
Supplementary information for Developmental and
evolutionary constraints on olfactory circuit selection

Naoki Hiratani and Peter E. Latham

1

Supplementary figures

Figure S1: Valence discrimination after learning. The uncertainty in valence is √εgen, so we assume that odors can be distinguished
if their valances differ by this amount. The predicted valence, ŷ, is given in terms of odor, x, by ŷ = ws · gs(Jsx) (Eq. (3)). For
the distance between two odors we use the correlation coefficient. We consider two kinds of odor pairs: random and optimal. For
random odors x1 and x2, we let x2 = ρx1 +

√
1− ρ2ξ, where ρ, which lies between 0 and 1, is the correlation coefficient, and ξ

and x1 are random Gaussian vectors whose components are zero mean, unit variance, and independent. For optimal odors, we let
x2 = ρx1 +

√
1− ρ2ξopt where again x1 is a random Gaussian vector, but now ξopt = JTs g′(Jsx1)�ws is the direction with the

maximum gradient under the learned weight ws (here � refers to element-wise multiplication: (a�b)i = aibi). We plot the mean
distance between the outputs, 〈|ŷ1 − ŷ2|〉x1,x2 , versus the correlation coefficient, ρ. Orange line: random input. Blue line: optimal
input. The black horizontal line indicates the square-root of the generalization error, √εgen. We used Lx = 50, N = 30000, and
σ2
t = 0.1 as in Fig. 3, and set Lh to the numerically estimated optimal value, Lh = 2924.

Figure S2: Optimal hidden layer size under various teacher noise levels, σ2
t , and the number of samples, N . A) Maximum likelihood

estimation (MLE). B) Stochastic gradient descent (SGD). In both panels, points are simulations and lines are theory, derived from
Eq. (63) and Eq. (114), respectively. We used ReLU for the activation function of both teacher and student models, and in panel
B we set the initial weight, σ2

R, to 9.0. Under both MLE and SGD, the optimal hidden layer size L∗h increases as the number of
samples N gets larger. Under MLE, L∗h also increases as the teacher noise σ2

t decreases, but L∗h is mostly invariant with respect
to σ2

t under SGD. When N = 3000 (top row in panel A), the second phase under MLE is relatively flat; that’s because the lines
saturate before the scaling fully kicks in.

2

Figure S3: Scaling under input with a low-dimensional structure. In our model, we assume that different glomeruli are independent.
This is a reasonable assumption when each glomerulus receives input from one type of olfactory receptor neuron (OSN). However,
in mammals each OSN type projects to several glomeruli [1] while each glomerulus expectedly receives inputs from one OSN types
[2]; in this case the glomeruli cannot be independent. To determine the effect of this low dimensional structure, we computed the
optimal hidden layer size in this regime. We fixed the number of OSN types, denoted Lz, to 250, 500, or 1000, and estimated the
optimal hidden layer size under different number of glomeruli, Lx (x-axis; see SI §7.6 for the details of the model). The results are
shown for these three values of Lz, from left to right. Blue and orange lines are simulation results with and without whitening by
lateral inhibition among glomeruli, respectively. The gray lines are the theoretical estimation in the absence of any low-dimensional
structure (x ∼ N (0, I)). Consequently, so long as the input to the glomeruli is whitened due to lateral inhibition, a salient feature
of the olfactory bulb [3], the scaling we find for the hidden layer versus number of glomeruli should apply.

Figure S4: Scaling of duration of learning for vertebrates with the number of glomeruli. A) Maximum longevity versus number
of glomeruli. B) Average duration from weaning to sexual maturation versus number of glomeruli. Color code is the same as in
Fig. 1A.

3

Figure S5: Sensitivity analysis and scaling between the optimal hidden layer size and the input layer size under maximum
likelihood estimation. A) Fitting error under various choices of N = CLγx, as a function of the exponent γ and the coeffi-
cient C, calculated from the analytical estimation of the optimal hidden layer size. Colorbar represents the normalized MSE√

1
6

∑
i

(
L

(model)
h,i /L

(data)
h,i − 1

)2
over six data points L(data)

h,i in Fig. 1A. The gray square represents the parameter with the

minimum error (C, γ) = (1.65, 1.96) which we used in Fig. 4C. B) Scaling under various exponents, γ (which relates N to Lx via
N ∝ Lγx). The slopes of L∗h-Lx scaling are estimated to be 1.13 (purple), 1.29 (red), and 1.41 (yellow), from linear regression on
the theory curves. For the yellow line, we estimated the slope of the second phase. Both in panel A and B, the activation function
of both student and teacher networks are ReLU. C) Scaling when the student activation function is the logistic function while the
teacher function is ReLU. In both panels, points are simulations and lines are analytical results. The slopes are estimated to be
1.43 (purple), and 1.47 (red).

Figure S6: Scaling in a sparse coding model under MLE. A) The generalization error for three different coding levels, ρCL (defined
to be the fraction of neurons that show non-zero activity, averaged over stimuli). Lines are analytical estimations from §7.3; bars
are simulation results. Vertical dotted lines are the optimal hidden layer size predicted by theory. We set Lx = 50 and N = 30000,
as in Fig. 3. B) Optimal hidden layer size under sparse coding (ρCL = 0.05), with N = 1.4L1.9

x , where we recover the 3/2 scaling.
In both panels, we used the non-sparse ReLU (ρCL = 0.5) for the activation function of the teacher network, and set the teacher
noise to σ2

t = 0.1.

4

Figure S7: Scaling between the hidden layer size and the input layer size, versus scaling between the input layer size and the
training data size. Analytical estimation of the relationship between the Lx-N scaling (the exponent γ of N ∝ Lγx) and the L∗h-Lx
scaling (the exponent β of L∗h ∝ Lβx) A) MLE; B) SGD. In both panels, the black lines are the analytical solution in the large Lx
limit (see SI §5 for details); they are the same as the lines in Fig. 4F. The blues lines (computed for the range γ = 0.5 − 3.0)
were estimated from the solution of Eq. (63) (panel A) and Eq. (113) (panel B), respectively. The exponents on the y-axes were
estimated by performing linear regression on (logLx, logL

∗
h) for Lx = 108 − 1016.

Figure S8: Scaling when learning under SGD is terminated after αN samples, but the circuit is optimized for the cumulative error
over all N samples. This corresponds to the scenario where learning stops after sexual maturation. With this interpretation, N is
the number of labeled samples an animal observes during its lifetime, and α is the fraction of the animal’s lifetime it takes to reach
sexual maturation. Here the total error is εα = αε

(αN)
cg + (1 − α)ε(αN)

gen , where ε(αN)
cg is the cumulative generalization error from

n = 1, ..., αN and ε(αN)
gen is the generalization error at n = αN . A) Optimal hidden layer size with respect to εα as a function of

Lx with N = 19L1.96
x . The orange line is the same as the gray line in Fig. 5E. Black dotted lines are the analytical curves under

α = 0.02 (bottom) and α = 0.08. B) Scaling between the hidden layer size and the input layer size versus scaling between the
input layer size and the total amount of data. Lines are estimated from Eq. 131, not directly from simulations. The black line is
the analytical solution in the large Lx and α→ 1 limit, and the orange line is the same as the blue line in Fig. S7B. In both panels
we set σ2 = 0.1 and used SGD with a fixed learning rate.

5

Figure S9: The cumulative generalization error εNcg under various initial weight amplitude σ2
R, when learning is performed with a

fixed learning rate (gray), and an adaptive learning rate (black). The hidden layer size, Lh, was set to the optimal value estimated
numerically in Fig. 5F. The initial projection weights were sampled from w

(0)
s ∼ N(0, σ2

R/Lh).

Figure S10: The optimal hidden layer size of the developmentally specified pathway. A) Optimal hidden layer size for a range of
bits per synapse, sb. Lines with 0, 2 and 4 bits correspond to Fig. 6C. B) A model with a sparse genetically specified pathway.
Simulations were done with a range of connection probabilities, denoted ρs, which determines the probability that a connection
from the input to the hidden layer of the genetically specified circuit is nonzero: ρs ≡ Prob[Jpij 6= 0]). With this definition, ρs = 0.0
corresponds to a model without a genetic pathway, while ρs = 1.0 corresponds to a model with a fully connected genetic pathway.
Gray and black lines (ρs = 0 and 1) correspond to Fig. 6C. See §6.2 for details.

6

1 Data analysis

1.1 Scaling in the invertebrate olfactory circuitry

Table 1 gives the number of glomeruli and Kenyon cells that were used to make Fig. 1B, along with the sources. All
numbers are estimates for one hemisphere. It should be noted that the data is not well controlled. For instance, in some
cases only the total number of mushroom body neurons are available, instead of the number of Kenyon cells, and different
experimental techniques were used for different animals. Moreover, for locusts we used the number of olfactory receptor
genes as an estimate of the effective number of glomeruli, because they have a unique micro-glomeruli structure which
makes a direct comparison difficult [4]. There is usually a one-to-one correspondence between the number of olfactory
receptor genes and the number of glomeruli in the invertebrate olfactory system, so this should be a good proxy of the
effective number of glomeruli [5, 6]. For the total number of glomeruli, a comprehensive review is available [7]. Further
explanation of the data for each species is given below.

Species #Glomeruli #KC ref(G) ref(KC)
Drosophila Melanogaster (larva) 21 110 [8, 9] [10]
Drosophila Melanogaster (adult) 51 2000 [11] [12]

Moth (Spodoptera litoralis) 60 4000 [13] [14]
Locust 142* 50000 [15] [16]

Apis mellifica (drone) 103 148000 [17] [18]
Apis mellifica (worker) 165 170000 [17] [18]

Cockroach (Periplaneta americana) 205 175000 [19] [20]

Table 1. Number of glomeruli and Kenyon cells (KCs) for seven invertebrate species. ∗For locusts, the number of
olfactory receptor genes is shown.

Drosophila Melanogaster (larvae)

Recent studies suggest that fruit fly larvae have a well functioning olfactory system, though the corresponding circuit is
much smaller than that of adults [21]: there are only 21 glomeruli [8, 9], and about 110 Kenyon cells [10].

Drosophila Melanogaster (adults)

The adult fruit fly is the best studied species of insect. Their olfactory system contains 51 glomeruli that project to the
antennal lobe [11], and around 2200 mushroom body neurons, of which about 2000 are Kenyon cells [12].

Moth (Spodoptera litoralis)

Several species of moth have been studied, and they all have around sixty glomeruli [7], including Spodoptera litoralis
[13]. Less is known about the number of Kenyon cells, but one study found that the mushroom body of Spodoptera
litoralis contains around 4000 of them [14].

Locust

Unlike most invertebrates, the locust olfactory circuit has a micro-glomeruli structure [4], meaning each micro-glomerulus
receives input from multiple types of olfactory receptor neurons. This makes it difficult to compare with other species.
However, we can use the number of olfactory receptor genes as a proxy, as discussed above. Under this assumption, the
number is about 142 [15]. The number of Kenyon cells is estimated to be around 50000 [16].

Apis mellifica (drone)

Due to the caste system of honey bees, male honey bees (drones) do not engage in foraging or colony protection.
Correspondingly, they have a smaller number of glomeruli compared to worker bees (103 vs 165 [17]), despite their larger
body size. Their mushroom body is estimated to contain about 148000 neurons [18]. As shown in Fig. 1B, the drone
bee is a clear outlier from the scaling law. This may be because of its unique ecological niche.

Apis mellifica (worker)

As mentioned above, worker bees have around 165 glomeruli [17], and the number of neurons in the mushroom body is
around 170000 [18]. Note that the mushroom body of the worker honey bee is known to take part in visual navigation
as well as olfaction [22].

7

Cockroach (Periplaneta americana)

Cockroaches are known to have excellent olfactory discrimination and learning ability [23]. They have about 205 glomeruli
[19] and around 175000 Kenyon cells [20].

1.2 Correlation between the number of glomeruli and the duration of learning

The maximum longevity and average time from weaning to sexual maturation can be estimated from the AnAge database
[24]. These are summarized in Table 2 for the six mammalian species used in our analysis (Fig. 1A) [1]. For species with
different sexual maturation times for males and females, we took the average.

Species common name longevity (y) weaning (d) sexual maturity (d) ∆maturation (d)
Mus musculus mice 4.0 22 42 20

Rattus norvegicus rats 3.8 25 80 55
Monodelphis domestica opossums 5.1 53 122 69

Cavia porcellus guinea pig 12 18 71 53
Mustela putorius ferrets 11.1 63 317 254

Felis catus cats 30 56 289 233

Table 2. Maximum longevity, the time of weaning and of sexual maturation, and the difference of the latter two,
denoted ∆maturation, for the six mammalian species shown in Fig. 1A. y = year; d = day.

Figures S4A and S4B were obtained by plotting the data above (Table 2) against the number of glomeruli in Table 3 of
[1].

2 Model setting
We consider a three layer student-teacher model. We assume that the generative model of the environment (the teacher
model) is

y = wt · gt(Jtx) + σtξ, (1)

where gt(·) is a pointwise nonlinearity, x ∈ <Lx is the olfactory input as, y ∈ < is the associated reward/valence/label,
wt ∈ <Lt and Jt ∈ <Lt×Lx are random matrices with elements drawn from a zero mean Gaussian,

wtj ∼ N (0, 1/Lt) (2a)

J tij ∼ N (0, 1/Lx), (2b)

and σtξ is the teacher noise, which reflects the probabilistic correspondence between x and y. Here ξ is a zero mean,
unit variance Gaussian random variable. Throughout the text we use bold capital letters to denote matrices and bold
small letter for vectors. As in the main text, vectors are defined as column vectors, and a superscript T denotes transpose
(indicating a row vector). For readibility, we use a dot product to denote the inner product between two vectors.

The olfactory circuit (the student model) needs to mimic the teacher model to predict the reward/valence/label, y,
given olfactory input, x. We approximate this circuit by a three layer feedforward network,

ŷ = ws · gs(Jsx), (3)

where, like gt(·), gs(·) is a pointwise nonlinearity, ws ∈ <Lh and Js ∈ <Lh×Lx . We assume that Js is fixed and random
with, as for the teacher network, entries drawn from a zero mean Gaussian,

Jsij ∼ N (0, 1/Lx) . (4)

The readout weights, on the other hand, evolve with learning. Under SGD, their initial values are assumed to be a zero
mean Gaussian, scaled by the parameter σ2

R,

w
(0)
si ∼ N (0, σ2

R/Lh) (5)

where the superscript 0 denotes values before learning starts. The goal of learning is to tune the projection weights, ws,
based on the samples generated from the teacher model, DN = {xn, yn}Nn=1. For analytical tractability we assume that
the olfactory inputs, x, are sampled from an independent Gaussian distribution

x ∼ N (0, I) . (6)

8

For the objective function, we use the mean squared error averaged over the input distribution, p(x), and the teacher
noise distribution, p(ξ),

εgen ≡
〈

[wt · gt(Jtx) + σtξ −ws · gs(Jsx)]
2
〉
p(x,ξ)

. (7)

Under this loss function, the optimal projection weight, w∗s , is given by the standard expression for linear regression,

w∗s ≡
〈
gs(Jsx)gs(Jsx)T

〉−1 〈
gs(Jsx)gt(Jtx)T

〉
wt. (8)

When learning is unbiased, the generalization error divides cleanly into an approximation error and an estimation error,

εgen = σ2
t +

〈(
[wt · gt(Jtx)−w∗s · gs(Jsx)] + [(w∗s −ws) · gs(Jsx)]

)2〉
p(x,ξ)

= σ2
t + εapr + εest, (9)

where

εapr ≡
〈

[wt · gt(Jtx)−w∗s · gs(Jsx)]
2
〉
p(x)

(10a)

εest ≡
〈

[(ws −w∗s) · gs(Jsx)]
2
〉
p(x)

. (10b)

The approximation error, εapr, depends only on the architecture, while the estimation error, εest, depends on both the
choice of the learning method and the number of trials, N . Below we derive approximate analytical expressions for both
εapr and εest, starting with the former.

3 Approximation error
To reduce clutter, we make the definitions

gt ≡ gt(Jtx) (11a)
gs ≡ gs(Jsx) . (11b)

In terms of these quantities, the approximation error is

εapr = wT
t

(
〈gtgTt 〉 − 〈gtgTs 〉G−1

s 〈gsgTt 〉
)
wt (12)

where the angle brackets represent an average over p(x), the distribution of the input, and Gs is the uncentered hidden
layer covariance matrix,

Gs ≡ 〈gsgTs 〉 . (13)

Computing εapr is hard because it involves the inverse of the covariance matrix, Gs. However, for the model we
consider, the off-diagonal elements can be expanded in powers of 1/L

1/2
x (as we show below). We make use of this

expansion to compute (approximately) the eigenvalues and eigenvectors of Gs, and use those to find the inverse. That
calculation is described next. In the bulk of the analysis we consider arbitrary nonlinear functions gs(·) and gt(·). In our
numerical analysis we use ReLU and logistic functions.

Hidden layer covariance

The hidden layer covariance is computed by averaging over x. Note, though, that wherever x appears it is multiplied by
Js, so instead of averaging over x we can average over u ≡ Jsx. Because x is Gaussian and white, u is also Gaussian,
but it is correlated,

u ∼ N(0,JsJ
T
s) . (14)

We thus have

(Gs)ij =

∫
duiduj p(ui, uj)gs(ui)gs(uj) (15)

9

where p(ui, uj) is a correlated Gaussian distribution with variance σ2
i and correlation coefficient ρij ; these quantities are

give by

σ2
i = (JsJ

T
s)ii ≈

〈
(JsJ

T
s)ii

〉
p(Js)

= 1. (16a)

ρij =
(JsJ

T
s)ij

σiσj
≈ (JsJ

T
s)ij , i 6= j . (16b)

We will use σ2
i = 1 in what follows.

Let us first consider the diagonal terms which, under the approximation that σ2
i = 1, are all the same,

〈gs(ui)2〉 ≈
∫ ∞
−∞

dui√
2π

exp

(
−u

2
i

2

)
gs(ui)

2 ≡ Ds
0. (17)

If gs(·) is ReLU, we can compute Ds
0 analytically, and it’s given by Ds

0 = 1/2; for other functions, Ds
0 must be evaluated

numerically (see §7.2). For the off-diagonal terms (i 6= j), again under the approximation σ2
i = 1, we have

〈gs(ui)gs(uj)〉 ≈
∫ ∞
−∞

∫ ∞
−∞

duiduj
2π(1− ρ2

ij)
1/2

exp

(
−
u2
i + u2

j − 2ρijuiuj

2(1− ρ2
ij)

)
gs(ui)gs(uj) . (18)

Expansion of the ρ-dependent terms in Eq. (18) around ρij = 0 gives

1√
1− ρ2

ij

exp

(
−
u2
i + u2

j − 2ρijuiuj

2(1− ρ2
ij)

)
= exp

(
−u

2
i

2
−
u2
j

2

)[
1 + uiujρij +

(1− u2
i)(1− u2

j)

2
ρ2
ij +O(ρ3

ij)

]
. (19)

Consequently, when i 6= j, 〈gs(ui)gs(uj)〉 can be approximated as

〈gs(ui)gs(uj)〉 ≈ Css0 + Css1 ρij + Css2 ρ2
ij , (20)

where

Css0 ≡ 〈gs(u)〉2N (21a)

Css1 ≡ 〈ugs(u)〉2N (21b)

Css2 ≡
1

2

〈
[1− u2]gs(u)

〉2
N . (21c)

The subscript N indicates an average over a standard Normal: for any function g(u),

〈g(u)〉N ≡
∫ ∞
−∞

du e−u
2/2

(2π)1/2
g(u) . (22)

To estimate the size of ρij , we note that its mean and variance are given by, for i 6= j,

〈ρij〉p(Js) =
〈
[JsJ

T
s]ij

〉
p(Js)

= 0, (23a)〈
ρ2
ij

〉
p(Js)

=
〈(

[JsJ
T
s]ij

)2〉
p(Js)

=
1

Lx
. (23b)

Consequently, the correlation, ρij , is in the order of 1/L
1/2
x . However, there are Lh times more off-diagonal terms

than diagonal terms in the matrix Gs, so we cannot ignore the ρij-dependent terms in Eq. (20) unless L2
h � Lx.

Nevertheless, for Lx � 1 (the relevant limit in our analysis), the correlation satisfies |ρij | � 1, suggesting that for large
Lx, a second-order Taylor expansion in ρij should provide a good approximation to 〈g(ui)g(uj)〉. That’s the approach
we take here.

Combining the diagonal (Eq. (17)) and off-diagonal (Eq. (20)) terms, we can write the full covariance matrix as

〈gs(ui)gs(uj)〉 ≈ Ds
0δij + (Css0 + Css1 ρij + Css2 ρ2

ij)(1− δij)
=
(
Ds

0 − (Css0 + Css1 ρij + Css2 ρ2
ij)
)
δij + Css0 + Css1 ρij + Css2 ρ2

ij .
(24)

Strictly speaking, ρij is not defined at i = j, but we can choose it arbitrarily without changing the covariance matrix.
We thus extend Eq. (16b) to include i = j, and write (again using σi = 1)

ρij = (JsJ
T
s)ij , (25)

10

now valid for i = j as well as i 6= j (and with the convention that ρii = 1). With this definition, Eq. (24) becomes

〈gs(ui)gs(uj)〉 ≈ δsδij + (Css0 + Css2 〈ρ2〉) + Css1 ρij + Css2 (ρ2
ij − 〈ρ2〉) (26)

where 〈ρ2〉 is defined in Eq. (23b) and
δs ≡ Ds

0 − (Css0 + Css1 + Css2) . (27)

It is straightforward to show that

ρ2
ij − 〈ρ2〉 =

Lx∑
m=1

Lx∑
l=m+1

Ms
i,[m,l]M

s
j,[m,l] (28)

where [m, l] is a compositional index, and Ms is an Lh × Lx(Lx − 1)/2 matrix,

Ms
i,[m,l] ≡

√
2JsimJ

s
il . (29)

Combining these expressions, and using the fact that 〈ρ2〉 = 1/Lx (Eq. (23b)), which is small compared to 1, the
covariance matrix simplifies to

Gs ≈ δsI + Css0 1h1Th + Css1 JsJ
T
s + Css2 MsM

T
s (30)

where 1h ∈ <Lh is a vector in which all the elements are one. The first two matrices in this expression are a scaled identity
matrix and a matrix with the same value everywhere. The third, JsJTs , is a Wishart matrix, so its eigenspectrum follows a
Marchenko-Pastur distribution [25]; from Eq. (4) we see that the parameters of that distribution are (σ2, λ) = (1, Lh/Lx).
Similarly, although the columns of Ms are not independent, given that they have zero correlation we assume that the
eigenspectrum of MsM

T
s also follows a Marchenko-Pastur distribution; from Eq. (29) we see that the parameters are

(σ2, λ) = (1, 2Lh/L
2
x).

Essentially identical analysis gives us the covariance between the hidden units of the teacher and student networks,

〈gtgTs 〉 ≈ Cts0 1t1
T
h + Cts1 JtJ

T
s + Cts2 MtM

T
s , (31)

where Mt is an Lt × Lx(Lx − 1)/2 matrix analogous to Ms,

M t
i,[k,l] ≡

√
2J tikJ

s
il, (32)

and Cts0 , C
ts
1 , C

ts
2 are natural extensions of Css0 , Css1 , Css2 (Eq. (21)), the difference being that one of the student averages

becomes a teacher average,

Cts0 ≡ 〈gt(u)〉N 〈gs(u)〉N (33a)

Cts1 ≡ 〈ugt(u)〉N 〈ugs(u)〉N (33b)

Cts2 ≡
1

2

〈(
1− u2

)
gt(u)

〉
N

〈(
1− u2

)
gs(u)

〉
N . (33c)

To calculate the approximation error, εapr (Eq. (12)), we needG−1
s . For that we expressGs in terms of its eigenvalues

and eigenvectors, from which the inverse follows easily. That analysis, which is nontrivial, is carried out in §8; we simply
report the result here,

Gs ≈ λ(0)v(0)
(
v(0)

)T
+

L1∑
k=1

λ
(1)
k v

(1)
k

(
v

(1)
k

)T
+

L2∑
k=1

λ
(2)
k v

(2)
k

(
v

(2)
k

)T
+

Lr∑
k=1

λ(r)v
(r)
k

(
v

(r)
k

)T
. (34)

As shown in §8, the eigenvalues are

λ(0) = Css0 (c0 + Lh) (35a)

λ
(1)
k = Css1

(
c1 + λ̃

(1)
k

)
(35b)

λ
(2)
k = Css2

(
c2 + λ̃

(2)
k

)
(35c)

λ(r) = δs , (35d)

11

where λ̃(1)
k and λ̃(2)

k are eigenvalues of JsJTs and MsM
T
s , respectively, and the coefficients are

c0 ≡
δs + Css1 + Css2

Css0

(36a)

c1 ≡
δs + Css2

Css1

(36b)

c2 ≡
δs
Css2

. (36c)

The rank of JsJTs andMsM
T
s are L1 and L2, respectively, and Lr is such that it picks up any dimensionality uncaptured

by the second-order expansion (because Gs is typically full rank under a nonlinear activation function),

L1 = min[Lx, Lh − 1] ≈ min[Lx, Lh] (37a)

L2 = min

[
1

2
Lx(Lx − 1), Lh − Lx − 1

]+

≈ min

[
L2
x

2
, Lh − Lx

]+

(37b)

Lr =

[
Lh −

(
1 + Lx +

1

2
Lx(Lx − 1)

)]+

≈
[
Lh −

L2
x

2

]+

(37c)

where the superscript + indicates the threshold-linear operation: [x]+ = x if x > 0 and 0 otherwise, and the approxima-
tions are valid because we are interested in the large Lx and Lh limit. The first of these two quantities, L1 and L2, are
plotted in Fig. 5A.

We are now in a position to derive an explicit expression for the approximation error, εapr, given in Eq. (12). Noticing
that wt is a zero-mean random vector (Eq. (2a)), in the large Lt limit we may make the approximation wtwT

t ≈ I/Lt.
Consequently,

εapr ≈
1

Lt
Tr
[
〈gtgTt 〉 − 〈gtgTs 〉G−1

s 〈gsgTt 〉
]
. (38)

The first term is given by
1

Lt
Tr
[
〈gtgTt 〉

]
=

∫ ∞
−∞

du√
2π

exp

(
−u

2

2

)
gt(u)2 ≡ Dt

0 . (39)

To compute the second term, we start by writing it

1

Lt
Tr
[
〈gtgTs 〉G−1

s 〈gsgTt 〉
]

=
1

Lt
Tr
[
〈gsgTt 〉〈gtgTs 〉G−1

s

]
. (40)

Using Eq. (31), we have

1

Lt
〈gsgTt 〉〈gtgTs 〉 ≈

1

Lt

[
Cts0 1h1

T
t + Cts1 JsJ

T
t + Cts2 MsM

T
t

] [
Cts0 1t1

T
h + Cts1 JtJ

T
s + Cts2 MtM

T
s

]
≈ (Cts0)21h1Th +

(Cts1)2JsJ
T
s

Lx
+

(Cts2)2MsM
T
s

L2
x/2

. (41)

The second line follows because the cross terms, 1ThJt, 1
T
hMt and JTt Mt, are all approximately zero, so long as Lt is

sufficiently large. To derive this expression we took the large Lx limit, and replaced Lx(Lx− 1) with L2
x. Combining this

with the expression for Gs, Eq. (34), from which it is easy to write down the inverse, and making use of Eqs. (35) and
(173), we arrive at

1

Lt
Tr
[
〈gsgTt 〉〈gtgTs 〉G−1

s

]
=

(Cts0)2

Css0

Lh
c0 + Lh

+
1

Lx

(Cts1)2

Css1

L1∑
k=1

λ̃
(1)
k

c1 + λ̃
(1)
k

+
1

L2
x/2

(Cts2)2

Css2

L2∑
k=1

λ̃
(2)
k

c2 + λ̃
(2)
k

. (42)

Given our assumption that the eigenvalue spectrum of both JsJTs and MsM
T
s follow the Marchenko-Pastur distri-

bution, the sums over the eigenvalues turn into averages over the Marchenko-Pastur distribution. Those averages, which
are tedious but straightforward, are computed in §9, and we arrive at

1

Lt
Tr
[
〈gsgTt 〉〈gtgTs 〉G−1

s

]
=

(Cts0)2

Css0

[
1− c0

c0 + Lh

]
+

(Cts1)2

Css1

[
1− f

(
Lh
Lx

; c1

)]
+

(Cts2)2

Css2

[
1− Lx

Lh

]+ [
1− f

(
Lh
L2
x/2

;
c2

1− Lx/Lh

)]
, (43)

12

where f(λ̄; c) is defined in Eq. (176); we repeat its definition here for convenience,

f(λ̄; c) ≡

√(
λ̄− 1 + c

)2
+ 4c−

(
λ̄− 1 + c

)
2

. (44)

This function has relatively simple asymptotic behavior: it is 1 when λ̄ = 0 and falls off as c/λ̄ when λ̄� c.
Combining Eq. (43) with the first term in the expression for the approximation error, Eq. (39), and inserting that into

Eq. (12), we arrive at

εapr ≈ δts +

2∑
q=0

(Ctsq)2

Cssq
fq(Lh) (45)

where

f0(Lh) ≡ c0
c0 + Lh

(46a)

f1(Lh) ≡ f
(
Lh
Lx

; c1

)
(46b)

f2(Lh) ≡ min

[
1,
Lx
Lh

]
+

[
1− Lx

Lh

]+

f

(
Lh
L2
x/2

;
c2

1− Lx/Lh

)
≈ f

(
Lh
L2
x/2

; c2

)
(46c)

and

δts ≡ Dt
0 −

(Cts0)2

Css0

− (Cts1)2

Css1

− (Cts2)2

Css2

. (47)

The approximation made in Eq. (46c) is accurate everywhere except the region Lx . Lh; that’s because f(λ; c) → 1
when λ � 1. From Eqs. (45) and (46), we recover the expression for the approximation error in the main text, with
coefficients given by

α ≡ δts (48a)

a0 ≡ c0(Cts0)2/Css0 (48b)

aq ≡ (Ctsq)2/Cssq , (48c)

with q = 1, 2 in the last expression. For Eq. (48b) we used c0 � Lh.

4 Estimation error
The estimation error, which is given Eq. (10b), can be written

εest ≡ (w∗s −ws)TGs(w
∗
s −ws). (49)

This quantity is a random variable that depends on the data. We thus consider its mean, which is the expectation over
the distribution of training data,

ε̄est ≡
〈
(w∗s −ws)TGs(w

∗
s −ws)

〉
p(x1:N ,y1:N)

(50)

where {x1:N , y1:N} is the training data. We first consider maximum likelihood, then stochastic gradient descent.

4.1 Estimation error under maximum likelihood (MLE) learning

As the teacher noise, σtξ, is Gaussian, given N training points DN = {xn, yn}Nn=1 with yn = wt · g(Jtxn) + σtξn, the
MLE weights of the student network are given by the usual expression for least squares minimization,

ws =

(
1

N

N∑
n=1

g(Jsxn)g(Jsxn)T

)−1(
1

N

N∑
n=1

g(Jsxn)yn

)
. (51)

13

Note that
∑N
n=1 g(Jsxn)g(Jsxn)T is not invertible unless N > Lh, so we work in that regime. Denoting

gnt ≡ g(Jtxn) (52a)
gns ≡ g(Jsxn) (52b)

G(N)
s ≡ 1

N

N∑
n=1

gns (gns)
T (52c)

and noting that yn = wt · gnt + σtξn, ws −w∗s is written

ws −w∗s =
(
G(N)
s

)−1
(

1

N

N∑
n=1

gns [wt · gnt + σtξn −w∗s · gns]

)
. (53)

Inserting this into Eq. (49), we have

ε̄est =
1

N2

〈(
N∑
n=1

[wt · gnt + σtξn −w∗s · gns] (gns)T

)(
G(N)
s

)−1

Gs

(
G(N)
s

)−1

(
N∑

n′=1

gn
′

s

[
wt · gn

′

t + σtξn′ −w∗s · gn
′

s

])〉
. (54)

The first observation is that the n and n′-dependent terms are independent when n 6= n′. Consequently, the double sum
over n and n′ can be replaced by its diagonal elements,

ε̄est ≈
1

N2

〈
N∑
n=1

[wt · gnt + σtξn −w∗s · gns]
2

(gns)T
(
G(N)
s

)−1

Gs

(
G(N)
s

)−1

gns

〉
. (55)

Second, we assume that [wt · gnt −w∗s · gns]
2 and (gns)Tgns average independently. Using Eqs. (10a) and (52c), this leads

to

ε̄est ≈
〈

[wt · gt + σtξ −w∗s · gs]
2
〉 1

N

〈
Tr

[(
G(N)
s

)−1

Gs

(
G(N)
s

)−1 1

N

N∑
n=1

gns (gns)T

]〉

=
(
εapr + σ2

t

) 1

N
Tr
[(
G(N)
s

)−1

Gs

]
. (56)

We’ll compute the the trace term in the limit N and Lh go to infinity, with the ratio Lh/N fixed at some value less
than 1. We start by turning G(N)

s into a zero mean matrix. To that end, we let G(N)
s ≡ δG(N)

s + ḡN ḡ
T
N where

δG(N)
s ≡ 1

N

N∑
n=1

(gns − ḡn)(gns − ḡn)T (57)

and

ḡN ≡
1

N

N∑
n=1

gns ≈ 〈gs〉p(x) ≡ ḡ . (58)

Approximating G(N)
s with δG(N)

s + ḡḡT , and applying the Sherman-Morrison formula, we have

(
G(N)
s

)−1

≈
(
δG(N)

s + ḡḡT
)−1

=
(
δG(N)

s

)−1

−

(
δG

(N)
s

)−1

ḡ ḡT
(
δG

(N)
s

)−1

1 + ḡT
(
δG

(N)
s

)−1

ḡ
. (59)

To compute our calculation, we need an approximation for Gs. In §3, we used Eq. (30). Here we make a more severe
approximation: decomposing Gs as δGs + ḡḡT , we use δGs ≈ σ2

MI where σ2
M = 〈(gns,i − ḡn,i)2〉. This is consistent

with approximating δG(N)
s as a Wishart matrix WLh(

σ2
M

N I, N), which converges to σ2
MI as N → ∞. Inserting this,

along with the above expression for G(N)
s , into Eq. (56), we arrive, after a small amount of algebra, at

Tr
[(
G(N)
s

)−1

Gs

]
≈ σ2

MTr
[(
δG(N)

s

)−1
]

+ 1−
1 + σ2

M ḡ
T
(
δG

(N)
s

)−2

ḡ

1 + ḡT
(
δG

(N)
s

)−1

ḡ
. (60)

14

The first term is proportional to Lh, the dimensionality of δG(N)
s . The last is bounded by (1 + σ2

M |ḡ|2/λ2
min)/(1 +

|ḡ|2/λmax) where λmin and λmax are the minimum and maximum eigenvalues of δG(N)
s . Since δG(N)

s is the sum of N
outer products of random vectors, its spectrum approximately follows a Marchenko-Pastur distribution with parameters
(σ2, λ) = (σ2

M , Lh/N). Assuming Lh is not too close to N , the eigenvalues are O(1). Consequently, the above expression
is dominated by the first term. Restoring the prefactor 1/N , we have

1

N
Tr
[(
G(N)
s

)−1

Gs

]
≈ σ2

MLh
N

〈
1

λ

〉
MP (σ2

M ,Lh/N)

=
Lh

N − Lh
(61)

where the average over λ−1 (which gives us the second equality) is computed in §9 (see in particular Eq. (182)).
Equation (61) is consistent with previous work on linear regression using the replica method [26]. Inserting Eq. (61)

into (56), we arrive at

ε̄est ≈ (εapr + σ2
t)

Lh
N − Lh

. (62)

Consequently, the generalization error, εgen = ε̄est + εapr + σ2
t , Eq. (9), is given approximately by

εgen ≈ (εapr + σ2
t)

N

N − Lh
. (63)

4.2 Estimation error under stochastic gradient descent (SGD) learning

In an online setting, it is more realistic to consider stochastic gradient descent rather than maximum likelihood, the
former given by

w(n)
s = w(n−1)

s + η(yn − ŷn)gns (64)

where gns is defined in Eq. (52b) and ŷn = w
(n−1)
s · gns (Eq. (3)). Making the definition

un ≡ w(n)
s −w∗s , (65)

the update rule for un is

un =
[
I − ηgns (gns)T

]
un−1 + η [wt · gnt −w∗s · gns + σtξn] gns

= [I − ηGs]un−1 + η
[
Gs − gns (gns)T

]
un−1 + η [wt · gnt −w∗s · gns + σtξn] gns

(66)

where, recall, Gs is the hidden layer covariance, defined in Eq. (13). After n updates, the estimation error (Eq. (10b)) is

ε
(n)
est = uTnGsun. (67)

It is convenient to work in a basis spanned by the eigenvectors of Gs. That basis is given in Eq. (34), which shows
a great deal of structure, and in particular a division into four components. Later we will use that structure, but for
now we adopt a notation that hides it: we simply write vµ and λµ for the µth eigenvector and eigenvalue of Gs (i.e.,
Gsvµ = λµvµ). We then make the change of variables

un =
∑
µ

mµ,nvµ . (68)

In the new variables, the estimation error is
ε
(n)
est =

∑
µ

λµm
2
µ,n . (69)

We’ll first find the update rules for mµ,n, then use them to find the update rules for m2
µ,n. Taking the eigenvectors

to be orthonormal, we have mµ,n = vµ · un; applying this to Eq. (66) yields

mµ,n = (1− ηλµ)mµ,n−1 + ηvTµ
[
Gs − gns (gns)T

]
un−1 + η [wt · gnt −w∗s · gns + σtξn]vµ · gns . (70)

Squaring both sides gives us an expression for m2
µ,n. To simplify that expression, we assume that the mean dynamics of

m2
µ,n is described by the dynamics of the mean,

〈
m2
µ,n

〉
, where the average is over the distribution of the input x and

the teacher noise ξ. To simplify notation, below we suppress the label n that appears on gns , gnt , and ξn. (Note that gns
and gnt depend on n only through xn; see Eqs. (52a) and (52b)). The first term on the right hand side of Eq. (70) is

15

independent of x, and the second two terms, which do depend on x, are both zero mean. We assume those terms are
uncorrelated, so we have

m2
µ,n = (1− ηλµ)2m2

µ,n−1 + η2
〈
uTn−1[Gs − gsgTs]vµv

T
µ [Gs − gsgTs]un−1

〉
+ η2

〈
[wt · gt −w∗s · gs + σtξ]

2
(vµ · gs)2

〉
.

(71)

To simplify the first average, we note that it can be written

〈uTn−1[Gs − gsgTs]vµv
T
µ [Gs − gsgTs]un−1〉 = 〈(un−1 · gs)2(vµ · gs)2〉 −

(
uTn−1Gsvµ

)2
. (72)

Assuming (un−1 · gs)2 and (vµ · gs)2 self average, for the first term we have〈
(un−1 · gs)2(vµ · gs)2

〉
= uTn−1Gsun−1 v

T
µGsvµ = uTn−1Gsun−1 λµ . (73)

Then, using the fact that Gsvµ = λµvµ and un−1 · vµ = mµ,n−1, we arrive at〈
uTn−1[Gs − gsgTs]vµv

T
µ [Gs − gsgTs]un−1

〉
= λµ

∑
ν

λνm
2
ν,n−1 − λ2

µm
2
µ,n−1 . (74)

For the second average in Eq. (71), we again assume that (vµ · gs)2 self averages, so the average of the product is just
the product of the averages. The average of the square of the term in brackets is εapr + σ2

t (see Eq. (10a)) and the
average of (vµ · gs)2 is, as in Eq. (73), λµ. Thus, the second average in Eq. (71) simplifies to〈

[wt · gnt −w∗s · gns + σtξ]
2

(vµ · gs)2
〉

= (εapr + σ2
t)λµ . (75)

Inserting Eqs. (74) and (75) into (71), we arrive at

m2
µ,n = (1− 2ηλµ)m2

µ,n−1 + η2λµ
∑
ν

λνm
2
ν,n−1 + η2(εapr + σ2

t)λµ . (76)

To solve this equation, we define the matrix

Aµν ≡ 2ηλµδµν − η2λµλν . (77)

After a small amount of algebra, we find that

m2
n =

η(εapr + σ2
t)

2− ηDs
0Lh

1h + (I −A)n
(
m2

0 −
η(εapr + σ2

t)

2− ηDs
0Lh

1h
)

(78)

where we used ∑
µ

λµ = Ds
0Lh (79)

(which follows from Eq. (17)), m2
n is a vector whose µth component is m2

µ,n, and we used the fact that A−1 · λ =
1h/(2η − η2Ds

0Lh) where λ ≡ (λ1, λ2, ...), which follows from the Sherman-Morrison formula.
The term (I −A)n is problematic, as its eigenvalues and eigenvectors cannot be found analytically. We thus make

a very severe approximation: we let

Aµν ≈ (2η − η2Ds
0Lh)λµδµν . (80)

With this approximation, Eq. (78) simplifies to

m2
µ,n =

η(εapr + σ2
t)

2− ηDs
0Lh

+
(
1− ηλµ(2− ηDs

0Lh)
)n(

m2
µ,0 −

η(εapr + σ2
t)

2− ηDs
0Lh

)
. (81)

We choose η to maximize the rate of decay of m2
µ,n (that is, minimize 1− ηλµ(2− ηDs

0Lh)); this yields

η∗ =
1

Ds
0Lh

. (82)

16

All the eigenmodes show the fastest decay at this learning rate regardless of their eigenvalues. Replacing η with η∗ in
Eq. (81), we have

m2
µ,n = m2

∞ +
(
m2
µ,0 −m2

∞
)(

1− λµ
Ds

0Lh

)n
(83)

where

m2
∞ ≡

εapr + σ2
t

Ds
0Lh

. (84)

We can use this expression to determine how the estimation error, Eq. (69), evolves in time. Inserting Eq. (83) into
(69), the average estimation error after n samples, ε̄(n)

est , is given by

ε̄
(n)
est =

∑
µ

(
λµm

2
∞ + λµ(m2

µ,0 −m2
∞)

[
1− λµ

Ds
0Lh

]n)
. (85)

We now take advantage of the structure implicit in Eq. (34), which tells us that the eigenvalues are divided into four
components, which we label with q ∈ {0, 1, 2, r}. We thus have

ε̄
(n)
est =

∑
q∈{0,1,2,r}

∑
µ∈Sq

(
λµm

2
∞ + λµ(m2

µ,0 −m2
∞)

[
1− λµ

Ds
0Lh

]n)
(86)

where Sq specifies the range of µ,

S0: µ = 1 (87a)
S1: 1 < µ ≤ L1 + 1 (87b)
S2: L1 + 1 < µ ≤ L2 + L1 + 1 (87c)
Sr: L2 + L1 + 1 < µ ≤ Lh . (87d)

The first component, S0, contains only one eigenmode, which corresponds to the largest eigenvalue λ1 (= λ(0) in
Eq. (35)). The rest contain multiple eigenmodes. For those modes we can approximate the exponential term as

(1− λµ/(Ds
0Lh))n ≈ e−nλµ/(D

s
0Lh) ≈ e−n〈λµ〉q/(D

s
0Lh) (88)

where the subscript q means an average over µ ∈ Sq. For the first inequality we used λµ � Lh for µ > 1; for the second
we used that fact that the eigenvalues typically have a small spread within each component. Making that replacement
in Eq. (86), the lifetime cumulative estimation error, denoted ε̄Ncml, is given by

ε̄Ncml ≡
1

N

N−1∑
n=0

ε̄nest =
∑

q∈{0,1,2,r}

∑
µ∈Sq

(
λµm

2
∞ + λµ(m2

µ,0 −m2
∞)Rq(Lh)

)
(89)

where

Rq(Lh) ≡

Ds0Lh
Nλ(0)

[
1−

(
1− λ(0)

Ds0Lh

)N]
q = 0

Ds0Lh
N〈λµ〉q

[
1− e−N〈λµ〉q/(Ds0Lh)

]
otherwise

. (90)

The function Rq(Lh) scales as Ds
0Lh/N〈λµ〉q when Lh � N〈λµ〉q and approaches 1 when Lh � N〈λµ〉q.

In §8 we computed the average eigenvalues (see Eq. (172)), so the only quantity we do not know is the average over
λµm

2
µ,0. That quantity is computed in the next section; using that result and applying a small amount of algebra, we

arrive at

ε̄Ncml =
∑
q

Lq〈λµ〉q
[
m2
∞ (1−Rq(Lh)) +

σ2
R

Lh
Rq(Lh)

]
+

(Ctsq)2

Cssq

(
1− fq(Lh)

)
Rq(Lh) (91)

where

Ctsr ≡ 0 (92a)
L0 ≡ 1 , (92b)

17

σ2
R/Lh is the initial variance of the weights (Eq. (5)), and f0, f1 and f2 are defined in Eq. (46). (Because Ctsr = 0, we

do not need to define fr.)
In Eq. (15) of the main text, we write down an expression for the average estimation error versus n. Here we derive

that expression. As can be seen by comparing Eqs. (86) and (89) and taking into account the approximation made in
Eq. (88), the only difference between ε̄(n)

est and ε̄Ncml is that (1−〈λµ〉q/Ds
0Lh)n is replaced by Rq(Lh). Making the reverse

replacement in Eq. (89), and approximating (1− 〈λµ〉q/Ds
0Lh)n by e−n〈λµ〉q/D

s
0Lh , we have

ε̄nest = εapr + σ2
t +

∑
q

[
Lq〈λµ〉q
Ds

0Lh

(
Ds

0σ
2
R − (εapr + σ2

t)
)

+
(Ctsq)2

Cssq

(
1− fq(Lh)

)]
e−n〈λµ〉q/(D

s
0Lh) . (93)

To derive this expression, we used the fact that
∑
q Lq〈λµ〉q =

∑
µ λµ = Ds

0Lh (see Eq. (79) for the second inequality),
and we replaced m2

∞ by (εapr + σ2
t)/Ds

0Lh (see Eq. (84)). The terms in square brackets correspond to the bq in Eq.
(15) of the main text. The terms in the exponents were approximated from Eq. (37) and Eq. (172) as

〈λµ〉q
Ds

0Lh
≈

Cssq
Ds

0Lq
, (94)

where the expression for q = 2 is valid in the regime Lh � Lx. For Ds
0 and Cssq we used Eqs. (144) and (145),

respectively.

Initial conditions

To estimate the contribution from the initial conditions (the term containing λµm2
µ,0 in Eq. (89)), we need an expression

for mµ,0. Using mµ,0 = vµ · u0, we write

m2
µ,0 =

(
vµ · [w(0)

s −w∗s]
)2

≈
(
vµ ·w(0)

s

)2

+ (vµ ·w∗s)
2
. (95)

The projection weights are initialized as w(0)
s ∼ N(0, σ2

R/Lh) (see Eq. (5)), so the first term is given approximately by

(
vµ ·w(0)

s

)2

≈
Lh∑
j=1

(vµ,j)
2
(
w

(0)
s,j

)2

≈ σ2
R

Lh
. (96)

For the second term we use Eq. (8) for w∗, leading to

(vµ ·w∗s)
2

= vTµG
−1
s 〈gsgTt 〉wtwT

t 〈gtgTs 〉G−1
s vµ ≈

1

Lt
Tr
[
vµv

T
µG
−1
s 〈gsgTt 〉〈gtgTs 〉G−1

s

]
(97)

where the approximate expression follows from wtw
T
t ≈ I/Lt. If we were to multiply the right hand side by λµ and sum

over all µ, we would recover the left hand side of Eq. (43), because
∑
µ λµvµv

T
µ = Gs. Therefore, we can read off the

sum of each component of µ from the right hand side of Eq. (43),∑
µ∈S0

λµ (vµ ·w∗s)
2 ≈ (Cts0)2

Css0

[
1− c0

c0 + Lh

]
(98a)

∑
µ∈S1

λµ (vµ ·w∗s)
2 ≈ (Cts1)2

Css1

[
1− f

(
Lh
Lx

; c1

)]
(98b)

∑
µ∈S2

λµ (vµ ·w∗s)
2 ≈ (Cts2)2

Css2

[
1− Lx

Lh

]+ [
1− f

(
Lh
L2
x/2

;
c2

1− Lx/Lh

)]
(98c)

∑
µ∈Sr

λµ (vµ ·w∗s)
2 ≈ 0. (98d)

5 Generalization error
To determine how the optimal hidden layer size, denoted L∗h, scales with the input layer size, Lx, we need to minimize the
generalization error (found by combining the approximation and estimation errors; see Eq. (9)) with respect to Lh. This
is nontrivial: as can be seen in Figs. 4A and 5D, the optimum exhibits three different regimes, depending on the input

18

layer size, Lx. We can, though, access these regimes by considering different relative scaling of Lh and Lx: Lh � L2
x,

L2
x � Lh � Lx, and Lx � Lh. We begin by providing estimates for the approximation error, Eq. (45), in the three

regimes; in the next two sections we use those results to compute the generalization error, first for maximum likelihood
learning and then for stochastic gradient descent.

To see how the approximation error, Eq. (45), scales with Lh, note that (as mentioned after Eq. (44)) f(λ̄; c)→ c/λ̄
when λ̄� c, and f(λ̄; c)→ 1 when λ̄→ 0. Using this, and the definitions of c0, c1 and c2 in Eq. (36), it is straightforward
to show that

εapr + σ2
t ≈

σ2
t + δts +

(
Cts2
Css2

)2
δsL

2
x

2Lh
ifLh � L2

x

σ2
t + δts +

(Cts2)2

Css2
+
(
Cts1
Css1

)2
(δs+C

ss
2)Lx

Lh
ifL2

x � Lh � Lx

σ2
t + δts +

(Cts2)2

Css2
+

(Cts1)2

Css1
+
(
Cts0
Css0

)2
δs+C

ss
1 +Css2

c0+Lh
ifLx � Lh .

(99)

We now use these expressions to compute the hidden layer size that optimizes the generalization error, first for maximum
likelihood, and then for stochastic gradient descent.

5.1 Maximum likelihood

For maximum likelihood learning, the generalization error is given in Eq. (63). We need to combine that expression with
Eq. (99), the approximation error, to get the generalization error, and minimize that with respect to Lh to find the optimal
hidden layer size. Given the complexity of the generalization error, it is not possible to perform the exact minimization
analytically. However, the generalization error becomes tractable in three regimes, Lh � L2

x, L2
x � Lh � Lx and

Lx � Lh. We thus take the following four-step approach. In step 1, we assume that Lh lies in one of the regimes, say
Lh � L2

x for definiteness. In step 2, we write down a simplified expression for the generalization error that is valid in that
regime. In step 3, we find the value of Lh that minimizes the (simplified) generalization error. In step 4, we ask whether
the minimum lies in the relevant region, in this case Lh � L2

x. If it does, we have found a self-consistent minimum.

Optimal hidden layer size when Lh � L2
x

In this regime, the generalization error is given by

εgen ≈

(
σ2
t + δts +

(
Cts2
Css2

)2
δsL

2
x

2Lh

)
N

N − Lh
. (100)

Minimizing with respect to Lh yields

L∗h =

√(
Bml2 L2

x

)2
+Bml2 NL2

x −Bml2 L2
x (101)

where

Bml2 ≡
(
Cts2
Css2

)2
δs

2(σ2
t + δts)

. (102)

For this solution to be consistent with the condition Lh � L2
x, N must satisfy N � L2

x/B
ml
2 . Therefore, if Lx �√

Bml2 N , then the hidden layer size that minimizes the generalization error is

L∗h ≈
√
Bml2 NL2

x . (103)

Optimal hidden layer size when L2
x � Lh � Lx

In this regime, the generalization error is given by

εgen ≈

(
σ2
t + δts +

(Cts2)2

Css2

+

(
Cts1
Css1

)2
(δs + Css2)Lx

Lh

)
N

N − Lh
. (104)

Minimizing with respect to Lh yields

L∗h =
√

(Bml1 Lx)2 +Bml1 NLx −Bml1 Lx (105)

19

where

Bml1 ≡
(
Cts1
Css1

)2
δs + Css2

σ2
t + δts + (Cts2)2/Css2

. (106)

For this solution to be consistent with the condition L2
x � Lh � Lx, N must satisfy L3

x � Bml1 N � Lx Therefore, if
Bml1 N � Lx � (Bml1 N)1/3, then the hidden layer size that minimizes the generalization error is

L∗h ≈
√
Bml1 NLx . (107)

Optimal hidden layer size when Lx � Lh

In this regime, the generalization error is given by

εgen ≈

(
σ2
t + δts +

(Cts1)2

Css1

+
(Cts2)2

Css2

+

(
Cts0
Css0

)2
δs + Css1 + Css2

c0 + Lh

)
N

N − Lh
. (108)

Minimizing with respect to Lh yields

L∗h =
√

(Bml0)2 +Bml0 (N + c0)−Bml0 − c0 (109)

where

Bml0 ≡
(
Cts0
Css0

)2
δs + Css1 + Css2

σ2
t + δts + (Cts1)2/Css1 + (Cts2)2/Css2

. (110)

For this solution to be consistent with the condition Lx � Lh, N must satisfy Lx �
√
Bml0 N . Assuming also that

N � 1, we have

L∗h ≈
√
Bml0 N, (111)

Here the optimal hidden layer size, L∗h, does not depend on the input layer size, Lx.

Optimal hidden layer size when N ∝ Lγx
Based on empirical observations (Table 2 and Fig. S4), we found that N ∝ Lγx, with γ between about 1.6 and 2. Here,
we combine this result with the three scaling derived above to determine how the optimal hidden layer size depends on
γ. We find the following:

1. Lh � L2
x: We see from Eq. (103) that L∗h ∝ L

1+γ/2
x . To ensure self-consistency, we must have N � L2

x (see
comments preceding Eq. (103)), which, combined with N ∝ Lγx, requires γ > 2.

2. L2
x � Lh � Lx: We see from Eq. (107) that L∗h ∝ L

1/2+γ/2
x . To ensure self-consistency, we must have

L3
x � N � Lx (see comments preceding Eq. (107)), which, combined with N ∝ Lγx, requires 1 < γ < 3.

3. Lx � Lh: We see from Eq. (111) that L∗h ∝ L
γ/2
x . To ensure self-consistency, we must have L2

x � N (see
comments preceding Eq. (111)), which, combined with N ∝ Lγx, requires γ < 2.

When γ > 3, the network must operate in regime (1), while when γ < 1, the network must operate in regime (3). When
γ is between 1 and 3, on the other hand, the network can operate in two regimes: when 1 < γ < 2, either (2) or (3); and
when 2 < γ < 3, either (1) and (2). However, the one with steeper scaling between Lx and L∗h has smaller error, and
so generates the relevant scaling. To see why, note that in regimes (1), (2) and (3), the generalization error (Eqs. (100),
(104) and (108), respectively) is given approximately by

regime (1): εgen ≈ σ2
t + δts (112a)

regime (2): εgen ≈ σ2
t + δts +

(Cts2)2

Css2

(112b)

regime (3): εgen ≈ σ2
t + δts +

(Cts1)2

Css1

+
(Cts2)2

Css2

. (112c)

Consequently, regime (1) is favored over regime (2), and regime (2) is favored over regime (3).
In summary, our analytical results indicates that as a function of γ, the exponent of the scaling law should follow the

black line in Fig. 4F. Minimizing Eq. (63) numerically, we indeed found that this is the case (blue line in Fig. S7A). In
this context, the 3/2-law is somewhat special, in the sense that a scaling factor between 3/2 to 2 is not feasible in our
model setting. In addition, this result, combined with the observation that γ is below 2, indicates that 7/2 scaling seen
among insects is also not feasible unless there is an additional constraint.

20

5.2 Stochastic Gradient Descent

For stochastic gradient descent, we use the cumulative generalization error, denoted εNcg and defined to be

εNcg ≡
1

N

N−1∑
n=0

(
εapr + σ2

t + ε̄
(n)
est

)
= εapr + σ2

t + ε̄Ncml . (113)

Using Eq. (91) for ε̄Ncml, and combining that with Eq. (84) for m2
∞ and then applying Eq. (79) to simplify the resulting

expression, we arrive, after a small amount of algebra, at

εNcg = (εapr + σ2
t)

[
2− 1

Ds
0Lh

∑
q

Lq〈λµ〉qRq(Lh)

]
+
∑
q

Rq(Lh)

[
Lq〈λµ〉q

σ2
R

Lh
+

(Ctsq)2

Cssq

(
1− fq(Lh)

)]
. (114)

The critical quantity in this equation is 〈λµ〉q, which is given in Eq. (172) (but with slightly different notation). We
repeat that equation here, following the notation used in §4.2, with a focus on the behavior when Lh is either very small
or very large,

〈λµ〉0 ≈ Css0 Lh Lh � 1 (115a)

〈λµ〉1 ≈

{
Css1 Lh/Lx Lh � Lx

δs + Css1 + Css2 Lh � Lx
(115b)

〈λµ〉2 ≈

{
2Css2 Lh/L

2
x Lh � L2

x

δs + Css2 [1− Lx/Lh]
+

Lh � L2
x

(115c)

〈λµ〉r = δs . (115d)

To make it easier to analyze the generalization error, it is convenient to use Eq. (90) to express Rq(Lh) in terms of
more fundamental quantities, yielding

εNcg ≈ (εapr + σ2
t)

2−
∑
q 6=0

Lq
N

[
1− e−N〈λµ〉q/D

s
0Lh
]+

Ds
0

N

[
σ2
R +

(Cts0)2

(Css0)2
− εapr + σ2

t

Ds
0

]
(116)

+
∑
q 6=0

Ds
0Lq
N

[
1− e−N〈λµ〉q/D

s
0Lh
] [
σ2
R +

(Ctsq)2

Cssq

Lh
Lq〈λµ〉q

(
1− fq(Lh)

)]
.

To derive this expression, we replaced 〈λµ〉0 with Css0 Lh (Eq. (115a)) and f0(Lh) with c0/Lh (Eq. (46a) in the large Lh
limit), used the fact that L0 = 1 (Eq. (92b)), assumed N � 1, and replaced (1− (Css0 /Ds

0))N with 0, which is valid in
the large N limit.

In the following subsections, we minimize εNcg with respect to Lh to find the optimal hidden layer size. As with maximum
likelihood, we work in three different regimes, and again in each of them the estimation error becomes tractable. To
simplify our analysis, we make assumptions about N that assures the solution in each region is self-consistent.

Optimal hidden layer size when Lh � L2
x

We assume that N � L2
x, which will yield a self-consistent solution, as we show below. In this regime, Eq. (37) tells us

that L1 = Lx, L2 ≈ L2
x/2, and Lr ≈ Lh. Consequently, using Eq. (90), with average eigenvalues given by Eq. (115), we

see that R0(Lh), R1(Lh) and R2(Lh) are all approximately zero, and

Rr(Lh) =
Ds

0Lh
δsN

(
1− e−

δsN
Ds0Lh

)
. (117)

Inserting this into Eq. (114), using Eq. (115d) for 〈λ(r)
µ 〉, recalling that Ctsr = 0 (see Eq. (92a)), and using the fact that

all the other Rq are approximately zero, we see that the cumulative generalization error is given approximately by

εNcg ≈
(
εapr + σ2

t

)(
2− Lh

N

[
1− e−

δsN
Ds0Lh

])
+
σ2
RD

s
0Lh

N

(
1− e−

δsN
Ds0Lh

)
. (118)

The first term is a monotonically decreasing function of Lh while the second term is monotonically increasing. When
σ2
R is too small, the second term becomes too weak to supports the presence of the non-trivial minimum (gray points

21

in Fig. 5F). However, this initial weight dependence can be avoided by using an adaptive learning rate (black points in
Fig. 5F), although the analytical estimation of the error becomes difficult in that case.

When N � Lh, the Lh dependence in all but the term εapr in Eq. (118) disappears. We thus consider the opposite
limit, N � Lh. Then, using Eq. (99) for the approximation error, we find, in this limit, that

εNcg ≈ 2(δts + σ2
t) +

(
Cts2
Css2

)2
δsL

2
x

Lh
+
(
Ds
oσ

2
R − [δts + σ2

t]
) Lh
N

. (119)

Minimizing with respect to Lh gives

L∗h = Bsgd2

√
NL2

x, (120)

where

Bsgd2 ≡ Cts2
Css2

√
δs

Ds
0σ

2
R − (δts + σ2

t)
. (121)

We need to check for self-consistency, which means we need to check that N � L∗h and L∗h � L2
x. For the first,

we combine the condition L2
x � N with Eq. (120) to obtain L∗h � N (note that Bsgd2 is O(1)). For the second, we

combine the condition N � L2
x with Eq. (120) to obtain L∗h � L2

x. Thus, this is a self-consistent solution.

Optimal hidden layer size when L2
x � Lh � Lx

In this regime we assume that N � Lx, which, as we show below, will again yield a self-consistent solution. Notably,
this assumption is consistent with the assumed scaling in Fig. 5, N ∝ L1.9

x . In the regime L2
x � Lh � Lx, Eq. (37) tells

us that L1 = Lx, L2 ≈ Lh, and Lr = 0. Consequently, using Eq. (90), with average eigenvalues given by Eq. (115), we
see that R0(Lh) and R1(Lh) are approximately zero, and

R2(Lh) =
Ds

0Lh

N〈λ(2)
µ 〉

[
1− e−N〈λ

(2)
µ 〉/(D

s
0Lh)

]
. (122)

Inserting this into Eq. (114), using Eq. (115c) for 〈λ(2)
µ 〉, noting that f2(Lh) ≈ f(2Lh/L

2
x; c2) ≈ 1 (see Eq. (46c)), and

using the fact that all the other Rq are approximately zero, the cumulative generalization error is given approximately by

εNcg ≈ (εapr + σ2
t)

(
2− Lh

N

[
1− e−

(δs+C
ss
2)N

DsoLh

])
+
σ2
RD

s
oLh

N

[
1− e−

(δs+C
ss
2)N

Ds0Lh

]
. (123)

Following the arguments in the previous section, we consider the limit N � Lh. Then, using Eq. (99) for the approxi-
mation error, we find, in this limit, that

εNcg ≈ 2

(
δts + σ2

t +
(Cts2)2

Css2

)
+ 2

(
Cts1
Css1

)2
(δs + Css2)Lx

Lh
+

(
Ds
oσ

2
R −

[
δts + σ2

t +
(Cts2)2

Css2

])
Lh
N

. (124)

Minimizing with respect to Lh yields

L∗h = Bsgd1

√
NLx , (125)

where

Bsgd1 ≡ Cts1
Css1

√
2(δs + Css2)

Ds
oσ

2
R − [δts + (Cts2)2/Css2 + σ2

t]
. (126)

We need to check for self-consistency, which means we need to check that N � L∗h and L2
x � L∗h � Lx. For the

first, we combine the condition Lx � N with Eq. (125) to obtain L∗h � N (note that Bsgd1 is O(1)). For the second, we
combine the condition N � Lx with Eq. (125) to obtain L∗h � Lx. Thus, this is a self-consistent solution. To ensure
L2
x � L∗h, N needs to satisfy N � L3

x. Thus, N must be large but not too large.

22

Optimal hidden layer size when Lx � Lh

In this regime, we assume that N � 1, which is again consistent with the scaling in Fig. 5, N ∝ L1.9
x . In the regime

Lx � Lh, Eq. (37) tells us that L1 = Lh and L2 = Lr = 0. Because L2 and Lr are zero and N � 1, q = 1 is the only
relevant term, so cumulative generalization error, Eq. (114), is given approximately by

εNcg ≈ (εapr + σ2
t)

(
2− Lh

N

[
1− e−

〈λ(1)〉N
Ds0Lh

])
+
σ2
RD

s
0Lh

N

(
1− e−

〈λ(1)〉N
Ds0Lh

)
. (127)

As before, using Eq. (99) and assuming N � Lh, the above equation becomes

εNcg ≈ 2

(
Cts0
Css0

)2
δs + Css1 + Css2

Lh
+

(
Ds

0σ
2
R −

[
σ2
t + δts +

(Cts1)2

Css1

+
(Cts2)2

Css2

])
Lh
N

+ const. (128)

Thus, the optimal hidden layer size is given by

L∗h = Bsgd0

√
N, (129)

where

Bsgd0 ≡ Cts0
Css0

√
2(δs + Css1 + Css2)

Ds
0σ

2
R − [δts + (Cts1)2/Css1 + (Cts2)2/Css2 + σ2

t]
. (130)

This is a self-consistent solution at L2
x � N .

Optimal hidden layer size when N ∝ Lγx
As we did under MLE above, we combine these three scalings with the emperical observation that N ∝ Lγx to determine
how the optimal hidden layer size depends on γ. We find the following:

1. Lh � L2
x and N � L2

x: We see from Eq. (120) that L∗h ∝ L
1+γ/2
x . In addition, combining N � L2

x with N ∝ Lγx,
we see that γ > 2.

2. L2
x � Lh � Lx, L3

x � N and N � Lx: We see from Eq. (125) that L∗h ∝ L
1/2+γ/2
x . In addition, combining

N � Lx and L3
x � N with N ∝ Lγx, we see that 3 > γ > 1.

3. Lx � Lh and L2
x � N : We see from Eq. (129) that L∗h ∝ L

γ/2
x . In addition, combining L2

x � N with N ∝ Lγx,
we see that γ < 2.

As with MLE, when γ > 3 or γ < 1 the network can operate in only one regime, but when 1 < γ < 3 it can operate in
two. Also as with MLE, the one with steeper scaling between Lx and L∗h has smaller error, and so generates the relevant
scaling. To see why, note that to leading order, the generalization error is given by 2(εapr + σ2

t) (see Eqs. (118), (123)
and (127)), and from Eq. (99) we see that the generalization error increases from regime (1) to regime (2) to regime
(3). Consequently, regime (1) is favored over regime (2), and regime (2) is favored over regime (3).

In summary, our analytical results indicates that as a function of γ, the exponent of the scaling law should follow the
black line in Fig. 4F. Minimizing Eq. (113) numerically, we indeed found that this was the case (blue line in Fig. S7B).

Optimal hidden layer size when the learning is terminated after αN samples

In Fig. S8, we considered the case when the learning by SGD is terminated after αN samples. In this case, the cumulative
error over all N samples is given by,

εα = αε(αN)
cg + (1− α)ε(αN)

gen , (131)

where ε(αN)
cg is the cumulative error over n = 1, ..., αN (Eq. 113), and ε(αN)

gen = ε
(αN)
est + εapr + σ2

t , is the generalization
error at n = αN , where ε(αN)

est and εapr are defined at Eqs. 85 and 45.

23

6 Model with low precision hard-wired connections
In our analysis, we assume that the initial weights are random. However, weights can also be tuned on evolutionary
timescales. To model this, we add a parallel hidden layer corresponding to lateral horn neurons (see Fig. 6A),

y = wp · g(Jpx) +ws · g(Jsx) (132)

where g is ReLU, Jp ∈ <Lp×Lx , and wp ∈ <Lp . Motivated by the suggestion that the connections from the projection
neurons to lateral horn neurons are genetically specified [27], we assume that Jp and wp are genetically encoded, and
those weights are tuned over evolutionary timescales. If the weights were tuned perfectly, they would be set to

J∗p ,w
∗
p = arg min

Jp,wp

〈
[wt · g(Jtx)−wp · g(Jpx)]

2
〉
p(x)

. (133)

However, there are two problems with setting the weights to J∗p and w∗p. One is that this would requires an infinite
number of bits, while the genetic capacity is limited. The other is that evolution cannot know perfectly the odors an
animal will encounter, or their valances, making it impossible to compute exactly the average on the right hand side of
Eq. (133). Thus, the weights of the hard-wired the lateral horn pathway cannot be specified perfectly.

To take this into account, we set the weights Jp and wp in two steps. In the first step, we find the optimal weights
via Eq. (133). In the second we corrupt the weights, either by adding noise to them or by discretizing them. Given a
network, the amount of corruption is determined by what we call the genetic budget, denoted G. Below, we describe
how we implement these two steps.

6.1 Implementation of the genetic budget

We will assume that the genome effectively supplies sb bits per synapse. In Sec. 6.3 we discuss how each synapse is
corrupted given sb; here we simply compute the genetic budget, G, in terms of this quantity. For that we count the
number of bits it takes to specify the weights. Assuming the weights are independent and random, the total information
required to wire up the circuit is sb× [the number of synapses]. There are Lp × Lx synapses in the matrix Jp and Lp
synapses in the vector wp, giving us a total of (LpLx + Lp) synapses. Thus, to wire up this circuit innately requires

G = Lp(Lx + 1)sb (134)

bits of information to be stored in the genome. This gives us the constraint, Eq. (18), we used in the main text.
This estimate assumes that the weights do not contain structure that can be exploited by the genome. If they do –

that is, if the true weights are compressible – then the amount of genetic material required for encoding can be smaller
than G in Eq. (134). For instance, if the weights Jp are sparsely distributed (something we consider in the next section),
Eq. (134) would not apply. More generally, the minimum genome size can be computed by estimating the Kolmogorov
complexity, which is the minimum length of a program that generates Jp and wp. This is indeed a more relevant measure
of genetic capacity, as the genome does not transmit information like a communication channel; instead, it is more like
a program that is run to construct the connectome. However, here we simply make the assumption that the weights
contain very little structure, and in particular are approximately random and uncorrelated. This assumption is reasonable
in our model setting, because the weights of the teacher network is randomly generated, and the circuit size of the
genetically specified pathway is much smaller than the size of the teacher network. However, this assumption might
be violated in the actual brain. In this regime, the average Kolmogorov complexity is the same as the entropy, up to
constant [28]. Thus, Eq. (134) should provide a reasonable bound on the Kolmogorov complexity. In simulations, we
fixed G/sb to a constant, then changed sb and Lx. This means that the genetic-pathway size Lp = G/ (sb(Lx + 1))
decreases monotonically as a function of Lx.

6.2 A model with sparse connectivity in the genetically-specified pathway

As mentioned above, it might be possible to achieve a more efficient encoding by using a sparsely connected network, as
that requires less information to specify the weights (simply because there are fewer of them). However, whether or not
a sparse network is more efficient depends on the degree to which sparseness affects expressivity.

To test this idea, we constructed a genetically specified pathway for which the connectivity matrix, Jp was sparse,
with the sparsity given by the parameter ρs,

ρs ≡ prob[Jpij 6= 0] . (135)

24

Assuming, as above, that the genome can effectively supply sb bits per synapses, the total information it needs to supply
is Lp(ρsLx + 1)sb bits. Then, because it takes H(ρs)LpLx bits to specify which weights are nonzero, where H(ρs) is
the entropy of a Bernoulli random variable with probability ρs, the total genetic budget, G, is given by

G = Lp (Lx[ρssb +H(ρs)] + sb) . (136)

In the limit ρs → 1, we recover Eq. (134). Under a fixed genetic budget, G, and a fixed number of bits per synapses, sb,
the genetically specified hidden layer size, Lp, becomes a function of Lx,

Lp =
G

Lx[ρssb +H(ρs)] + sb
. (137)

In our simulations we fix sb, G and ρs, and let Lp depend on Lx via Eq. (137).
In Fig. S9B, we numerically estimated the optimal hidden layer size of the developmentally learned pathway, Lh, for

a range of sparsity, ρs. The optimization was performed as described in §7.5, except that after we optimized J∗p for
m = 2.5 × 105 steps, we sparsified J∗p by keeping the ρsLx largest weights (in terms of the absolute weight) for each
postsynaptic neuron, and setting the rest to zero. We then retrained the non-zero elements of Jp and all the elements
of wp for another m = 2.5 × 105 steps. Finally, we created sb bit representations by discretizing the weights. Here, we
discretized the positive and the negative weights of J∗p separately, because most elements of J∗p are zero.

Under moderate sparseness (ρs = 0.5), the genetic-pathway approximates the teacher model better than a fully
connected one with the same genetic budget G. As a result, the optimal hidden layer size of the developmental pathway,
L∗h, was slightly smaller that of the vanilla model (dark green vs black lines in Fig. S9B). In a sparser circuit, the optimal
hidden layer size Lh is similar or slightly larger than in the fully connected model (light green line; ρc = 0.25), indicating
that the genetic pathway is less effective, potentially due to sub-optimal convergence.

6.3 Setting the weights of the hard-wired connections

As discussed above, we set the weights of hard-wired connections, Jp and wp, by finding their optimal values, J∗p and
w∗p, then compressing each weight to at most sb bits. To ensure that our results were robust, we used two different
methods for compressing the weights. They are described below .

6.3.1 Numerical estimation of J∗p and w∗p

We used a mini-batch backpropagation for updating Jp,

J (m+1)
p = J (m)

p − η
B∑
b=1

∂

∂Jp
(wp · g(Jpxb)−wt · g(Jtxb))

2
, (138)

where m is the update count. We used mini-batch size B = 2000, learning rate η = 0.005, and the teacher noise
was excluded from the supervised signal to achieve fast convergence. Because the optimization of Jp is an evolutionary
process, the update rule does not need to be local. The weight, wp, was updated after each minibatch update of Jp
according to

w(m)
p ≡

〈
g(J (m)

p x)g(J (m)
p x)T

〉−1 〈
g(J (m)

p x)g(Jtx)T
〉
wt. (139)

The above expectations, which are over x, were obtained analytically using Eq. (153) below. We initialized J (m=0)
p to

Jp,0ij ∼ N(0, 1/Lx), then updated wp and Jp alternatively for 105 steps (see §7.5 for an algorithmic description), which
was typically enough to achieve convergence.

6.3.2 Compression of the weights by discretization

Synaptic weights can be compressed by discretization or by adding noise [29]. Although, we mainly used the latter, we
describe the discretization-based approach first, as it is more intuitive.

Real-valued weights, w∗j , can be compressed to sb bits by simply discretizing them into 2sb equal probability states.
We used instead states with unequal probabilities, so we compress to slightly less than sb bits. Denoting wmax ≡
max{w∗1 , ..., w∗Lp}, wmin ≡ min{w∗1 , ..., w∗Lp}, and ∆w ≡ (wmax − wmin)/(2sb), compressed weights, wj , are obtained
via

wj = wmin +

(⌊
w∗j − wmin

∆w

⌋
+

1

2

)
∆w, (140)

where bxc returns the largest integer less than or equal to x. Both the hidden and output weights, Jp and wp, can be
compressed in this manner.

25

6.3.3 Compression of the weights by adding noise

Assuming that the optimal weight w∗j is sampled from a Gaussian distribution (i.e., w∗j ∼ N(0, σ2
w)), the bit length

required for encoding the weight can be reduced by shrinking the weight while adding noise,

wj =
√

1− γ2w∗j + γσwζ, (141)

where ζ is a zero mean, unit variance Gaussian variable, and γ is the relative noise amplitude (0 ≤ γ ≤ 1). Marginalizing
over w∗j , we get wj ∼ N(0, σ2

w). Thus, the mutual information between wj and w∗j is

I[wj ;w
∗
j] = − log γ. (142)

Therefore, to compress the weight into sb bits, γ needs to be set to γ = e−(log 2)sb (log 2 is for the conversion from nats
to bits). Note that in this formulation, 2sb does not need to be an integer, unlike for the discretization method.

In the simulations, we estimated the variance of {w∗j } and {J∗ij} numerically, after they were optimized. Denoting
the variances as σ2

w and σ2
J , the compressed weights are given as

wj =
√

1− γ2w∗j + γσwζ and Jij =
√

1− γ2J∗ij + γσJζ. (143)

7 Details of the numerical analysis

7.1 ReLU activation

We first compute the parameters when both the teacher and student use ReLU activation (gt(u) = gs(u) = max(0, u)).
The diagonal elements, Eqs. (17) and (39), are given by

Ds
0 = Dt

0 =

∫ ∞
0

1√
2π

exp

(
−u

2

2

)
du =

1

2
. (144)

The off diagonal elements, Eqs. (21) and (33), are given by

Cts0 = Css0 =
1

2π
(145a)

Cts1 = Css1 =
1

4
(145b)

Cts2 = Css2 =
1

4π
. (145c)

In this setting, the coefficient for the third order term is identically zero, so the second-order approximation effectively
achieves third-order accuracy. Inserting the coefficients into Eq. (45), the approximation error is estimated as

εapr ≈ δs +
1

4π

(
1−

[
1− Lx

Lh

]+
)

+
π − 1

2π(π − 1 + Lh)

+
1

8

√(Lh
Lx

+ 4δs +
1

π
− 1

)2

+ 4

(
4δs +

1

π

)
−
(
Lh
Lx

+ 4δs +
1

π
− 1

) (146)

+
1

8π

[
1− Lx

Lh

]+
√(2Lh

L2
x

+
4πδs

1− Lx/Lh
− 1

)2

+
16πδs

1− Lx/Lh
−
(

2Lh
L2
x

+
4πδs

1− Lx/Lh
− 1

)
where δs = (π − 3)/4π (see Eq. (27)).

7.2 Logistic activation

We next consider the case of model mismatch, where the teacher activation function is ReLU but the student is a logistic
function, gs(u) = 1/(1 + e−u). The diagonal element of the teacher, Dt

0, is the same as above, but the student is
different,

Ds
0 =

∫ ∞
−∞

du√
2π

(
1

1 + e−u

)2

exp

(
−u

2

2

)
' 0.29338 . (147)

26

The off diagonal elements are given by

Css0 =
1

4
(148a)

Css1 ' 0.04269 (148b)
Css2 = 0 (148c)

Cts0 =
1

2
√

2π
(148d)

Cts1 ' 0.1033 (148e)

Cts2 = 0. (148f)

Here, ' represents a numerical approximation of an integral. Notably, because both Css2 and Cts2 are zero, the second-
order term disappears from the approximation error. Thus, using c0 = (δs+Css1)/Css0 , the approximation error simplifies
to

εapr ≈
(

1

2
− (Cts0)2

Css0

− (Cts1)2

Css1

)
+

(Cts0)2

Css0

c0
c0 + Lh

+
(Cts1)2

2Css1

√[Lh
Lx

+
δs
Css1

− 1

]2

+
4δs
Css1

−
[
Lh
Lx

+
δs
Css1

− 1

] .

(149)

7.3 Sparse ReLU

We can achieve sparse coding – which makes the model more relevant to experimental data – by shifting the threshold
of ReLU: gs(u, b) ≡ max(u− b, 0). The coefficients of the error are then given by

Ds
0 = (1 + b2)(1− Φ(b))− b√

2π
e−b

2/2 (150a)

Css0 =

(
1√
2π
e−b

2/2 − b(1− Φ(b))

)2

(150b)

Css1 = (1− Φ(b))
2 (150c)

Css2 =
1

4π
e−b

2

(150d)

where Φ(b) is the cumulative Gaussian distribution: Φ(b) ≡
∫ b
−∞ ds exp(−s2/2)/

√
2π.

7.4 Numerical estimation of the errors

The generalization error is easily estimated numerically by evaluating the test error over a large number of test samples,

εgen ≈
1

Ntest

Ntest∑
n=1

(ws · g(Jsxn)− yn)
2
. (151)

In simulations of maximum likelihood learning, we calculated the weights using Eq. (51), then computed εgen using
Ntest = 30, 000 samples. The cumulative generalization error under SGD learning was estimated using

εNcg ≈
1

N

N∑
n=1

(
w(n−1)
s · g(Jsxn)− yn

)2

. (152)

Note that, because we provided a new sample {xn, yn} in each update, the right hand side is the cumulative test error,
not the training error.

Estimating the approximation error (Eq. (12)), and the estimation error (Eq. (49)) from simulations is harder, becuase
we need to evaluate 〈gtgTt 〉, 〈gtgTs 〉, and 〈gsgTs 〉 and the averages over x are generally intractable due to the high-
dimensionality. However, if the nonlinearity, g(·), in both the teacher and student networks are ReLU, marginalization
over u ≡ Jx has a closed-form expression,

〈gq(ui)gq′(uj)〉p(ui,uj) =

∫ ∞
0

dui

∫ ∞
0

duj
uiuj

2πσiσj
√

1− ρ2
ij

exp

(
− 1

2(1− ρ2
ij)

[
u2
i

σ2
i

+
u2
j

σ2
j

− 2ρijuiuj
σiσj

])

=
σiσj
2π

(√
1− (ρij)2 + ρij cos−1(−ρij)

)
(153)

27

where σ2
i = (JqJ

T
q)ii, ρij =

(JqJ
T
q′)ij

σiσj
, and the indices q and q′ are either s or t. The errors under a specific network

realization in Figs. 3, 5B, and 5C were calculated using this expression. For numerical stability, the inverse, G−1
s , was

computed by solving a linear matrix equation Gsws = 〈gsgTt 〉wt, (see Eq. (8) and github:nhiratani/olfactory_design).
For the logistic activation, we computed (and plotted) only the generalization error, as numerical estimation of the

approximation/estimation errors is difficult in this setting.

7.5 Model with evolutionary and developmental learning

In the model with low-precision hard-wired connections, the learning process is described as follows,
Initialize J∗p by JP∗ij ∼ N(0, 1/Lx);
for m = 1, ..., 105 do

Update w∗p and J∗p using Eq. (139) and Eq. (138), alternatively.
end
Compress w∗p and J∗p into sb bits weights wp and Jp using Eq. (143);
Initialize Js and ws by Js ∼ N(0, 1/Lx) and ws = 0;
for n = 1, ..., N do

xn ∼ N(0, I), yn ∼ N(wt · g(Jtxn), σ2
t);

w
(n)
s = w

(n−1)
s + 2

max(Lh,n) (yn − [wp · g(Jpxn) +w
(n−1)
s · g(Jsxn)])g(Jsxn);

end
In Fig. 6C we instead used Eq. (140) for the compression of the weights J∗p and w∗p. In Fig. 6D, the compression

was done with Eq. (143), and wp was additionally trained in the developmental learning phase using

w(n)
p = w(n−1)

p +
2

max(Lh, n)
(yn − [w(n−1)

p · g(Jpxn) +w(n−1)
s · g(Jsxn)])g(Jpxn) (154)

from the low-precision weight w(n=0)
p derived from Eq. (143).

7.6 Model with low-dimensional structure in the input

So far we have assumed that the activity at the glomeruli, x, follows an independent Gaussian distribution (see Eq. (6)).
However, in the mammalian olfactory system there are at least twice as many glomeruli as receptor types [1]. In this
regime the input is lower dimensional than the number of glomeruli, invalidating the assumption that the input follows
an independent Gaussian distribution. To understand how low dimensional input affects the optimal hidden layer size,
we investigated a model in which the input to the olfactory bulb had fixed dimension while the number of glomeruli was
allowed to grow, and asked how the optimal hidden layer size depended on the number of glomeruli.

We let the input to the circuit have dimension Lz, and sample that input from an independent Gaussian distribution:
z ∈ <Lz ∼ N (0, I). The elements of z roughly correspond to the population activity of olfactory sensory neurons
expressing one olfactory receptor gene. For simplicity, we assume that Lx is a multiple of Lz, and we use κ to denote
that multiple (so κ ≡ Lx/Lz). We also assume that each receptor type projects to exactly κ glomeruli; combining this
with the experimental observations that each glomerulus receives inputs from only one receptor type [2], we see that the
Lx × Lz matrix, denoted Wz, that transforms the input to the output must have the form

Wz,ij =

{
1 κj − κ < i ≤ κj
0 otherwise.

(155)

In words: if, for instance, κ = 5, then the first olfactory receptor type will project to glomeruli 1-5, the second to glomeruli
6-10, and so on.

If the transformation from z to x were linear, activity would be constained to a linear Lz dimensional subspace, and
adding glomeruli would have no effect on generalization error. However, the olfactory circuitry contains nonlinearities
and lateral inhibition that may increase the linear dimensionality [3]. To reflect these factors, we use the same student
model as before, ŷ = ws · g(Jsx) (Eq. (3)), but now with x given by

x = W−1
I [g(Wzz + bx)−mI] . (156)

where g(·) is a ReLU nonlinearity, bx is the bias, and WI and mI control the degree of lateral inhibition. The bias, bx,
was set to

bx,i = Ψ−1

(
(i− 1)%κ+ 1

κ+ 1

)
(157)

28

where % denotes mod and Ψ(x) is the Gaussian cumulative distribution function. This ensures that glomeruli receiving
input from the same receptor type experience a different nonlinearity. For the lateral inhibtion, we assume that x obeys
the dynamics

τI ẋ = −WIx+ g(Wzz + bz)−mI , (158)

with τI small, for which the fixed point satisfies Eq. (156). We set WI and mI empirically to

mI =
1

NI

NI∑
t=1

g(Wzzt + bx), (159a)

WI =

(
1

NI

NI∑
t=1

(g(Wzzt + bx)−mI) (g(Wzzt + bx)−mI)
T

)1/2

, (159b)

with NI = 30000. These weights can easily be learned with unsupervised Hebbian-type plasticity [30]. With this choice,
the distribution of x will correspond, at least approximately, to independent white noise.

The teacher model was

y = wt · g(Jtz) + σtξ, (160)

where Jt is an Lt × Lz random Gaussian matrix with variance 1/Lz, g(·) is an element-wise nonlinearity, and σtξ is the
teacher noise. This teacher model is the same as the original teacher model if Lz = Lx

In this setting, we estimated the optimal hidden layer size at different Lx, with Lz fixed, using maximum likelihood
estimation (MLE). If the hidden layer size is determined purely by the number of olfactory receptor genes, then the
optimal hidden layer size will be independent of Lx. In the absence of lateral inhibition, indeed the optimal hidden layer
size shows very weak dependence on Lx (blue lines in Fig. S3; here we used the least-square method instead of MLE to
estimate w because the covariance matrix often becomes singular). However, with whitening via lateral inhibition (that
is, the model described above), the optimal hidden layer size exhibits approximately the same dependence on Lx as the
model without any low-dimensional structure (orange vs gray lines in Fig. S3; gray line is the analytical estimation for
x ∼ N(0, I)). These results were robust with respect to Lz (Lz was set to 250, 500, and 1000 in the left, middle, and
right panel of Fig. S3). Thus, even if the input has an intrinsic low-dimensional structure, as long as there is a nonlinearity
and lateral inhibition we see a similar scaling as the model with independent Gaussian input, as used in the main text.

7.7 Numerical estimation of the optimal hidden layer size

In both maximum likelihood and SGD simulations, we first estimated the generalization error by calculating the mean
error over Ksim simulations, for various Lh spanning from Lh = 10 to Lh = Lmax

h with a 10% increment at each step.
We defined the empirical estimate of the optimal hidden layer size as the network size that yielded the minimum average
error.

In the MLE simulations, we used Lmax
h = min[N, 30, 000], except for the large Lx simulations in Fig. 4A, where we

used Lmax
h = 15, 000 for Lx > 10, 000, Lmax

h = 6, 000 for Lx > 30, 000, and in Fig. 4E, where we set Lmax
h = 4, 000.

For each Lx, we took the mean over Ksim = 100 if N < 1000, else Ksim = 10.
In the SGD simulations, we set Lmax

h = 30, 000 and Ksim = 10, except for Fig. 5B where we used Ksim = 100, and
for the large Lx region of Fig. 4D, where we set Lmax

h = 10, 000 for Lx > 7, 000, and Lmax
h = 3, 300 for Lx > 20, 000).

In Fig. 5F and Fig. 6, we used Lmax
h = 100, 000.

8 Eigenvectors and eigenvalues of Gs

Here we estimate the eigenvectors and eigenvalues of Gs using the approximate expression given in Eq. (30). That
expression consists of four matrices: the identity, a rank one matrix with eigenvalue that scales as Lh, and, as pointed
out immediately after Eq. (30), two matrices with Marchenko-Pastur distributions for their eigenvalues,

JsJ
T
s : λ ∼MP (1, Lh/Lx) (161a)

MsM
T
s : λ ∼MP (1, 2Lh/L

2
x) . (161b)

For these matrices, so long as Lh > L2
x/2, the nonzero eigenvalues scale as Lh/Lx and 2Lh/L

2
x, respectively. In this

regime, the nonzero eigenvalues of the three non-identity matrices in Eq. (30) are successively smaller, each time by a
factor of Lx. We will assume this holds in general; when it does not, our approximation may not be very accurate.

29

To make use of the successively smaller eigenvalues, we note that if we sum two matrices with very different eigen-
values, the one with large eigenvalues dominates. More formally, consider two symmetric matrices, Q and R, such that
their nonzero eigenvalues are both O(1). Letting vQ be an eigenvector of Q with eigenvalue λQ, for |ε| � 1, we have

(Q+ εR)vQ = QvQ + εRvQ = λQvQ + εRvQ ≈ λQvQ . (162)

If Q is rank-deficient, there will be additional O(ε) eigenvalues. Their eigenvectors will lie in the space spanned by R,
but with the space spanned by Q projected out.

We will now apply this toGs, but with a small correction, which turns out to be necessary to get good agreement with
simulations: when computing the eigenvalue associated with the rank one matrix 1h1Th , we treat JsJTs and MsM

T
s as

identity matrices, and when computing the eigenvalue spectrum associated with JsJTs we treat MsM
T
s as the identity

matrix. (Note that JsJTs and MsM
T
s are typically rank deficient. However, we can consider an ensemble average;

because their eigenvalues average to 1, that ensemble average is the identity matrix.)
Using this procedure, the relevant eigenvalue equation associated with the matrix associated with 1h1Th is(

(δs + Css1 + Css2)I + Css0 1h1Th
)
· v(0) = λ(0)v(0) , (163)

implying that

λ(0) = δs + Css1 + Css2 + Css0 Lh (164a)

v(0) =
1h√
Lh

. (164b)

To find the eigenvalues associated with JsJTs , we should project out the one dimensional subspace spanned by 1h,
but that will have an O(1/Lh) effect, so we do not do it. Consequently, the relevant eigenvalue equation associated with
the matrix JsJTs is (

(δs + Css2)I + Css1 JsJ
T
s

)
v

(1)
k = λ

(1)
k v

(1)
k , (165)

implying that

λ
(1)
k = δs + Css2 + Css1 λ̃

(1)
k (166)

where

λ̃(1) ∼MP+

(
1,
Lh
Lx

)
. (167)

The + superscript on MP indicates that we should include only the non-zero eigenvalues.
To find the eigenvalues associated with MsM

T
s , we need to project out the subsapce spanned by JsJTs . Using M̃s

to denote Ms in the lower dimensional space, the relevant eigenvalue equation is(
δsI + Css2 M̃sM̃

T
s

)
v

(2)
k = λ

(2)
k v

(2)
k , (168)

The dimension of the subspace we project out is max[Lh, Lx]. Assuming that the projection M → M̃ is random, the
eigenvalues of MsM

T
s are reduced by a factor of [1− Lx/Lh]+, giving us

λ
(2)
k = δs + Css2 λ̃

(2)
k (169)

where

λ̃(2) ∼MP+

([
1− Lx

Lh

]+

,
2Lh
L2
x

)
. (170)

Finally, if Lr > 0, there are additional eigenvectors. We have already taken care of the matrices with structure, so
the remaining matrix is just δsI. Consequantly,

λ
(r)
k = δs . (171)

30

Because we need them for the analysis of SGD, we compute the average eigenvalues for the two components: λ̃(1)

and λ̃(2). For the full Marchenko-Pastur distribution with parameters σ2 and λ, the average eigenvalue is σ2. However,
for the distribution over only the non-zero eigenvalues, the average eigenvalue is σ2 max[1, λ]. Thus,

λ(0) = δs + Css1 + Css2 + Css0 Lh (172a)

〈λ(1)
k 〉 = δs + Css2 + Css1 max

[
1,
Lh
Lx

]
(172b)

〈λ(2)
k 〉 = δs + Css2

[
1− Lx

Lh

]+

max

[
1,

2Lh
L2
x

]
(172c)

〈λ(r)
k 〉 = δs (172d)

where we included λ(0)(Eq. (164a)), and λr for completeness.
To compute the approximation error, we also need the eigenvalue/eigenvector expansion of the right hand side of

Eq. (41). Repeating the above analysis, we find that

λ
ts(0)
k =

(Cts1)2

Lx
+

(Cts2)2

L2
x/2

+ (Cts0)2Lh ≈ (Cts0)2Lh (173a)

λ
ts(1)
k =

(Cts2)2

L2
x/2

+
(Cts1)2

Lx
λ̃

(1)
k ≈

(Cts1)2

Lx
λ̃

(1)
k (173b)

λ
ts(2)
k =

(Cts2)2

L2
x/2

λ̃
(2)
k (173c)

λ
ts(r)
k = 0 (173d)

where the approximations are valid in the large Lx limit.

9 Marchenko-Pastur averages
In §3 (see in particular Eq. (42)) we need to compute averages of the form

1

L

L′∑
k=1

λk
c+ λk

=
L′

L

〈
λ

c+ λ

〉
λ∼MP+(σ2,λ̄)

(174)

where, as above the + superscript on MP indicates that the average is over only the positive eigenvalues. Computing
analytically the average on the right hand side, we have

L′

L

〈
λ

c+ λ

〉
λ∼MP+(σ2,λ̄)

=
L′/L

min
[
1, λ̄

] (1− f
(
λ̄;

c

σ2

))
(175)

where

f(λ̄; c) ≡

√(
λ̄− 1 + c

)2
+ 4c−

(
λ̄− 1 + c

)
2

. (176)

The large and small λ̄ limits of f are relatively simple,

f(λ̄, c/σ2)→

{
1 λ̄→ 0

c/(σ2λ̄) λ̄→∞ .
(177)

The small λ̄ limit is important, because it tells us that 1− f(λ̄, c/σ2) is small whenever λ̄ is small.
For the first sum in Eq. (42), L = Lx, L′ = L1 = min[Lx, Lh], and c = c1 (defined in Eq. (36b)). The param-

eters of the Marchenko-Pastur distribution, given in Eq. (167), are σ2 = 1 and λ̄ = Lh/Lx. The latter implies that
L′/(Lmin[1, λ̄]) = 1. Consequently, the first sum in Eq. (42) is

1

Lx

L1∑
k=1

λ̃
(1)
k

c1 + λ̃
(1)
k

= 1− f(λ̄; c1) . (178)

31

For the second sum in Eq. (42), L = L2
x/2, L′ = L2 = min[L2

x/2, Lh − Lx]+ and c = c2 (defined in Eq. (36c). The
parameters of the Marchenko-Pastur distribution, given in Eq. (170), are σ2 = [1−Lx/Lh]+ and λ̄ = 2Lh/L

2
x. We thus

have, after a small amount of algebra,

1

L2
x/2

L2∑
k=1

λ̃
(2)
k

c2 + λ̃
(2)
k

=
min[L2

x/2, Lh − Lx]+

min[L2
x/2, Lh]+

(
1− f

(
Lh
L2
x/2

;
c2

[1− Lx/Lh]
+

))
. (179)

Noticing that the first term is 1 at Lh > L2
x/2+Lx, [1−Lx/Lh]+ at Lh < L2

x/2, and slightly smaller than 1 in between,
we can simplify the expression above as

1

L2
x/2

L2∑
k=1

λ̃
(2)
k

c2 + λ̃
(2)
k

≈
[
1− Lx

Lh

]+ [
1− f

(
Lh
L2
x/2

;
c2

1− Lx/Lh

)]
. (180)

In §4.1 we need the average of the inverse of the eigenvalue. That is easily found from the above analysis,〈
1

λ

〉
λ∼MP+(σ2,λ̄)

=
∂

∂c

∣∣∣∣
c=0

〈
−λ
c+ λ

〉
λ∼MP+(σ2,λ̄)

. (181)

Using Eq. (175) for the right hand side, a straightforward calculation yields〈
1

λ

〉
λ∼MP+(σ2,λ̄)

=
1

σ2|λ̄− 1|
. (182)

References
[1] Shyam Srinivasan and Charles F Stevens. Scaling principles of distributed circuits. Current Biology, 29(15):2533–

2540, 2019.

[2] Helen B Treloar, Paul Feinstein, Peter Mombaerts, and Charles A Greer. Specificity of glomerular targeting by
olfactory sensory axons. Journal of Neuroscience, 22(7):2469–2477, 2002.

[3] Rachel I Wilson and Zachary F Mainen. Early events in olfactory processing. Annu. Rev. Neurosci., 29:163–201,
2006.

[4] KD Ernst, J Boeckh, and V Boeckh. A neuroanatomical study on the organization of the central antennal pathways
in insects. Cell and tissue research, 176(3):285–308, 1977.

[5] Qian Gao, Bingbing Yuan, and Andrew Chess. Convergent projections of drosophila olfactory neurons to specific
glomeruli in the antennal lobe. Nature neuroscience, 3(8):780, 2000.

[6] Joshua P Martin, Aaron Beyerlein, Andrew M Dacks, Carolina E Reisenman, Jeffrey A Riffell, Hong Lei, and
John G Hildebrand. The neurobiology of insect olfaction: sensory processing in a comparative context. Progress in
neurobiology, 95(3):427–447, 2011.

[7] Joachim Schachtner, Manfred Schmidt, and Uwe Homberg. Organization and evolutionary trends of primary olfactory
brain centers in tetraconata (crustacea+ hexapoda). Arthropod Structure & Development, 34(3):257–299, 2005.

[8] Ariane Ramaekers, Edwige Magnenat, Elizabeth C Marin, Nanaë Gendre, Gregory SXE Jefferis, Liqun Luo, and
Reinhard F Stocker. Glomerular maps without cellular redundancy at successive levels of the drosophila larval
olfactory circuit. Current biology, 15(11):982–992, 2005.

[9] Liria M Masuda-Nakagawa, Nanaë Gendre, Cahir J O’Kane, and Reinhard F Stocker. Localized olfactory represen-
tation in mushroom bodies of drosophila larvae. Proceedings of the National Academy of Sciences, 106(25):10314–
10319, 2009.

[10] Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey M Schneider-Mizell, Timo
Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber, et al. The complete connectome of a learning and
memory centre in an insect brain. Nature, 548(7666):175, 2017.

[11] Sophie JC Caron, Vanessa Ruta, LF Abbott, and Richard Axel. Random convergence of olfactory inputs in the
drosophila mushroom body. Nature, 497(7447):113, 2013.

32

[12] Yoshinori Aso, Daisuke Hattori, Yang Yu, Rebecca M Johnston, Nirmala A Iyer, Teri-TB Ngo, Heather Dionne,
LF Abbott, Richard Axel, Hiromu Tanimoto, et al. The neuronal architecture of the mushroom body provides a
logic for associative learning. Elife, 3:e04577, 2014.

[13] Sylvia Anton and Bill S Hansson. Central processing of sex pheromone, host odour, and oviposition deterrent
information by interneurons in the antennal lobe of female spodoptera littoralis (lepidoptera: Noctuidae). Journal
of comparative neurology, 350(2):199–214, 1994.

[14] Marcus Sjöholm, Irina Sinakevitch, Rickard Ignell, Nicholas J Strausfeld, and Bill S Hansson. Organization of
kenyon cells in subdivisions of the mushroom bodies of a lepidopteran insect. Journal of Comparative Neurology,
491(3):290–304, 2005.

[15] Zhifeng Wang, Pengcheng Yang, Dafeng Chen, Feng Jiang, Yan Li, Xianhui Wang, and Le Kang. Identification and
functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory
locust. Cellular and Molecular Life Sciences, 72(22):4429–4443, 2015.

[16] Beulah Leitch and Gilles Laurent. Gabaergic synapses in the antennal lobe and mushroom body of the locust
olfactory system. Journal of comparative Neurology, 372(4):487–514, 1996.

[17] Gérard Arnold, Claudine Masson, and Sati Budharugsa. Comparative study of the antennal lobes and their afferent
pathway in the worker bee and the drone (apis mellifera). Cell and tissue research, 242(3):593–605, 1985.

[18] Wolfgang Witthöft. Absolute anzahl und verteilung der zellen im him der honigbiene. Zeitschrift für Morphologie
der Tiere, 61(1):160–184, 1967.

[19] Hidehiro Watanabe, Hiroshi Nishino, Michiko Nishikawa, Makoto Mizunami, and Fumio Yokohari. Complete mapping
of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach periplaneta
americana. Journal of Comparative Neurology, 518(19):3907–3930, 2010.

[20] Sarah M Farris and Nicholas J Strausfeld. Development of laminar organization in the mushroom bodies of the
cockroach: Kenyon cell proliferation, outgrowth, and maturation. Journal of Comparative Neurology, 439(3):331–
351, 2001.

[21] Bertram Gerber and Reinhard F Stocker. The drosophila larva as a model for studying chemosensation and chemosen-
sory learning: a review. Chemical senses, 32(1):65–89, 2006.

[22] EA Capaldi, GE Robinson, and SE Fahrbach. Neuroethology of spatial learning: the birds and the bees. Annual
review of psychology, 50(1):651–682, 1999.

[23] Makoto Mizunami, Yukihisa Matsumoto, Hidehiro Watanabe, and Hiroshi Nishino. Olfactory and visual learning in
cockroaches and crickets. In Handbook of Behavioral Neuroscience, volume 22, pages 549–560. Elsevier, 2013.

[24] Robi Tacutu, Thomas Craig, Arie Budovsky, Daniel Wuttke, Gilad Lehmann, Dmitri Taranukha, Joana Costa,
Vadim E Fraifeld, and João Pedro De Magalhães. Human ageing genomic resources: integrated databases and tools
for the biology and genetics of ageing. Nucleic acids research, 41(D1):D1027–D1033, 2012.

[25] Vladimir A Marvcenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of random matrices.
Mathematics of the USSR-Sbornik, 1(4):457, 1967.

[26] Madhu Advani and Surya Ganguli. Statistical mechanics of optimal convex inference in high dimensions. Physical
Review X, 6(3):031034, 2016.

[27] Mehmet Fişek and Rachel I Wilson. Stereotyped connectivity and computations in higher-order olfactory neurons.
Nature neuroscience, 17(2):280, 2014.

[28] Peter Grunwald and Paul Vitányi. Shannon information and kolmogorov complexity. arXiv preprint cs/0410002,
2004.

[29] Geoffrey Hinton and Drew Van Camp. Keeping neural networks simple by minimizing the description length of the
weights. In in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory. Citeseer, 1993.

[30] Naoki Hiratani and Tomoki Fukai. Mixed signal learning by spike correlation propagation in feedback inhibitory
circuits. PLoS computational biology, 11(4):e1004227, 2015.

33

