
of one neuron around its average are not correlated with 
the fluctuations of other neurons, population coding is 
relatively well understood. Specifically, we know which 
factors control the amount of information a population 
code contains4–7, how networks that receive population 
codes as input can be constructed so that they carry out 
computations optimally8, and even how information in a 
population code increases as a result of learning or atten-
tion9–12. Unfortunately, noise in the brain is correlated, 
and because of this we need to take a second look at the 
results that have been obtained under the assumption of 
independent noise. (As discussed in BOX 1, ‘correlated’ 
in this article means ‘noise correlated’.) For the compu-
tational work, this means extending the theories to take 
into account correlated noise, and for the empirical work 
this means assessing how attention and learning affect not 
only single neuron properties, such as tuning curves, but 
also how they affect correlations in the noise.

For these reasons, it is essential that we gain a thorough 
understanding of both the correlational structure in the 
brain and its impact on population coding. Progress has 
been made on both fronts by adopting two complemen-
tary perspectives13. One focuses on encoding, and asks 
whether adding correlations to a population of neurons 
without modifying single neuron responses (so that 
the correlated and uncorrelated populations would be 
indistinguishable on the basis of single neuron record-
ings) increases or decreases the amount of information 
in the population. The goal of this approach is to deter-
mine whether there are any general principles that relate 
correlations to increases or decreases in the amount of 
information, and to assess whether the information 
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Neural correlations, population coding 
and computation
Bruno B. Averbeck*, Peter E. Latham‡ and Alexandre Pouget*

Abstract | How the brain encodes information in population activity, and how it combines and 
manipulates that activity as it carries out computations, are questions that lie at the heart of 
systems neuroscience. During the past decade, with the advent of multi-electrode recording 
and improved theoretical models, these questions have begun to yield answers. However, a 
complete understanding of neuronal variability, and, in particular, how it affects population 
codes, is missing. This is because variability in the brain is typically correlated, and although 
the exact effects of these correlations are not known, it is known that they can be large. Here, 
we review studies that address the interaction between neuronal noise and population 
codes, and discuss their implications for population coding in general.

As in any good democracy, individual neurons count 
for little; it is population activity that matters. For 
example, as with control of eye1,2 and arm3 movements, 
visual discrimination in the primary visual cortex (V1) 
is much more accurate than would be predicted from 
the responses of single neurons4. This is, of course, not 
surprising. As single neurons are not very informative, 
to obtain accurate information about sensory or motor 
variables some sort of population averaging must be 
performed. Exactly how this averaging is carried out 
in the brain, however, and especially how population 
codes are used in computations (such as reaching for an 
object on the basis of visual cues, an action that requires 
a transformation from population codes in visual areas 
to those in motor areas), is not fully understood.

Part of the difficulty in understanding population 
coding is that neurons are noisy: the same pattern of 
activity never occurs twice, even when the same stimu-
lus is presented. Because of this noise, population coding 
is necessarily probabilistic. If one is given a single noisy 
population response, it is impossible to know exactly what 
stimulus occurred. Instead, the brain must compute some 
estimate of the stimulus (its best guess, for example), or 
perhaps a probability distribution over stimuli.

The inability of population activity to perfectly repre-
sent variables raises two questions. First, just how accu-
rately can variables be represented? And second, how does 
the presence of noise affect computations? Not surpris-
ingly, the answer to both depends strongly on the nature 
of the neuronal noise, and especially on whether or not the 
noise is correlated (see BOX 1 for definitions). If the noise 
is uncorrelated, meaning the fluctuations in the response 
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computed from single neurons recorded separately can 
substitute for the true information in a population (a com-
mon technique used in the analysis of experimental data9,14–

17). The other focuses on decoding, and more generally on 
computation. It is driven by the fact that if one wants to 
extract all the information from a population of correlated 
neurons (that is, decode optimally), the strategy for doing 
so can be quite complicated. From this perspective, we 
can ask how well decoding strategies that ignore correla-
tions, and, therefore, are relatively simple, compare with 
optimal, but more complex, strategies.

Here, we summarize the empirical and theoretical 
work that has been carried out in relation to these two 
perspectives, and discuss what they tell us about the 
interplay between correlations, population coding and 
computation.

The encoding perspective: ∆∆Ishuffled
Perhaps the most straightforward question that can be 
asked about correlations is whether or not they affect the 
amount of information in a population code. Although the 
question is straightforward, the answer is not. For some 
correlational structures information goes up, for others it 
goes down, and for still others it stays the same. Although 
this is somewhat disappointing, because it means that the 
details of correlations matter, it is important to know for 
two reasons. First, it raises a cautionary note, as it implies 
that, in general, the amount of information in a population 
cannot be computed without knowing the correlational 
structure (see below). Second, because details matter, we 
are forced to pay attention to them — general statements 
such as ‘correlations always hurt so the brain should elimi-
nate them’ or ‘correlations always help so the brain should 
use them’ can be ruled out.

To determine whether correlations affect the amount 
of information in a population code, it is necessary to 
compute the amount of information in the correlated 
responses, denoted I, and compare this with the amount 
of information that would be in the responses if they 
were uncorrelated, denoted Ishuffled (the name Ishuffled is 
derived from the fact that, in experiments, responses are 
decorrelated by shuffling trials). The difference, ∆Ishuffled 
(≡ I–Ishuffled), is a measure of the effect of correlations on 
the amount of information in a population code13. An 
important aspect of this approach is that information is 
quantifiable, and so can be computed from data.

We can develop most of the intuition necessary 
to understand how correlations affect the amount of 
information in a population code by considering a two 
neuron, two stimulus example. Although this is a small 
population code, it retains several of the features of larger 
ones. In particular, each stimulus produces a (typically 
different) set of mean responses, and around those means 
there is noise in the form of trial-to-trial fluctuations. 
Because of the noise, any response could be produced by 
either stimulus, so a response does not tell us definitively 
which stimulus occurred. Therefore, the noise reduces 
the information in the responses, with the degree of the 
reduction depending on both the correlations in the noise 
and their relationship to the average responses.

To understand the relationship between signal, noise 
and information in pairs of neurons, we can plot the corre-
lated and uncorrelated response distributions and exam-
ine their features. In the left column of FIG. 1 we show a set 
of correlated responses, and in the right column we show 
the associated uncorrelated distributions. The response 
distributions in this figure are indicated schematically by 
ellipses, which represent 95% confidence intervals (FIG. 1). 

Box 1 | Population codes, noise correlation and signal correlation

Population codes are often characterized by the ‘tuning curve plus noise’ model. In this 
model, the tuning curve represents the average response of a neuron to a set of stimuli, 
with the average taken across many presentations of each stimulus, and the noise refers 
to the trial-to-trial variability in the responses.  In panel a, tuning curves are shown for two 
neurons that have slightly different preferred stimuli. In panel b, we show two 
hypothetical scatter plots of the single trial responses for this pair of neurons, in response 
to the repeated presentation of a single stimulus s1 (arrow in panel a). Ellipses represent 
95% confidence intervals. The example on the left illustrates positive noise correlation 
and the example on the right illustrates negative noise correlation. Responses also show a 
second sort of correlation known as signal correlation61. These are correlations in the 
average response. Neurons with similar tuning curves (panel a) typically have positive 
signal correlations, because when s increases, the mean responses of both neurons tend 
to increase, or decrease, together. Conversely, neurons with dissimilar tuning curves 
typically have negative signal correlations. Unless stated otherwise, ‘correlated’ in this 
article means ‘noise correlated’.

In panels c and d we illustrate the response of a population of neurons.  The x-axis 
corresponds to the preferred orientation of the neuron, the response of which is plotted 
on the y-axis. Each dot corresponds to the firing rate of one neuron in this example trial, 
and the purple curve shows the average response of each neuron in the population.  
Although the neurons in both panels c and d exhibit noise fluctuations, there is a 
difference in the structure of those fluctuations: on individual trials the responses of 
nearby neurons in panel c are uncorrelated (fluctuating up and down independently), 
whereas in panel d they are correlated (tending to fluctuate up and down together). 
Note that nearby neurons in panel d are positively correlated (as in panel b, left) whereas 
those that are far apart are negatively correlated (as in panel b, right). 
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The larger the overlap of the ellipses, the more mistakes 
are made during decoding, and the less information 
is contained in the neural code. Therefore, these plots 
allow us to see, graphically, how correlations affect the 
information in the neuronal responses.

An important point about correlations is that the 
interaction between the signal correlations (which in 
this case correspond to the relative positions of the 
mean responses, see BOX 1 for definitions) and the noise 

correlations controls whether correlations increase or 
decrease information. To illustrate this, in FIG. 1a we 
have constructed responses such that the signal and 
noise correlations are both positive. This leads to larger 
overlap between the ellipses for the correlated than for 
the uncorrelated responses, which makes the correlated 
responses harder to decode. The correlated responses 
carry less information, so ∆Ishuffled <0. In FIG. 1b, on the 
other hand, the signal is negatively correlated whereas 
the noise is positively correlated. Here, there is less over-
lap in the correlated than the uncorrelated responses, 
which makes the correlated responses easier to decode. 
In this figure, then, the correlated responses carry more 
information, and ∆Ishuffled >0. Importantly, there is also 
an intermediate regime (FIG. 1c) in which I and Ishuffled are 
the same (∆Ishuffled = 0). So, the presence of correlations 
does not guarantee an effect on the amount of informa-
tion encoded. The decrease in information when the 
signal and noise are both positively correlated (or both 
negatively correlated) and the increase when the signal 
and noise have opposite correlations is a general feature 
of information coding in pairs of neurons, and has been 
observed by a number of authors18–20.

These examples illustrate two important points. First, if 
we know only the individual responses of each neuron in a 
pair, and not their correlations, we do not know how much 
information they encode. Second, just because neuronal 
responses are correlated does not necessarily mean that 
they contain more (or less) information. This is important, 
as it has been suggested that correlations between neurons 
provide an extra channel of information14,21.

In all of the examples shown in FIG. 1, the correlations 
are the same for both stimuli, meaning the ellipses in each 
panel have the same size and orientation. However, it is 
possible for the correlations to depend on the stimulus, 
in which case the ellipses would have different sizes or 
orientations. Such correlations are often referred to 
as stimulus-modulated correlations22, and they affect 
information encoding in the same way as the examples 
discussed above: if the correlations increase the overlap, 
the information goes down, whereas if the correlations 
decrease the overlap then the information goes up. In 
extreme cases, it is even possible for neurons to have 
identical mean responses to a pair of stimuli, but differ-
ent correlations (for example, one ellipse at +45° and the 
other at –45°). Although beyond the scope of this review, 
the effect of these stimulus-modulated correlations, which 
are just beginning to be investigated23, can be large.

What is actually observed in the brain? Do cor-
relations increase or decrease the amount of available 
information? Various empirical studies have measured 
ΔIshuffled in pairs of neurons and have found that it is small 
in the rat barrel cortex24, and macaque V1 (REFS 25,26), 
prefrontal27 and somatosensory cortices28. The results 
of these studies have also shown that ΔIshuffled can be 
either positive or negative, which means that in real 
neurons — not just in theory — noise correlations can 
either increase or decrease the amount of information 
encoded in pairs of simultaneously recorded neurons. 
Overall, however, the observed effects have been 
quite small29.

Figure 1 | Effects of correlations on information 
encoding. In all three cases, we show the response 
distributions for two neurons that respond to two different 
stimuli. The panels on the left show the unshuffled 
responses, those on the right show the shuffled responses. 
Each ellipse (which appears as a circle in the uncorrelated 
plots) indicates the 95% confidence interval for the 
responses. Each diagonal line shows the optimal decision 
boundary — that is, responses falling above the line are 
classified as stimulus 2 and responses below the line 
are classified as stimulus 1. The x-axis is the response of 
neuron 1, the y-axis the response of neuron 2. a | A larger 
fraction of the ellipses lie on the ‘wrong’ side of the 
decision boundary for the true, correlated responses 
than for the independent responses, so ΔIshuffled <0. 
b | A smaller fraction of the ellipses lie on the wrong side 
of the decision boundary for the correlated responses, 
so ΔIshuffled >0. c | The same fraction of the ellipses lies on 
the wrong side of the decision boundary for both the 
correlated and independent responses, so ΔIshuffled = 0. 
Ishuffled, uncorrelated information; ∆Ishuffled, I–Ishuffled.

R E V I E W S

360 | MAY 2006 | VOLUME 7  www.nature.com/reviews/neuro



0

0 50 100 150 200 250 300 350 400 450 500

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

In
fo

rm
at

io
n 

(I)

a

b

c = –0.005
c = 0 (Ishuffled)
c = 0.01
c = 0.1

Population size

0 400 800 1,200 1,600 2,000
–30

–25

–20

–15

–10

–5

0

Population size

∆I
sh

uffl
ed

/I

c = 0.1

These results have direct bearing on (and are at 
odds with) the binding-by-synchrony hypothesis. This 
hypothesis, originally put forward by Milner30 and von der 
Malsburg31, and championed by Singer and colleagues32–34, 
states that noise correlations (more specifically, synchro-
nous spikes) could solve the binding problem35 by signal-
ling whether different features in a visual scene belong 
to the same object. Specifically, they suggested that the 
number of synchronous spikes across a pair of neurons 
depends on whether the pair represents the same or dif-
ferent objects. If this hypothesis were true, it would imply 
that ΔIshuffled would be large and positive, at least for some 
pairs, because shuffling data removes synchronous spikes. 
To test this directly, Golledge et al.25 calculated ΔIshuffled (Icor 
in their study) using an experimental paradigm similar to 
that used by Singer and colleagues. They found that shuf-
fling the data eliminated little information about whether 
two features in a visual scene belonged to the same object, 
a finding that argues against the binding-by-synchrony 
hypothesis.

These empirical studies suggest that in vivo correla-
tions have little impact on the amount of information in 
pairs of neurons. Whether this holds for large popula-
tions, however, is unknown. In fact, as pointed out by 
Zohary and colleagues36, small effects of correlations 
in pairs can have large effects in populations. But, as 
with the two neuron example given above, the effect 
can be either positive or negative. To illustrate this, 
consider a population of neurons with bell-shaped 
tuning curves in which neurons with similar tuning 
curves are more strongly correlated than neurons with 
dissimilar tuning curves. As, in this example, neurons 
with similar tuning curves show positive signal cor-
relations, we expect, on the basis of our two neuron, 
two stimulus example above, that positive noise cor-
relations will lead to a reduction in information and 
negative correlations to an increase. This is exactly 
what is found. Specifically, as the number of neurons 
increases, Ishuffled (FIG. 2a, correlation coefficient (c) = 0) 
becomes much larger than I when noise correlations 
are positive (FIG. 2a, c = 0.01 or c = 0.1) and much 
smaller when they are negative (FIG. 2a, c = –0.005). 
Interestingly, however, these effects are small for pairs of 
neurons, and only become pronounced at the popula-
tion level. FIGURE 2b shows how Ishuffled compares with 
I as the number of neurons increases. For a model in 
which the maximum correlations are 0.1, the differ-
ence between Ishuffled and I is minimal (<1%) for a pair 
of neurons (n = 2). However, as the size of the popula-
tion grows to only a few thousand neurons, correlations 
begin to have a large effect on the encoded information, 
reducing it by a factor of almost 25 relative to Ishuffled. 
Although it is not yet clear whether this model accu-
rately reflects the effects of noise correlation in the 
brain, it provides us with an important lesson: small, 
perhaps undetectable, correlations in pairs of neurons 
can have a large effect at the population level. Therefore, 
it may be typical for Ishuffled and I to be very different. 
This, in turn, implies that studies14,37–44 in which Ishuffled 
is used as a surrogate for the true information, I, should 
be treated with caution.

A corollary of these results is that noise correlations 
can cause the amount of information in a population of 
neurons to saturate as the number of neurons approaches 
infinity36,45–47 (FIG. 2a). One of the first studies to address 
this question empirically suggested that the pattern of 
noise correlations observed in the medial temporal visual 
area (MT) was such that information would saturate36. 
This was subsequently challenged by theoretical stud-
ies46,47 that pointed out that the correlations measured in 
MT do not necessarily imply that the information would 
saturate as the number of neurons increased.

Although the question of whether or not a particular 
correlational structure will cause the information to satu-
rate is interesting from a theoretical perspective, it may 
not be so relevant to networks in the brain. This is because 
the nervous system can extract only a finite amount of 
information about sensory stimuli, and, in subsequent 
stages of processing, the amount of information cannot 
exceed the amount extracted by, for example, the retina 
or the cochlea. Therefore, as the number of neurons 
increases, the correlations must be such that information 

Figure 2 | Information, I, and ΔIshuffled versus population 
size. a | Information, I, versus population size, for different 
correlation coefficients, c. Positive correlations (c = 0.01 
or c = 0.1) decrease information with respect to the 
uncorrelated (c = 0) case. Furthermore, for positive 
correlations, information saturates as the number of 
neurons increases. b | ∆Ishuffled/I versus population size. 
An important feature of this plot is that correlations have 
large effects at the population level even though ∆Ishuffled/I 
is small for individual neuronal pairs. Ishuffled, uncorrelated 
information; ∆Ishuffled, I–Ishuffled. Encoding model in panels a 
and b was taken from REF. 45 and the information measure 
was Fisher.
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No-sharpening model
A model in which the 
orientation tuning curves of 
cortical cells are solely the 
result of the converging 
afferents from the LGN, 
without further sharpening in 
the cortex.

Sharpening model 
A model in which the LGN 
afferents provide broad tuning 
curves to orientation that are 
sharpened in the cortex 
through lateral interactions.

saturates. As such, the question is not whether informa-
tion saturates in the nervous system — it does — it’s how 
quickly it saturates as the number of neurons increases, 
and whether it saturates at a level well below the amount 
of information available in the input. These remain open 
experimental and theoretical questions45.

Pitfalls of using Ishuffled in place of I
As we have seen, the value of Ishuffled compared with I 
quantifies the impact of correlations on information 
in population codes. However, this is not the only use 
of Ishuffled. This measure is also commonly used as a 
surrogate for the true information14, primarily because 
estimating the true information in a large neuronal 
population would require simultaneous recordings of all 
of the neurons, whereas Ishuffled requires only single cell 
recordings, as well as fewer trials. Similarly, correlations 
are often ignored in theoretical and computational work, 
as they can be difficult to model37–43. Instead, information 
is often estimated under the assumption of independent 
noise, which is an estimate of Ishuffled rather than I.

Unfortunately, using Ishuffled instead of the true infor-
mation can be very misleading because, as discussed in 
the previous section, Ishuffled is not guaranteed to provide 
a good estimate of I. Orientation selectivity provides a 
good example of the problem that can arise. Two types of 
model have been proposed to explain the emergence of 
orientation selectivity in V1. One is a no-sharpening model 
in which the tuning to orientation is due to the conver-
gence of lateral geniculate nucleus (LGN) afferents onto 
cortical neurons (this is essentially the model that was 
proposed by Hubel and Wiesel48). The other is a sharpen-
ing model in which the LGN afferents produce only weak 
tuning, which is subsequently sharpened by lateral con-
nections in the cortex. It is possible to build these models 
in such a way that they produce identical tuning curves. 
Can we conclude from this that they contain the same 
amount of information about orientation?

If we were to use Ishuffled as our estimate of information, 
we would answer ‘yes’. For instance, if we assume that the 

noise is independent and Poisson in both models, iden-
tical tuning curves imply identical information. How 
about the true information, I? To compute the true infor-
mation, we need to know the correlations. Seriès et al.49 
have simulated these two models in a regime in which 
the tuning curves and the variability were matched on 
average. They then estimated the true information, I, and 
found that, across many architectures, the no-sharpening 
models always contained more information than the 
sharpening models, despite identical tuning curves. The 
difference in information is the result of using different 
architectures, which lead to different neuronal dynamics 
and, therefore, different correlations. This point is lost if 
only Ishuffled is measured.

Similar problems often emerge in other models. For 
example, one approach to modelling the neural basis of 
attention is to simulate a network of analogue neurons 
and modify the strength of the lateral connections to 
see if this increases information44. If the information 
is computed under the assumption of independent 
Poisson noise, these simulations only reveal whether 
Ishuffled increases. Unfortunately, as we have shown above, 
without knowing the correlations, the true information 
might have either increased or decreased.

A common theme in these examples is that the noise 
correlations are not independent of the architecture of 
the network. If the architecture changes, so will the cor-
relations. Assuming independence before and after the 
change is not a valid approximation, and can therefore 
lead to the wrong conclusions.

The decoding perspective: ∆Idiag

Above, we asked how correlations affect the total 
amount of information in a population code. Our ulti-
mate interest, however, is in how the brain computes 
with population codes, so what we really want to know 
is how correlations affect computations. This, how-
ever, requires us to specify a computation, and to also 
specify how it is to be performed. To avoid such details, 
and also to derive a measure that is computation and 

Box 2 | Assuming independence when decoding

What do we mean by ‘ignoring correlations when decoding’? Consider the following situation: a machine generates a 
number, x, which we would like to know. Unfortunately, every time we query the machine, the sample it produces is 
corrupted by independent, zero mean noise. To reduce the noise, we collect 10,000 samples. As the samples are 
independent, the best estimate of x is a weighted sum, with each sample weighted by 1/10,000.

Imagine now that the machine gets lazy, and only the first two samples are independent; the other 9,998 are the same 
as the second. In this case, the optimal strategy is to weight the first sample by 1/2 and the other 9,999 by a set of weights 
that adds up to 1/2. If, however, we decide not to measure the correlations, and assume instead that the samples are 
independent, we would assign a weight of 1/10,000 to all samples. This is of course suboptimal, as the first sample should 
be weighted by 1/2, not 1/10,000. The difference in performance of the optimal strategy (weight of 1/2 on the first 
sample) versus the suboptimal strategy (weights of 1/10,000 for all samples) is what ∆Idiag measures.

But why should we settle for the suboptimal strategy? The answer is that the suboptimal strategy is simple: the weights 
are determined by the number of samples, which is easy to compute. For the optimal strategy, on the other hand, it is 
necessary to measure the correlations. In this particular example, the correlations are so extreme that we would 
immediately notice that the last 9,999 examples are perfectly correlated. In general, however, measuring correlations is 
hard, and requires large amounts of data. Therefore, when choosing a strategy, there is a trade-off between performance 
and how much time and data one is willing to spend measuring correlations.

Neurons face the same situation: they compute some function of the variables encoded in their inputs, and to perform 
this computation optimally they must know the correlations in the ~10,000 inputs that they receive71. If they ignore the 
correlations, they may — or may not — pay a price in the form of suboptimal computations.
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wdiag

Fisher information
Measures the variance of an 
optimal estimator.

Shannon information
Measures how much one’s 
uncertainty about the stimuli 
decreases after receiving 
responses.

implementation independent, we ask instead about 
decoding, and, in particular, whether downstream 
neurons have to know about correlations to extract all 
the available information. We focus on this question 
because its answer places bounds on computations. 
Specifically, if ignoring correlations means a decoder 
loses, for example, half the information in a popula-
tion code, then a computation that ignores correlations 
will be similarly impaired. This does not mean that 
decoding is a perfect proxy for computing; the effect 
of correlations on decoding will always depend, at least 
to some degree, on the computation being performed. 
However, there is one fact that we can be sure of: if 
all the information in a population can be extracted 
without any knowledge of the correlations, then, for-
mally, any computation can perform optimally without 
knowledge of the correlations.

To investigate the role of correlations in decoding, 
then, we can measure the difference between the infor-
mation in a population code, I, and the information, 
denoted Idiag, that would be extracted by a decoder opti-
mized on the shuffled data but applied to the original 
correlated data (BOX 2). We refer to this difference as 
∆Idiag (∆Idiag = I–Idiag), although it has been given different 
names depending on the details of how it is measured. 
The name ∆Idiag is often used when working with Fisher 
information13,50, whereas ∆I (REFS 51,52) and Icor-dep (REF. 22) 
have been used for Shannon information53 (both ∆I (REF. 52) 
and Icor-dep (REF. 22), which are identical, are upper bounds 
on the cost of using a decoder optimized on shuffled 
data; see REF. 52 for details). For this discussion the 
details of the information measure are not important. 

Although the encoding perspective (discussed above) 
and the decoding perspective are related13, they are not 
as tightly coupled as might be expected. For example, 
∆Ishuffled can be non-zero — even very far from zero 
— when correlations have no effect on decoding (∆Idiag 
= 0). The opposite is also possible: ∆Ishuffled can be zero 
when correlations both exist and have a large effect on 
decoding (∆Idiag >0)13,54. To understand this intuitively, 
let us investigate how correlations affect decoding for 
our two neuron, two stimuli example (FIG. 3). In general, 
a decoder is just a decision boundary, and in FIG. 3, in 
which we have only two stimuli and the correlational 
structure is fairly simple, the decision boundary is a line. 
Examining the panels in FIG. 3a, we see that the decision 
boundaries are the same whether they are estimated 
on shuffled (left column) or correlated (right column) 
responses. However, in the example shown in FIG. 3b, 
using a decision boundary based on shuffled responses 
(black line) can lead to a strongly suboptimal decoding 
algorithm, as it would produce wrong answers much 
more often than the optimal decision boundary (red line 
in FIG. 3b). (Although ∆Idiag = 0 in FIG. 3a, for technical, 
but potentially important, reasons, correlations can be 
crucial for decoding in this case; in fact, ∆I ≠ 0. A discus-
sion of this issue is beyond the scope of this review, but 
see REFS 52,54 for details.)

Importantly, although ∆Idiag is zero in FIG. 3a, the corre-
lations clearly affect the amount of information encoded 
(∆Ishuffled <0, as can be seen in FIG. 1a). Conversely, in the 

example in FIG. 3b, ∆Idiag is greater than zero, even though 
the effect of correlations on encoding is rather small 
(∆Ishuffled is close to zero, and could be made exactly zero 
by adjusting the angle of the ellipses).

So how much information is lost when neural 
responses measured in the brain are decoded using algo-
rithms that ignore correlations? To our knowledge, the 
first researchers to address this question were Dan et al.55, 
who asked whether or not synchronous spikes in the 
LGN carried additional information. They found that 
pairs of synchronous spikes did carry extra information: 
for their most correlated pairs, 20–40% more informa-
tion was available from a decoder that took synchronous 
spikes into account than a decoder that did not.

Figure 3 | Effects of correlations on information 
decoding. The panels on the left show the shuffled 
responses, those on the right show the unshuffled 
responses. Each ellipse (which appears as a circle in the 
uncorrelated plots) indicates the 95% confidence interval 
for the responses. Each diagonal line shows the optimal 
decision boundary — that is, responses falling above the 
line are classified as stimulus 2 and responses below the 
line are classified as stimulus 1. The x-axis is the response of 
neuron 1, the y-axis the response of neuron 2. The panels 
on the left show the decoding boundary (black line) 
constructed using the uncorrelated responses (green and 
yellow circles). The panels on the right show the decoding 
boundary (red line) constructed using the correlated 
responses (green and yellow ellipses). This is the optimal 
decoding boundary. The ‘independent’ decoding boundary 
is included on this panel for easy comparison. 
a | The two decoding boundaries (indicated by a dashed 
red and black line) are identical, so the fraction of trials 
decoded correctly is the same whether or not the decoding 
algorithm was constructed using the correlated responses, 
and ΔIdiag = 0. b | The two decoding boundaries are 
different, so fewer trials are decoded correctly using the 
decoding algorithm constructed from the correlated 
responses, and ΔIdiag >0. I, information; Idiag, information 
that would be extracted by a decoder optimized on the 
shuffled data but applied to the original correlated data; 
∆Idiag, I–Idiag; wdiag, decoding boundary estimated on 
shuffled data.
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Almost all subsequent studies found that the maxi-
mum value of ∆Idiag across many pairs of neurons was 
small, of the order of 10% of the total information. 
This has been shown in the mouse retina51, rat barrel 
cortex24, and the supplementary motor area13,56, V1 

(REF. 25) and motor cortex57 of the macaque. So, almost 
all of the empirical data suggest that little additional 
information is available in the noise correlations 
between neurons.

Do the small values of Idiag that have been observed 
experimentally extrapolate to populations? Amari and col-
leagues58 were the first to study this question theoretically. 
They looked at several correlational structures and tun-
ing curves, and in most cases found that ∆Idiag was small 
compared with the total information in the population. 
These results, however, should not be taken to imply 
that ∆Idiag is always small for populations. In FIG. 4 we 
plot ∆Idiag as a function of population size. As was the 
case with ∆Ishuffled, the effect of correlations on decoding 
increases for larger populations.

This analysis tells us that the effect of correlations on 
decoding strategies can be anything from no effect at 
all to a large effect. In some sense the observation that 
correlations can be present and large and ∆Idiag can be 
small or even zero is the most surprising. This has the 
important ramification that, when studying population 
codes, one has to go beyond simply showing that noise 
correlations exist: their effect on decoding spike trains 
must be directly measured.

Conclusions
During the past decade it has become increasingly 
clear that if we want to understand population coding 
we need to understand neuronal noise. This is not just 
because noise makes population coding probabilistic,  
but is also because correlated noise has such a broad 
range of effects. First, correlations can either increase 
or decrease the amount of information encoded by 
a population of neurons. Importantly, decreases can 
have especially severe effects in large populations, as 
many correlational structures cause information to 
saturate as the number of neurons becomes large36,45,46. 
Such correlations, if they occur in the brain, would 
place fundamental constraints on the precision with 
which variables can be represented36,45–47. Second, 
correlations might or might not affect computational 
strategies of networks of neurons. A decoder that can 
extract all the information from a population of inde-
pendent neurons may extract little when the neurons 
are correlated, or it may extract the vast majority54,58. 
Incidentally, other measures of information coding in 
populations, including synergy, have been put forward, 
but they do not directly address the questions we are 
considering here (BOX 3).

These two aspects of correlations — how they affect 
the amount of information encoded by a population 
and how they affect decoding of the information from 
that population — can be quantified by the measures 
∆Ishuffled and ∆Idiag, respectively. The first of these, 
∆Ishuffled, is the difference between the information in a 
population code when correlations are present and the 
information in a population code when the correla-
tions are removed. This measure can be either greater 
than or less than zero46,47. The second, ∆Idiag, which 
is more subtle, measures the difference between the 
amount of information that could be extracted from 

Figure 4 | ∆Idiag/I versus population size. As was the 
case in FIG. 2b, correlations can have a small effect when 
decoding pairs of neurons, but a large effect when 
decoding populations. c, correlation coefficient; 
I, information; Idiag, information that would be extracted 
by a decoder optimized on the shuffled data but applied 
to the original correlated data; ∆Idiag, I–Idiag. Encoding 
model taken from REF. 45. 

Box 3 | Other measures of the impact of correlations

An information-theoretic measure that has been applied to pairs of neurons is 
redundancy20,22,27,61–63. This quantity is the sum of the information from individual cells 
minus the total information,

∆Iredundancy = ∑i I i – I (1)

where I i is the Shannon information from neuron i and I is the total information24,27,61,63–65. 
The negative of ∆Iredundancy is known as ∆Isynergy, and neural codes with positive ∆Isynergy 
(negative ∆Iredundancy) are referred to as synergistic.

The quantity ∆Iredundancy is often taken to be a measure of the extent to which neurons 
transmit independent messages, an interpretation based on the observation that if 
neurons do transmit independent messages, then ∆Iredundnacy is zero. However, this 
interpretation is somewhat problematic, because the converse is not true: ∆Iredundancy can 
be zero even when neurons do not transmit independent messages51,52. Therefore, 
despite the fact that ∆Iredundancy has been extensively used24,27,61–65, its significance for 
population coding is not clear (for a more detailed discussion, see REFS 51,52).

More recently, ∆Iredundancy has also been interpreted63,65 as a measure of how well 
neurons adhere to the famous redundancy reduction hypothesis of Attneave, Barlow 
and others66–69. However, this interpretation is due to a rather unfortunate duplication 
of names; in fact ∆Iredundancy is not the same as the redundancy referred to in this 
hypothesis. For Barlow, as for Shannon53, redundancy is defined to be 1–H/Hmax, where 
Hmax is the maximum entropy of a discrete distribution (subject to constraints) and H is 
the observed entropy. This definition has also been extended to continuous 
distributions70, for which redundancy is 1–I/Imax, where Imax is the channel capacity. The 
redundancy given in equation 1, however, corresponds to neither of these definitions, 
nor does its normalized version, ∆Iredundancy/I. Measuring ∆Iredundancy therefore sheds little, if 
any, light on the redundancy reduction hypothesis.

Studies that have estimated synergy or redundancy have in general, but not always63, 
found that pairs of neurons can be either redundant or synergistic24,27,61,63–65, whereas 
larger populations are almost always redundant. The latter result is not surprising: 
populations typically use many neurons to code for a small number of variables, so the 
marginal contribution of any one neuron to the information becomes small as the 
population size increases63.

R E V I E W S

364 | MAY 2006 | VOLUME 7  www.nature.com/reviews/neuro



a population by a decoder with full knowledge of the 
correlations, and the amount that could be extracted 
by a decoder with no knowledge of the correlations. 
Because correlations are not removed from the 
responses when computing ∆Idiag, this quantity is very 
different from ∆Ishuffled. In particular, unlike ∆Ishuffled, it 
can never be negative, because no decoder can extract 
more information than one with full knowledge of the 
correlations. So, if ∆Idiag is zero, correlations are not 
important for decoding, and if ∆Idiag is positive, they 
are. In the latter case, the ratio ∆Idiag /I quantifies just 
how important correlations are52.

A somewhat counterintuitive result that has emerged 
from quantitative studies of ∆Ishuffled and ∆Idiag is that the 
two are not necessarily related: ∆Ishuffled can be either posi-
tive or negative when ∆Idiag is zero, and ∆Ishuffled can be zero 
when ∆Idiag is positive52,54. So, these two quantities answer 
different questions, and the use of both of them together 
can provide deeper insight into population codes.

Both ∆Ishuffled and ∆Idiag have usually been found 
to be <10% for pairs of neurons. Therefore, it would 
seem that correlations are not important, and, in par-
ticular, that correlations caused by synchronous spikes 
— the type of correlations implicated in the binding 
by synchrony hypothesis — do not carry much extra 
information. However, whether correlations are impor-
tant for populations, which is the relevant question for 
the brain, remains an open question, because even 
small correlations can have a significant effect in large 
populations23,36 (FIGS 2b,4).

In summary, theoretical studies have greatly increased 
our understanding of the effects of correlations on the 
amount of information encoded in a population36,45–47, 
and we are even beginning to understand how to build 
networks that could extract a large fraction of the infor-
mation from a population in cases in which correlations 
are important23. The somewhat optimistic nature of 
both of these statements should, however, be tempered 
by two observations. First, essentially all these studies 
assumed Gaussian noise, and it is not clear how well they 
generalize to the non-Gaussian noise found in the brain. 
Second, experimentally quantifying the role of correla-
tions in large populations has proved extremely difficult: 
we have good measurements only for pairs of neurons, 
and, as discussed above, results for pairs do not give 
much indication of what is going on at the population 
level. It is therefore crucial that we develop methods that 
can be used to study large populations experimentally. 
Because of data limitations it is not possible to directly 
compute information59,60, so we are left with two options. 
One is to assess the role of correlations by decoding spike 
trains using algorithms that do and do not take correla-
tions into account, and comparing their performance. 
The other is to develop better models of how noise is 
correlated in populations, and to carry out theoretical 
computations based on those noise models. By apply-
ing both methods, we should ultimately understand the 
role of correlated noise in the brain, and, in particular, 
how the brain carries out computations efficiently in the 
presence of this noise.
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