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Decoding the activity of a population of neurons is a fundamental problem in neuroscience. A key aspect of this problem is determining
whether correlations in the activity, i.e., noise correlations, are important. If they are important, then the decoding problem is high
dimensional: decoding algorithms must take the correlational structure in the activity into account. If they are not important, or if they
play a minor role, then the decoding problem can be reduced to lower dimension and thus made more tractable. The issue of whether
correlations are important has been a subject of heated debate. The debate centers around the validity of the measures used to address it.
Here, we evaluate three of the most commonly used ones: synergy, �Ishuffled, and �I. We show that synergy and �Ishuffled are confounded
measures: they can be zero when correlations are clearly important for decoding and positive when they are not. In contrast, �I is not
confounded. It is zero only when correlations are not important for decoding and positive only when they are; that is, it is zero only when
one can decode exactly as well using a decoder that ignores correlations as one can using a decoder that does not, and it is positive only
when one cannot decode as well. Finally, we show that �I has an information theoretic interpretation; it is an upper bound on the
information lost when correlations are ignored.
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Introduction
One of the main challenges we face in neuroscience is under-
standing the neural code; that is, understanding how information
about the outside world is carried in neuronal spike trains. Sev-
eral possibilities exist: information could be carried in spike rate,
spike timing, spike correlations within single neurons, spike cor-
relations across neurons, or any combination of these.

Recently, a great deal of attention has been focused on the last
possibility, on spike correlations cross neurons (e.g., synchro-
nous spikes). The reason for the strong emphasis on this issue is
that its resolution has significant impact on downstream re-
search: whether or not correlations are important greatly affects
the strategies one can take for population decoding. If correla-
tions are important, then direct, brute force approaches are ruled
out: one simply cannot find the mapping from stimulus to re-
sponse, as such a mapping would require measuring response
distributions in high dimensions, a minimum of N dimensions
for N neurons. For more than three or four neurons, the amount
of data needed to do this becomes impossibly large, and the direct
approach becomes intractable (Fig. 1a). Instead, indirect meth-
ods for estimating response distributions, such as modeling the
correlations parametrically, must be used.

If, on the other hand, correlations turn out not to be impor-
tant, then direct approaches can be used, even for large popula-
tions. This is because one can build the mapping from stimulus to
response for a population of neurons from the individual, single
neuron mappings (Fig. 1b). Such an approach would allow rapid
movement on the question of how neuronal activity is decoded.

The issue of whether correlated firing is important has been
fraught with debate. Several authors (Eckhorn et al., 1988; Gray
and Singer 1989; Gray et al., 1989; Meister et al., 1995; Vaadia et
al., 1995; deCharms and Merzenich, 1996; Dan et al., 1998; Stein-
metz et al., 2000) have suggested that they are, whereas others
(Nirenberg et al., 2001; Oram et al., 2001; Petersen et al., 2001;
Levine et al., 2002; Panzeri et al., 2002a,b; Averbeck and Lee,
2003; Averbeck et al., 2003; Golledge et al., 2003) have argued that
they are not or that they play a minor role. The debate has arisen
in large part because different methods have been used to assess
the role of correlations, and different methods yield different
answers.

One early method was to look for stimulus-dependent
changes in cross-correlograms (Eckhorn et al., 1988; Gray and
Singer, 1989; Gray et al., 1989; Vaadia et al., 1995; deCharms and
Merzenich, 1996). This method, however, has two problems. One
is that firing rates can significantly alter the shape of cross-
correlograms, making it difficult to separate information carried
in firing rates from information carried in correlations. The other
is that cross-correlograms only tell us about one type of correla-
tion, synchronous or near-synchronous spikes. Correlations that
occur on a longer timescale, or correlations among patterns of
spikes, are missed by this method.

More recently, information-theoretic approaches have been
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applied to the problem, because they are more quantitative and
are sensitive to correlations other than just synchrony. These
methods, however, also turned out to have problems. In partic-
ular, two measures that have appeared in the literature, �Ishuffled

(Nirenberg and Latham 1998; Panzeri et al., 2001; Golledge et al.,
2003; Osborne et al., 2004) and synergy/redundancy (Brenner et
al., 2000; Liu et al., 2001; Machens et al., 2001; Schneidman et al.,
2003), seem intuitive but, in fact, turn out to be confounded.
Here, we describe a measure that is not confounded and, in fact,
provides an upper bound on the importance of correlations for
decoding. In addition, we show why the other two methods,
�Ishuffled and synergy/redundancy, can lead one astray.

Results
Definition of correlations
Correlations in neuronal responses arise from two sources. One is
the stimulus: if multiple neurons see the same stimulus, then their
responses will be related. For example, if a flash of light is pre-
sented to the retina, all of the ON retinal ganglion cells will tend to
fire at flash onset and all of the OFF cells at flash offset. On
average, ON cells will be correlated with ON cells, OFF cells will
be correlated with OFF cells, and ON and OFF cells will be anti-
correlated with each other.

These stimulus-induced correlations are typically referred to
as “signal correlations” (Gawne and Richmond, 1993) and are
defined as follows: responses from N neurons, denoted, ri, i �
1, . . . , N, are signal correlated if and only if

p�r1 , r2 , . . . , rN� � �
i

p�ri�,

where p(r1, r2, . . . , rN) and p(ri) are the joint and single neuron
response distributions averaged over stimuli. These distributions
are given by the standard relationships p(r1, r2, . . . , rN) � �sp(r1,
r2, . . . , rN�s)p(s) and p(ri) � �sp(ri�s)p(s), where s is the stimulus.
Here and in what follows, the response from neuron i, ri, is essen-
tially arbitrary; it could be firing rate, spike count, or a binary
string indicating when a neuron did and did not fire.

The second source of correlations is common input, which
can arise from either a common presynaptic source (e.g., two ON
ganglion cells that receive input from the same amacrine cell) or
direct or indirect interaction between neurons (e.g., gap junction
coupling). Correlations of this type are called “noise correla-
tions” (Gawne and Richmond, 1993), and they differ from signal
correlations in that they are a measure of the response correla-

tions on a stimulus-by-stimulus basis. Specifically, responses are
noise correlated if and only if

p�r1 , r2 , . . . , rN�s� � �
i

p�ri�s�.

A population of neurons will almost always exhibit a mix of
signal and noise correlations. For example, two ON ganglion cells
far apart on the retina (two cells that share no circuitry) will
exhibit no noise correlations, but they will exhibit signal correla-
tions, so long as the stimulus has sufficiently long-range spatial
correlations to make them fire together. In contrast, two ON cells
with overlapping receptive fields (two cells that do share cir-
cuitry) will exhibit both signal and noise correlation.

It is undisputed that signal correlations are important for de-
coding, that is, for inferring stimuli from responses. Our brains
are built to take correlations in the outside world and reflect them
in correlations in neuronal responses. What is not clear, however,
is whether noise correlations are important for decoding. It is
these that have been the subject of debate, and it is these that we
focus on in this paper.

Testing whether correlations are important
The most straightforward way to test whether noise correlations
are important for decoding is to build a decoder that does not
take them into account and compare its performance with one
that does (Dan et al., 1998; Wu et al., 2000, 2001; Nirenberg et al.,
2001; Nirenberg and Latham, 2003; Averbeck and Lee, 2003, 2004).
If the decoder that does not take correlations into account performs
as well as the one that does, then correlations are not important for
decoding. If it does not perform as well, then they are.

To construct a decoder that takes correlations into account
(and, because we do not know the algorithm the brain uses, we
assume optimal decoding), we first record neuronal responses to
many stimuli and build the response distribution, p(r�s). [Here,
r � (r1, r1, . . . , rN) is shorthand for the responses from all N
neurons.] We then use Bayes’ theorem to construct the probabil-
ity distribution of stimuli given responses, yielding

p�s�r� �
p�r�s�p�s�

p�r�
.

We will take the approach that p(s�r) is our decoder, although in
practice one often takes the additional step of choosing a partic-
ular stimulus from this distribution, such as the one that maxi-
mizes p(s�r).

To construct a decoder that does not take correlations into ac-
count, we perform essentially the same steps we used to construct
p(s�r). The only difference is that our starting point is the indepen-
dent response distribution rather than the true one—the response
distribution one would build with knowledge of the single neuron
distributions but no knowledge of the correlations. This distribu-
tion, denoted pind(r�s), is

p ind�r�s� � �
i

p�ri�s�. (1)

Given pind(r�s), we can then construct the “independent” stimu-
lus distribution, pind(s�r), from Bayes’ theorem,

p ind�s�r� �
pind�r�s�p�s�

pind�r�
,

Figure 1. Estimating conditional response distributions from data. a, Estimate of the corre-
lated response distribution, p(r1, r2�s), for a single stimulus, s. The responses, r1 and r2, are taken
to be spike count in a 300 ms window. They range from 0 to 19, so there are 400 (� 20 � 20)
bins. A total of 250 trials were used, which leads to a very noisy estimate. b, Estimate of the
independent response distribution, p(r1�s)p(r2�s). The single neuron distributions, p(r1�s) and
p(r2�s), can be estimated individually, using all 250 trials for each one, and the joint distribution
can then be constructed by multiplying them together. This leads to a much smoother (and
more accurate) estimate of the probability distribution.
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where pind(r) � �s pind(r�s)p(s) is the total independent response
distribution. By construction, pind(s�r) does not use any knowl-
edge of the noise correlations.

To assess the role of correlations, we simply ask the decoders
to decode the true responses (the responses that were actually
recorded from the animal) and assess how well they do. Specifi-
cally, we take responses from simultaneously recorded neurons
and compute both p(s�r) and pind(s�r). If they are the same for all
stimuli and responses that could occur, then we know that we do
not have to take correlations into account when we decode; if they
are different for at least one stimulus–response pair, then we
know that we do.

In Figure 2a, we perform this procedure for a pair of neurons
with correlated responses. Although the responses are, in fact,
highly correlated, the correlations do not matter: if one goes
through each of the true responses, one can see that they can be
decoded exactly as well using the decoder built from the indepen-
dent response distribution as they can using the decoder built
from the true response distribution. Or, expressed in terms of
probabilities, pind(s�r1, r2) � p(s�r1, r2) for all responses that can

occur. This demonstrates a key point: cells can be highly corre-
lated without those correlations being important for decoding.

Of course, cells can also be correlated with the correlations
being important. An example of this is illustrated in Figure 2c,
which shows a pair of neurons whose correlational structure is
very similar to that shown in Figure 2a, but different enough so
that pind(s�r1, r2) 	 p(s�r1, r2). In this case, knowledge of correla-
tions is necessary to decode correctly, so correlations are impor-
tant for decoding.

Dan et al. (1998) were the first ones we know of to assess the
role of correlations by building decoders that do and do not take
correlations into account: they asked whether a decoder with no
knowledge of synchronous spikes would do worse than one with
such knowledge. Wu et al. (2000, 2001) later extended the idea so
that it could be applied to essentially arbitrary correlational struc-
tures, not just synchronous spikes, and, recently, we extended it
further and developed an information-theoretic cost function
that measured the importance of correlations (Nirenberg et al.,
2001; Nirenberg and Latham, 2003). Below we show that this cost
function provides an upper bound on the information one loses
by ignoring correlations. First, however, we show that the other
information-theoretic measures that have been proposed do not
do this.

Other approaches
Other approaches for assessing the importance of correlations
have been proposed. In this section, we consider two of the most
common ones, �Ishuffled and �Isynergy.

Shuffled information
The first measure we consider is �Ishuffled (see Eq. 2 below). This
measure emerged from an approach similar to the one described
in the previous section, in the sense that the overall idea is to
assess the importance of correlations by removing them and
looking for an effect. The difference, however, is in how we look.
In the previous section, we looked for an effect by building two
decoders, one using the true responses and one using the inde-
pendent ones. The two decoders are then asked to decode the true
responses, and their performance is compared. In the �Ishuffled

approach, the same two decoders are built. What is different,
however, is what is decoded: the true decoder is asked to decode
the true responses, and the independent one is asked to decode
the independent responses. As we will see, this seemingly small
difference in what is decoded has a big effect on the outcome.

The quantitative measure associated with this approach,
�Ishuffled, is the difference between the information one obtains
from the true responses and the information one obtains from
the independent responses (i.e., the “shuffled” responses, whose
name comes from the fact that, in experiments, the independent
responses are produced by shuffling trials). This difference is
given by

�Ishuffled � I�s; r� � Ishuffled�s; r�. (2)

Here, I(s; r) is the mutual information between stimuli and re-
sponses (Shannon and Weaver, 1949),

I � 
�
r

p�r� log2 p�r� � �
s

p�s� �
r

p�r�s� log2 p�r�s�, (3)

Figure 2. Correlations can exist without being important for decoding. a, Correlated re-
sponse distributions for four stimuli, shown as solid lines. For each stimulus, the responses lie
along the line segments indicated by the arrows. [Formally, p(r1, r2�si) � �(si 
 (r2 
 ai r1)),
where ai is the slope of the line segment, and there is an implicit cutoff when r1 is below some
minimum or above some maximum.] If the stimulus is known, r1 predicts r2 and vice versa,
making the responses perfectly correlated. Because the responses form disjoint sets, all re-
sponses are uniquely decodable. b, Independent response distributions for the same four stim-
uli, shown as open boxes (the correlated distributions are shown also, as dashed lines). For each
stimulus, the responses lie inside the boxes indicated by the arrows. The boxes overlap, and, if a
response were to occur in the overlap region, it would not be uniquely decodable, because it
could have been produced by more than one stimulus. However, the responses never land in this
region (because they always land on the dashed lines). Thus, a decoder built with no knowledge
of the correlational structure would be able to decode the true responses perfectly. c, A very
similar set of correlated distributions. A decoder with knowledge of the correlations would be
able to decode all responses perfectly. d, The independent response distributions derived from
c. The true responses can lie in the overlap region, and a decoder that had no knowledge of the
correlational structure would not be able to decode such responses perfectly. Thus, the correla-
tions here are clearly important for decoding.
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and Ishuffled(s; r) is defined analogously, except that p(r�s) is re-
placed by pind(r�s) (Eq. 1) and p(r) by pind(r). Specifically,

Ishuffled�s; r� � 
�
r

pind�r� log2 pind�r�

� �
s

p�s� �
r

pind�r�s� log2 pind�r�s�.

Because I is computed with knowledge of correlations and
Ishuffled is computed without this knowledge, one might expect
that when �Ishuffled 	 0, correlations are important, and when
�Ishuffled � 0, they are not. This expectation, however, is not
correct. The reason is that when one computes �Ishuffled, one is
computing information from a response distribution that never
occurred. As a result, one can end up measuring information
about a stimulus from responses that the brain never sees.

A corollary of this is that Ishuffled can actually be larger than I.
This is troublesome in light of the numerous proposals that cor-
relations can act as an extra channel of information (Eckhorn et
al., 1988; Gray and Singer, 1989; Gray et al., 1989; Vaadia et al.,
1995; Meister et al., 1995; deCharms and Merzenich, 1996; Stein-
metz et al., 2000), because, if they do, removing them should lead
to a loss of information rather than a gain. Also troublesome are
the observations that �Ishuffled can be nonzero even when a de-
coder does not need to have any knowledge of the correlations to
decode the true responses, and it can be zero when a decoder does
need to have this knowledge (see below).

To gain deeper insight into what �Ishuffled does and does not
measure, let us consider two simple examples, shown in Figure 3.
In both examples, correlations are not important; that is, pind(s�r1,
r2) � p(s�r1, r2) for all responses that can occur, but, in one case
�Ishuffled is positive and in the other �Ishuffled is negative.

In the first example, the true (correlated) response distribu-
tion is shown in Figure 3a, and its independent (shuffled) coun-
terpart is shown in Figure 3b. It is not hard to see why �Ishuffled is
positive in this case: when the responses are correlated, they are
disjoint and thus perfectly decodable (Fig. 3a). When they are
made independent, however, they are no longer disjoint; an over-
lap region is produced, and responses that land in that region
could have been caused by either stimulus (Fig. 3b). Thus, the
responses in the independent case provide less information about
the stimuli than the responses in the correlated case. A straight-
forward calculation shows that �Ishuffled � 1⁄4 (see Appendix A).

This example emphasizes why �Ishuffled is a misleading mea-
sure for decoding. Because the amount of information in the
shuffled responses is less than that in the true responses, one gets
the impression that the decoder built from the shuffled responses
would not perform as well as the one built from the true re-
sponses. In reality, however, it does perform as well: every one of
the true responses is decoded exactly the same using the two
decoders. This is reflected in the fact that pind(s�r1, r2) is equal to
p(s�r1, r2) for all responses that actually occur.

This is an important point. When one takes a set of correlated
responses and makes them independent, one creates a new re-
sponse distribution. However, the fact that this new response
distribution, pind(r1, r2�s), is not equal to the true one, p(r1, r2�s),
does not imply the reverse, that pind(s�r1, r2) 	 p(s�r1, r2). In fact,
as the above example indicates and as we showed in Figure 2a, it
is easily possible to have pind(s�r1, r2) � p(s�r1, r2) when pind(r1,
r2�s) 	 p(r1, r2�s). This is a surprising finding, and something that
would not have been (could not have been) revealed by �Ishuffled.

In the second example, the true response distribution is shown

in Figure 3c, and its independent counterpart is shown in Figure
3d. Here, �Ishuffled � 0: when the responses are correlated, they
land in the overlap region (the region in which the responses
could have been caused by either stimulus) on one-half the trials
(Fig. 3c), whereas when they are independent, they land in the
overlap region on one-quarter of the trials (Fig. 3d). Conse-
quently, when the responses are independent, they provide more
information on average (because they are ambiguous less often),
and a straightforward calculation yields �Ishuffled � 
1⁄4 (see Ap-
pendix A). It is also easy to show that a decoder does not need to
know about these correlations: regardless of whether a decoder
assumes the neurons are uncorrelated, responses in the overlap
region provide no information about the stimulus and responses
not in the overlap region are decoded perfectly (see Appendix A).
Thus, as with the previous example, the fact that �Ishuffled is neg-
ative is easy to misinterpret: it gives the impression that the cor-
relations are important when they are not.

It is not hard, by extending these examples, to find cases in
which �Ishuffled � 0 when correlations actually are important
[Nirenberg and Latham (2003), their supporting information].

Figure 3. �Ishuffled can be both positive and negative when correlations are not important
for decoding. a, Correlated response distributions for two stimuli, s1 and s2, which occur with
equal probability. For each stimulus, the responses fall inside the boxes labeled by that stimulus.
Because the responses are disjoint, all are uniquely decodable. b, Independent response distri-
butions for the same stimuli. (The center boxes are offset so both can be seen.) Responses in the
center box, which occur on one-quarter of the trials, provide no information about the stimulus.
Thus, the independent responses provide less information than the true responses (because
they are sometimes ambiguous), so �Ishuffled  0 (see Appendix A). However, as with Figure
2a, the true responses never land in the ambiguous region, so a decoder that has no knowledge
of the correlations will decode exactly as well as one that has full knowledge of them. c, A
different set of correlated response distributions, also for two stimuli. In this case, the responses
land in the center box on one-half of the trials, and thus there is ambiguity about what the
stimulus is on one-half the trials. d, The corresponding independent distribution (which is the
same as in b). Here, the independent responses are ambiguous on only one-quarter of the trials,
so they provide more information about the stimulus than the true responses. Thus, for this
example, �Ishuffled � 0 (see Appendix A). However, regardless of whether a decoder knows
about the correlations, if a response lands in the overlap region, the stimulus probabilities are
the same (one-half for each), so, as in a, knowledge of the correlations is not necessary for
decoding.

5198 • J. Neurosci., May 25, 2005 • 25(21):5195–5206 Latham and Nirenberg • Synergy, Redundancy, and Independence



This is because the shuffled information can be positive for some
parts of the code and negative for others, producing cancellations
that make �Ishuffled � 0. In fact, all combinations are possible:
�Ishuffled can be positive, negative, or zero both when correlations
are important and when they are not [Nirenberg and Latham
(2003), their supporting information], making this quantity a
bad one for assessing the role of correlations in the neural code.

This is not to say that �Ishuffled is never useful; it can be used to
answer the question: given a correlational structure, would more
information be transmitted using that structure or using inde-
pendent responses (Abbott and Dayan, 1999; Sompolinsky et al.,
2001; Wu et al., 2002)? This is interesting from a theoretical point
of view, because it sheds light on issues of optimal coding, but it is
a question about what could be rather than what is.

Synergy and redundancy
Another common, but less direct, measure that has been pro-
posed to assess the role of correlations is the synergy/redundancy
measure, denoted �Isynergy (Brenner et al., 2000; Machens et al.,
2001; Schneidman et al., 2003). It is defined to be

�Isynergy � I�s; r� � �
i

I�s; ri�, (4)

where I, the mutual information, is given in Equation 3.
Positive values of �Isynergy are commonly assumed to imply

that correlations are important, a claim made explicitly by
Schneidman et al. (2003). This claim, however, breaks down with
close examination, for essentially the same reason as in the pre-
vious section: �Isynergy fails to take into account that pind(r�s) can
assign nonzero probability to responses that do not occur. To see
this explicitly, we will consider an example in which �Isynergy is
positive but correlations are not important; that is, pind(s�r1, r2) �
p(s�r1, r2) for all true responses.

The example is illustrated in Figure 4. Figure 4a shows the
correlated distribution. As one can see, the responses form a dis-
joint set, so every pair of responses corresponds to exactly one
stimulus. Figure 4b shows the independent distribution. Here,
the responses do not form a disjoint set. That is because responses
along the diagonal, in which both neurons produce approxi-

mately the same output, can be caused by more than one stimu-
lus. On the surface, then, it appears that, without knowledge of
the correlated distribution, one cannot decode all of the re-
sponses perfectly. However, this is not the case: as in Figures 2a
and 3a, the responses that could have been caused by more than
one stimulus (the ones along the diagonal) never happen. Thus,
all responses that do occur can be decoded perfectly. This means
that we can decode exactly as well with no knowledge of the
correlational structure as we can with full knowledge, even
though �Isynergy  0.

If �Isynergy can be positive when one can decode optimally
with no knowledge of the correlations [that is, when pind(s�r) �
p(s�r)], then what does synergy really tell us? To answer this, note
that it is a general feature of population codes that observing
more neurons provides more information. How much more,
however, spans a large range and depends in detail on the neural
code. At one end are completely redundant codes, for which ob-
serving more neurons adds no information (for example, Fig. 3c).
At the other end are synergistic codes, for which observing more
neurons results in a large increase in information. Thus, the de-
gree of synergy (the value of �Isynergy) tells us where along this
range a neural code lies. It does not, however, tell us about the
importance of correlations.

Although we focused here on showing that �Isynergy can be
positive when correlations are not important for decoding, it can
also be shown, and has been shown in previous work, that �Isynergy

can be negative or zero when correlations are not important [when
pind(s�r) � p(s�r)]. Likewise, it can be positive, negative, or zero when
correlations are important [when pind(s�r) 	 p(s�r)] [Nirenberg and
Latham (2003), their supporting information]. Thus, �Isynergy is not
a very useful measure for assessing the importance of correlations for
decoding.

Redundancy reduction
A long-standing proposal about early sensory processing is that
one of its primary purposes is to reduce redundancy (Attneave,
1954; Barlow, 1961; Srinivasan et al., 1982; Atick and Redlich,
1990; Atick, 1992) (but see Barlow, 2001). Given that codes with
�Isynergy � 0 are referred to as “redundant,” one might interpret this
proposal to mean that �Isynergy should be maximized, so that the
code exhibits as little redundancy as possible. Unfortunately, redun-
dant has two meanings. One is “not synergistic” (�Isynergy � 0). The
other, as originally defined by Shannon and Weaver (1949), is “not
making full use of a noisy channel.” Under the latter definition,
redundancy, denoted �, is given by

� � 1 �
I

C
,

where I is, as above, mutual information, and C is channel capac-
ity: the maximum value of the mutual information with respect
to p(s) for fixed p(r�s).

The redundancy-reduction hypothesis refers to minimizing
�, not maximizing �Isynergy. This is sensible: minimizing � cor-
responds to making the most efficient use of a channel. Maximiz-
ing �Isynergy also seems sensible on the surface, because maxi-
mum synergy codes can be highly efficient [in fact, they can
transmit an infinite amount of information (Fig. 5)]. However,
biological constraints prevent their implementation, and they are
almost always effectively impossible to decode (Fig. 5b). Thus,
maximization principles involving �Isynergy are unlikely to yield
insight into the neural code.

Figure 4. A synergistic code in which correlations are not important for decoding. a, Corre-
lated response distributions for three stimuli, s1, s2, and s3, which occur with equal probability. For
each stimulus, the responses fall inside the boxes. Because the responses form disjoint sets, all re-
sponses are uniquely decodable. For this distribution, it is not hard to show that�Isynergy � log2(4⁄3)
(see Appendix A). b, Independent response distributions for the same stimuli. (The boxes along the
diagonalareoffsetsobothcanbeseen.) Ifaresponseweretolandinaboxalongthediagonal, itwould
not be uniquely decodable; it could have been produced by two stimuli. However, as with Figures 2a
and 3a, the responses never occur along the diagonal. Thus, even if a decoder knew nothing at all
about the correlational structure, it would be able to decode perfectly all responses that actually occur
(which are the only ones that matter). The probability distributions for this figure were derived from
Schneidman et al. (2003); see Discussion.
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Quantifying the importance of correlations
Our analysis so far has led us to the following statement: correla-
tions are important for decoding if pind(s�r) 	 p(s�r). However,
what if we want to assess how important they are? Intuitively, we
should be able to do this by computing the distance between
pind(s�r) and p(s�r). If these two distributions are close, then cor-
relations should be relatively unimportant; if they are far apart,
then correlations should be important. The question we address
now is: what do we mean by “close”?

In previous work (Nirenberg et al., 2001; Nirenberg and
Latham, 2003), we argued that the appropriate measure of close is
the Kullback-Leibler distance averaged over responses. This dis-
tance, which we refer to as �I, is given by

�I � �
r

p�r� �
s

p�s�r� log2

p�s�r�
pind�s�r�

. (5)

[See also Panzeri et al. (1999) and Pola et al. (2003), who defined
the same quantity, but used the notation Icor-dep instead of �I].

This measure has a number of desirable properties. First, be-
cause �I is weighted by p(r), it does the sensible thing and weights
responses by how likely they are to occur, with zero weight for
responses that never occur (the ones the brain never sees). [This
feature also takes care of the problem that p(s�r) is undefined
when p(r) � 0.] Second, �I is bounded from below by zero,
which makes it a nice candidate for a cost function. Third, it is
zero if and only if pind(s�r) � p(s�r) for every response that actually
occurs (Nirenberg and Latham, 2003), so �I � 0 implies that
correlations are completely unimportant for decoding. (It is not
hard to show that �I � 0 for the examples given in Figs. 2a, 3, 4;
see Appendix A.) Fourth, it is a cost function that can be thought

of in terms of yes/no questions, a common and intuitive way of
expressing information theoretic quantities. Specifically, �I is the
cost in yes/no questions for not knowing about correlations: if
one were guessing the stimulus based on the neuronal responses,
r, then it would take, on average, �I more questions to guess the
stimulus if one knew nothing about the correlations than if one
knew everything about them (Nirenberg et al., 2001; Nirenberg
and Latham, 2003).

The fourth property makes it possible to compare �I with the
mutual information, I, between stimuli and responses, because I
is the reduction in the average number of yes/no questions asso-
ciated with observing neuronal responses (Cover and Thomas,
1991). The observation that �I can be expressed in terms of
yes/no questions thus led us to identify the ratio �I/I as a measure
of the relative importance of correlations. Here we solidify this
identification by showing that �I is a rigorous upper bound on
the information loss. This result is useful because it allows us to
interpret the spate of recent experiments in which �I/I was found
to be on the order of 10% or less (Nirenberg et al., 2001; Petersen
et al., 2001, 2002; Panzeri et al., 2002b; Pola et al., 2003): in those
experiments, one could ignore correlations when decoding and
lose at most �10% of the information.

�I is an upper bound on information loss
Showing that �I is an upper bound on information loss is not
straightforward because classical information theory deals with
true probability distributions. We, however, want to compute
information when a decoder is based (via Bayes’ theorem) on the
wrong probability distribution: pind(r�s) rather than p (r�s). To do
this, we use what is really a very simple idea, one that is closely
related to discriminability. The idea is that if a decoder has knowl-
edge of the full correlational structure, it will (typically) be able to
make finer discriminations than if it does not, and so will be able
to provide more information about the stimulus. For example, a
decoder based on p(r�s) might have a discrimination threshold of,
say, 1°, whereas one based on pind(r�s) might have a threshold that
is twice as large, say 2°. The link between discrimination thresh-
olds and information theory is that the factor of two decrease in
the ability to discriminate implies a 1 bit decrease in information,
because one-half as many orientations are distinguishable. For
this example, then, the information loss associated with ignoring
correlations, �I, is 1 bit.

To generalize this idea so that it can be applied to any stimulus
set, not just simple ones, such as orientated bars, we adopt an
information-theoretic construct known as a “codebook.” In in-
formation theory, a codebook consists of a set of codewords, each
of which is a list of symbols. These codewords are sent over a
noisy channel to a “receiver,” who also has access to the code-
book. The job of the receiver is to examine the corrupted symbols
and determine which codeword was sent. In our application, each
symbol is a different stimulus, so a codeword consists of a set of
stimuli sent in a particular order. For example, in the case of
oriented bars, a codebook might consist of two length-3 code-
words, one corresponding to bars that are presented sequentially
at 2°, 1°, and 3°, and another to bars presented at 3°, 2°, and 1°.
The job of the receiver is to examine the neuronal responses and
determine which of the two orders was presented.

The reason we take this approach is that the number of code-
words that can be put in the codebook before the receiver starts
making mistakes is directly related to the mutual information
between stimuli and responses. This follows from what is proba-
bly the central, and most profound, result in information theory,
which is: if each codeword in the codebook consists of n stimuli,

Figure 5. Highly synergistic codes are efficient but typically very difficult to decode. a, Two-
neuron response distribution for five stimuli, color coded for clarity. The distribution is of the
form p(s�r1, r2) � �(s 
 (r1 
 r2)), with both r1 and r2 restricted to lie between 0 and 1. The
stimulus, s, is a continuous variable that is uniformly distributed between 
1 and 1. Observing
both responses tells us exactly what the stimulus is, so the responses provide an infinite amount of
information (the stimulus is specified with infinite precision). Observing any one response, however,
provides only a finite amount of information about the stimulus. Consequently, �Isynergy ��. This
coding scheme is advantageous because it can transmit an infinite amount of information and is easy
to decode (s � r1 
 r2). Note, however, that it requires perfect correlation, which is not biologically
plausible. b, A distribution in which the r1
 r2 plane was scrambled: it was divided into a 100�100
grid, and the squares in each column were randomly permuted. If we knew the scrambling algorithm,
we could decode responses perfectly: p(s�r1, r2) � �(s 
 �(r1, r2)), where � is an operator that
transforms r1 and r2 in scrambled coordinates to r1 
 r2 in unscrambled ones. However, the decoder
would have to store 100 log2(100!) bits just to unscramble the responses (log2(100!) bits per column),
and, in general, for an n � n grid, it would have to store n log2(n!) � n2log2(n/e) bits. Moreover,
adding even a small amount of noise would destroy the ability of the responses to tell us anything
about the stimulus. In the space of response distributions, non-smooth ones such as this are over-
whelmingly more likely than the smooth one shown in a. Thus, minimizing redundancy (which
leads to maximum synergy) would almost always produce an encoding scheme that is virtually
impossible to decode.
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then the upper bound on the number of codewords that can be
sent almost error-free is 2nI, where I is the mutual information
between stimuli and responses (Shannon and Weaver, 1949;
Cover and Thomas, 1991). Importantly, and this is the critical
insight that allows us to relate �I to information loss, the upper
bound depends on the probability distribution used by the re-
ceiver. If the receiver uses the true response distribution, p(r�s), to
build a decoder, then the upper bound really is 2nI. If, on the
other hand, the receiver uses an incorrect response distribu-
tion, then the upper bound is typically smaller: 2nI*, where I*
� I (Merhav et al., 1994). The information loss associated with
using the wrong distribution, which in our case is pind(r�s)
rather than p(r�s), is I 
 I*.

Although this approach seems abstract, in fact, it is closely
related to discriminability. For example, if orientations separated
by 1° can almost always be distinguished, then we can put �180
codewords of length 1 in our codebook (1°, 2°, . . . , 180°), 180 2 of
length 2 [(1°, 1°), (1°, 2°), . . . , (180°, 180°)], and so on. If, on the
other hand, orientations separated by 1⁄2° can almost always be
distinguished, then the number of codewords would be 360 and
360 2, respectively. Thus, the number of codewords in our code-
book tells us directly how far apart two orientations must be
before they can be easily discriminated.

The advantage of the codebook/codeword approach over dis-
crimination thresholds is that we can compute information loss
simply by counting codewords. Here, we outline the main steps
needed to do this; the details are provided in Appendix B. Because
this is a very general approach (it can be used to evaluate infor-
mation loss associated with any wrong distribution, not just one
based on the independent responses), in what follows, we use
q(r�s) to denote the wrong conditional response distribution
rather than pind(r�s). At the end, we can return to our particular
problem by replacing q(r�s) with pind(r�s).

As discussed above, we will construct codewords that consist
of n stimuli presented in a prespecified order that is known to the
receiver, with each codeword having equal probability. We will
consider discrete stimuli that come from an underlying distribu-
tion p(s), and the stimuli that make up each codeword will be
drawn independently from this distribution. We will use c to
denote codewords and m to denote the number of codewords, so
our codebook has the form

c�1� � s1�1� s2�1� s3�1� . . . sn�1�
c�2� � s1�2� s2�2� s3�2� . . . sn�2�
. . .

c�m� � s1�m� s2�m� s3�m� . . . sn�m�.

For example, if the stimuli were orientations at even multiples of
1°, then a particular six-symbol codeword might be (2°, 10°, 7°,
1°, 14°, 2°).

The question we address here is: if the receiver uses q(r�s) to
build a decoder, how large can we make m before the error rate
becomes appreciable? The natural way to answer this is via Bayes’
theorem: given a uniform prior on the codewords (a result of the
fact that the codewords are sent with equal probability) and a set
of observations, r1, r2, . . . , rn, then the probability the receiver
uses for a particular codeword, denoted q(w�r1, r2, . . . , rn), is

q�w�r1 , r2 , . . . , rn� � q�r1 , r2 , . . . , rn�s1�w�,

s2�w�, . . . , sn�w��p�w� � �
i

q�ri�si�w��, (6)

where the last � follows from our uniform prior, which is that
p(w) is independent of w. Given Equation 6, the optimal estimate
of which message was sent, denoted ŵ, is

ŵ � arg maxw��
i�1

n

q �ri�si�w���.

We can now compute the probability of making a decoding
error. If message w* is sent, then the probability, Pe

(n), of an error
for a particular codeword w 	 w* is

Pe
�n� � Pr��

i�1

n

q�ri�si�w�� � �
i�1

n

q�ri�si�w*���. (7)

As we show in Appendix B, Pe
(n) is independent of which code-

word, w*, is sent. Thus, for any w*, the probability of making at
least one error when we have m codewords in our codebook,
denoted Pe,m

(n) , is

Pe,m
�n� � 1 � �1 � Pe

�n��m. (8)

(Equation 8 should really have m 
 1 in the exponent. However,
because m is always large, here and in what follows, we will make
no distinction between m and m 
 1.)

To see how this equation gives us the upper bound on the
transmitted information, let us define I* via the relationship

Pe
�n� � 2
nl*, (9)

and let

m � 2n�I*
��, (10)

where � is a small, positive constant. Then, inserting Equations 9
and 10 into Equation 8, we find, after straightforward algebra,
that

Pe,m
�n� � 2
n� � ��2
2n��. (11)

What Equation 11 tells us is that as n3� the probability of an
error vanishes, no matter how small � is. Consequently, 2nI* is an
upper bound on m and thus an upper bond on the number of
codewords that can be sent with vanishingly small probability of
error. This in turn implies that I* is the information associated
with using the wrong probability distribution. Using Equation 9
to express I* in terms of Pe

(n), we have

I* � lim
n3�

�

1

n
log2 Pe

�n��, (12)

where Pe
(n) is given by Equation 7.

Calculating I* thus amounts to solving a math problem: com-
puting Pe

(n). This we do in Appendix B. Although there is no
closed form expression for I*, we are able to show that

�I 	 I � I*.

In other words, �I is an upper bound on the information loss
associated with using the wrong distribution. When the wrong
distribution is one that has no information about the correla-
tions, then �I is an upper bound on the information loss associ-
ated with ignoring correlations.
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Discussion
Determining whether correlations are important for decoding,
both across spike trains from multiple neurons and within spike
trains from single neurons, is a critical problem in neural coding.
Addressing this problem requires a quantitative measure, one
that takes as input neural data and produces as output a number
that tells us how important correlations are. Efforts to develop
such a measure, however, have led to a great deal of controversy,
in large part because those efforts typically rely on intuitive no-
tions. Two measures in particular, �Ishuffled and �Isynergy, fall into
this category. The first, �Ishuffled, is the difference between the
information carried by an ensemble of cells and the information
that would be carried by the same cells if their responses were
conditionally independent (Eq. 2). The second, �Isynergy, is the
difference between the information carried by an ensemble of
cells and the sum of the information carried by the individual
cells (Eq. 4). Both sound reasonable at first glance, but deeper
analysis raises serious concerns. In particular, beyond the intui-
tive meaning that has been attached to these quantities, no rigor-
ous link has been made to the importance of correlations for
decoding. In addition, as we showed in Results, �Ishuffled and
�Isynergy can take on essentially any values (from positive to zero
to negative), both when one needs to know about correlations to
decode and when one does not.

In this paper, we took a different strategy. Following the work
of others (Dan et al., 1998; Panzeri et al., 1999; Wu et al., 2001,
2002), we approached the problem in the context of what is ar-
guably the central question in neural coding, which is: how do we
decode the activity of populations of neurons? Importantly, the
answer depends almost exclusively on whether knowledge of cor-
relations is necessary for constructing optimal decoding algo-
rithms. If it is, then we will need to develop parametric models of
the correlational structure in neuronal responses; if it is not, then
we can use methods that ignore correlations and so are much
simpler. We thus developed a measure based on the simple ques-
tion: do we need to know about correlations to construct optimal
decoding algorithms? We showed that the answer is determined
by the value of �I (Eq. 5). Specifically, if �I � 0, then knowledge
of correlations is not necessary for optimal decoding, and if �I 
0, then it is necessary, and its value places an upper bound on the
amount of information lost by ignoring correlations. Thus, �I
tells us whether correlations are important in a sense that has real
and immediate impact on our strategies for decoding popula-
tions of neurons.

Recently, Schneidman et al. (2003) criticized this approach.
Their criticism was, however, based on a single, very strong
premise, which was that �Isynergy is the correct measure of the
importance of correlations (see Schneidman et al., 2003, their Fig.
6 and associated text). Given this premise, they concluded that
any measure that does not give the same answer as �Isynergy must
be flawed. What was missing, however, was an explanation of why
their premise is correct; as far as we know, neither they nor any-
one else has demonstrated that �Isynergy is the correct measure of
the importance of correlations.

Finally, we should point out that identifying a relevant mea-
sure (�I) is the first step in determining the role of correlations.
Methods must be developed to apply this measure to populations
of neurons. Here the underlying idea, which is that one can assess
the role of correlations by building decoders that ignore them,
will be just as useful as the measure itself. This is because one does
not actually have to calculate �I [a difficult estimation problem,
especially for population codes (Paninski, 2003, 2004; Nemen-

man et al., 2004)], but instead one can build decoders that do and
do not take some aspect of correlations into account. If taking
correlations into account improves decoding accuracy, then cor-
relations are important for decoding; otherwise, they are not.
This approach has already been used successfully for population
decoding in motor cortex (Averbeck and Lee, 2003), and we ex-
pect it to be the method of choice in the future.

Appendix A: Calculation of �I, �Ishuffled and
�Isynergy
In this appendix, we compute �Ishuffled for the probability distri-
butions shown in Figure 3, a and c, �Isynergy for the probability
distribution shown in Figure 4a, and �I for both.

Our first step is to turn the continuous response distributions
illustrated in these figures into discrete ones, which we can do
because the relevant aspect of a response is which box it lands in.
Thus, we will let both r1 and r2 take on integer values that range
from 1 to 3, with the former labeling column and the later label-
ing row. With this scheme, the response (r1, r2) � (2, 3), for
example, refers to the box that is in the second column and the
top row.

For simplicity, we will assume that the stimuli occur with
equal probability. Thus, p(s1) � p(s2) � 1⁄2 in Figure 3 and p(s1) �
p(s2) � p(s3) � 1⁄3 in Figure 4. We will also assume that, given a
stimulus, the responses that can occur, occur with equal proba-
bility. Loosely speaking, this means that all boxes of the same
color are equally likely. For example, in Figure 3a, p(2, 3�s2) �
p(3, 2�s2) � 1⁄2, and, in Figure 4b, p(2, 2�s1) � p(2, 3�s1) � p(3,
2�s1) � p(3, 3�s1) � 1⁄4.

Of the three information-theoretic quantities, �I (Eq. 5) is the
easiest to compute, so we will start with it. Consider first the
distributions in Figures 3, a and b, and 4, a and b. For these, all
responses that actually occur (the ones in Figs. 3a and 4a, respec-
tively) are uniquely decodable regardless of whether the decoder
assumes independence, which is clear by examining Figures 3, a
and b, and 4, a and b. Thus, pind(s�r1, r2) � p(s�r1, r2), which
implies, via Equation 5, that �I � 0.

For the distributions in Figure 3, c and d, the situation is
marginally more complex. The upper right and lower left re-
sponses, (r1, r2) � (3, 3) and (1, 1), respectively, are uniquely
decodable whether are not the decoder assumes independence.
The center response, (r1, r2) � (2, 2), is not. Instead, that response
gives no information about the stimulus, meaning that both s1

and s2 are equally likely, and this is true regardless of whether the
decoder assumes independence (one can compute this directly,
or use symmetry between s1 and s2). Thus, for all responses that
actually occur (those in Fig. 3c), pind(s�r1, r2) � p(s�r1, r2), and
again �I � 0.

Our next task is to compute �Ishuffled (Eq. 2) for Figure 3, a,b
and c,d. Consider first Figure 3a. The responses in this figure are
disjoint, so they are uniquely decodable. Thus, the mutual infor-
mation is equal to the entropy of the stimulus, which is 1 bit. For
the corresponding shuffled distribution, Figure 3b, recall that, for
each stimulus, all squares of the same color occur with equal
probability. Using this fact and examining Figure 3b, we see that,
on 3⁄4 of the trials, the responses are uniquely decodable (they
provide 1 bit of information), whereas on 1⁄4 of the trials, the
responses provide no information. Thus, the responses convey,
on average, 3⁄4 bits. This gives �Ishuffled � 1 
 3⁄4 � 1⁄4.

Turning now to Figure 3c, we see that, on one-half of the trials,
the responses provide 1 bit of information (because they are
uniquely decodable), and, on the other half, they provide no
information. Thus, the mutual information is 1⁄2 bits. Because
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Figure 3d is the same as 3b, the mutual information of the shuf-
fled distribution is again 3⁄4 bits, and �Ishuffled � 1⁄2 
 3⁄4 � 
1⁄4.

Our last task is to compute �Isynergy (Eq. 4) for the distribution
shown in Figure 4a. As in Figure 3a, the responses are uniquely
decodable. Consequently, the mutual information, I(s; r1, r2), is
equal to the entropy of the stimulus, which is log23 bits. To com-
pute the mutual information between one of the responses and
the stimuli, note that receiving any one response reduces the
number of possible stimuli from three to two. For example, if we
observe that r1 � 2, then we know that either s1 or s3 was pre-
sented, both with equal probability. Thus, the mutual informa-
tion is (log2 3 
 log2 2) bits. Because I(s; r1) � I(s; r2), it follows
that �Ishuffled � log2 3 
 2(log2 3 
 log2 2) � log2 (4⁄3).

Appendix B: Information-theoretic cost of ignoring
correlations
The goal in this appendix is to compute Pe

(n), from which we can
calculate I*, the information associated with a decoder that uses
the wrong distribution. This computation is divided into two
parts. In the first, we derive a set of equations whose solution gives
us I*. This is a rederivation of a result shown originally by Merhav
et al. (1994) and is a straightforward application of large-
deviation theory. We include the rederivation here both for com-
pleteness, and because we use a simpler (although slightly less
rigorous) method than that of Merheve and colleagues. Unfortu-
nately, the equations for I* have no closed-form solution. How-
ever, they can be used to show that I 
 I*, the information loss
associated with ignoring correlations, is bounded by �I. This is
the focus of the second part.

Derivation of equations for I*
According to Equation 12, to compute I* we first need to com-
pute Pe

(n), the latter given by Equation 7. Our first step, performed
for convenience only, is to express Pe

(n) in terms of sums of logs of
probabilities rather than products of probabilities. This leads to
the relationship

Pe
�n� � Pr�1

n �
i�1

n

log2 q�ri�si�w�� �
1

n �
i�1

n

log2 q�ri�si�w*���. (B1)

The main idea behind the computation of Pe
(n) is that the first

term inside the parentheses is a random variable, and the proba-
bility that it is greater than the second can be computed using
large-deviation theory. This is somewhat tricky because both
terms in Equation B1 are random variables. Fortunately, it turns
out that we can replace the second one by its average. Intuitively,
this is because we are interested in the probability of an error for
a single sent codeword, so outliers are not important. Placing this
intuition on a rigorous footing, however, requires a fair amount
of effort and is the subject of the next section. Those who are
satisfied with the intuitive argument should skip directly to the
section Large-deviation theory applied to Equation B11, which fol-
lows Equation B11.

Justification for averaging the second term in Equation B1
The assertion that the second term in Equation B1 should be
replaced by its average while the first should not seems, at first
glance, oddly asymmetric: after all, both terms are random vari-
ables, so why should we replace one by its average and not the
other? The intuitive answer, as stated above, is that only one
codeword (w*) is sent at a time, but, for each one we send, there
are a large number of possible incorrect ones (all the rest of the

w). The goal of this section is to make that intuitive answer math-
ematically precise.

Our starting point is Equation 8 for the probability, Pe,m
(n) , of

making at least one error on m codewords. That equation made
the implicit assumption that Pe

(n) does not depend on which
codeword, w*, was sent. To verify that this assumption is correct,
we momentarily drop it and instead average over all possible
codewords w*. When we do that, we will see that Pe

(n) is effectively
independent of w*.

From the point of view of decoding error, the only relevant
aspect of w* is its effect on the second term in Equation B1. We
thus define

� �
1

n �
i�1

n

log2 q�ri�si�w*��. (B2)

Because both s and ri are discrete variables, it follows that � is also
a discrete variable. Letting P(�) denote its probability distribu-
tion, the expression for the probability of making at least one
error is

Pe,m
�n� � �

�

P����1 � �1 � 2
nJ*����m�, (B3)

where J* is defined via the relationship

2
nJ*��� � Pr�1

n �
i�1

n

log2 q�ri�si�w�� � ��. (B4)

Note that 2
nJ* (�) is just the probability of an error, Pe
(n), for a

particular codeword, w*. The particular codeword in this case is
the one that corresponds to � via Equation B2.

Unfortunately, we cannot compute analytically the sum in
Equation B3. What we can do, however, is find the maximum
number of codewords, m, for which Pe,m

(n) vanishes exponentially
fast with n. The information, I*, is then equal to the log of this
number divided by n (see Eq. 10).

We begin by letting m � 2n(I* 
 � ), as in Equation 10. Then,
applying the formula (1 
 x)y � exp[y ln(1 
 x)], Pe,m

(n) may be
written

Pe,m
�n� � �

�

P����1 � exp�2n�I*
��ln�1 � 2
nJ*������. (B5)

Our next step is to make the ansatz

I* � J*��� �, (B6)

where �� is the mean value of �. What we do now is show that,
with this ansatz, Pe,m

(n) is exponentially small in n so long as �  0.
Inserting Equation B6 into B5, we have

Pe,m
�n� � �

�

P����1 � exp�2n� J*��� �
��ln�1 � 2
nJ*������. (B7)

Because the expression in curly brackets is, for large n, essentially
a step function in J*, we need to treat the sum over � differently
on either side of the step. We thus divide it into two terms: one
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with � � �0 and one with � 	 �0, where �0 is defined via the
relationship

J*��0� � J*��� � � �/ 2. (B8)

Equation B2 then becomes

Pe,m
�n� � �

�	�0

P����1 � exp�2n� J*��� �
��ln�1 � 2
nJ*������

� �
���0

P����1 � exp�2n� J*��� �
��ln�1 � 2
nJ*������.

The reason for this particular division into two terms is that
we will be able to find exponentially small upper bounds for both.
To find the bound for the first term, we use the fact that the
expression in curly brackets is a decreasing function of J*(�).
Then, because J*(�) is an increasing function of � (see Eq. B4),
we can upper bound this term by replacing J*(�) by J*(�0) and
then summing over all �. For the second term, an upper bound is
easily provided by simply dropping the exponential piece, which
can only make this term smaller. Performing these manipulations
and using Equation B8 for J*(�0), we find that

Pe,m
�n� � 1 � exp�
2
n�/ 2G�2
n� J*��� �
�/ 2��� � �

���0

P���, (B9)

where G(x) � ln(1 
 x)/(
x). Note that limx30G(x) � 1.
To find the large n behavior of the second term in Equation

B9, we use the fact that �0 � ��, which follows from the defini-
tion of �0 (Eq. B8) and the fact that J*(�) is an increasing func-
tion of �. Moreover, for small �, ��
 �0 � �, independent of n.
Thus, Hoeffding’s theorem (Hoeffding, 1963) tells us that the
second term in Equation B9 is bounded by 2
n
�2

, where 
 is a
positive, n-independent constant. We thus have

Pe,m
�n� � 1 � exp�
2
n�/ 2G�2
n�J*��� �
�/ 2��] � 2
n
�2

.

Finally, because G(x) approaches 1 in the small x limit, it follows
that the first two terms in this expression reduce to 2
n�/2. Thus,
in the limit of small � (where 
� 2���/2), we have

lim
n3�

log2Pe,m
�n�

n
� 

�2. (B10)

Equation B10 is the main result of this section. It tells us that if
I* � J*(��), then, for any fixed �, the probability of the receiver
making an error is exponentially small in n. Thus, 2nJ*(��) is an
upper bound on the number of codewords that can be sent with
vanishingly small probability of error, and we identify J*(��) as
the information, I*, associated with the wrong distribution. What
this means is that, given the definition of J*(�) (Eq. B4), we can
compute I* by replacing the second term on the right-hand side
of Equation B1 with ��. As promised, then, Pe

(n) is independent of
w*. Because ��� �log2 q(r�s)�p(r,s), the equation for I* is

2
nI* � Pr�1

n �
i�1

n

log2 q�ri�si�w�� � � log2 q�r�s��p�r,s��. (B11)

Here and in what follows, the notation �. . . �p means average the
terms inside the angle bracket with respect to the probability
distribution p.

Large-deviation theory applied to Equation B11
Our task now is to compute the probability on the right-hand side
of Equation B11. The key observation we need to do this is that,
when w 	 w*, ri and si(w) are independent, where independent in
this context means p(ri, si(w)) � p(ri)p(si(w)). What we compute,
then, is the probability that samples of r and s drawn from the
distribution p(r)p(s) will yield enough of an outlier to satisfy the
inequality in Equation B11. This can be done using Sanov’s theo-
rum (Sanov, 1957; Cover and Thomas, 1991; Dembo and
Zeitouni, 1993), which tells us that this probability, 2
nI*, is
given by

2
nI* � 2
nD� p*�r, s�	 p�r� p�s��, (B12)

where D(�	�) is the Kullback-Leibler divergence (in the above ex-
pression, it is equal to �log2[p*(r, s)/p(r)p(s)]�p*(r,s)), and p*(r, s)
is chosen to minimize D( p*(r, s)	p(r)p(s)) subject to the
constraints

�log2 q�r�s��p*�r,s� � �log2 q�r�s��p�r,s� (B13a)

�
s

p*�r, s� � p�r�. (B13b)

The first constraint, Equation B13a, tells us that p*(r, s) pro-
duces enough of an outlier to just barely satisfy the inequality in
Equation B11. The second, Equation B13b, tells us that the re-
sponses are typical and is derived using the following reasoning.
The probability of an error, 2
nI*, should be thought of as a
probability over codewords; that is, 2
nI* is the probability that a
randomly chosen codeword will satisfy the inequality in Equation
B11. This probability depends, of course, on the ri. For large n, it
is overwhelmingly likely that the ri will be typical, meaning that
the fraction of times a particular r appears is equal to its proba-
bility, p(r) (Cover and Thomas, 1991). Moreover, we do not have
to worry about outliers because, as mentioned above, we are in-
terested in the probability of error per codeword sent. The same
cannot be said about the stimuli: there are an exponentially large
number of codewords in the codebook, and the ones most likely
to produce an error are those that deviate from the distribution
p(s), which is why we do not have the constraint �rp*(r, s) � p(s).

Equation B12 tells us that the mutual information associated
with the wrong distribution, q(r�s), is given by

I* � D� p*�r, s�	p�r�p�s��. (B14)

To compute I*, we need to find p*(r, s), the distribution that
minimizes D( p*(r, s)	p(r)p(s)) subject to the constraints given in
Equation B13. This is a straightforward problem in constrained
minimization: p*(r, s) is found by solving the equation

d

dp*�r, s��D�p*�r, s�	p�r�p�s�� � ��log2 q�r�s��p*�r, s�

� �
r

��r��
s

p*�r, s�� � 0, (B15)

and then choosing � and �(r), the Lagrange multipliers, to satisfy
the two constraints in Equation B13.

Equations B13–B15 are, with minor changes in notation, the
same as those found by Merhav et al. (1994).
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Bounding I*
Although these equations cannot be solved analytically, they can
be reduced to a form that allows easy derivation of a bound on I*.
To do that, we proceed in steps: first we find the solution for
arbitrary � and �(r), then we eliminate �(r) by enforcing the
constraint in Equation B13b, and finally we cast the remaining
equation for � in terms of a minimization problem.

Denoting the solution to Equation B15 p̃(r, s; �, �), we have,
after straightforward algebra,

p̃�r, s; �, �� � p�r�p�s�2�log2q�r�s����r�.

We can solve for �(r), and thus eliminate it, by enforcing the
constraint given in Equation B13b, and we arrive at

p̃�r, s; �� �
p�r�p�s�2�log2q�r�s�

Z�r, ��
,

where the normalization, Z(r, �), is given by

Z�r, �)��
s

p(s)2�log2q�r�s�. (B16)

It is easy to show that p̃(r, s; �) satisfies Equation B13b; that is, �s

p̃(r, s; �) � p(r).
Our next step is to find the value of �, denoted �*, that satisfies

Equation B13a. Although we cannot do this analytically, we can
show that �* satisfies a convex optimization problem. This is
clearly convenient for numerical work, and it is also convenient
for deriving bounds on I*. We start by defining

� Ĩ��� � D� p�r, s�	p̃�r, s; ���. (B17)

The quantity �Ĩ(�) is significant for two reasons, both of which
we demonstrate below: it has a single minimum at � � �*, and its
value at that minimum is I 
 I*, the information loss associated
with ignoring correlations.

To show that �Ĩ(�*) is a minimum, we first differentiate both
sides of Equation B17 with respect to �, which yields

� Ĩ���

�
� �log2 q�r�s��p̃�r,s;�� � �log2 q�r�s��p�r,s� . (B18)

The right-hand side of Equation B18 vanishes when � � �*: by
definition p̃(r, s; �*) � p*(r, s), and Equation B13a tells us that
�log2 q(r�s)�p*(r,s) � �log2 q(r�s)�p(r,s). Thus, �* is an extremum. To
show that this extremum is a minimum, we compute the second
derivative of �Ĩ(�). Straightforward algebra yields

2� Ĩ���

�2 � ln 2�Var�log2 q�r�s��p̃�s�r; ���p�r� , (B19)

where p̃(s�r; �) � p̃(r, s; �)/p(r). Excluding the trivial case of a
deterministic mapping from stimulus to response, the variance
on the right-hand side of Equation B19 is positive. Thus, �Ĩ(�) is
convex and so has a single minimum at �*.

To show that �Ĩ(�*) � I 
 I*, we use the definition of �Ĩ(�)
and a small amount of algebra to derive the relationship

� Ĩ��*� � I � ��*�log2 q�r�s��p�r, s� � �log2 Z�r, �*��p�r,s��.

Then, using Equations B13a and B13b to replace the averages
with respect to p(r, s) by averages with respect to p*(r, s) and
comparing the resulting expression with Equation B14, it is easy
to see that the second term in brackets is equal to I*.

This analysis tells us that the information loss associated with
the wrong distribution is the minimum value of �Ĩ(�). That
allows us to perform three quick sanity checks. First, because �Ĩ is
non-negative (it is a Kullback-Leibler divergence; see Eq. B17),
the information loss can never be less than zero. Second, when
q(r�s) � p(r�s), �Ĩ(1) � 0, indicating that there is no information
loss when we use the true distribution. And third, p̃(r, s; 0) �
p(r)p(s), which means that �Ĩ(0) � I; this indicates that the in-
formation loss can never exceed the actual information, I.

Because there is no closed-form expression for �Ĩ, it is useful
to find an upper bound on it. We can do this by evaluating �Ĩ(�)
at any �. A convenient choice is � � 1, at which point we have,
using Equation B17 for �Ĩ(�), Equation B16 for Z(r, �), and a
small amount of algebra,

�Ĩ��*� � �Ĩ�1� � 
log2�p�s�r��s� q�r�s��p�s��

q�r�s�p�s�
��

p�r,s�

. (B20)

Finally, to simplify the right-hand side of Equation B20, we define
q(s�r) via

q�s�r� �
q�r�s�p�s�

�s� q�r�s��p�s��
,

and we find that

I � I* � � Ĩ��*� � � Ĩ�1� � �D� p�s�r�	q�s�r���p�r� . (B21)

When q(s�r) � pind(s�r), the right-hand side of Equation B21 is �I.
Thus, Equation B21 tells us that �I is an upper bound on the
information loss.

References
Abbott LF, Dayan P (1999) The effect of correlated variability on the accu-

racy of a population code. Neural Comput 11:91–101.
Atick JJ (1992) Could information theory provide an ecological theory of

sensory processing? Network 3:213–251.
Atick JJ, Redlich AN (1990) Towards a theory of early visual processing.

Neural Comput 2:308 –320.
Attneave F (1954) Informational aspects of visual perception. Psychol Rev

61:183–193.
Averbeck BB, Lee D (2003) Neural noise and movement-related codes in the

macaque supplementary motor area. J Neurosci 23:7630 –7641.
Averbeck BB, Lee D (2004) Coding and transmission of information by

neural ensembles. Trends Neurosci 27:225–230.
Averbeck BB, Crowe DA, Chafee MV, Georgopoulos AP (2003) Neural ac-

tivity in prefrontal cortex during copying geometrical shapes. II. Decod-
ing shape segments from neural ensembles. Exp Brain Res 150:142–153.

Barlow H (1961) The coding of sensory messages. In: Current problems in
animal behavior (Thorpe WH, Zangwill OL, eds), pp 331–361. Cam-
bridge, MA: Cambridge UP.

Barlow H (2001) Redundancy reduction revisited. Network 12:241–253.
Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck RR

(2000) Synergy in a neural code. Neural Comput 12:1531–1552.
Cover TM, Thomas JA (1991) Elements of information theory. New York:

Wiley.
Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual informa-

tion by precisely correlated spikes in the lateral geniculate nucleus. Nat
Neurosci 1:501–507.

deCharms RC, Merzenich MM (1996) Primary cortical representation of
sounds by the coordination of action-potential timing. Nature 381:610–613.

Dembo A, Zeitouni O (1993) Large deviation techniques and applications.
New York: Springer.

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ
(1988) Coherent oscillations: a mechanism of feature linking in the visual
cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern
60:121–130.

Latham and Nirenberg • Synergy, Redundancy, and Independence J. Neurosci., May 25, 2005 • 25(21):5195–5206 • 5205



Gawne TJ, Richmond BJ (1993) How independent are the messages carried
by adjacent inferior temporal cortical neurons? J Neurosci 13:2758 –2771.

Golledge HD, Panzeri S, Zheng F, Pola G, Scannell J, Giannikopoulos DV,
Mason RJ, Tovee MJ, Young MP (2003) Correlations, feature-binding
and population coding in primary visual cortex. NeuroReport
14:1045–1050.

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orien-
tation columns of cat visual cortex. Proc Natl Acad Sci USA
86:1698 –1702.

Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat
visual cortex exhibit inter-columnar synchronization which reflects
global stimulus properties. Nature 338:334 –337.

Hoeffding W (1963) Probability inequalities for sums of bounded random
variables. J Am Stat Assoc 58:13–30.

Levine MW, Castaldo K, Kasapoglu MB (2002) Firing coincidences between
neighboring retinal ganglion cells: inside information or epiphenome-
non? Biosystems 67:139 –146.

Liu RC, Tzonev S, Rebrik S, Miller KD (2001) Variability and information in
a neural code of the cat lateral geniculate nucleus. J Neurophysiol
86:2789 –2806.

Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV (2001)
Representation of acoustic communication signals by insect auditory re-
ceptor neurons. J Neurosci 21:3215–3227.

Meister M, Lagnado L, Baylor DA (1995) Concerted signaling by retinal
ganglion cells. Science 270:1207–1210.

Merhav N, Kaplan G, Lapidoth A, Shamai Shitz S (1994) On information
rates for mismatched decoders. IEEE Trans Inform Theory 40:1953–1967.

Nemenman I, Bialek W, de Ruyter van Steveninck R (2004) Entropy and
information in neural spike trains: progress on the sampling problem.
Phys Rev E Stat Nonlin Soft Matter Phys 69:056111.

Nirenberg S, Latham PE (1998) Population coding in the retina. Curr Opin
Neurobiol 8:488 – 493.

Nirenberg S, Latham PE (2003) Decoding neuronal spike trains: how im-
portant are correlations? Proc Natl Acad Sci USA 100:7348 –7353.

Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion
cells act largely as independent encoders. Nature 411:698 –701.

Oram MW, Hatsopoulos NG, Richmond BJ, Donoghue JP (2001) Excess
synchrony in motor cortical neurons provides redundant direction infor-
mation with that from coarse temporal measures. J Neurophysiol
86:1700 –1716.

Osborne LC, Bialek W, Lisberger SG (2004) Time course of information
about motion direction in visual area MT of macaque monkeys. J Neuro-
sci 24:3210 –3222.

Paninski L (2003) Estimation of entropy and mutual information. Neural
Comput 15:1191–1253.

Paninski L (2004) Estimating entropy on m bins given fewer than m sam-
ples. IEEE Trans Inform Theory 50:2200 –2203.

Panzeri S, Treves A, Schultz S, Rolls ET (1999) On decoding the responses of
a population of neurons from short time windows. Neural Comput
11:1553–1577.

Panzeri S, Golledge HDR, Zheng F, Tovée MJ, Young MP (2001) Objective
assessment of the functional role of spike train correlations using infor-
mation measures. Vis Cogn 8:531–547.

Panzeri S, Golledge HDR, Zheng F, Pola G, Blanche TJ, Tovée MJ, Young MP
(2002a) The role of correlated firing and synchrony in coding informa-
tion about single and separate objects in cat V1. Neurocomputing
44 – 46:579 –584.

Panzeri S, Pola G, Petroni F, Young MP, Petersen RS (2002b) A critical
assessment of different measures of the information carried by correlated
neuronal firing. Biosystems 67:177–185.

Petersen RS, Panzeri S, Diamond ME (2001) Population coding of stimulus
location in rat somatosensory cortex. Neuron 32:503–514.

Petersen RS, Panzeri S, Diamond ME (2002) Population coding in somato-
sensory cortex. Curr Opin Neurobiol 12:441– 447.

Pola G, Thiele A, Hoffmann KP, Panzeri S (2003) An exact method to quan-
tify the information transmitted by different mechanisms of correlational
coding. Network 14:35– 60.

Sanov IN (1957) On the probability of large deviations of random variables.
Mat Sbornik 42:11– 44.

Schneidman E, Bialek W, Berry MJ (2003) Synergy, redundancy, and inde-
pendence in population codes. J Neurosci 23:11539 –11553.

Shannon CE, Weaver W (1949) The mathematical theory of communica-
tion. Urbana, IL: University of Illinois.

Sompolinsky H, Yoon H, Kang K, Shamir M (2001) Population coding in
neuronal systems with correlated noise. Phys Rev E Stat Nonlin Soft Mat-
ter Phys [Erratum 2002 65(4 Pt 2B)] 64:051904.

Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view
of inhibition in the retina. Proc R Soc Lond B Biol Sci 216:427– 459.

Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000)
Attention modulates synchronized neuronal firing in primate somato-
sensory cortex. Nature 404:187–190.

Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A
(1995) Dynamics of neuronal interactions in monkey cortex in relation
to behavioural events. Nature 373:515–518.

Wu S, Nakahara H, Murata N, Amari S (2000) Population decoding based
on an unfaithful model. Advances in neural information processing sys-
tems, pp 167–173. Cambridge, MA: MIT.

Wu S, Nakahara H, Amari S (2001) Population coding with correlation and
an unfaithful model. Neural Comput 13:775–797.

Wu S, Amari S, Nakahara H (2002) Population coding and decoding in a
neural field: a computational study. Neural Comput 14:999 –1026.

5206 • J. Neurosci., May 25, 2005 • 25(21):5195–5206 Latham and Nirenberg • Synergy, Redundancy, and Independence


