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Population coding in the retina
Sheila Nirenberg∗ and Peter E Latham

Recent advances in multi-electrode recording have brought us
closer to understanding how visual information is encoded by
populations of retinal ganglion cells. By monitoring the visual
responses of many ganglion cells at once, it is now possible
to examine how ganglion cells act together to encode a visual
scene.
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Introduction
The first stage of visual processing occurs in the retina.
Visual stimuli excite the retinal input neurons (the
photoreceptors), which convert the visual stimuli into
electrical signals. These signals are then propagated
though the retinal circuitry to the output neurons (the
ganglion cells) and are relayed to the brain in the form of
action potentials.

A primary goal of retinal research is to determine
how visual information is transformed by the retina;
more specifically, to determine how a visual stimulus is
transformed into a pattern of action potentials in the
ganglion cells. The experimental strategy for addressing
this question is now standard: present the retina with
visual stimuli and then record ganglion cell responses. The

working hypothesis is that if we knew the input/output
relationship of every ganglion cell, we would know the
code used by the retina to represent visual information. If
we knew the code, then we would be able to reconstruct
a visual scene (to the same extent as the brain does) given
the spike trains of ganglion cells. (We are not implying that
the brain actually reconstructs a stimulus; however, it does
extract information from it. Performing a reconstruction is
just a way of estimating how much information the brain
could extract.)

Recent advances in multi-electrode recording techniques
have taken us a significant step closer to achieving this
goal. These techniques make it possible to, first, examine
the input/output relationships of many ganglion cells
rapidly and efficiently (see [1•–4•]), and, second, examine
the input/output relationships of many ganglion cells at the
same time. The latter is necessary for determining whether
or not ganglion cells act as independent encoders. This is
important because it bears on the experimental strategy
one might use to deduce the retinal code. If the ganglion
cells act independently, we can, in principle, find the code
by determining the input/output relationships of all the
ganglion cells separately, and then use these individual
relationships to piece together the whole code [5•]. If the
ganglion cells do not act independently, then we can only
determine the code by examining the behavior of the
ganglion cells as a population.

Here, we focus on two topics. First, we review recent
experiments using multi-electrode recording to examine
population codes used by ganglion cells. Second, we re-
view evidence that ganglion cells do not act independently
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Schematic overview of a reconstruction experiment. A spatially uniform stimulus was projected onto the retina. The intensity of the stimulus
changed every 15 ms to new one, which was drawn at random from a Gaussian distribution of intensities. Spike trains from ganglion cells were
recorded using a multi-electrode array. The spike trains were then presented to a decoding algorithm, which constructed an estimate of the
stimulus. Adapted with permission from [6••].
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and discuss how this affects strategies one might use to
characterize the retinal code.

How does a population of ganglion cells
encode a visual stimulus?
A recent paper by Warland et al. [6••] describes how a
population of ganglion cells collectively encodes a visual
stimulus. It presents one of the first attempts at decoding
a population signal. Using a multi-electrode array, the
authors recorded the spike trains of numerous ganglion
cells from the tiger salamander retina while presenting
a time-varying stimulus. The stimulus was a spatially
uniform field whose intensity varied randomly over time.
(Specifically, the intensity changed every 15 ms to a
new one, which was drawn at random from a Gaussian
distribution.) The authors then applied various decoding
strategies to the spike trains to try to reconstruct the time
course and intensity of the stimulus (Figure 1).

Warland et al. [6••] approached this reconstruction problem
as an optimization problem. They modeled the transforma-
tion from spike trains to stimulus using many parameters
and then adjusted those parameters to minimize the
mean square error between the actual stimulus and the
reconstructed stimulus.

Two kinds of reconstruction methods were used. The
first was a linear reconstruction method based on methods
used for single neurons by Bialek et al. [7], and works in
the following way: Consider spike trains from p neurons,
and let tν

i denote the ith spike of neuron ν. The linear
reconstruction attempts to express the stimulus, S(t), as the
sum of temporal filters, fν(t),
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The shapes of the filters, fv(t), plus the constant a are
adjusted to minimize the mean square error between the
estimated stimulus, Sestimate(t), and the actual stimulus,
S(t),
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The second method used an artificial neural network
trained by back-propagation to reconstruct the stimulus.
In its most basic form, this method starts with a linear
reconstruction as in equation 1, and then passes the output
of the linear reconstruction through a nonlinearity. Again,
the optimization parameters are the shapes of the filters
and the constant term (a in equation 1). See Box 1 for
a more detailed description of the two reconstruction
methods.

From these reconstruction experiments, we learned three
things about how ganglion cells encode the visual
stimulus:

1. The quality of the reconstruction of the stimulus
depended on the number and the type of ganglion cells
used to carry out the reconstruction. Generally, different
types of cells carried non-overlapping information, so the
quality of the reconstruction increased rapidly as more
cells of different type were included (Figure 2). The
quality of the reconstruction hardly improved at all when
cells of the same type were added.

2. The quality of the reconstruction depended on the
frequency spectrum of the stimulus: fast changes in
intensity (above 10 Hz) and very slow changes (below
1 Hz) were not well reconstructed. Performance was
optimal at about 2.5 Hz. Warland et al. [6••] suggest that
the optimal bandwidth represents a tradeoff between the
lowpass properties of the photoreceptors and the bandpass
nature of retinal processing. A candidate mechanism for
the low frequency cutoff is differentiation in the inner
retina, possibly at the bipolar cell synapse.

3. The linear reconstruction was as effective in reconstruct-
ing the stimulus as the neural network, suggesting that
most of the information about this stimulus was captured
by linear operations on the spike trains. The implications
of this finding for single-cell processing is beyond the
scope of this review, but a discussion can be found in [8].
Its implications for multi-cell processing and population
coding is discussed in the next section.

Do ganglion cells act as independent
encoders?
Numerous experiments have shown that the activity of
retinal ganglion cells is strikingly correlated. Evidence for
such correlations was first found in cat retina over 30
years ago [9]. Subsequent experiments in goldfish [10,11],
rabbit [12], cat [13–15] and salamander [16] have yielded
essentially the same result — that is, that neighboring
ganglion cells tend to fire together (or to be silent together)
more often than would be expected by chance.

The correlated behavior of two cells can be readily
displayed in a cross-correlogram, which gives the prob-
ability, P(τ), of two cells firing a time τ apart. Typical
cross-correlograms show either a peak or a dip near zero
delay: ganglion cells of the same type (e.g. two ON-center
cells) show a peak, whereas cells of opposite type (e.g. one
ON-center cell and one OFF-center cell) show a dip [17]
(Figure 3a).

Most of the studies mentioned above examined correlated
activity when the retina was in the presence of a constant
stimulus, that is, darkness or constant illumination.
Meister et al. [16] tested whether such correlated activity
could be found when the retina was presented with
a time-varying stimulus. The stimulus used in this
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Box 1

1. Linear reconstruction



Reconstructing a stimulus from a set of spike trains requires a transformation from a discrete set of events (the spikes) to a continuous 
function of time (the stimulus). One way to do this is by linear reconstruction. With this method, each spike is replaced by a filter — a 
continuous, but sharply peaked, function of time. The filters from both spike trains are then summed to produce a reconstruction of the 
stimulus (see equation 1 in the text). The shapes of the filters are chosen so that the mean square error between the reconstruction and the 
original stimulus, averaged over the whole experiment, is minimized. (If one thinks of the spike train as a series of delta-functions, then the linear 
reconstruction is simply the convolution of those delta-functions with the optimized filters.)



This method is illustrated below for two cells viewing the same stimulus. Spike trains from the two cells are labeled (a) and (b). Below each 
spike train is a set of filters. To produce a reconstruction of the stimulus, the filters from both spike trains are summed, producing the thick 
trace in (c). The thin trace in that panel shows the original stimulus. 


2. Neural network reconstruction



Warland et al. [6••] used a number of different neural network architectures to perform nonlinear stimulus reconstruction. They all start out in 
the same way as the linear reconstructions: spike trains — (a) and (b) — are replaced by a set of filters, which are then summed to produce 
(c). In the simplest neural network architecture, which has no hidden units, the summed filters, (c), are then passed through a sigmoidal 
nonlinearity to produce the reconstruction, shown as a thick trace in (d). The thin trace in that panel shows the original stimulus. The 
optimization parameters are again the shapes of the filters.



In architectures with hidden units, an additional layer is added to the neural network. For these architectures, the thick trace in (d) represents 
the output of a hidden unit, rather than the final reconstruction. To reconstruct the stimulus, the output of each hidden unit undergoes the 
same class of transformations as was performed on the input layer: they are combined linearly and then passed through a sigmoidal 
nonlinearity. The output of that final nonlinearity is the reconstructed stimulus. (The additional layer is not shown, because it is identical in 
structure to the input layer.) Each hidden unit has associated with it a different set of  linear filters; therefore, more free parameters are added 
as more hidden units are used. Although increasing the number of free parameters might be expected to improve the quality of an estimate, 
this was not the case in the Warland et al. [6••] experiment — the quality of the reconstruction was insensitive to the number of hidden units.
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experiment was a spatially uniform illumination field
that switched on and off at regular intervals. Consistent
with the previous studies using constant illumination, the
authors found that the responses of neighboring cells were
tightly locked in time (Figure 3b). Note that the stimulus
itself causes the responses of the cells to be correlated. For
example, the two cells in Figure 3b are OFF-center cells;

thus, they both fire whenever the light goes off. These
stimulus-induced correlations produce periodic peaks that
are small and wide compared to the large peak that
occurs near zero delay. The large, central peak reflects
correlations above and beyond those produced by the
stimulus and indicates that the two cells did not respond
to the stimulus independently. Presumably, some common
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Figure 2
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Visual information from a population of retinal ganglion cells. The
retina was viewing the stimulus used in Warland et al. [6••], which
was a spatially uniform field whose intensity varied randomly over
time. (a) Spike trains from 14 ganglion cells. (b) Reconstructions
of the stimulus using various combinations of spike trains. The
thin traces represent a segment of the stimulus. The thick traces
represent the stimulus reconstruction. The reconstruction improved
as more cells were used. The improvement was large when cells of
different type were combined, and small when cells of the same type
were combined. Adapted with permission from [6••].

input triggered them both to fire, or one cell triggered the
other [18•]. Meister et al. [16] found that approximately
50% of all ganglion cell spikes fell within the central peak
of the cross-correlogram of at least one cell pair.

One would expect such correlations to have important
implications for how the brain interprets the signals of
ganglion cells. (Here, and in the remainder of this review,
‘correlations’ refers to correlations above and beyond those
produced by the stimulus; this is the more standard
definition.) One would expect the implications to become
clear when one tries to reconstruct the stimulus from
ganglion cell spike trains. Reconstruction methods that
treat the cells as independent encoders should produce
different results from reconstructions that take correlated
activity into account.

Interestingly, the results of the Warland et al. [6••]
experiment suggest that correlated activity plays a minimal

Figure 3
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Correlated activity in response to a constant stimulus versus
correlated activity in response to a time-varying stimulus.
(a) Cross-correlograms of two retinal ganglion cells presented with
constant illumination. Adapted from [17]. (b) Cross-correlograms of
two cells presented with periodic (1 Hz) illumination: 500 ms at high
intensity followed by 500 ms at low intensity. Adapted with permission
from [16].

role in encoding visual stimuli — at least the stimuli
used in those experiments. We infer this because the
linear reconstruction method, which treats the cells as
independent encoders, and the neural network, which
can utilize correlations, performed equally well at recon-
structing the stimulus. As described in Box 1, the linear
reconstruction method operates by computing filters for
ganglion cells and then summing them to produce an
estimate of the stimulus. Once the filters have been
chosen, the contribution of each spike to the stimulus
estimate is explicitly independent of the other spikes. The



Sensory systems492

neural network method, on the other hand, allows spikes
from other cells to influence a given spike’s contribution
to the stimulus estimate. Warland et al. [6••] even
demonstrated that the neural network can use correlated
activity by providing both reconstruction methods with
artificial data in which correlations among spike trains
contained information about the stimulus. They found
that the neural network method did significantly better
than the linear reconstruction method — by a factor of
about two. Thus, the fact that the neural network method
could have picked up information lurking in the correlated
activity, but did not, suggests to us that ganglion cells were
acting as independent encoders.

Warland et al. [6••] interpret their experiments differently
and suggest that ganglion cells do in fact influence each
other. Their argument is based on the fact that the optimal
filter chosen for each cell changes as more cells are added
to the decoder.

Fortunately, a simple experiment can resolve this dif-
ference in interpretation by testing directly whether or
not correlations are important. This experiment would
compare the quality of a reconstruction when ganglion
cells are explicitly independent to the quality of a
reconstruction when they are not. To force the cells to
be independent, one could use the following trick. Let’s
say one is recording from N cells. Present the retina with
the same stimulus N times (e.g. the time-varying stimulus
used in Warland et al. [6••]). On each presentation,
record from a different cell. Use these N recordings to
reconstruct the stimulus. Call this reconstruction 1. Then
present the retina with the same stimulus once more,
but this time record from all N cells at the same time.
Now perform the reconstruction with these simultaneous
recordings. Call this reconstruction 2. Any differences
between reconstructions 1 and 2 can be attributed directly
to correlations. This experimental procedure is illustrated
schematically in Figure 4.

So, what is the answer? Does a population of cells encode
a visual stimulus as a team of interdependent encoders or a
collection of independent encoders? This is still an open
question. Experiments such as the one described above
would help resolve it. In addition, as Warland et al. [6••]
point out, one needs to examine decoding strategies used
on more complex stimuli, such as spatially varying images.
It may well be that correlated activity does not play a
major role in encoding spatially uniform stimuli, but does
contribute to coding more natural images.

Conclusions
A fundamental issue in neuroscience is how information
is encoded in the activity of a population of neurons.
Recently, Warland et al. [6••] addressed this issue in
studies of the retina by asking how visual information is
encoded by a population of retinal ganglion cells. Their
approach was to record the spike trains from multiple

Figure 4
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Outline of an experiment designed to address whether correlations
convey information about the stimulus. First, the retina would be
presented with two identical visual stimuli, one after the other, then
the spike trains from two cells, labeled A and B, would be recorded.
Next, the reconstruction when cells A and B both saw the first
presentation (left panel) would be compared to the reconstruction
when cell A saw the first presentation and cell B saw the second
(right panel). In the first reconstruction, the spike trains may (and
undoubtedly will) contain correlations. In the second reconstruction,
the cells are forced to be independent, because they are monitored
at different times. Any differences in the reconstructions can be
attributed directly to correlations.

retinal ganglion cells while displaying a visual stimulus,
and then use those spike trains to reconstruct the stimulus.

Two main points emerged from this work. First, as one
might expect, the quality of the reconstruction depended
on the number of ganglion cells used to carry out the
reconstruction. Interestingly, though, the quality increased
only slightly when cells of the same type were used, but
increased strikingly when cells of different types were
used. For example, two ON-center cells provided more
information than one ON-center cell, but much less than
one ON-center and one OFF-center cell.

The second point was that a linear reconstruction method
worked as well as a nonlinear one (a neural network),
indicating that nonlinear operations were not playing a
major role in the reconstruction. This provides evidence
that the ganglion cells were acting as independent
encoders, which is surprising in light of numerous reports
that retinal ganglion cells show a high degree of correlated
activity. If ganglion cells are independent encoders, then
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what is correlated activity for? One possibility is that it is
used for encoding more complex images than the spatially
uniform ones used in Warland et al.’s [6••] experiment.
Future experiments involving multiple ganglion cell
reconstructions of spatially and temporally varying images
should be able to address this issue, and, at the same
time, provide valuable information on how visual scenes
are encoded in populations of retinal ganglion cells.
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