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neuron makes a large number of connections, 
on the order of 1,000. They then used one of 
the favorite tricks of physicists: when they 
see a moderately large number, they pretend 
that it is very, very large. When the external 
input is fixed, networks of this type can fire 
at the kinds of low rates seen in the brain  
(a few hertz), with near-Poisson variability8. 
But under realistic conditions input is never 
fixed. Instead, it varies from trial to trial, by 
enough to make any single neuron, in isola-
tion, change its firing rate by at least a few 
hertz. When the variability is correlated across 
the population, one might think that the fir-
ing rates of all the neurons in the network 
would change together, leading to large cor-
relations in their firing rates. If the neurons 
were disconnected, that would indeed be the 
case. However, for highly connected networks 
of excitatory and inhibitory neurons, it is not. 
That’s because for such networks to remain 
stable (that is, to not exhibit runaway excita-
tion) they must be inhibition-dominated, in 
the sense that small increases in excitatory fir-
ing rate cause a larger increase in inhibitory 
firing rate9. This has an interesting corollary: if 
one were to increase the firing rate of all excit-
atory neurons in a network, that would cause a 
sufficient increase in inhibitory firing rate that 
the change in synaptic drive to every neuron 
in the network would be negative.

To make this explicit, we plot the firing rate 
of a test neuron, defined as a neuron with typi-
cal connectivity, as a function of the average 
excitatory firing rate in the network (Fig. 1a). 
There are multiple curves in this plot; focusing 
for now on the thick one, such a curve could 
be produced experimentally by controlling the 
firing rate of every excitatory neuron (except 
for the test neuron) and monitoring the firing 

altogether. This allowed the rigorous develop-
ment of an elegant theory describing large net-
works of spiking neurons. Of course, because 
of the ultrasparse assumption, this may seem 
like a classic case of looking where the light is. 
However, in a rare stroke of luck for theoreti-
cians, the analysis gave very accurate predic-
tions even when the sparseness assumption 
was violated. But why the theory worked 
so well remained a mystery that was not 
solved for another 14 years, when Renart and  
colleagues showed that it is the interplay of 
excitation and inhibition that causes correla-
tions to dynamically cancel, making them near 
zero on average4.

While the result of Renart et al.4 was 
extremely important, it brought a new mys-
tery. In some areas of the brain correlations 
are indeed near zero on average5,6. However, 
that’s the exception, not the rule: in most areas 
correlation coefficients hover around 0.1–0.2 
(refs. 5,6), appreciably larger than the predic-
tion of Renart et al.4. This mystery has now 
been solved as well, by Rosenbaum et al.2. They 
showed that for networks with spatially inho-
mogeneous connectivity (connectivity that 
falls off with distance, as is found in the brain), 
relatively large correlations should emerge if 
the input is spatially localized. The resulting 
spatial profile of correlations, large for nearby 
neurons and small for more distant neurons, 
is qualitatively similar to what is found in the 
brain7. Quantitatively, however, it differs: the 
model of Rosenbaum et al.2 predicts that corre-
lations should average to zero, something that 
is not typically seen. We’ll return to that point 
shortly, but first we’ll explain what they did.

As is typical in the analysis of neuronal 
networks in mammalian cortex, Rosenbaum 
et al.2 took advantage of the fact that each 

Whether this suppressive function of M1 is 
a special feature of the rodent whisker system 
or a general principle conserved across mam-
mals is another topic for further investigation. 
The current results do provide a new perspec-
tive on the function of this critical area: that 
promotion and suppression of behavior can be 
driven by the same cortical structure.
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Correlations demystified
Peter E Latham

An elegant study answers a long-standing question: how do correlations arise in large, highly interconnected networks of 
neurons? The answer represents a major step forward in our understanding of spiking networks in the brain.

One of the most notable features of single neurons  
in the mammalian brain is the highly variable 
rates at which they spike. A neuron might emit 
8 spikes on one trial, 5 on another and 10 on 
a third, even when conditions on each trial 
are virtually identical. At the population level, 
this variability tends to be correlated: upward 
fluctuations in the activity of one neuron are 
often mirrored by upward fluctuations in other, 
nearby neurons, and similarly for downward 
fluctuations. For example, on the same three 
trials, a second neuron might emit 7, 3 and  
12 spikes.

These correlated fluctuations are termed 
noise correlations, and there are two reasons 
to care about them. First, as their name implies, 
they are mainly a nuisance: noise correlations 
can greatly reduce the amount of information 
in a population, in many cases by orders of 
magnitude1. Second, and related, computa-
tions must be efficient in the face of these noise 
correlations. So to understand computations 
in the brain, it is essential to understand how 
noise correlations arise. In this issue of Nature 
Neuroscience, Rosenbaum et al.2 show, using 
arguments that are both elegant and simple, that 
correlations must arise when external input to a 
network varies over a length scale that is small 
compared to that of its lateral connectivity.

To put this work in context, flash back to 
1998, when van Vreeswijk and Sompolinsky 
published what has become the de facto 
standard model of large networks of spik-
ing neurons3. An underappreciated assump-
tion in that model was that connectivity was  
so sparse that correlations were eliminated  
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rate of the test neuron. While this has not been 
done, such a curve is consistent with every 
viable model of large, biologically plausible 
networks to date. There are two important 
features to this plot. First, the firing rate of 
the test neuron decreases as the average firing 
rate increases—a consequence of the fact that 
networks are inhibition dominated. Second, 
the curve is steep: in the high connectivity 
limit assumed by Rosenbaum et al.2, it would 
be infinitely steep (here we drew it shallower 

than it should be; otherwise, the thick and thin 
lines would be indistinguishable).

If the test neuron is sufficiently typical, 
then the equilibrium firing rate in the net-
work occurs where the 45° diagonal crosses 
the firing rate curve. Trial-to-trial variabil-
ity in the input would shift the firing rate 
of the test neuron up and down, as shown 
by the thin lines. However, because the lines 
are steep, the resulting shift in equilibrium 
firing rates is small. Consequently, in the 

high-connectivity regime, even highly cor-
related trial-to-trial variability has virtually 
no effect on the average firing rate in the 
network, and so the average correlation coef-
ficient is very small.

This is, essentially, the result of Renart et al.4:  
the dynamic cancellation referred to above 
is what produces the steep, downward slop-
ing firing rate curve and so reduces fluctua-
tions in firing rates. To see what Rosenbaum  
et al.2 added, assume that some fraction of the 
excitatory neurons, the preferred population 
(say, 1/9), receives input that varies from trial 
to trial. Again, high connectivity clamps the 
mean firing rates. Consequently, whenever  
the activity of the preferred population 
increases, the activity of the other 8/9 of  
the excitatory neurons (the nonpreferred  
populations) will decrease, and vice versa. 
Thus, as a result of variability in the input, 
neurons in the preferred population will 
fluctuate together and neurons in the non-
preferred population will fluctuate together—
but in the opposite direction. The network is 
shown in Figure 1b, where we have arbitrarily 
divided the neurons into nine groups. Because 
the networks are inhibition dominated  
(Fig. 1a), coupling is effectively inhibitory. It is 
this inhibitory coupling that causes preferred 
and nonpreferred populations to be anticor-
related (Fig. 1c).

It is not hard to extrapolate from this sce-
nario to one in which connectivity falls off 
with distance (Fig. 1d). The only real change is 
that the correlations are no longer long range, 
as distant neurons no longer have much effect 
on each other. This results in a tell-tale pattern 
of correlations: positive for nearby neurons, 
negative for intermediate neurons and zero for 
distant neurons (Fig. 1e). This tell-tale pattern 
is a key experimental prediction.

In both scenarios, because of the high 
connectivity, correlations average to zero— 
something that is not seen in the brain. How 
can positive correlations come about in the 
high-connectivity regime? There are at least 
four ways. First, networks of excitatory and 
inhibitory neurons are prone to oscillations 
and up–down states9, collective activity that 
leads to large correlations. Second, synaptic 
strength can changes on slow timescales, from 
hundreds of milliseconds to seconds. Because 
the synaptic strength determines the equilib-
rium firing rate, this would cause slow fluc-
tuations in the overall level of activity. Third, 
external input might fluctuate by an amount 
much larger than was assumed above. Fourth, 
neuromodulators might modify overall excit-
ability. Which of these, if any, is responsible  
for nonzero average correlations is not  
clear, and this is an active area of research. 

Figure 1  Firing rates and correlations in large, highly connected networks of excitatory and inhibitory 
neurons. (a) Firing rate of a test neuron (νtest) versus the average excitatory firing rate (ν̄E). The thick 
line is the firing rate curve when the input is fixed and static; the thin lines are firing rate curves 
on trials with different amounts of external input. The intersection of the firing rate curves with the 
dashed 45° (νtest = ν̄E) line corresponds to network equilibria (as indicated by the red dots). For ease 
of visualization, the firing rate curve is shallow here; in high-connectivity networks it would be much 
steeper. This would bring the thin lines very close together (because external drive shifts the firing  
rate curve up and down), so there would be very little variation in firing rate as input changed.  
(b) A randomly connected network arbitrarily broken into nine populations, only one of which (red) 
receives external input (which is applied uniformly to all neurons in the red subpopulation). Connection 
strengths are negative, mirroring the fact that networks of excitatory and inhibitory neurons are 
effectively inhibitory, and they are uniform because the network is randomly connected. (c) Average 
population activity on two trials relative to baseline (dashed line). For the blue points, the preferred 
population receives positive input; for the green points, it receives negative input. The center data 
points correspond to activity of the red subpopulation. All neurons within each subpopulation are 
correlated, but the neurons in the red subpopulation are anticorrelated with the rest of the neurons.  
(d) As in b, except the connectivity falls off with distance, as indicated by the progressively thinner 
lines connecting more distant populations. Black lines, closest connections; blue lines, moderately 
close connections; orange lines, moderately distant connections; purple lines, distant connections  
(e) Activity on two trials, as in c (with the same color code). Because connectivity is short range,  
activity is a decreasing function of distance, leading to correlations that fall off with distance.
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century London. Subsequently, during fMRI 
participants were asked to verbally recall the 
events in the movie. Using a method known 
as representational similarity analysis7, the 
research team then examined, scene-by-scene,  
whether similar brain activity patterns 
occurred within and between individuals dur-
ing both tasks: move viewing and recall.

The analysis revealed that the PMC, medial 
prefrontal cortex, right anterior temporal 
lobe, right inferior frontal gyrus and higher 
level visual areas had scene-specific patterns 
of activity when directly contrasting recall-to-
recall across individuals (Fig. 1). This effect 
was robust and was not dependent on changes 
in acoustics of the verbal recall or differences 
in recall length between participants, further 
underscoring the notion that the neural repre-
sentations of these recalled events had under-
gone some systematic transformation. Because 
everyone saw the same movie, unsurprisingly, 
brain activity patterns in these areas during 
movie viewing served to classify scenes far 
above chance. Impressively, the authors now 
reveal that classification accuracy of individual 
scenes during spoken recall was also substan-
tially above chance. Thus, despite all the idio-
syncrasies in how people spontaneously recall 
different movie scenes, there was a remarkably 
similar pattern of neural activity across brains 
for the same events.

that neural activity during perception of stimuli 
is preserved across individuals3 and is related  
to the content, not just the physical form,  
of the stimuli4. It has also been shown that  
patterns of activity during perception are  
reactivated during recollection in a sensory-
specific manner, such that visual and auditory 
memories are represented in their respective 
sensory cortices5. As a final piece to the puzzle, 
Bird and colleagues have shown that encod-
ing and recall activity of movie scenes overlap 
in the posterior medial cortex (PMC), such 
that higher correlation between these neural  
patterns predicts better recall performance6. 
This implies that the PMC is involved in con-
solidation and reinstatement of memories,  
possibly through its connections with the 
medial temporal lobe and other memory- 
related structures.

Chen and colleagues reasoned that if neu-
ral activity is preserved across mental states 
(perception and memory) within individuals 
and representations during perception are pre-
served across individuals, then neural activity 
during recall should also be preserved across 
individuals. To test this, they recorded func-
tional magnetic resonance imaging (fMRI) 
data from participants as they viewed a 50-min 
movie from the BBC TV series Sherlock,  
in which the fictional detective Sherlock Holmes 
solves murder mysteries in a twenty-first- 

When analyzing experimental data in 
macaque primary visual cortex, Rosenbaum  
et al.2 sidestepped the issue and took long-
range fluctuations into account without explic-
itly considering their source. When subtracted 
from experimentally observed correlations,  
the resulting correlational structure (posi-
tive, then negative, then near zero as distance 
between neurons increased) was exactly  
as predicted.

The analysis by Rosenbaum et al.2 was beau-
tiful, elegant and, ultimately, straightforward: 
they simply extended results from randomly 
connected networks with high connectivity to 
networks in which connection probability falls 
off with distance; the rest was algebra (occupy-
ing 35 pages of supplementary information). 
And this was not just theory; the authors took 
the laudable additional step of comparing their 

results to experiments and, fortunately, finding 
agreement. Their analysis adds much-needed 
insight into the dynamics of large networks of 
spiking neurons—exactly the kind of insight 
we need if we are ever going to understand 
how the brain works.

How do these correlations affect the ability of 
networks to store information? The answer, as 
is typical in neuroscience, is that we don’t know.  
The only correlations that reduce informa-
tion are ones that make the noise look like the 
signal10. As shown recently, these correlations 
emerge naturally in circuits that receive very 
little information compared to their coding 
capacity11. Whether the internally induced 
correlations described by Rosenbaum et al.2 
also introduce such correlations is an open 
question, one that is likely to keep theorists 
busy for the foreseeable future.
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Cracking the mnemonic code
Eva Zita Patai & Hugo J Spiers

Evidence reveals that humans share remarkably similar patterns of event-specific neural activity during spontaneous 
spoken recall. Posterior medial cortex appears to play a key role in transforming experience into memory.

Like fingerprints, each person’s brain has a 
unique pattern and organization but looks 
generally similar to other people’s. Thus, when 
two people experience the same event, a simi-
lar set of brain regions will be engaged, but the 
exact pattern of brain activity elicited will be 
unique to each individual. Similarly, during 
subsequent recall it is thought that each per-
son’s unique pattern of activity will re-emerge1 
but will become even more differentiated by 
the fact that people tend to recall events in 
slightly different ways. Thus, it would be sur-
prising if one person’s brain activity pattern 
during spontaneous recall provided a bet-
ter match to the activity pattern in another 
person’s brain during recall of the same event 
than the match between encoding and recall 
within an individual. Yet this is exactly what 
Chen and colleagues show in this issue2. Their 
findings imply that humans share a remark-
ably similar neural circuit for transforming 
experience into memory.

Much of the basis for this new research 
comes from previous seminal work showing 
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