned to be excitatory, and the inhibitory weights were enforced to be on average three times
stronger than the excitatory weights. The only difference with82%”. was that the weight matrices
were initialized with a spectral radius of 5, rather than 10. This was necessary as we found that an
initial spectral radius of 10 lead to chaotic dynamics under constant input. Input and encoding

weights were sampled randomly as for the randomly connected network in the main text.

Because of their highly non-normal dynamics, these networks were highly sensitive to changes in
initial conditions, even with the reduced initial spectral radius. We therefore reduced the standard
deviation of the initial conditions by half when simulating the calibration task (see Methods
Section 4.7 @), These networks produced much higher-dimensional calibration task responses

than the randomly connected network, so a 12-dimensional intrinsic manifold was used for
constructing WMP’s and OMP’s (i.e. £ = 12).

Connectivity optimized for delayed center-out reaching

network weights were optimized to produce joint torques for performing delayed center-out
reaches with a biomechanical arm model. The architecture and optimization scheme followed that
used by,?.g.@.. in which the recurrent network is driven by two distinct inputs. The first input is a
one-dimensional signal reflecting a go cue that indicates when the reach should be performed (go
time). This was built into our model by setting 6 to 1 at the start of the trial and then setting it to 0
at go time, 1000ms after trial start. The other input is a two-dimensional signal reflecting the visual
presentation of the target to reach towards, presented prior to go time to prepare the subject (or
network) to perform the delayed center-out reach. This was built into our model by setting 64, 8, to
the coordinates of the reach target at a randomly sampled target presentation time before the go
cue, and then setting it back to 0 at the same time the go cue input is shut off. All other command
variables are set to 0 (63 = 04 = ... = Og_1 = 0). We chose to encode the go cude with the very last
command variable, Oy, to reflect the hypothesis that subjects would not re-aim with this non-
directional command variable, neither in 7 — 9 -dimensional re-aiming nor in generalized re-

aiming with up to j — 99 command variables.

Two joint torques were read out from the network through a set of readout weights, which were
optimized along with the input, recurrent, and encoding weights. The weights were optimized to
produce the joint torques required to move the endpoint of a planar two-link arm model-..=-. to
the cued reach target, in 500ms with a bell-shaped speed profile. Following the methods of,~%..
these target joint torques were computed by backpropagating through the arm model dynamics to
minimize mean squared error between the arm endpoint velocity and the desired velocity profile
for each reach target. We then trained the network weights so that in each trial it would produce 0
torque until go time, followed by the optimal reaching torque corresponding to the reach target on
that trial.

The loss function used to optimize the network weights was a combination of the mean squared
error plus L2 regularization on all weights and on network firing rates, to encourage naturalistic
solutions to this tas This was minimized via stochastic gradient descent using the Adam
optimization algorithm?=.=. with learning rate set to .001. Since only three command variables
were non-zero during this task, only the three corresponding columns of the encoding weights Uj;
were optimized by this procedure. The remaining columns were thus fixed to their random
initialization, as for the randomly connected network in the main text.
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As is often observed in networks trained to perform a single task,24%. the resulting optimized
recurrent connectivity matrix had low rank (Supplementary Figure S1a (?). Its activity was
consequently constrained to a much lower-dimensional subspace than that of the other
networks.?>%. This network thus produced much lower-dimensional calibration task responses
than the randomly connected networks did. We therefore used a 6-dimensional intrinsic manifold
for constructing WMP’s and OMP’s in simulations with this network (i.e. £ = 6). This meant that
only 6! - 1 =719 possible decoder perturbations existed (as opposed to 40,319), so far fewer
decoder perturbations satisfied the stringent criteria outlined in Methods Section 4.8 4 for
sampling WMP’s and OMP’s. We thus loosened these criteria to include WMP’s and OMP’s with
mean squared error going up to 1.2. These networks were also found to be highly sensitive to
noise, so we reduced the standard deviation of the noise in the dynamics and in the initial

conditions during simulation of the calibration task to 0.02 and 0.005, respectively.

Because of the low-rank recurrent connectivity, we found that re-aiming with even g — 9
command variables could not yield good solutions for OMP control with this network
(Supplementary Figure S1e ). In other words, the low-rank connectivity did not permit the
generation of activity patterns outside of the intrinsic manifold, even when re-aiming with a large
nubmer of command variables. It is important to keep in mind, however, that in reality motor
cortical connectivity is likely optimized to perform a wide variety of motor behaviors, rather than
a single center-out reaching task. This assumption is implicit in our choice of high-rank
connectivity structure, as in several other recent models of motor cortical function. 827,922,962
Note also that such high-rank connectivity was necessary for our model to produce calibration
task responses with dimensionality near the dimensionality of 10 observed by Sadtler et al. (2014)
(Supplementary Figure S1c ().

S.1.2 Analysis of WMP bias

This section provides a more detailed analysis of why WMP reachable readouts are biased in the
direction of Dt (fig. 4c@). Specifically, we show that the reachable readouts are centered away
from the origin, and the direction of this displacement is dictated by the relationship between the
reachable manifold and the calibration task activity that the decoders are fit to, leading to the
observed bias.

We begin by calculating the centroid of the reachable readouts, ¥ ,which is given by the readout of
the reachable manifold centroid, 1,

y=D( —c), (36)

where c is the decoder centering vector (equation 3@), set to the mean population response
during the calibration task (Methods Section 4.8 ). As long as the reachable readouts are
somewhat symmetrically distributed around their centroid, then they will be biased in the
direction of their centroid. This equation shows that the direction and magnitude of this bias thus
depends on the difference between between the mean calibration task response, ¢, and the
reachable manifold centroid, 1.

Because the calibration task responses are driven by a subset of the motor commands used to
define the reachable manifold (fig. 3e @), these two directions are highly aligned. This is shown
empirically for our simulations in Supplementary Figure S2a(@, where we overlay the network’s
firing rates during individual trials of the calibration task on top of the reachable manifold, along
with the mean population response and the reachable manifold centroid. Population activity
during the calibration task evidently evolves along the same directions in state space occupied by
the reachable manifold, and thus its mean, c, is highly aligned with the manifold’s centroid, 7.
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Next, note that the reachable manifold centroid has a larger norm than the calibration task mean.
That is because the reachable manifold contains activity patterns generated by motor commands
with larger norms than those driving the calibration task responses (fig. 3e @), so its centroid
comprises higher firing rates. The underlying reason for this is that, in our simulations, we
selected the metabolic cost weight, y, such that it guaranteed high re-aiming performance with the
baseline decoder (see Methods Section 4.3(%). Because the baseline decoder fit is not perfect (due
both to the noise and to the non-linear mapping from calibration task stimuli to neural activity),
stronger firing rates than those evoked by the calibration task are required to achieve such high
performance, so the resulting metabolic cost weight permits stronger motor commands than the
ones driving the calibration task.

Putting these two observations together, we have that
cxar = y=~(l—a)Dr, 0<a< 1. (37)

In other words, the reachable readout centroid points in the direction of [)¥.This explains why
WMP readouts are biased in that direction.

An important remaining question, however, is why baseline decoder readouts are not biased in
that direction. The baseline decoder shares the same centering vector, ¢, so, by the above logic,
should inherit the same bias. The reason it does not is that the reachable manifold centroid is
orthogonal to the baseline decoder, )t == (), so the reachable readouts are centered at the
origin despite equation 37 holding true. Because the baseline decoder is fit to predict the
calibration task stimuli from the neural responses they elicit (Methods Section 4.8 @), by
construction it ignores any directions of calibration task activity that do not provide information
about the stimulus. One such direction is their mean, ¢ == ¢1 .This can be appreciated from
Supplementary Figure S2a (2, where it is evident that the trajectories of activity during different
trials of the calibration task all evolve identically along this direction, despite being evoked by
different stimuli. Thus, decoding from this direction is useless for decoding the stimulus identity,
so the baseline decoder ignores it by spanning an orthogonal subspace. However, while this
direction may not contain information about the calibration task stimuli, it does contain a lot of
the variance of the calibration task neural responses. Consequently, it resides within the intrinsic
manifold, and thus WMP’s — which are essentially randomly oriented within the intrinsic manifold
— are likely to be aligned with it by chance.
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Analysis of WMP readout bias in the direction of [ ).

a. Simulated motor cortical responses in the calibration task, color-matched to the motor commands in fig. 3e @ driving
these responses. These are plotted together with the same reachable manifold activity patterns from fig. 3f(2, projected
onto the same three principal components. The open circles in the interior of this conical structure show the calibration task
mean, ¢, in light purple and the reachable manifold centroid, ¥, in dark purple, each connected to the origin by a line for
visualization purposes. Note that, by definition, the calibration task neural responses at time to,q = 1000ms (the last point in
each trajectory) lie almost exactly on the reachable manifold, slightly offset only because of noise in the response dynamics
(see Methods Section 4.7 32).

b. Norm of ID¥ for each sampled WMP decoder, D, for each simulated model motor cortical network (see Supplementary
Materials Section S.1.1%). Overlaid with an open black square is the norm of T for the baseline decoder of each
corresponding simulation.
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This is confirmed empirically in fig. S2b ™, where we plot the norm of Dt for the baseline
decoder and each of the sampled WMPs for each simulation we studied. The norm is evidently
much higher for WMP decoders than for the baseline decoder in each simulation, explaining why
the reachable readout bias manifests itself in WMP decoders but not in the baseline decoder.

S$.1.3 Non-negative firing rates are necessary
to replicate biases in WMP learning

Here we demonstrate that removing the non-negativity constraint on firing rates precludes our
model from reproducing the behavioral biases in WMP reachable readouts. We test this by
replacing the activation function with the identity function, @(x) = x, and repeating the analysis of
fig. 4c@ to check if the maximal cursor progress under each WMP is highest in the direction of
D71 -We find that they in fact are not (Supplementary Figure S3a @)
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Removing the non-negativity constraint fails to reproduce
experimentally observed biases in WMP learning.

a. Maximal cursor progress in each target direction as a function of angle with T} ,for 20 sampled WMPs. Only 20 WMP's
were used as we found that the intrinsic manifold of the linear network was only £ = 5-dimensional, so we correspondingly
adjusted the criteria for subsampling WMP’s and OMP’s (cf. Supplementary Materials Section S.3.3 () and found that only
20 WMP's and 60 OMP’s satisfied them. As was done in fig. 4cC3, the reachable manifold centroid, T, is estimated using
simulated mean firing rates during baseline decoder control (see Methods Section 4.6 2 ). Maximal cursor progress was
calculated exactly as in equation 62, following the same procedure as in the main text for selecting s, (cf. Methods
Section 4.4 (2). A total of 8 target directions x 20 sampled WMPs = 160 points are plotted.

b. Activity patterns in the reachable manifold at endpoint time t,,4 = 1000ms, with K = 2non-zero command variables.
Calibration task responses to each of the eight radial reach stimuli are overlaid in shades of pink, following exactly the same
conventions as in Supplementary Figure S2a(@ . These N -dimensional activity patterns are projected onto the top two
principal components of the reachable manifold (PC1 and PC2) and the orthogonal dimension capturing the most calibration
task response variance (PC3). Because the network dynamics are linear, the reachable manifold is exactly f§ = 2-
dimensional, so PC1 and PC2 capture 100% of the variance in activity patterns within it. The small open black circle at the
center marks the origin of the state space. The light and dark purple open circles at the origin mark the calibration task mean
c the reachable manifold centroid T* in purple, respectively. The latter is barely visible because they overlap almost
completely.

c. Readouts reachable through an example WMP, following the same color conventions as in fig. 3¢ . The green diamonds
show the eight target readouts from the radial cursor reaching task.
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The reason why can again be gleaned from looking at the relationship between the reachable
repertoire centroid, y ,the mean calibration task response, c. In this case, because firing rates are
allowed to be negative, both the reachable manifold and the calibration task neural responses are
centered near the origin, and thus the reachable readouts are as well (equation 36 @),

r~0,cx0=y=D(r-c)=0. (38)

We can see this empirically in Supplementary Figure S3b 2, where we plot a projection of the
reachable manifold with the calibration task neural responses overlaid (analogous to
Supplementary Figure S2a (©@). We see that both are centered around the origin, with their means
exactly on top of each other. The reachable readouts through a representative WMP are shown in
Supplementary Figure S3c (@, illustrating the fact that they are consequently also centered at the
origin. The maximal cursor progress is higher in some directions than in others (in this case in the
NW and SE directions), but the bias is not unidirectional as it is in the model with non-negative
firing rates (fig. 4a@, fig. 4c @) or in the experimental data (fig. 4d @).
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Operant conditioning of ensembles of 10 neurons by re-aiming.

a. Difference in ensembles’ summed firing rates (at ty,q = 1000 ms) produced by the re-aiming solutions optimized for
ensemble a being the target, for 500 randomly sampled ensembles of 10 neurons, plotted as a function of the correlation
between the two ensembles’ summed firing rates during simulated spontaneous behavior. Here, 7y and T} denote the
summed firing rates of neurons in ensemble a and b, respectively.

b. Activity of indirect neurons (at te,q = 1000 ms) for the same ensembles and re-aiming solutions in previous panel, plotted
as a function of mean correlation coefficeint with neurons in ensemble a during simulated spontaneous behavior.
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S.1.4 Operant conditioning of ensembles of neurons

Clancy et al. (2014) conditioned ensembles of up to 10 neurons, rather than only pairs of neurons.
Here we repeat our simulations of operant conditioning but with a pair of target/distractor
ensembles of 10 neurons, rather than a pair of single neurons. We simulate re-aiming in exactly the
same way via equation 292, but where now the decoding vector d is a vector with a +1 for each
target ensemble neuron and a -1 for each distractor ensemble neuron, and 0’s everywhere else.
Selection of neurons used for operant conditioning and simulation of spontaneous behavior was
done exactly as described in Methods Section 4.10%.

We find that the main results from the main text are replicated in this setting as well: (1) the
correlation coefficient of ensembles’ mean firing rates during simulated spontaneous behavior is
correlated with the difference in mean firing rates achieved by the optimal re-aiming solutions
(Supplementary Figure S4a @); and (2) indirect neuron firing rates produced by these optimal re-
aiming solutions are correlated with their mean correlation coefficient with target ensemble
neurons during simulated spontaneous behavior (Supplementary Figure S4b(2).

$.1.5 Changes in modulation depth of motor cortical tuning curves

In a study employing credit assignment rotation perturbations in a 3D cursor reaching task, it was
observed that both non-rotated and rotated neurons reduced their modulation depth after
learning the perturbed decoder, and that rotated neurons reduced their modulation depth
more?’ % (see text surrounding Methods Section 4.94, equation 26 @ for how modulation depth
is defined and measured). Figure S5a @ reveals that our model of generalized re-aiming does not
reproduce this result, at least for the values of 7 we tested. Generalized re-aiming with up to 6
command variables seems to lead to slight increases in the modulation depths of both rotated and

non-rotated neurons, with marginal differences between rotated and non-rotated neurons.

While we did not simulate re-aiming with j -~ ¢ command variables in the context of credit
assignment rotation perturbations, we did simulate this in the context of OMP learning, where we
found that modulation depths of indirect neurons decreased as j increased (figure S5b(2). The
fact that only generalized re-aiming with a large number of command variables — but not regular
re-aiming with only g — 9 variables — can reproduce selective changes in modulation depth is
consistent with the separate observation that indirect neurons show selective decreases in
modulation depth only after days of practice with a given BCI decoder, but not within a single

. A
session. 2822
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Changes in modulation depth under generalized re-aiming.

a. Average change in modulation depth of rotated, non-rotated, and indirect neurons between simulated reaches with the
baseline decoder and each perturbed decoder, plotted as a function of the number of command variables used for re-aiming
(K).As in fig. 6e2, the changes in modulation depth are averaged over all neurons in each sub-population, and the median
over all 100 sampled credit assignment rotation perturbations is plotted. Error bars mark the upper and lower quartiles.

b. Average modulation depth of direct neurons (neurons recorded by the BCI, with non-zero decoding weights in D) and
indirect neurons (neurons not recorded by the BCI) under generalized re-aiming solutions for OMP’s. Modulation depths are

averaged over all neurons in each sub-population, and the median over all 100 sampled OMPs is plotted. Error bars marks
the upper and lower quartiles.
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S.1.6 Closed-loop feedback control

All of the models we have considered so far are models of open-loop control: once the optimal
motor command is specified, it is used to drive the motor cortical population for the duration of
the movement, unchanged until the pre-specified endpoint time ¢, 4. Any errors encountered
along the way - either due to noise or suboptimal motor commands - are thus ignored. A better
strategy would be closed-loop control, wherein errors observed via sensory feedback are used to
adaptively modify the motor command online. Under this strategy, errors that are encountered
along the way can be corrected, thus improving the accuracy of the desired BCI output. Such
closed-loop feedback control strategies are well known to be optimal in the presence of

noise, 222199 and substantial evidence exists that non-human primates utilize them during BCI
control...o..ln2 =

In this section, we consider a re-aiming-based model of closed-loop feedback control in which the
motor command is continuously updated in response to sensory feedback. We evaluate this model
on the Sadtler et al. (2014) BCI learning task, and confirm that closed-loop re-aiming suffers from
the same limitations as open-loop re-aiming: the set of reachable activity patterns is limited by the
number of command variables used for control, such that OMP’s cannot be learned with a small
number of them.

We assume an error feedback controller architecture of the following form,

0(t:y") = G(y* —y()) + b, (39)

where the command variables, 8(t) = {ai Oy ... HR] ,vary continuously in time according to an

affine transformation of the instantaneous error, y* - y(o). As in the open-loop control simulations,
all additioan]l command variables beyond the first j are fixed to 0. For simplicity, we assume a
linear encoding of the motor command in the upstream inputs,

u(@) = U8, (40)

For a given decoder, D, we postulate that the subject learns a feedback controller, (G e RF*2 b ¢ RF)
,that minimizes the following loss function:

2 ‘ ‘
dt + (|[blI* + IG|%) , (41)

8 T
o 1 1
G,b = argmin — = t:G,b) —y!
ugéflljuu 8;:1 1'/0 ||y( ) —y

where y ¢; G, b denotes the readout produced at time ¢ under the closed-loop dynamics
lely = ©F, 2 ¢z is the squared Frobenius norm, and yi..... vs are the eight radial reach targets in
the BCI cursor control task. The time window of control was set to T = 1000ms.

To compute ¢¢ and 1,,we used gradient descent on the above loss function, using the Adam
optimization algorithm?r’.‘..‘.-.—’.".. with a initial learning rate of .01. To facilitate numerical optimization,
deterministic dynamics were used (no noise in the dynamics or in the initial conditions, which
were fixed to 0). To avoid poor local optima (which was often a problem with WMPs in particular),
we ran gradient descent from five different random initializations and used the best solution from

these five runs.

We computed (G,b) for the randomly connected non-linear network analyzed in the main text
(equation 1), for each of the sampled baseline/WMP/OMP decoders used in the simulations
presented in the main text. For the baseline decoder we performed this optimization over multiple
values of the metabolic cost weight y so as to identify the largest value of y that permitted a time-
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averaged squared error of less than .05 for all eight target readouts under this decoder (analogous
to how y was set in the open-loop simulations in the main text, Methods Section 4.3 (2). We then
fixed y to this value for all the decoder perturbations.

Simulations of cursor control with g — 9 command variables are shown in Supplementary
Figure S6a ™2, where we plot the mean squared error over target readouts as a function of time.
Each trace corresponds to the mean squared error achieved by the optimal feedback controller for
a given decoder, with one trace for the baseline decoder and one for each of the 100 sampled
WMPs and OMPs. We find that for almost all decoders, the mean squared error decreases to a
certain level and remains low for the rest of this time window of 1000ms. However, this
asymptotic error value is typically higher for OMP’s than for WMP’s (Supplementary Figure

S6b @), replicating the analogous result observed for the open-loop control model presented in the
main text (fig. 3d @).
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Closed-loop re-aiming reproduces the differences in WMP and OMP learning.

a. Mean squared error (mean over target readouts) achieved by closed loop control with ' = 2 command variables, as a
function of time. Each line corresponds to performance on a different decoder, with a correspondingly optimized feedback
controller, (G.b) (equation 41).

b. Mean squared error (mean over target readouts and over time) achieved by error feedback controllers with ¢ — 2
command variables. Each point corresponds to a different decoder, with medians over all decoders in each class marked by
the height of the bars.

c. Mean squared error (mean over target readouts and over time) achieved by error feedback controllers optimized for each
OMP, with K = 2,4,6,8, and 10 command variables. Light blue points denote this quantity for individual OMP’s, larger open
circles on top show the median. For reference, dotted horizontal lines show the mean squared error achieved by optimized
error feedback with | — 2 command variables for the baseline decoder (black) and WMP’s (red); the red dotted line shows
the median over all sampled WMP’s with shading marking the upper and lower quartiles.
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This again reflects the limitations of re-aiming with only j — o command variables. In this case,
this manifests itself in restricting how the error can be fed back into the network: the error gets
mapped to a j -dimensional vector through equation 39% before being fed back into the
network. As we saw occurs for the open-loop controller, this results in a restriction of how
population activity can be modulated, making it difficult to generate the patterns of activity
required to produce the target readouts under OMP’s. Supplementary Figure S6c 2 shows that
these restrictions can be relaxed by increasing the number of command variables used for re-
aiming, j .In this case, re-aiming with only 7 — ¢ command variables suffices to obtain a mean
squared error less than 0.1 with OMP’s. Interestingly, this is substantially less than the 7 ~ 190
command variables that are necessary to achieve the same level of performance with open-loop
re-aiming (fig. 5a(@).

S.2 Mathematical derivations

S.2.1 Scale-invariance of RNN dynamics
with rectified linear activation function

Here we prove that, whenever x;(0) = 0,
Vs >0 r(t;s0) = sr(t; 0), (42)

where r(t; s8) = @(x(t; s0)) and x(t; s0) is the solution to equation 1 with inputs defined by
equation 2. The function ®(°) is the rectified linear activation function defined in equation 1.

We begin by demonstrating that, when x;(0) = 0,
Vs >0 x(t; s0) = sx(t;80). (43)

We prove this by showing that the dynamics of sx(t; 8) are the same as those of x(t; s0):

d d
T [.@-x(i. 9)} = .sax(r._ 0)

—sx(t;0) + sW™¢(x(t;0)) + sW™p(U8)
= —sx(t;0) + W™ o(sx(t:0)) + W"¢(sUB) Vs >0, (44)

where in the second line we plugged in equation 1 and equation 2% for the dynamics and
upstream inputs, respectively, and in the third line we used the scale-invariance of the rectified
linear activation function,

Vs >0 ¢(sa) = sd(x), (45)
It is easy to see that equation 44 exactly matches equation 1 but with sx substituted in for x;
that is, the dynamics of these two quantities are the same. Therefore, whenever the initial
conditions match, sx(0; 6) = x(0; s0), then their trajectories will too. It is easy to see that this

condition holds for any s if x;(0) = 0, thus proving equation 43 (2.

Along with the scale invariance of the activation function (equation 45 ), equation 43 implies
equation 422

r(t; s0) = o(x(t;50)) = ¢(sx(t;0)) = sd(x(t;0)) = sr(t;8), (46)

thus completing our proof.
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S.2.2 Large M limit of quadratic metabolic cost

Here we derive the large M limit of the quadratic metabolic cost term in the reaiming objective
function (equation 4@),

M

; 1 AN :
}‘_}ELOEZH.,_(G) (47)

i=1

We first note that each term in the sum depends on a sum over the randomly sampled encoding
weights (equation 2(%),

2

ui(0)? = Zi’u ; (48)

If the encoding weights, Uj;, are independent and identically distributed, then each of the terms in
this sum is also independent and identically distributed. By the law of large numbers, then, as M -
oo their sum will approach an expectation over this distribution,

Jim ”Zu? ?;¢(9)> . (49)

where (}u,, denotes an expectation over the probability distribution of the encoding weights, Ujj.

This expectation can be evaluated by first defining the random variable - =¥, U;6; to express the
expectation as an integral over z, and then exploiting the rectified linear activation function
(equation 1) to simplify this integral,

o0 0 oo oo
(-u..l-(ﬂ}Q}U‘j = <¢(‘Z)Q>z :f_m o(2)*p(2)dz = ]_oo qh{z)zp(z)dz-k[o &(2)?p(2)d= :£ 22p(2)dz,

(50)
where we simply exploited the fact that ®(z) = 0 when z < 0 and @(z) = z when z > 0. If the

distribution of the encoding weights Ujj is symmetric around 0, then the distribution of z is as well
and we have that

Finally, if the encoding weights are zero-mean and independent, we have that
K
(2%) = ZZ (UssUss) 065 = Z(U?>oz (53
J=1 k=1

If Ul-j additionally have unit variance, (U2} =1 = (s*) = [|0]* .Putting this all together, we arrive at the
equality in equation 9%

I|19II2

M
_— 2 2 3 L2
i\}1_)113:0 i !IZ:;?J!?'_(Q) = (u;(8) >'Ufj = /0 2p(2)dz = = < Y=
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S.2.3 Reachable manifold moments for  — 9

In our analysis of the reachable manifold, we characterized its location and shape via its centroid
and covariance, which were evaluated as expectations over a uniform distribution on the
manifold. Here we derive the probability density function of this distribution and use it to
calculate these expections.

We begin with the case of g — 2 non-zero command variables, which we parameterize by their
polar coordinates,

0 cOos
=3 . (54)
02 sin

We then formally define the reachable manifold as follows:
R = {r(tena; 5, ) : 8 € [0, Spux), ¢ € [0, 27]}. (55)

where r(to,g; S, @) is the motor cortical activity pattern at time t,,,q produced by a pair of
command variables 8¢, 6, with angle ¢ and norm s, with all other command variables set to 0 (65 =
04 = ... = g = 0). The function r(teg; S, #) can be thought of as a function mapping 2D command
variables, (s, ¢) € [0, sy ax] % [0, 27], to activity patterns, r € R p, on the 2D surface constituting the
reachable manifold (the conical surface shown in fig. 3f2).

The probability density function of the uniform distribution on this 2D surface in R  is given by
its area element, dV (s, ¢), divided by its total area,

D (F(tonc; 5, 9)) = #"’) (56)

The area element and total area are given by

dV (s,@) = \/cieti.](s.p)'f'.](s. )] (57)

Smax 2
P / ] dV (s, ¢)dypds. (58)
0 0

where det[°] denotes the matrix determinant and J denotes the N x 2 Jacobian of the mapping from
command variables to the reachable manifold,

3(s,0) = [gru i) Bl (59)

To evaluate the probability density function, we must first calculate these derivatives.
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To do so, we again resort to the scale invariance property of the rectified linear activation function
(equation 45@),

r(tcnd;'g'.‘ {‘."3) = Sr(ﬁcnd;lfp) = Sro(@)" (GU)
——
ro(®)
where we have defined ry(¢) to be the activity generated by a pair of command variables with

angle ¢ and unit norm. The Jacobian is thus given by

1 0

J(sew=[rn(w sra(m]=[row rmw] N (61)

where ri(v) := Zro(v) Plugging this into equation 57 2, we have that the area element is given by

-1 0- p)* 1 o-
aV(s,¢) = |det e n) (o)
\ 0 s| |rh(e)T 0 s
= lam 10 - Iro(@)[I*  rolp) - To(p) - Lo
L ro(¢)-ro(e)  Ilra(I* 0 s
= S\/||1‘D(%S)||2H1‘6(‘P)||2 — (ro(p) - rh())?
= s|iro(@)lllIro(¢) (V1 — cos? w(yp)
= sllro(@)lllra(@) || sin w(e)], (62)

where w(¢) is the angle between ry(¢) and its derivative at ¢, rj(y) .The total area of the manifold
is thus

Smax 27
/ / slro(@)llixs (@)l sinw(e)] dpds

1 7 ,
= 35 [ Iea(@sb sl . (63

With these two expressions in hand, we can analytically express expectations over the probability
density function in equation 56 . The mean, corresponding to the manifold centroid, y,is given

by

Fmax 2
r= ] [ T(tenas 8, @) (X(tena; 8, @) dsde
0 0

Sfmax 2
= [ st (i s, 0) s

=—[m« dsf ro(@)Iro(@)lls (@)l sin ()| d

fo ( o) lIro(0)lllIro (@)l sinw ()| de
7 liro(@) llixh ()] sin w(ip)| dep

e 3 gmax (64)
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Its covariance, Z,, is given by
2, =rrl — ', (65)

where 7 is the matrix of second moments,

Smax 2m
rrl = / [ I (tend; 5, @) T{Eena; S, cp)? P (2(tena; 5, 0)) dsde
Jo Jo

I

Smax 27
] / 5200(2)T0(@)TP (x(tunas 5, 2)) s d
0 0

ro()||[Ir6 ()]l sin w(p)| dyp
T lro(@)lllirh()ll sinw()| de

1 E— 2w

7 [ as [ roomte In(llirs )l sinw(e)l de
1

9

2 fn 1‘0( )l‘n(P)T

max

(66)

Because the integrals and derivatives in these expressions are all univariate, we can estimate them
accurately with discrete approximations.

S.2.4 Reachable manifold moments for 5 -~ 9

Analagous expressions can be derived for the case of f - 2 but in these cases good estimates of
the integrals and derivatives quickly become numerically intractable as the number of variables
increases. For these cases, we therefore resorted to moments with respect to the probability
distribution of activity patterns generated by uniformly distributed motor commands, instead of the
probability distribution of activity patterns uniformly distributed on the reachable manifold.

We can express the covariance of this simpler distribution, which we denote by Xy, by

parameterizing the non-zero command variables, 8 = [(91 by ... 0 ;{} ,in terms of a magnitude and

direction, g — s6,,where 0 < s < S .,and |8, = 1. This allows us to factorize the uniform
distribution over motor commands into a scalar uniform distribution for the magnitude, s ~
Uniff0, ;%] and a uniform distribution over the unit radius (i - 1)-sphere for the direction, g, .
The expectations in the covariance thus factorize as follows:

g = <<1‘(fmd:Sg{:)l’(fmdi-‘s'go)r>a>§u <<l‘(fend ‘~§U)> >§ <<I'( end} %90}>5>;

= (), (r(tuns: 00)1(t.n; B0) > — ()2 (x(ten 19(}) (r(r,.lef))r
)

= % <r(rﬂm.:ég)r(t,,,.l:'ﬂn) >§U _ S < ena; 80) < end; 00) >:O (67)

!
where we used the scale invariance of the motor cortical dynamics (equation 8 %) to write
(bt s80) = s¥(taa:60) 1N the second line, and in the third line we simply inserted expressions for the
first and second moments of s. The expectations over g, can be approximated using Monte Carlo
methods by uniformly sampling vectors from the corresponding unit radius (K — 1)-sphere.

S.3 Extended methods
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$.3.1 Estimating the intrinsic manifold

To estimate the intrinsic manifold, we fit a Probabilistic PCA (PPCA) model'%4% to the mixed and

rPEe = 8 T H (r; —0). (68)

Here, i indexes a particular timestep and trial during the calibration task. The PPCA generative
model assumes that each of these data points are generated from a corresponding set of £

uncorrelated latent variables z; = {;“ Zig ... zl,] as follows,
z; ~ N (0,1), (69a)
ri=d|z; ~ N (Fzi,0°1) . (691h)

The model thus assumes that the activity patterns ri*= are concentrated within the column space
of the factor loading matrix F - it is the columns of this matrix that define the intrinsic manifold.
These parameters are fit to the mixed and z-scored calibration task data, {r*>**}, by maximum

likelihood:
F,0? = arg max log P({r{"***}) = arg max log NV (0, FF” + ¢°I)
F,o? F,02
=F = l:\//\l—ff'\ﬁ \//\Q—UEVQ \a"Af—G—EVf
| N,
2
= 0" = — )\‘
i=F+1
where A, Az, ..., An,. are the eigenvalues of the sample covariance of the calibration task activity,
{rp>=4}, ordered from largest to smallest (i.e. A; is the largest eigenvalue), and V1.V2,..., VN,

are their associated eigenvectors (i.e. the principal components, ordered from most to least
variance explained).

Note, however, that the columns of F define the dimensions of the intrinsic manifold in mixed and
z-scored neural activity space (i.e. the space defined by the coordinates of the r** vectors). To
convert these to dimensions of the full N -dimensional state space, where each coordinate
corresponds to the activity of an individual neuron (i.e. the space defined by the coordinates of the

r; =H™18 rP* L ¢,

where we define H ! as the N x N, matrix containing the inverse of the tri-diagonal component of
H in its first N, rows and 0’s filling all subsequent rows. We then apply this linear transformation
to the columns of F to obtain an analagous N x £ factor loading matrix F, defined in the full N -
dimensional state space,

F, =H'S,F.

Note that, since the bottom N - N, rows of H! are filled with 0’s, those same rows of F, are also
filled with 0’s. This reflects the fact that the intrinsic manifold is orthogonal to the dimensions of
activity corresponding to neurons not recorded in the experiment. Finally, we defined an
orthonormal basis £y, f,, ..., f; € R j for the intrinsic manifold by taking the left singular vectors of
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This method for estimating the intrinsic manifold is almost the same as that used by Sadtler et al.,
which differs only in that a Factor Analysis model was used instead of a PPCA model. In that case,
the maximum likelihood estimates of the model parameters cannot be evaluated in closed form
and must be computed via an iterative optimization algorithm (the Expectation Maximization
algorithm). We found that using a Factor Analysis model instead of PPCA had no noticeable effects
on our results (data not shown), so we reported only results with the more easily fit PPCA model.

S.3.2 Construction of the baseline decoder
As described in the Methods section, the baseline decoder has the following form
D = KL

K c R?*¢ L g Ri*Nr,

We term L the dimensionality reduction matrix and K the velocity readout matrix. Here we describe

in greater detail how these two matrices are fit to the calibration task data. Unless otherwise

. . 7
noted, these procedures are exactly as those described in192% and.' %%

The dimensionality reduction matrix L is derived from the mode of the posterior distribution of
the PPCA model (equation 69),

P(Z,‘

r’f:"i’“‘"i) — N (z.,-_“_l,zlr.m'm-_il . Ezlrmiuzd) (70‘1)

Pgjpmixea = (FTF + 021) " FT prixed, (70b)

.

L

The N, x £ matrix |, thus yields a linear transformation from N,. dimensions to £ dimensions. The
z-scored and mixed activity patterns {ri*} from the calibration task can thus be reduced to £
dimensions via multiplication with f,,resulting in a corresponding set of dimensionality-reduced
activity patterns {z:} (as above, here and in the rest of this section the index i jointly indexes a
timestep and trial of the calibration task).

To complete the construction of the dimensionality reduction matrix L, these dimensionality-
reduced activity patterns are then z-scored. The standard deviations of each component of the z;
vectors are calculated over all timesteps and trials of the calibration task, and collected in a
diagonal matrix S,. Note that mean subtraction is not necessary since the activity vectors ry =
have already been z-scored so are mean 0. The final dimensionality reduction matrix is then given
by

L=S§;L (71)
This second z-scoring step is necessary to ensure that controlling the BCI does not require neurons
to produce firing rates beyond the range exhibited during the calibration task.

The dimensionality reduction matrix used by Sadtler et al. differed from ours in that f, was
constructed from the posterior distribution under a Factor Analysis generative model, rather than
a PPCA generative model. Like in PPCA, the mode of the posterior distribution of a Factor Analysis
model can also be expressed as a linear transformation of rj"> yielding a very similar expression
for 1,.

The velocity readout matrix K is also chosen by maximum likelihood fit of a generative model. In
this case, we assume that the z-scored dimensionality-reduced activity patterns from the
calibration task, z;** = Lrj**** depend on the observed cursor velocities, y;, via the following
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latent Gaussian state space model,
Yilyi-1 ~ N (¥i-1,Q)
#7*y; ~ N (B, R)
where i-1 indexes the previous timestep in the same trial. Note that the cursor velocities y; are

constant within each trial of the calibration task, so within a given trial y; = y;_;. As was done in
the original experiment of Sadtler et al., we set

Q = 2k1,

where k = 1/.15 denotes the ratio of the cursor speeds used in our simulation (||y;]| = 1) and the
cursor speeds used in the original experiment (||y;[| = .15 m/s). Maximum likelihood estimates of
the remaining parameters are given by

=
5 (St (St

~z-scored sz-scored T ~ z-scored T

R = Tzzi Z; —Z; (By:)
i

where T denotes the total number of data points in the calibration task data: the number of

timesteps in each trial times the total number of trials.
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Figure S7

Differences between sampled decoder perturbations and the baseline decoder.

a. Distribution of mean principal angle between row space of baseline decoder and row space of each perturbed decoder.

b. Distribution of mean squared error achieved by mean calibration task responses under each perturbed decoder.

c. Distribution of minimal absolute change in preferred direction needed to produce the same readouts with each perturbed
decoder as with the baseline decoder.
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The velocity readout matrix is then derived from the mode of the of the posterior distribution

Plyi|gzeeerd, geegpeed gzeped, ) ,where the ellipses go back to the first timestep of the given trial. We
use the posterior distribution at steady state, whose mode is given by

3‘(.?; — (I - KB) 3’3‘—1 + Kﬁz—m—.orcd-
where K is the so-called steady-state Kalman gain matrix. This matrix is given by
K=x.B'Bz.B" +R)! (72)

where I is the steady-state posterior covariance, given by the solution to the discrete-time
algebraic Riccatti equation

0=3.B"(Bx.B" +R)"'BX, - Q

The 2 x £ velocity readout matrix used for the baseline decoder is thus set to the steady-state
Kalman gain matrix, K.

$.3.3 Subsampling WMPs and OMPs

As mentioned in the methods, we attempted to minimize any differences between within- and
outside-manifold perturbations that would go beyond their opposing relationship to the intrinsic
manifold. To do this, we first calculated every possible WMP and OMP, corresponding to each £-
dimensional permutation. Since we set £ = 8, this resulted in £! -1 = 40, 319 decoder perturbations
of each type (minus 1 to exclude the identity permutation). We then quantified how different each
of these perturbations were from the baseline decoder with three different metrics, and
eliminated all decoder perturbations for which one or more of these metrics fell outside a specific
range.

The first metric is the angle between the perturbed decoder’s row space and the baseline
decoder’s.

For each decoder perturbation, Di*® or DS™? we calculated the two principal angles'%”%
between its row space and that of the baseline decoder effective decoding matrix, Dg**,and
averaged these two angles. Any decoder perturbations for which this mean principal angle was
greater than 80° or less than 60° was eliminated (fig. S7a ().

The second metric is the mean squared error that would be achieved if the subject were to simply
reproduce the neural activity from the calibration task. Analagous to the procedure followed by
Sadtler et al., we averaged the calibration task responses over time and over trials for each reach
target,

f;'““h = (ri)iEt.im(r points in calibration task trials with reach target j
and then computed the readouts from these time- and trial-averaged firing rate vectors under
each decoder perturbation, D§*"* or Dg"* .We then discarded all decoder perturbations where
the mean

squared error between these readouts and the target readouts was greater than 0.8 or less than 0.6
(fig. S7Tb@).
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The third metric is to ask how much the mean calibration task responses would have to change to
produce the same readouts under the perturbed decoder as under the baseline decoder. We first
calculated the time- and trial-averaged z-scored and mixed firing rates from the calibration task
=mixed -1 —ealib
ped =8 H(ES™ — ).
For each perturbed decoder, D, = Dy** or Dy ,we then computed the activity patterns closest to

ry=¢ that would produce the same readouts through that decoder as the original activity patterns
would through the baseline decoder, D§*,

pe (D{}) = argmin [[r — F>*¢||? subject to Dor = Dg*Fy™
r

o fie ey ~ .
=y + D (DoDf ) (Df — Do) 75,

pmixed

We then quantified the difference between rj
how much the preferred direction changed. Tuning curves were fit by least-squares regression,
exactly as described in Methods Section 4.9 equation 26 2 (but with 7™ or #=<D.) plugged in
fort;), and preferred directions were extracted from the fitted tuning weights as described in that
section. For each decoder perturbation, we then computed the mean absolute difference of the
preferred directions of the computed activity patterns {#=(Dy)}{_, from those of the observed
calibration task mean responses {ry*=};_,. Any perturbed decoders that resulted in a mean
absolute difference of more than 45° or less than 30° were discarded (fig. S7c2).

We typically found that about 100-200 permutations out all possible decoder perturbations
satisfied these criteria. We then randomly sampled 100 of them. The distributions of these three
merics for the 100 sampled WMPs and OMPs used in the main text are shown in figures S7a,
S7b @, and S7¢ 2.
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Reviewer #1 (Public review):
Summary:

This study considers learning with brain-computer interfaces (BCIs) in nonhuman primates,
and in particular, the high speed and flexibility with which subjects learn to control these
BCIs.

The authors raise the hypothesis that such learning is based on controlling a small number of
input or control variables, rather than directly adapting neural connectivity within the
network of neurons that drive the BCI. Adapting a small number of input variables would
circumvent the issue of credit assignment in high dimensions and allow for quick learning,
potentially using cognitive strategies ("re-aiming"). Based on a computational model, the
authors show that such a strategy is viable in a number of experimental settings and
reproduces previous experimental observations:
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(1) Differences in learning with decoders either within or outside of the neural manifold (the
space spanned by the dominant modes of neural activity).

(2) A novel, theory-based prediction on biases in BCI learning due to the positivity of neural
firing rates, which is then confirmed in data from previous experiments.

(3) An example of "illusory credit assignment": Changes in neurons' tuning curves depending
on whether these neurons are affected by changes in the BCI decoder, even though learning
only happens on the level of low-dimensional control variables.

(4) A reproduction of results from operant conditioning of individual neurons, in particular,
the observation that it is difficult to change the firing rates of neurons strongly correlated
before learning in different directions (up vs down).

Taken together, these observations yield strong evidence for the plausibility that subjects use
such a learning strategy, at least during short-term learning.

Strengths:

Text and figures are clearly structured and allow readers to understand the main concepts
well. The study presents a very clear and simple model that explains a number of seemingly
disparate or even contradictory observations (neuron-specific credit assignment vs. low-
dimensional, cognitive control). The predicted and tested bias due to positivity of firing rates
provides a neat example of how such a theory can help understand experimental results. The
idea that subjects first use a small number of command variables (those sufficient in the
calibration task) and later, during learning, add more variables provides a nice illustration of
the idea that learning takes place on multiple time scales, potentially with different
mechanisms at play. On a more detailed level, the study is a nice example of closely matching
the theory to the experiment, in particular regarding the modeling of BCI perturbations.

Weaknesses:

Overall, I find only two minor weaknesses. First, the insights of this study are, first and
foremost, of feed-forward nature, and a feed-forward network would have been enough (and
the more parsimonious model) to illustrate the results. While using a recurrent neural
network (RNN) shows that the results are, in general, compatible with recurrent dynamics,
the specific limitations imposed by RNNs (e.g., dynamical stability, low-dimensional internal
dynamics) are not the focus of this study. Indeed, the additional RNN models in the
supplementary material show that under more constrained conditions for the RNN (low-
dimensional dynamics), using the input control alone runs into difficulties.

Second, explaining the quantitative differences between the model and data for shifts in
tuning curves seems to take the model a bit too literally. The model serves greatly for
qualitative observations. I assume, however, that many of the unconstrained aspects of the
model would yield quantitatively different results.

https://doi.org/10.7554/eLife.106309.1.sa2

Reviewer #2 (Public review):
Summary :

The paper proposes a model to explain the learning that occurs in brain-computer interface
(BCI) tasks when animals need to adapt to novel BCI decoders. The model consists of a
network formulation of the "re-aiming" learning strategy, which assumes that BCI learning
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does not modify the underlying neural circuitry, but instead occurs through a reorganization
of existing neural activity patterns.

The authors formalize this in a recurrent neural network (RNN) model, driven by upstream
inputs that live in a low-dimensional space.

They show that modelling BCI learning as reorganization of these upstream inputs can
explain several experimental findings, such as the difference in the ability of animals to
adapt to within vs outside-manifold perturbations, biases in the decoded behaviour after
within-manifold perturbations, or qualitative changes in the neural responses observed
during credit assignment rotation perturbations or operant conditioning of individual
neurons.

Overall, while the idea of re-aiming as a learning strategy has previously been proposed in
the literature, the authors show how it can be formalized in a network model, which allows
for more direct comparisons to experimental data.

Strengths:

The paper is very well written. The presentation of the model is clear, and the use of vanilla
RNN dynamics driven by upstream inputs that are constant in time is consistent with the
broader RNN modeling literature.

The main value of the paper lies in the fact that it proposes a network implementation for a
learning strategy that had been proposed previously. The network model has a simple form,
but the optimization problem is performed in the space of inputs, which requires the authors
to solve a nonlinear optimization problem in that space.

While some of the results (eg the fact that the model can adapt to within but not outside-
manifold perturbations) are to be expected based on the model assumptions, having a
network model allows to make more direct and quantitative comparisons to experiments, to
investigate analytically how much the dimension of the output is constrained by the input,
and to make predictions that can be tested in data.

The authors perform such comparisons across three different experiments. The results are
clearly presented, and the authors show that they hold for various RNN connectivities.

Weaknesses :

The authors mention alternative models (eg, based on synaptic plasticity in the RNN and/or
input weights) that can explain the same experimental data that they do, they do not provide
any direct comparisons to those models.

Thus, the main argument that the authors have in favor of their model is the fact that it is
more plausible because it relies on performing the optimization in a low-dimensional space.
It would be nice to see more quantitative arguments for why the re-aiming strategy may be
more plausible than synaptic plasticity (either by showing that it explains data better, or
explaining why it may be more optimal in the context of fast learning).

In particular, the authors model the adaptation to outside-manifold perturbations (OMPs)
through a "generalized re-aiming strategy". This assumes the existence of additional
command variables, which are not used in the original decoding task, but can then be
exploited to adapt to these OMPs. While this model is meant to capture the fact that
optimization is occurring in a low-dimensional subspace, the fact that animals take longer to
adapt to OMPs suggests that WMPs and OMPs may rely on different learning mechanisms,
and that synaptic plasticity may actually be a better model of adaptation to OMPs. It would be
important to discuss how exactly generalized re-aiming would differ from allowing plasticity

Jorge A Menéndez et al., 2025 eLife. https://doi.org/10.7554/eLife.106309.1 72 of 75


https://doi.org/10.7554/eLife.106309.1

7 eLife

in the input weights, or in all weights in the network. Do those models make different
predictions, and could they be differentiated in future experiments?

https://doi.org/10.7554/eLife.106309.1.sa1

Author response:

Reviewer #1 (Public Review):

Overall, I find only two minor weaknesses. First, the insights of this study are, first and
foremost, of feed-forward nature, and a feed-forward network would have been enough
(and the more parsimonious model) to illustrate the results. While using a recurrent
neural network (RNN) shows that the results are, in general, compatible with recurrent
dynamics, the specific limitations imposed by RNNs (e.g., dynamical stability, low-
dimensional internal dynamics) are not the focus of this study. Indeed, the additional
RNN models in the supplementary material show that under more constrained
conditions for the RNN (low-dimensional dynamics), using the input control alone runs
into difficulties.

We thank the reviewer for raising this important point. While we agree that recurrent
dynamics were not the focus of this study, we would like to point out that 1) dynamics, of
some kind, are necessary to simulate the decoder fitting process and 2) recurrent neural
networks (RNNs) are valuable for obtaining general insights on how biological constraints
shape the reachable manifold:

(1) To simulate the decoder fitting process, we had to simulate neural activity during the so-
called “calibration task”. Some dynamics to these responses are necessary to produce a
population response with dimensionality resembling what was found in experiments (10
dimensions). Moreover, dynamics are necessary to create a common direction of high
variance across population responses to the calibration task stimuli (see Supplementary
Figure 2a and surrounding discussion), which is necessary to reproduce the biases in
readouts demonstrated in Figure 4 (as many within-manifold decoder perturbations are
aligned with it; Supplementary Figure 2b).

Because feed-forward networks lack dynamics, reproducing our results with a feed-forward
network would require using an input with dynamics. Rather than making an arbitrary
choice for these input dynamics, we chose to keep the input static and instead generate the
dynamics with a RNN, which is in line with recent models of motor cortex.

We agree, however, that this is an important point worth clarifying in the manuscript. In our
revision we will aim to add a demonstration of how to reproduce a subset of our results with
a feed-forward network and a dynamic input.

(2) While we agree that RNNs impose certain limitations over feed-forward networks, we see
these limitations as an advantage because they provide a framework for understanding the
structure of the reachable manifold in terms of biological constraints. For example, our
simulations in Supplementary Figure 1 show that the dimensionality of the reachable
manifold is highly dependent on recurrent connectivity: inhibition-stabilized connectivity
makes it higher-dimensional whereas task-specific optimized connectivity makes it lower-
dimensional. Such insights are valuable to understand the broader implications and
experimental predictions of the re-aiming strategy.

Because feed-forward networks are untied from the reality of recurrent cortical circuitry,
they cannot be characterized in terms of such biological constraints. For instance, as the
reviewer points out, dynamical stability is not a well-defined property of feed-forward
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networks. Such models therefore cannot provide any insight into how the biological
constraint of dynamical stability could influence the reachable manifold (which we show it
does in Figure 5b). Relatedly, feed-forward networks cannot be optimized to solve complex
spatiotemporal tasks like the ballistic reaching task we used for our task-optimized RNN
(Supplementary Figure 1, right column), so cannot be used to understand how such
behavioral constraints would influence the reachable manifold.

We agree that these reasons for using RNNs are subtle and left implicit in how they are
currently exposed in the text. We will add a discussion point clarifying these in our revision.

Second, explaining the quantitative differences between the model and data for shifts in
tuning curves seems to take the model a bit too literally. The model serves greatly for
qualitative observations. I assume, however, that many of the unconstrained aspects of
the model would yield quantitatively different results.

We completely agree: our model is best used to provide a qualitative description of the
capabilities of the re-aiming strategy. We will be sure to revise our manuscript to keep such
quantitative comparisons at a minimum.

Reviewer #2 (Public Review):

The authors mention alternative models (eg, based on synaptic plasticity in the RNN
and/or input weights) that can explain the same experimental data that they do, they do
not provide any direct comparisons to those models. Thus, the main argument that the
authors have in favor of their model is the fact that it is more plausible because it relies
on performing the optimization in a low-dimensional space. It would be nice to see more
quantitative arguments for why the re-aiming strategy may be more plausible than
synaptic plasticity (either by showing that it explains data better, or explaining why it
may be more optimal in the context of fast learning).

We agree this remains a limitation of our study. To contrast our re-aiming model with models
of synaptic plasticity (in the input and/or recurrent weights), we have included substantial
discussion of these alternative models in two sections of the manuscript:

¢ Introduction, where we elaborate on the argument that synaptic plasticity requires
solving an exceptionally difficult optimization problem in high dimensions

¢ Discussion section “The role of synaptic plasticity in BCI learning”, where we review a
number of synaptic plasticity models and experimental results they can account for

We fully agree that more quantitative comparisons remain an important follow-up to this
line of research. However, it is worth noting that there are many such models out there.
Moreover, as is the case with many computational models, the results one can achieve with
any given model can be highly sensitive to a number of different hyperparameters (e.g.
learning rates). We therefore feel that a more rigorous comparison requires deeper study and
is out of scope of this manuscript.

In particular, the authors model the adaptation to outside-manifold perturbations
(OMPs) through a "generalized re-aiming strategy". This assumes the existence of
additional command variables, which are not used in the original decoding task, but can
then be exploited to adapt to these OMPs. While this model is meant to capture the fact
that optimization is occurring in a low-dimensional subspace, the fact that animals take
longer to adapt to OMPs suggests that WMPs and OMPs may rely on different learning
mechanisms, and that synaptic plasticity may actually be a better model of adaptation to
OMPs.
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We thank the reviewer for raising this question. We agree that the fact that animals take
longer to adapt to OMPs suggests that the underlying learning strategy is somehow different.
But the argument we try to make in this section of the paper is that it in fact does not require
an entirely different mechanism. Our simulations show that the same mechanism of re-
aiming can suffice to learn OMPs, but it simply requires re-aiming in the larger space of all
command variables available to the motor system (rather than just the two command
variables evoked by the calibration task). Because this is a much higher-dimensional search
space (10-20 vs. 2 dimensions, which is a substantial difference due to the curse of
dimensionality), we argue that learning should be slower, even though the mechanism (i.e.
re-aiming) is the same.

This is an important and somewhat surprising takeaway from these simulations, which we
will try to bring up more explicitly and clearly in the revision.

It would be important to discuss how exactly generalized re-aiming would differ from
allowing plasticity in the input weights, or in all weights in the network. Do those models
make different predictions, and could they be differentiated in future experiments?

They do in fact make different predictions, and we thank the reviewer for asking and
pointing out the lack of discussion of this point. The key difference between these two
learning mechanisms is demonstrated in Figure 5b: under generalized re-aiming, there is a
fundamental limit to the set of activity patterns one can learn to produce in the brain-
computer interface (BCI) learning task. This is quantified in that analysis by the asymptotic
participation ratio of the reachable manifold as K increases, which indicates that there is a
limited ~12-dimensional subspace that the reachable manifold can occupy. The specific
orientation of this subspace is determined by the (recurrent and input) connectivity of the
recurrent neural network. With synaptic plasticity in any of the weight matrices
(Wrec,Win,U), this subspace could be re-oriented in any arbitrary direction. Our theory of
“generalized re-aiming” therefore predicts that the reachable manifold is 1) constrained to a
low-d subspace and 2) is not modified when learning BCIs with outside-manifold
perturbations.

Experimentally testing this would require a within-/outside- manifold perturbation BCI
learning task akin to that of Sadtler et al, but where the “intrinsic manifold” is measured
from population responses evoked by every possible motor command so as to entirely
contain the full reachable manifold at max K. This would require measuring motor cortical
activity during naturalistic behavior under a wide range of conditions, rather than just in
response to the 2D cursor movements on the screen used in the calibration task of the
original study. In this case, learning outside-manifold perturbations would require re-
orienting the reachable manifold, so a pure generalized re-aiming strategy would fail to learn
them. Synaptic plasticity, on the other hand, would not.

We will be sure to elaborate further on this claim in the revised manuscript.

https://doi.org/10.7554/eLife.106309.1.sa0
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