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Across species, neural circuits show remarkable regularity, sug-
gesting that their structure has been driven by underlying opti-
mality principles. Here we ask whether we can predict the neural
circuitry of diverse species by optimizing the neural architecture to
make learning as efficient as possible. We focus on the olfactory
system, primarily because it has a relatively simple evolutionarily
conserved structure and because its input- and intermediate-layer
sizes exhibit a tight allometric scaling. In mammals, it has been
shown that the number of neurons in layer 2 of piriform cortex
scales as the number of glomeruli (the input units) to the 3/2
power; in invertebrates, we show that the number of mushroom
body Kenyon cells scales as the number of glomeruli to the 7/2
power. To understand these scaling laws, we model the olfactory
system as a three-layer nonlinear neural network and analytically
optimize the intermediate-layer size for efficient learning from
limited samples. We find, as observed, a power-law scaling, with
the exponent depending strongly on the number of samples and
thus on longevity. The 3/2 scaling seen in mammals is consistent
with observed longevity, but the 7/2 scaling in invertebrates is
not. However, when a fraction of the olfactory circuit is genetically
specified, not learned, scaling becomes steeper for species with
a small number of glomeruli and recovers consistency with the
invertebrate scaling. This study provides analytic insight into the
principles underlying both allometric scaling across species and
optimal architectures in artificial networks.

olfaction | neural circuit | model selection | statistical learning theory

Brains exhibit a large range of cell types, connectivity
patterns, and organizational structures, at both micro- and

macroscales. There is a rich history in neuroscience of explaining
these structures from a normative point of view (1–3). Most of
that work focused on computation, in the sense that it asked what
circuit, and connection strengths, leads to optimal performance
on a particular task. However, the connection strengths have to
be learned, and model selection theory tells us that the efficiency
of learning depends crucially on architecture, especially when a
limited number of trials are available (4–8). This is also true for
deep networks, where the choice of neural architecture plays a
critical role in both learning speed and performance (9). Here we
attempt to understand the organizational structure of the brain
from a model selection perspective, hypothesizing that evolution
optimized the brain for efficient learning.

We build a model inspired by the olfactory circuitry and study
its allometric scaling analytically. We focus on the olfactory
system primarily because it has a relatively simple, evolutionarily
conserved, predominantly feedforward structure (10–12). In par-
ticular, odorants are first detected by olfactory sensory neurons;
from there, olfactory information is transmitted to glomeruli.
The number of glomeruli, however, varies widely across species,
from between 10 and 100 in insects to ∼1,000 in mammals.
The question we address is, How does the number of glomeruli
affect downstream circuitry? And in particular, what downstream
circuitry would best help the animal survive? The tradeoffs that
go into answering this question are in principle straightforward:
More complicated circuitry (i.e., more parameters) can do
a better job accurately predicting reward and punishment,
but, because there are more parameters, there is a danger of

overfitting (4, 7, 8). And even if learning is performed with
sample-by-sample updates to avoid overfitting, learning tends
to be slower in complicated circuitry, as typically more samples
are required (13, 14). Navigating these tradeoffs requires that we
choose an architecture, which must come from biology. For that
we take inspiration from the olfactory system of both mammals
and invertebrates.

In the mammalian olfactory system, information from the
glomeruli is transmitted to mitral/tufted cells, then to layer 2
of piriform cortex among others, and then mainly to layer 3;
after that, information is passed on to higher-order cortical areas
(10, 12). Thus, although many studies suggest that reciprocal
interactions between mitral/tufted cells and granule cells (15, 16),
as well as feedback from the cortex (17, 18), are also important for
olfactory processing, as a first-order approximation the olfactory
system can be modeled as a feedforward neural network. More-
over, because sister mitral cells receiving input from the same
glomeruli are highly correlated, both with each other and with
the glomeruli from which they receive input (19), the olfactory
network essentially has three layers: an input layer corresponding
to glomeruli, a hidden layer corresponding to layer 2 of piriform
cortex, and an output layer corresponding to layer 3.

Based on this picture, in our analysis we use an architecture
corresponding to a three-layer feedforward network. The size of
the input layer is the number of glomeruli, and we assume that
each unit of the output layer is extracting a different feature of
the olfactory input, such as expected reward or punishment, or
a behaviorally relevant concept. Consequently, we focus on the

Significance

In this work, we explore the hypothesis that biological neural
networks optimize their architecture, through evolution, for
learning. We study early olfactory circuits of mammals and
insects, which have relatively similar structure but a huge
diversity in size. We approximate these circuits as three-layer
networks and estimate, analytically, the scaling of the op-
timal hidden-layer size with input-layer size. We find that
both longevity and information in the genome constrain the
hidden-layer size, so a range of allometric scalings is possible.
However, the experimentally observed allometric scalings in
mammals and insects are consistent with biologically plausible
values. This analysis should pave the way for a deeper under-
standing of both biological and artificial networks.

Author contributions: N.H. and P.E.L. designed research; N.H. performed research; and
N.H. and P.E.L. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: N.Hiratani@gmail.com.
2Present address: Center for Brain Science, Harvard University, Cambridge, MA 02138.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2100600119/-/DCSupplemental.

Published March 9, 2022.

PNAS 2022 Vol. 119 No. 11 e2100600119 https://doi.org/10.1073/pnas.2100600119 1 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
05

.2
24

.2
35

.1
69

 o
n 

A
pr

il 
21

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
10

5.
22

4.
23

5.
16

9.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2100600119&domain=pdf&date_stamp=2022-03-09
http://orcid.org/0000-0002-8568-2033
http://orcid.org/0000-0001-8713-9328
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:N.Hiratani@gmail.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100600119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100600119/-/DCSupplemental
https://doi.org/10.1073/pnas.2100600119


hidden layer. For that we ask, How many units should the hidden
layer have? That question was chosen partly because its answer
provides insight into learning principles in general and partly
because it was recently addressed experimentally: Srinivasan and
Stevens (20) found, based on six mammalian species, a very tight
relationship between the number of glomeruli and the number
of neurons in layer 2 of piriform cortex (Fig. 1A; data taken from
ref. 20). More precisely, using Lx to denote the input-layer size
(the number of glomeruli) and Lh to denote the hidden-layer size
(the number of neurons in layer 2 of piriform cortex), they found
the approximate scaling law Lh ∼ L

3/2
x .

Motivated by this result, we asked whether a similar scal-
ing law holds for the invertebrate olfactory system. Like their
mammalian counterparts, odors detected by olfactory sensory
neurons converge to glomeruli. After that, though, the circuitry
differs. Glomeruli send information to the projection neurons
(12), which mainly extend synapses onto mushroom body Kenyon
cells and lateral horn neurons (21). The latter is mostly related
to innate olfactory processing (22), so we focus on the mush-
room body, which transmits information to higher-order regions
through mushroom body output neurons and is considered to be
the learning center of the insect brain (23, 24). Insect olfactory
circuits also contain various nonfeedfoward connections, such as
lateral inhibition between the projection neurons (12). But, as
with the mammalian olfactory system, as a first-order approx-
imation we omit them from the model. Thus, the invertebrate
olfactory system can also be modeled as a three-layer neural
network: an input layer corresponding to glomeruli, a hidden

A

B

Fig. 1. (A) Scaling law in mammalian olfactory circuits. Data points were
taken from supplementary tables S2 and S3 of Srinivasan and Stevens (20).
(B) Scaling law in invertebrate olfactory circuits. See SI Appendix, section 1.1
for details.

layer corresponding to Kenyon cells, and an output layer corre-
sponding to mushroom body output neurons (3, 25).

A literature survey of the number of glomeruli and Kenyon
cells of various insects (23, 24, 26–35) (see SI Appendix, section 1.1
for details) yielded a scaling law, as in the mammalian olfactory
system, but with an exponent of about 7/2 rather than 3/2
(Lh ∼ L

7/2
x , as shown in Fig. 1B). Drone (male) bees are the clear

outlier. That might be because the caste system of honey bees
puts the drones under unique ecological pressure; for instance,
the drones are the only ones among the seven insects listed that
do not engage in foraging. It should be noted that the data were
not properly controlled, as they were collected from different
sources and in some cases in different eras. Moreover, for the
locust, we used the number of olfactory receptor genes instead
of the number of glomeruli; that is because their microglomeruli
structure makes direct comparison with other species difficult
(36). In addition, the mushroom body also takes part in visual
processing in bees and cockroaches (37).

Several normative hypotheses have been offered to explain
the population size of sensory circuits. One line of theoretical
work showed that expansion in the hidden layer is beneficial for
sensory coding (3, 38, 39), but it remains elusive how much ex-
pansion is optimal, because in these studies, more expansion was
in principle always better. Other studies estimated the optimal
population size in multiple layers from a width–depth tradeoff,
assuming that the total number of neurons is fixed (40, 41) by
external factors such as a constraint on energy (42). However,
this energy constraint should be violated if increasing the number
of neurons improves foraging ability, resulting in a better energy
budget (43). Evaluation of the optimal population size was also
attempted from other biological constraints, such as synaptic (44)
and neuronal (45) noise. While these models provided insight
into circuit structure, none were able to provide a quantitative
explanation for the population sizes of circuits across different
species. Srinivasan and Stevens (20), on the other hand, offered
a quantitative derivation of the 3/2 power law observed in mam-
mals. Their derivation was based on the hypothesis that not much
information is lost between areas. While this is a reasonable
hypothesis, their derivation relied on several implicit assump-
tions; in particular, they assumed that the noise between different
neurons is uncorrelated, and the olfactory signals are not mixed
as they propagate across layers. However, both correlations and
mixing are likely to exist, and that will affect the number of
neurons required in downstream areas (46). In addition, their
theory does not explain the 7/2 scaling seen in invertebrates.

Here we develop a mechanistic explanation of the scaling laws,
focusing on the fact that the transformation from glomeruli to
piriform cortex (for mammals), or from glomeruli to mushroom
body output neurons (for invertebrates), has to be learned from
a limited number of samples. That explanation draws on model
selection theory, in which the primary constraint is the poverty
of teaching signals and resultant overfitting (4, 7, 8). Because
the olfactory circuit has to tune its numerous synaptic weights
from very sporadic, low-dimensional reward signals in the natural
environment (47, 48), this constraint should be highly relevant.
Therefore, we formulate the problem of olfactory circuit design
as a model selection problem and then derive the optimal hidden-
layer size under various learning rules and nonlinearities.

Our derivation proceeds in two steps: First, we expand the
covariance matrix in the hidden layer in powers of the average
hidden-layer correlation coefficient; then we use random matrix
theory to compute the generalization error. That enabled
us to determine, analytically, the factors that control the
optimal hidden-layer size, thus bypassing the intensive numerical
optimization typically used in deep-learning settings (9, 40, 49).
Our analysis shows that the optimal hidden-layer size follows an
allometric scaling with the input-layer size and reveals the factors
that control the scaling exponent. Not surprisingly (because
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learning takes time) we find that the optimal hidden-layer size,
and thus the scaling exponent, depends on the lifetime of the
organism. The 3/2 scaling found in mammals is, though, largely
consistent with observed lifetimes. This scaling relationship is
robust against the choice of nonlinearity, activity sparseness,
and the noise level and also against the optimization method: It
holds under both maximum-likelihood estimation and stochastic
gradient descent with cumulative error minimization.

Our theory was not, however, able to capture the 7/2 power
law found in invertebrates. That is because traditional model
selection theory fails to take into account the fact that neural
circuits are at least partially genetically specified. In particular,
rich innate connectivity structure is known to exist in the inverte-
brate olfactory systems (22, 50). Thus, we extend the framework
to the case where a fixed genetic budget can be used to specify
connections and consider how that affects scaling. The budget
we used—about 2,000 bits—had little effect on the scaling of
the mammalian circuit, primarily because mammals have a large
number of glomeruli, for which a complicated downstream circuit
is needed to achieve good performance—far more complicated
than could be constructed by 2,000 bits. However, it had a large
effect on invertebrates, which contain far fewer glomeruli. In
particular, the scaling became steeper, making it possible to
replicate the observed 7/2 power law without disrupting the 3/2
power law in mammals. These results shed light on potential
constraints on the development and evolution of neural circuitry.

Results
To determine scaling in the olfactory system, we use a teacher–
student framework (14, 51, 52): We postulate a teacher network,
which reflects the true mapping from odors to reward or punish-
ment in the environment, and model the olfactory network using
the same overall architecture, but with different nonlinearities
and a different number of neurons in the hidden layer (Fig. 2). We
determine the optimal hidden-layer size under several scenarios:
batch learning and stochastic gradient learning and with and
without information about the weights supplied by the genome.

The Model. Let us denote the olfactory input at the level
of glomeruli as x = {x1, x2, . . . , xLx } and the corresponding
reward, or punishment, as y. We define the true relationship
between x and y in the environment by a three-layer “teacher”
network (Fig. 2A),

y =w t · gt(Jtx ) + σtζ, [1]

where gt is a pointwise nonlinear activation function and ζ is
Gaussian noise, added because the relationship between input
and reward is stochastic in real-world situations. Throughout the
text we use uppercase letters in boldface type to denote matrices
and lowercase letters in boldface type for vectors. Vectors are
defined as column vectors, a superscript T denotes transpose
(indicating a row vector), and for readability we use a dot product
to denote the inner product between two vectors. We sampled Jt ,

A B

Fig. 2. Network models. (A) Olfactory environment (teacher). (B) Olfactory
circuit that models the environment (student).

w t , and x from independent Gaussian distributions for analytical
tractability. Note that we used a continuous, rather than binary,
valence y because odor-driven animal behavior is sensitive to
both the sign and the value of valence (53).

As discussed above, we model the olfactory circuits of both
vertebrates and invertebrates as a three-layer neural network
(Fig. 2B),

ŷ =w s · gs(Jsx ), [2]

where Js is an Lh × Lx matrix connecting the input neurons to
the neurons in the hidden layer, and w s is an Lh -dimensional
vector connecting the hidden-layer neurons to the output neu-
ron. For simplicity, we assume that Js is fixed and random,
with elements drawn from an independent Gaussian distribution.
Only the readout weights, w s , are learned from data. This is a
good approximation for the invertebrate olfactory system, as the
connection from the projection neurons to Kenyon cells is indeed
mostly random (23) and fixed (54). In the mammalian system,
the connection from mitral/tufted cells to piriform cortex, which
corresponds to Js , is suggested to be plastic (55). However, it
is thought that those connections are mainly shaped by unsu-
pervised learning, but are seldom modulated by reward, as odor
representation in layer 2 of piriform cortex is relatively stable
under reward-based learning (56, 57).

The objective of learning is to predict the true reward signal, y,
given the input, x . Using the mean-squared error as the loss, the
generalization error is written

εgen ≡
〈
(y − ŷ)2

〉
, [3]

where angle brackets indicate an average over the input, x , and
the teacher noise, ζ. Under this problem setting, we ask what
hidden-layer size, Lh , minimizes the generalization error when
w s is learned from N training samples. In particular, we inves-
tigate how the optimal hidden-layer size scales with the input-
layer size, Lx . Intuitively, when the hidden-layer size is small, the
neural network is not expressive enough, so the generalization
error tends to be large even after an infinite number of training
samples. On the other hand, if the hidden layer is large relative
to the number of training samples, the network becomes prone
to overfitting, again resulting in poor generalization. Below we
address this tradeoff quantitatively.

Generalization Error. When the learning rule is unbiased, the gen-
eralization error consists of two components: the approximation
error, which arises because we do not have a perfect model (we
use Js rather than the true weight, Jt , to model the output, y, and
we may have a different nonlinearity and hidden-layer size), and
the estimation error, which arises because we use a finite number
of training samples (6–8). Inserting Eqs. 1 and 2 into 3, we can
write the generalization error in terms of these two components,

εgen = σ2
t + εapr + εest , [4]

where the approximation error, εapr (the error under the optimal
weight w∗

s ), is

εapr ≡
〈(

w t · gt(Jtx )−w∗
s · gs(Jsx )

)2〉 [5]

and the estimation error, εest (the error induced by using the
learned weight, w s , rather than the optimal one, w∗

s ), is

εest ≡
〈(

w∗
s · gs(Jsx )−w s · gs(Jsx )

)2〉
. [6]

Note that under an appropriate learning rule, εest converges
to zero in the limit of an infinite number of training samples
(N →∞).

We focus first on the approximation error, εapr , which depends
on the optimal weight, w∗

s . That weight is found by minimizing
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〈(y − ŷ)2〉 with respect to w s , with y and ŷ given in Eqs. 1
and 2, respectively. This is a linear regression problem, and so
w∗

s is given by the usual expression,

w∗
s =

〈
gs(Jsx )gs(Jsx )

T
〉−1 〈

gs(Jsx )gt(Jtx )
T
〉
w t . [7]

To compute w∗
s , we need to invert a matrix. That is nontrivial

because gs(·) is a nonlinear function and the components of Jsx
are correlated,

〈(Jsx )i(Jsx )j 〉=
Lx∑
k=1

J s
ikJ

s
jk . [8]

Because the J s
ik are independent random variables, the off-

diagonal elements are smaller than the diagonal elements by a
factor of Lx . We can, therefore, compute w∗

s as an expansion in
powers of 1/Lx , multiplied by Lh (because there are factors of Lh

more off-diagonal than diagonal elements). Working to second
order in 1/Lx , we show in SI Appendix, section 3 that

εapr ≈ α+
a0
Lh

+ a1f

(
Lh

Lx
, c1

)
+ a2f

(
2Lh

L2
x

, c2

)
, [9]

where

f (z , c)≡

√
(z + c − 1)2 + 4c − (z + c − 1)

2
[10]

is a monotonically decreasing function of z: f (0, c) = 1 and
f (z , c)→ c/z when z 	 1. All constants are O(1); their
values depend only on the nonlinearities gs(·) and gt(·). Note
that our expression for εapr does not explicitly depend on
the teacher network size Lt . That holds as long as Lt 	 1
(SI Appendix, Eqs. S38–S41).

As shown in Fig. 3 (blue line), εapr is a monotonically decreas-
ing function of Lh . That function derives its shape from the three
Lh -dependent terms in Eq. 9: The second term, α0/Lh , decays

Fig. 3. Generalization error (red; Eq. 12), approximation error (blue; Eq. 9),
and estimation error (green; Eq. 11) at Lx = 50, N = 30,000, for various
hidden-layer sizes Lh. Lines are analytical results; points are from numeri-
cal simulations (see SI Appendix, section 7.4 for details). Solid and dashed
vertical lines are the minima of the generalization error from theory and
simulations, respectively. Here, and in all figures except Fig. 4 D and E, both
gt and gs are rectified linear functions [gt(u) = gs(u) = max(0, u)]. In all
figures except Fig. 6 we use σ2

t = 0.1 for the noise in the teacher circuit,
and in all figures the hidden-layer size of the teacher network is fixed at
Lt = 500. Error bars represent the SD over 10 simulations.

to zero when Lh is large compared to 1, the third decays to zero
when Lh is large compared to Lx , and the last decays to zero
when Lh is large compared to L2

x . Essentially, as Lh increases,
the effects of the off-diagonal elements of the covariance matrix
in Eq. 7 increase, and the model becomes more expressive (and
thus lowers the approximation error). Although a number of
approximations were made in deriving Eq. 9, the theoretical
prediction (blue line in Fig. 3) matches well the numerical simu-
lations (points) for a wide range of Lh .

To complete the picture of the generalization error, we need
the estimation error—the error associated with finite training
data. For that it matters how we learn w s . There are two main
choices: maximum-likelihood estimation (MLE) and stochastic
gradient descent (SGD). We start with MLE. Although it is not
biologically plausible (it requires the learner to compute, and
invert, a covariance matrix after seeing all the data), we consider
it first because it is reasonably straightforward. After that, we
consider the more realistic case of SGD. Both exhibit the 3/2
scaling found in the mammalian olfactory circuit.

MLE Learning. In SI Appendix, section 4.1, we extend the analysis
in ref. 58 to our maximum-likelihood setting and find that the
estimation error from N samples is given by

εest ≈ (εapr + σ2
t )

Lh

N − Lh
. [11]

This expression is intuitively sensible: In the limit of infinite data,
N →∞, the estimation error vanishes, and in the opposite limit,
N → Lh , the estimation error blows up due to overfitting.

Ifσ2
t is not too small, εest is a monotonically increasing function

of Lh , as shown in Fig. 3 (green line). In particular, when Lh is
significantly smaller than the number of training samples, N, εest
is a linearly increasing function of Lh , which is consistent with
classical model selection theory (4, 13). Note that when Lh 
 N ,
the estimation error is small. That is because there are very few
parameters, and so the network learns them almost perfectly. As
Lh approaches N, the estimation error increases, and at Lh = N
it goes to infinity. The divergence at Lh = N arises because the
matrix on the right-hand side of Eq. 7 becomes singular.

Inserting εest from Eq. 11 into Eq. 4, the generalization error
under MLE is

εgen ≈ (εapr + σ2
t )

N

N − Lh
. [12]

The first term on the right-hand side is a decreasing function
of Lh ; the second term is an increasing function. Together, they
produce a generalization error (red line in Fig. 3) that typically
has a unique global minimum as a function of Lh . Moreover,
the analytically estimated optimal hidden-layer size, L∗

h , closely
matches its estimation from numerical simulations (solid vertical
line vs. dashed vertical line in Fig. 3).

The generalization error has a concrete interpretation in terms
of discriminability of valence: It tells us the resolution with which
valence can be inferred and in particular how far apart odors
need to be before we can confidently assign different valence to
them. Because our learned network has low generalization error
at the optimal hidden-layer size, its resolution at that point is rel-
atively high. For instance, if odors are parallel to the learned di-
rection, they can have a correlation coefficient of 0.99 and still be
assigned distinct valences (blue line in SI Appendix, Fig. S1).
If, on the other hand, the odors are randomly selected, the
correlation coefficient must be below 0.85 (still relatively
high) for the circuit to assign distinct valences (orange line in
SI Appendix, Fig. S1).

Optimal Hidden-Layer Size. By minimizing the generalization er-
ror, Eq. 12, with respect to Lh (with the approximation error
given by Eq. 9), we can find the optimal hidden-layer size, L∗

h ,
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Fig. 4. Model behavior under maximum-likelihood estimation. (A) Relationship between the input-layer size, Lx , and the optimal hidden-layer size, L∗h ,
at a fixed sample size (N = 30,000). Gray lines are found by optimizing Eq. 12 with respect to Lh; dashed lines are the asymptotic expression derived in
SI Appendix, section 5.1. (B) Optimal hidden-layer size, L∗h , as a function of the input-layer size, Lx , and the sample size, N, from Eq. 12. (C) Scaling at
N = 1.65L1.96

x . Gray line is theory; black points are from simulations; colored circles are the experimental data from Fig. 1A. Simulations were done only
for low Lx , due to the computational cost of the simulations when Lx is large. (D) Relationship between the hidden-layer size, Lh, and the generalization
error, εgen, under the logistic activation function (black), and ReLU (gray), at Lx = 50 and N = 30,000. Lines are theory; bars are from simulations. Vertical
lines mark the minima (solid, theory; dashed, simulations). Error bars are the SD over 10 simulations. (E) Scaling for the logistic activation function with
N = 240L1.96

x . Gray line is theory; black points are from simulations; colored circles are the experimental data from Fig. 1A. As in C, simulations were done
only for low Lx , due to the computational cost of the simulations when Lx is large. (F) Analytical estimation of the L∗h - Lx scaling versus the Lx-N scaling
(y axis, coefficient β in the scaling L∗x ∝ Lβx ; x axis, coefficient γ in the scaling Lx ∝ Nγ ; see SI Appendix, section 5.1 for details). The gray horizontal line is
the 3/2 scaling from Fig. 1A. As in Fig. 3, the teacher network had a hidden-layer size of 500, with a ReLU nonlinearity, and the noise was set to σ2

t = 0.1.

as a function of the input-layer size, Lx . As shown in Fig. 4A,
L∗
h has three different scalings. That is because only one term at

a time in Eq. 9 is sensitive to Lh : the second term if Lh ∼O(1),
the third term if Lh ∼O(Lx ), and the fourth term if Lh ∼O(L2

x ).
However, even considering one term at a time, minimizing Eq. 12
with respect to Lh is nontrivial, in large part because of the de-
pendence on N. Details of the minimization are, therefore, left to
SI Appendix, section 5.1; here we simply summarize the results.

The optimal hidden-layer size, L∗
h , roughly follows one of the

three dashed lines in Fig. 4A, depending on the value of Lx

relative to N. When the input layer size, Lx , is small compared
to N, L∗

h is linear in Lx (purple dashed line in Fig. 4A); when
Lx is comparable to N, Lh scales as the square root of Lx (red
dashed line); and when Lx is larger than N, Lh stays constant
as Lx changes (orange dashed line). This last scaling is reason-
able because when the input layer is wide enough, expansion
in the hidden layer is unnecessary. To further illustrate the de-
pendence of L∗

h on Lx and N, in Fig. 4B we plot the optimal
hidden-layer size versus these two quantities. This indeed shows
three distinct phases separated by the lines Lx ∝ N and L2

x ∝ N .
This three-phase structure is robust to the choice of N and σ2

t

(SI Appendix, Fig. S2A), although these parameters introduce an
overall scale factor in the optimal hidden-layer size, L∗

h .
While L∗

h shows a relatively nontrivial dependence on Lx , its
dependence on N (with Lx fixed) is simple: L∗

h ∝
√
N . That is

because the effective approximation and estimation errors scale
as 1/Lh and Lh/N , respectively (SI Appendix, section 5.1). Thus,
to minimize the generalization error, which is the sum of these
two terms, L∗

h needs to satisfy L∗
h ∝

√
N . This simple scaling

is consistent with previous work, which suggests that the 1/Lh

scaling of the MSE approximation error (59) and the Lh/N
dependence of the estimation error (13) are robust to model
settings.

In our analysis, we assumed that the activity of the glomeruli,x ,
follows an independent Gaussian distribution. However, because
the intrinsic dimensionality of the activity is bounded by the num-
ber of olfactory receptor genes, the glomeruli activity is not nec-
essarily independent. This is especially relevant for mammalian
olfactory circuits, where the number of glomeruli is typically
larger than the number of olfactory receptor genes (20). To inves-
tigate this issue, we computed numerically the optimal hidden-
layer size when the number of olfactory receptor genes was fixed.
We found that if the activity at the glomeruli is whitened via a
nonlinearity and lateral inhibition, the optimal hidden-layer size
shows the same scaling with the number of glomeruli as it does
when the number of glomeruli is equal to the number of olfactory
receptor genes (SI Appendix, Fig. S3 and section 7.6). Thus, even
though the intrinsic dimensionality of the activity is smaller
than the number of glomeruli, because of the nonlinearities and
whitening the effective dimensionality scales with the number of
glomeruli.

Fig. 4B shows that the scaling relationship between L∗
h and

Lx depends on N. Thus, to determine scaling across species,
we need to know how N scales with Lx across species. We
cannot directly measure N, which is the total number of
rewards/teaching signals an animal experiences in its lifetime.
However, we expect that N scales linearly with the duration of
learning, so we use that as a proxy. Among the six mammalian
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species, maximum longevity scales approximately as L1.65±0.45
x

(SI Appendix, Fig. S4A; longevity data from AnAge database)
(60). Alternatively, if we assume that learning happens mostly
during the developmental period, here defined as the period
from weaning to sexual maturation, a similar trend is observed,
but with a slightly different exponent: Duration from the time of
weaning to sexual maturation scales approximately as L1.97±0.58

x

(SI Appendix, Fig. S4B).
Given these observations, we assumed N ∝ Lγ

x with γ between
1.6 and 2. When we did that, we found a clear scaling law between
Lx and L∗

h that spans more than three orders of magnitude. That
is because, unlike Fig. 4A where an increase in Lx causes a phase
transition, when N also increases with Lx the system stays in one
of the phases (here, the second one). When we set N to N =
1.65L1.96

x , the model reproduced the 3/2 scaling observed in the
mammalian olfactory system (Fig. 4C). The coefficient, 1.65, and
the exponent, γ = 1.96, were selected to match the data in Fig. 1A
(SI Appendix, Fig. S5A); notably, though, the exponent fell into
the expected range from SI Appendix, Fig. S4 (1.6 to 2.0). Other
values of γ gave slightly different scaling (SI Appendix, Fig. S5B).

In the above examples, we used rectified linear units (ReLU)
for both teacher (gt ) and student (gs), but this matching (gt =
gs) might be a strong assumption. To check the robustness of
our results with respect to the choice of activation function,
we used a logistic function for the student (gs) while keeping
a ReLU for the teacher (gt ). With this choice, the general-
ization error is minimized at a smaller hidden-layer size com-
pared to the ReLU student networks (black line vs. gray line
in Fig. 4D; see SI Appendix, section 7.2 for details), primarily
because large expansion is less helpful when the activation func-
tions of the teacher and student networks are different. Nev-
ertheless, assuming, as above, N ∝ L1.96

x , we obtain the experi-
mentally observed 3/2 scaling law between L∗

h and Lx (Fig. 4E
and SI Appendix, Fig. S5C). To achieve this scaling, however, the
coefficient needs to be larger than when the teacher and student
nonlinearity matched (N = 240L1.96

x versus 1.65L1.96
x for the

matching case).
So far, we have used parameters for which the activity in the

intermediate layer is dense, meaning roughly half of the units
are active for each odor. However, both Kenyon cells and layer 2
piriform neurons show sparse selectivity for olfactory stimuli (21,
61). To study the effect of sparse selectivity, we introduce a bias to
the ReLU nonlinearity, gs(u) = max(u − b, 0), with b sufficiently
large that only a small fraction of neurons in the hidden layer
show nonzero activity for each odor (SI Appendix, section 7.3).
In this regime, the model prefers larger expansion in the hidden
layer (SI Appendix, Fig. S6A), but we still observed a 3/2 scaling
law between L∗

h and Lx (SI Appendix, Fig. S6B), indicating that
the scaling law is robust with respect to the sparseness of activity.

Finally, in the large Lx limit the results simplify: The scaling, γ,
of the hidden-layer size with the number of glomeruli follows the
simple relationship shown in Fig. 4F (see SI Appendix, section 5
and Fig. S7A for details). The three lines in Fig. 4F correspond to
the three phases we saw in Fig. 4 A and B. In particular, when γ
is between 1.6 and 2.0—the range we found from our analysis of
learning times (SI Appendix, Fig. S4)—the optimal hidden-layer
size scales as L∗

h ∝ L1.3−1.5
x . Thus, our results are robust to the

observed scaling of learning time with number of glomeruli.

SGD Learning. So far, we have considered learning by MLE.
However, that is not the best choice when the hidden-layer
size, Lh , is similar to the sample size N, as discussed above. In
addition, batch learning is not particularly biologically plausible.
Therefore, we consider online learning using stochastic gradient
descent,

w (n) =w (n−1) + η(yn − ŷn)gs(Jsxn), [13]

where w (n) is the readout weight after trial n and η is the learn-
ing rate. For online learning we consider minimization of the

generalization error averaged over the lifetime of the organism,
not the final error; that is because the fitness of an animal is much
better characterized by the average proficiency during its lifetime
than the proficiency at the end of its life.

Consistent with previous results (14), the learning rate that
enables the fastest decay of the error is (see SI Appendix,
section 4.2 for details)

η∗ =
2

Lh
. [14]

For this learning rate, the lifetime average estimation error after
N training samples, denoted ε̄

(N )
est , is given approximately by (see

SI Appendix, section 4.2, especially SI Appendix, Eq. S91)

ε̄
(N )
est ≈ εapr + σ2

t + b0e
−N

π + b1e
− N

2L1 + b2e
− N

2πL2 + b3e
− αN

2Lh ,
[15]

where

L1 = min(Lx ,Lh) [16a]

L2 =

[
min

(
L2
x

2
,Lh − Lx

)]+
[16b]

with [·]+, the rectified linear function (Fig. 5A). The coefficients
b0, b1, b2, and b3 depend on Lh , but not on N, and α (which
appears in the exponent of the last term) is the same constant
that appeared in Eq. 9.

The behavior of the estimation error under SGD is different
from that under MLE, Eq. 11, in two ways. First, for MLE, the
estimation error goes to 0 as N →∞; for SGD, it asymptotes
to a constant. That is because we used a fixed learning rate for
the SGD update rule rather than letting it decay, as would be
necessary to reduce the estimation error to zero (62). Second, for
MLE the estimation error diverges as Lh approaches N, whereas
for SGD it remains finite. That is because of the online nature of
SGD, which guards against overfitting.

As can be seen in Eq. 15, the lifetime average estimation error
as a function of the number of training samples, N, exhibits three
components, all decaying with different timescales (Fig. 5B). The
timescales of these, L1, L2, and Lh , are nondecreasing functions
of Lh (Fig. 5A). Thus, larger Lh means slower decay with N, as
can be seen in Fig. 5B. If the coefficients bq were constant, this
would imply that larger Lh would lead to larger lifetime average
error. And this is indeed what we see when Lh is larger than
about 300 (green line in Fig. 5C). However, for smaller Lh , the
dependence of the bq on Lh becomes important, and the lifetime
average error decreases with Lh . Because the approximation
error decreases monotonically (blue line in Fig. 5C), the lifetime
average generalization error (red line in Fig. 5C) typically has a
global minimum at a finite hidden-layer size Lh .

As with MLE learning, under a fixed sample size N the optimal
hidden-layer size, L∗

h , shows three different scalings (gray line
and dashed lines in Fig. 5D and SI Appendix, Fig. S2B). That is
because the approximation error decreases with three distinct
phases (Eq. 9). As a result, we observe effectively the same
structure in SGD that we saw in MLE (Fig. 5D vs. Fig. 4A),
although the theoretical prediction at large Lx under SGD does
not match quite as well as under MLE. However, using the scaling
N ∝ Lγ

x with the same γ as before (γ = 1.96), and fitting the
coefficient in front of Lx , the experimentally observed scaling law
in Fig. 1A is again reproduced (Fig. 5E). The effect of γ under
SGD learning is about the same as it is under MLE (compare
SI Appendix, Fig. S7B to SI Appendix, Fig. S7A, both of which are
very similar to Fig. 4F), so the scaling of the optimal hidden-layer
size versus that of the input-layer size can be read off Fig. 4F.
Thus, as with MLE, the 3/2 scaling is relatively robust to decreases
in γ, but less robust to increases.

In our model we initialized the readout weights to relatively
large values, w (0)

s ∼ N (0, 9.0/Lh). If, however, the weights are
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Fig. 5. Model behavior under stochastic gradient descent. (A) Hidden-layer size dependence of the decay time constant L1 and L2, with Lx = 100.
(B) Dynamics of the estimation error under various hidden-layer sizes, Lh. Dashed lines, simulations; solid lines, theory. (C) The lifetime average generalization
error, approximation error, and lifetime average estimation error under various hidden-layer sizes, Lh, at N = 30,000. (D) Optimal hidden-layer size, L∗h , with
N = 30,000. Dashed lines are asymptotic scaling (SI Appendix, section 5.2). See SI Appendix, Fig. S2B for curves with a range of N and σ2

t . (E) Optimal hidden-
layer size, L∗h , with N = 19L1.96

x . Gray line is theory; black points are from simulations; colored circles are the experimental data from Fig. 1A. As in Fig. 4,
simulations were done only for low Lx , due to the computational cost of the simulations when Lx is large. The discontinuity around Lx ∼ 10 is originated
from approximations that do not match perfectly around L∗h ∼ L2

x/2 (SI Appendix, sections 4.2 and 8). (F) Optimal hidden-layer size, L∗h , for various initial
weight amplitudes, σ2

R, and N = 30,000. Gray, fixed learning rate; black, adaptive learning rate. Lines are theory and dots are simulations. The initial readout
weights were sampled from w(0)

s ∼ N(0, σ2
R/Lh). The horizontal dashed line represents the cutoff of L∗h in the numerical simulations. When σ2

R < 2, under a
fixed learning rate, L∗h is larger than 105. In A–C and F we set the input-layer size to Lx = 100. As in Fig. 3, the teacher network had a hidden-layer size of
500 and used a ReLU nonlinearity, and the noise was set to σ2

t = 0.1.

instead initialized to small values, the optimal hidden-layer size
L∗
h diverges to infinity (gray line and points in Fig. 5F). This is

partially because the fixed learning rate (Eq. 14), employed for
analytical tractability, causes poor convergence at small Lh . If
an adaptive learning rate, ηn = 2/max(Lh ,n), is used instead
(16), the cumulative generalization error is optimal at a finite
hidden-layer size even when the initial readout weights are zero
(black points in Fig. 5F). Although the optimal hidden-layer size,
L∗
h , goes up as the initial weight amplitude σ2

R becomes smaller
(Fig. 5F), the cumulative error becomes smaller under both fixed
and adaptive learning rates (SI Appendix, Fig. S9), due to smaller
initial error.

Evolutionary Constraints. The results so far indicate that develop-
mental constraints explain the scaling law observed in the mam-
malian olfactory system. However, our analysis also revealed
that developmental constraints alone do not explain the 7/2
power-law scaling observed in the invertebrate olfactory circuit,
suggesting the presence of additional principles. The primary
candidate is a constraint on the genetic budget an animal can
use to specify the olfactory circuit. We refer to this as an evolu-
tionary constraint. Because both the number of protein-encoding
genes and the total size of the genome tend to be similar across
species (63), we assume that the genetic budget for the specifi-
cation of olfactory circuitry is similar among the insects listed in
Fig. 1B.

Inspired by the insect olfactory circuitry, we consider a two-
pathway model, in which projection neurons extend connections

to both lateral horn neurons and Kenyon cells (Fig. 6A), and the
output is

ŷ =wp · g(Jpx ) +w s · g(Jsx ), [17]
where wp · g(Jpx ) is the pathway through lateral horn neu-
rons. Although lateral horn neurons do not directly project to
mushroom body output neurons, the two pathways eventually
converge in the premotor area (24), where the output ŷ could
be represented. Because connections between projection neu-
rons and lateral horn neurons tend to be stereotyped (22, 50),
we assumed they were tuned over evolutionary timescales. The
degree of tuning has a strong effect on the Kenyon cell pathway:
If they are well tuned, the number of neurons in the hidden
layer of the Kenyon cell pathway can be small; if they are poorly
tuned, the number of neurons needs to be large. The lateral
horn pathway cannot predict rewards and punishments in all
environments, so we assumed this pathway has a limited tuning
precision. Consequently, we set the weights Jp and wp with low
precision (SI Appendix, section 6). This is in contrast to Js , which
was initialized randomly and fixed, and w s , which was learned
with adaptive SGD. Using Lp to denote the number of lateral
horn neurons, under a genetic information budget G, the amount
of information encoded in Jp and wp is bounded by

(LpLx + Lp)sb <G, [18]

where sb is the number of bits per synapse. The first term is
the number of bits needed to specify Jp ; the second term is the
number needed to specify wp (see SI Appendix, section 6.1 for
details).
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A B C D

Fig. 6. Olfactory circuit augmented with a genetically specified pathway. (A) Schematic of the two-pathway model. For the top part of the circuit, the
weights Jp and wp are hard wired; for the bottom part, the weights Js are randomly connected and w s are learned with adaptive SGD. (B–D) Optimal layer
size of the projection neurons-to-Kenyon cells pathway w s · g(Jsx) under different model settings. (B) Low-bit synapses were achieved by adding Gaussian
noise to Jp and wp. (C) Low-bit synapses were achieved by discretizing Jp and wp. (D) Low-bit synapses were achieved by adding noise to Jp and wp as in B,
but wp was additionally learned from training samples using SGD (SI Appendix, Eq. S145). In B–D, the teacher network had a hidden-layer size of 500 and
a ReLU nonlinearity, and we used σ2

t = 0.01 and N = 10L2
x trials. For sb = 2 bits we used G = 2,000, while for sb = 4 bits we used G = 4,000. For sb = 0 bits,

we simply removed the hard-wired pathway. The width of the hard-wired intermediate layer, Lp, was found from Eq. 18: Lp = G/sb(Lx + 1), rounded up to
an integer. See SI Appendix, sections 6 and 7.5 for details.

The genetic budget, G, quantifies the accuracy with which the
weights Jp and wp can be encoded in the genome, with larger
G corresponding to higher accuracy. Although we measured
G using Shannon information (assuming that synapses are
uncorrelated), that may not accurately characterize the minimum
genome size required for hard wiring. In fact, the lower
bound on the genetic complexity of the weight specification
is given by the Kolmogorov complexity, which measures the
minimum length of a computer program that generates the
network (64). Here we make the assumption that the weights
are not massively compressible. In this regime, the Shannon
information provides a good estimate of the minimum genome
size (SI Appendix, section 6). In our simulations we let sb vary
between 0 and 4 bits per synapse, which is broadly consistent in
the variability seen in the fly connectome (65). We then keep the
genetic budget fixed while we vary Lx ; we do that by letting (from
Eq. 18) Lp =G/sb(Lx + 1).

Under a fixed budget, G, the number of bits per glomerulus,
is bounded by G/Lx , suggesting that as the input-layer size, Lx ,
increases, tuning of Jp and wp has to be more coarse grained. In
particular, in the mammalian olfactory system where Lx ∼ 103,
the hard-wired pathway should play a minor role unless G > 104.
Indeed, except for encoding of pheromone signals, evidence of
hard-wired connections in the mammalian olfactory circuits is
limited (66). For invertebrates, which have far fewer glomeruli,
hard-wired pathways should be far more important. As the effect
of the genetic budget, G, is difficult to characterize analytically,
we numerically investigate its effect.

When we allowed information about the weights to be
transmitted genetically, subject to the constraint given in Eq.
18, the genetically specified pathway did a good job predicting
the valence when Lx was small, but not when it was large.
As a result, the optimal Kenyon cell population size, Lh ,
was much smaller than the circuit without the projection
neuron-to-lateral horn neuron pathway (compare 0-bit lines to
2- and 4-bit lines in Fig. 6 B–D), leading to steeper scaling.
In particular, we found that by setting sb = 2, the 7/2 scaling
observed among insects is approximately reproduced (dark gray
line in Fig. 6B). The predicted curve saturates at quadratic scaling
around Lx ≈ 150, resulting in underestimation of the Kenyon
cell population in bees and cockroaches. This saturation also
indicates that in the mammalian system, for which Lx ∼ 103,
the genetically specified pathway is unlikely to play much of a
role. This trend was observed under a different implementation
of low-bit synapses (Fig. 6C and SI Appendix, Fig. S10A),

under sparse implementation of the lateral horn pathway
(SI Appendix, Fig. S10B and section 6.2), and even when wp was
additionally trained with SGD from finely tuned initial weights
(Fig. 6D). For additional details, see SI Appendix, section 6.3.

Discussion
In this work, we modeled the olfactory circuit of both mammals
and insects as a three-layer feedforward network and asked
how the number of neurons in the hidden layer scales with the
number of neurons in the glomerular (i.e., input) layer. We
hypothesized that the scarcity of labeled signals (reward and
punishment) provides a crucial constraint on the hidden-layer
size. This was indeed the case: We showed analytically, and con-
firmed with simulations, that the optimal hidden-layer size has
a strong, nonmonotonic, dependence on the number of labeled
signals. Assuming that the number of labeled signals an animal
experiences is proportional to its lifetime, and using lifetimes
in the range of those reported experimentally, we were able to
recover the observed 3/2 scaling (the number of neurons in the
hidden layer is proportional to the number of glomeruli to the 3/2
power) observed in mammals. This held under both maximum-
likelihood (Fig. 4) and stochastic gradient descent (Fig. 5) learn-
ing and was robust to the choice of nonlinearity (Fig. 4 D and
E), activity sparseness (SI Appendix, Fig. S6), and the noise level
(SI Appendix, Fig. S2). Scarcity of labels alone does not, however,
explain the 7/2 scaling found in the olfactory circuit of insects.
But by considering the fact that genetic information is available
for constructing hard-wired olfactory connections, and that it
is limited, we recovered the 7/2 scaling law (Fig. 6), without
disrupting the 3/2 scaling law in mammals. Note, though, that
a certain amount of fine-tuning was required to recover this
scaling: The genetic budget (for which we used 2,000 bits) had
to be specified to within ∼20% (SI Appendix, Fig. S10).

To derive these results, we assumed that the input is white,
the connectivity in the hidden layer is fixed and random, and the
teacher network is random. If the activity is not whitened at the
glomeruli, it is likely that the size of the input layer would be
replaced by its effective linear dimensionality. In addition, the
actual olfactory environment might have hidden structure that
the genetically specified pathway can exploit, even with a low
genetic budget. If that is the case, genetic encoding could play
a significant role even in the mammalian system. We leave these
cases for future work.

The 3/2 power in the scaling law we derived for mammals
comes from two factors. First, when the number of training
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samples is fixed, the optimal population size of the piriform
cortex increases as the number of glomeruli increases, unless the
number of glomeruli is very large (Figs. 4A and 5D). Second,
the optimal population size of the piriform cortex also increases
with the number of training samples (Fig. 4B). Because species
with more glomeruli tend to live longer and experience more
samples (SI Appendix, Fig. S4), this sample size dependence
causes an additional scaling between the number of glomeruli
and the piriform population size. From these two factors, the
optimal intermediate-layer size scales supralinearly on the
number of glomeruli (Figs. 4 C and E and 5E). Because of the
dependence on the number of training samples, N, the power
in the scaling law is not fixed at 3/2. In fact, depending on
how N scales with the input-layer size, Lx , theoretically a wide
range of scaling is possible (Fig. 4F and SI Appendix, section 5).
The 3/2 scaling we found was because in mammals, lifetime
scales approximately quadratically with the number of glomeruli
(SI Appendix, section 1.2 and Table 2).

Our analysis predicts that L∗
h ∝

√
N under both MLE and

SGD learning. Assuming that this relationship holds at micro-
scopic level as well, we predict that the number of presynaptic
connections received by a neuron in the output layer should
scale with the square root of the frequency of feedback signals
it receives. It might be possible to test this prediction in the
mushroom body output neurons of flies, where compartmental-
ized units receive diverse neuromodulatory inputs (24), and its
detailed connectivity structure is known (28). Although we also
need to estimate the frequency of the feedback signal at each
compartment in the natural environment, in the near future it
should be technically feasible to test this prediction.

The three-layer feedforward neural network with random fixed
hidden weights is a class of neural networks that is widely studied
from both biological (3, 38, 39, 67) and engineering (68, 69)
perspectives. Under batch learning, the upper bound on the ap-
proximation error for this network structure is known for a large
class of the target functions (59, 70), but these bounds are often
too loose to be practical. Here, we instead focused on the average
approximation error (SI Appendix, section 3). This allowed us to
derive, analytically, accurate estimates of the optimal hidden-
layer size. We found a nontrivial three-phase structure, which
has not been reported before in the context of model selection
(but see ref. 71). The behavior of the estimation error is also
well characterized in the large sample size limit (N →∞ while
Lx ,Lh <∞) (13, 72), but this limit is not a good approximation
of an overparameterized neural network. On the other hand, the
characteristics of the error in the large parameter limit (number
of synapses proportional to N as N →∞) remain mainly elusive,

except for linear regression (58) (SI Appendix, section 4.1). Simi-
larly, model selection in neural networks has been studied mostly
in the large sample size limit (7, 73). The upper bound on the
network size was also studied from Vapnik–Chervonenkis theory
(5) and the minimum description length principle (6).

Learning dynamics in neural networks under SGD has also
been widely studied (14, 52, 74). In particular, recent results
suggest that overparameterization of a neural network does not
harm the generalization error under both full-batch and stochas-
tic gradient descent learning (71, 74–76). Here, though, we fo-
cused on the cumulative error, not the error at the end of training,
as the former is more relevant to the fitness of the species. Under
this objective function, overparameterization does tend to harm
performance, because learning becomes slower (Fig. 5B), even
under an adaptive learning rate (Fig. 5F).

Slow learning is consistent with previous observations that
deep reinforcement learning, in which the model often needs
to be trained online, requires a large number of iterations for
successful learning (77). Neural architecture optimization for the
minimization of cumulative loss may help build efficient and
generalizable deep reinforcement learning. However, we also
found that if the learning rate is fixed and the initial weights are
set to very small values, having infinitely many neurons in the
hidden layer minimizes the cumulative error (Fig. 5F), suggesting
that overparameterization is not always harmful, even when the
cumulative error is the relevant cost function. Our analysis of
neural architecture selection may provide insight into scaling laws
observed in artificial neural networks, although those models face
different constraints than their biological counterparts (49).

Scaling laws are also observed in other regions of the brain.
For instance, the number of neurons in the primary visual cortex
scales with the 3/2 power relative to the population size of the
lateral geniculate nucleus (78), and the number of neurons in
the cerebral cortex is linear in the total number of neurons in
the cerebellum (79). Given the anatomical similarity between
the olfactory circuit and cerebellum (3), our methodology should
be directly applicable to understanding the latter scaling. But
it is not limited to olfactory-like structures; it could be applied,
possibly with some modifications, anywhere in the brain and has
the potential to provide insight into circuit structure in general.

Data Availability. The source codes of the simulations and the data anal-
ysis are deposited in GitHub (https://github.com/nhiratani/olfactory_design)
(80).
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