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Neuronal responses are typically variable in the sense that the number 
and timing of the spikes in response to the same stimulus is never the 
same from one trial to the next1. This variability can greatly reduce 
the precision of the neural code, as several values of the encoded 
stimulus are typically compatible with the observation of a given spike 
count. When stimuli are encoded in large populations of neurons, this 
problem may be reduced by averaging. However, the effectiveness 
of averaging depends greatly on the pattern of correlations across 
neurons (note that we use the term correlations to refer to what are 
commonly called noise correlations, that is, the correlations among 
neurons for a fixed stimulus2).

When the response variability is independent (Fig. 1), informa-
tion increases linearly with the number of neurons in the population 
(ρ = 0; Fig. 1c). This is a well-known case in which averaging helps. 
In contrast, when neurons have translation-invariant tuning curves 
(Fig. 1a) and correlations among neurons are positive and stronger 
for similarly tuned neurons than for dissimilarly tuned ones, as has 
been reported in multiple cortical areas3–7 (Fig. 1b), the information 
saturates as the number of neurons increases (Fig. 1c)3,8. In this case, 
beyond a certain number of neurons, averaging does not help. Because 
the information decreases as correlations increase (Fig. 1c), it would 
seem advantageous to decorrelate neural activity, either by a passive 
process such as balancing excitation and inhibition9, or an active one 
such as attention10,11.

The supposed benefits of reducing noise correlations have, in fact, 
motivated a large number of studies9–12. However, are these benefits 
real? Can one simply go into a network that is receiving informa-
tion about the outside world, reduce the correlations and expect the 
information to go up (Fig. 1c)? Notably, neither these results nor the 
large number of theoretical studies on which they are based8,13–16 
can answer this question. This is because all of those studies simply 

assumed a correlational structure, without taking into account the 
fact that the information must come from other spike trains, which 
are themselves variable.

So what changes when one considers the more realistic case of net-
works receiving noisy external input? An obvious change is that the 
input carries finite information. For example, because of variable dis-
tortions caused by the lens, micro–eye movements and ocular media, 
even an ideal observer of photoreceptors in bright light (where the 
noise is essentially nonexistent) would not know the orientation of a 
line exactly. And for more complex tasks, the problem is worse: when 
processing the speech of a person talking in a noisy street, the ability to 
recognize the words is limited by the physical mixing of the voice with 
the background noise, which in turn imposes a limit on the information 
conveyed by the sound stream. Thus, even if neurons were independ-
ent, adding more of them wouldn’t increase information forever. This 
immediately rules out the ρ = 0 line in Figure 1c for large networks.

A less obvious effect of realistic input is that it changes the rela-
tionship between correlations and information. Information drops as 
correlations increase (Fig. 1c). But this assumes that only the correla-
tions change. What would happen if the input was fixed and network 
parameters such as connectivity or single neuron properties were 
modified? Such a modification would typically change the correla-
tions, but it would also change other aspects of the network, includ-
ing tuning curves. It’s not known in general what would happen to 
information in this case. However, we will show at least one realistic 
network in which the level of correlations has virtually no effect on 
the information. Thus, contrary to what Figure 1c suggests, smaller 
correlations do not necessarily imply more information.

This doesn’t mean that correlations don’t affect information. Indeed, 
they do. However, it’s not typically the size of correlations that mat-
ters, it’s the pattern. We found that large networks receiving finite 
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Computational strategies used by the brain strongly depend on the amount of information that can be stored in population 
activity, which in turn strongly depends on the pattern of noise correlations. In vivo, noise correlations tend to be positive and 
proportional to the similarity in tuning properties. Such correlations are thought to limit information, which has led to the 
suggestion that decorrelation increases information. In contrast, we found, analytically and numerically, that decorrelation does 
not imply an increase in information. Instead, the only information-limiting correlations are what we refer to as differential 
correlations: correlations proportional to the product of the derivatives of the tuning curves. Unfortunately, differential correlations 
are likely to be very small and buried under correlations that do not limit information, making them particularly difficult to detect. 
We found, however, that the effect of differential correlations on information can be detected with relatively simple decoders.
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information must contain correlations approximately proportional 
to the product of the derivatives of the tuning curves (referred to 
as differential correlations, see below), which are solely responsible 
for the information limitation. Thus, positive correlations between 
neurons with similar preferred stimuli (Fig. 1b) do not always limit 
information: they do so only when they contain differential correla-
tions. We also found that these information-limiting correlations can 
be exceedingly difficult to measure directly, primarily because they 
can be very small and masked by other correlations. Fortunately, their 
effect on information can be detected with a realistic number of trials 
so long as the neurons are recorded simultaneously.

RESULTS
Why decorrelation does not imply more information: a simple case
To determine the relationship between correlations and information, 
we considered a network that receives finite information. We varied 
the parameters of the network in a way that caused the correlations to 
change without changing the input information, and examined how 
this affected the information in the network (Fig. 2a, Online Methods 
(equations (6–11)) and Supplementary Modeling).

The network consists of an all-to-all connected homogeneous popu-
lation of leaky integrate-and-fire excitatory and inhibitory neurons. 
Connection strengths were chosen so that each neuron received large 
amounts of excitation and inhibition, the so-called balanced regime. In 
addition, each neuron received external input in the form of a common 
signal s corrupted by temporal white noise. The white noise has two 
components: an independent one, with variance s ind

2 , and a shared 
one, common to all neurons, with variance s s

2. Because of the shared 
component of noise, the information entering the network is finite.

We used a particular measure of information known as Fisher 
information, which is inversely proportional to the square of the dis-
crimination threshold of an ideal observer of the neural activity17,18. 
We focused on Fisher information because many animal experiments 
involve discrimination tasks. The rate at which Fisher information 
enters the network, the input information rate (Online Methods, 
equations (27) and (28)), is given by
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where N is the number of neurons in the network and T is the obser-
vation time window. We found that in the relevant regimes, time 

(1)(1)

(2)(2)

windows above 2 s and networks above 250 neurons, the dependence 
on T was relatively weak (Supplementary Fig. 1). Equation (2) implies 
that, for large time windows and a long leak time-constant, the output 
information is equal to the input information for all values of N: the 
network preserves all of its input information despite the spiking non-
linearity of integrate-and-fire neurons. It should be noted, however, 
that the information saturates as a function of the number of neurons, 
very much like what we saw in Figure 1c. However, unlike that case, 
equation (2) has no explicit dependence on the overall correlations 
in the network; instead, it depends only on the correlations inherited 
from the input. This implies that we should be able to change network 
parameters in such a way that correlations change without affecting 
information. This is indeed what we found: we could change the mean 
level of correlations by a factor 10 or more (Fig. 2b,c), simply by chang-
ing connectivity, without changing the information (Fig. 2d). Notably, 
this is true even for small networks (N = 75) for which the input infor-
mation has not yet saturated to its maximum value (Fig. 2d).

For the more realistic case of leaky integrate-and-fire neurons, it is 
much more difficult to compute information analytically, but simula-
tions revealed similar behavior: information was independent of the 
level of correlations for large networks (Fig. 2d). For small networks 
(N = 75), away from saturation, information decreased slightly with 
overall correlations, but this dependence was very weak compared to 
what we saw in Figure 1c. Indeed, for N = 500, information changed 
by a few percent when the correlations changed by a factor of 10  
(Fig. 2b,d), whereas information changed by 1,000% for the same 
relative change in correlations in Figure 1c.

What this example shows is that noise decorrelation does not neces-
sarily increase information in networks of spiking neurons receiving 
finite information. This doesn’t mean, of course, that correlations have 
no effect on information. The saturation of information was indeed a 
result of correlations (Figs. 1c and 2d). However, this saturation was 
a result of a very specific pattern of correlations. To show this, we left 
spiking networks and asked a general question. If the information in 
a network saturates as the number of neurons increases, what is the 
pattern of correlations that must be present? In other words, what do 
information-limiting correlations look like?

Information-limiting correlations in population codes
Consider a population composed of N neurons with bell-shaped tun-
ing curves. For such a population, the mean activity in response to 
stimulus s takes the shape of a hill of activity (Fig. 3a). If the distribu-
tion of neuronal responses conditioned on the stimulus, p(r|s), follows 
the exponential family with linear sufficient statistics, which is known 
to provide a good approximation to neural responses in vivo1,5,7,19–24, 
then Fisher information is given by

I = ′ ′−f fT 1 (3)(3)

Figure 1  The effect of correlations on a 
population code with translation invariant 
tuning curves. (a) A neuronal population with 
translation invariant tuning curves to the 
stimulus s (arbitrary units). (b) Correlations 
in vivo often decrease as a function of the 
difference in preferred stimuli, δs. This 
decrease is often reasonably well described  
by a circular Gaussian (as shown here) or  
an exponential function of the stimulus. (c) Information in a population of neurons with the tuning curves and correlations shown in a and b.  
The different curves correspond to different maximum correlation values (the correlation coefficient, ρ, at δs = 0). When neurons are independent  
(ρ = 0), the information scales linearly with the number of neurons. For ρ > 0, the information saturates as N increases. This plot is often used to  
argue that correlations such as those in b limit information in population codes.

a

–2 0
s

2
0

10

20

30

40

50

A
ct

iv
ity

 

b

0 1 2
|�s|

3
0

0.1

0.2

0.3

0.4

0.5

C
or

re
la

tio
n,

 �

c

102

101 102 103

103

104

Number of neurons

� = 0

� = 0.05
� = 0.1
� = 0.2
� = 0.4

In
fo

rm
at

io
n

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1412	 VOLUME 17 | NUMBER 10 | OCTOBER 2014  nature NEUROSCIENCE

a r t ic  l e s

where f′ is a vector of the derivatives of the tuning curve with respect to  
s (f = (f1(s), …, fN(s))T and f′ = df/ds), and Σ is the noise covariance matrix  
of the neural activity. The right side of equation (3) is sometimes referred 
to as the linear Fisher information; independent of the spike train statis-
tics, its inverse is the variance of a locally optimal linear estimator25.

What are the types of covariance matrices for which Fisher infor-
mation saturates as N goes to infinity? Or equivalently, what are the 
covariance matrices that limit the ability to detect a small change in 
the stimulus? With population codes, a small change in the stimulus 
induces a shift in the hill of activity (Fig. 3a). One kind of noise that 
can limit performance is noise that similarly shifts the hill of activity 
sideways from trial to trial across multiple presentations of the same 
stimulus. In this case, the noise looks just like the signal and cannot be 
averaged away. To see this more explicitly, consider a space in which 
each axis corresponds to the activity of one neuron. A particular noise-
less hill of activity corresponds to a point in that space, and the set of all 
possible noiseless hills (corresponding to all possible stimuli) lies on a 
curve in the same space (Fig. 3a,b). Noise that shifts only the position 
of the hill produces random shifts along the curve. This type of noise 
results in a distribution that lies only on the curve (Fig. 3b). In other 
words, given a true stimulus, the activity ends up somewhere along the 
curve corresponding to the set of noiseless hills. If the shifts are small 
compared with the curvature, this distribution can be approximated by 
one that lies along a line tangent to the curve (Fig. 3b). This distribu-
tion has a covariance matrix proportional to the product of the tuning 
curve derivatives, which we refer to as differential correlations; these 
are the correlations that limit information (Supplementary Fig. 2). For 
simplicity, here we focus on the approximate distribution.

To see more formally that differential correlations limit informa-
tion, consider a covariance matrix of the form

 = + ′ ′0 e f f T

where Σ0 is a covariance matrix that does not limit information, that is, a 
matrix such that I0 0

1= ′ ′−f fT  does not saturate as N goes to infinity. The 
information in this case (Online Methods, equation (34)) is given by

I I
I

=
+
0

01 e

(4)(4)

(5)(5)

Because I0 goes to infinity with N, this expression saturates at 1/ε 
as N goes to infinity. We found that this result is more general  
(Online Methods): differential correlations are the only correlations 
that can lead to information saturation in the large N limit. Notably, 
this result does not rely on any assumptions about the shape of the 
tuning curves or whether the tuning curves depend on a single vari-
able. Thus, it holds for any shape of the tuning curves (that is, not just 
Gaussian tuning curves; Fig. 3), and for tuning curves that depend 
on multiple variables, including time (the only difference when there 
are multiple variables is that total derivatives must be replaced with 
partial derivatives). This last point implies that our analysis applies 
to dynamical networks in which tuning curves change over time, as 
is the case, for instance, in the motor system26.

Although the effects of differential correlations are most prominent 
in the large N limit, they are also important for small populations, or for 
observation times that are so short that only a handful of neurons fire 
(thereby effectively reducing the population size). Even in these cases, 
increasing the level of differential correlations always lowers the infor-
mation. This is because differential correlations effectively move the hill 
of activity to a different place on every trial, and so necessarily make it 
harder to accurately decode the stimulus, independent of how many neu-
rons there are, the observation time window or the structure of the noise. 
This is true even if information is defined as the inverse of the variance 
of the locally optimal linear estimator, as opposed to Fisher information. 
In the large N limit and for long time windows, these two quantities are 
equal. However, for small time windows, Fisher information underesti-
mates the discrimination threshold of an optimal estimator27.

In addition, we found a subtle, yet important, result (Online 
Methods, equation (39)). Suppose correlations of the form uuT are 
added to the covariance matrix. If u is not parallel to f′, then infor-
mation decreases, but it does not saturate in the large N limit. Thus, 
only differential correlations can make information saturate as N 
increases; other correlations can decrease information, but cannot 
make it saturate.

Potential sources of differential correlations
Two factors contribute to the emergence of differential correlations 
in the brain: limited information in the world and approximate 

Figure 2  Decorrelation does not necessarily increase information. 
(a) Network architecture. Each neuron receives input from recurrent 
connections, and, in addition, external input with mean proportional 
to s, but corrupted by shared and independent noise (Online Methods, 
equation (9)). (b) Mean correlation coefficient as a function of the 
number of neurons. The three colors correspond to three networks that 
differ only in their connection strengths, but chosen so that, in all cases, 
the mean firing rate was close to 40 Hz. For a fixed number of neurons, 
the mean correlation coefficients can vary by more than a factor of 10 
across the three networks. Solid lines show the analytical predictions for 
non-leaky integrate-and-fire neurons, and the open and closed circles 
show the results of the simulations with non-leaky and leaky integrate-
and-fire neurons, respectively. Some of the open circles fall behind the 
closed ones and are therefore not visible. The observation time window 
was 10 s for the non-leaky integrate-and-fire neurons and 2 s for the 
leaky integrate-and-fire neurons. (c) Histogram of correlation coefficients 
(N = 500); same color code as in b. The red distribution has a mean 
very close to zero (0.013), whereas the green distribution has a mean 
of 0.108. (d) Information as a function of the number of output neurons (same color code as in b). The black solid line shows the input information 
(equation (1)) and the red solid line corresponds to the information in the input for infinite networks (equation (1) with N taken to be infinity). As in b, 
open and closed circles show the results of the simulations with non-leaky and leaky integrate-and-fire neurons, respectively. Inset, information as a 
function of the correlations for each network size. Unlike in Figure 1c, the information at which the network saturates (open dots, N = 500) has a very 
weak dependence on the mean correlations; instead, all three networks show nearly the same asymptotic value of information. Even for small networks 
away from the saturation, information is independent of overall correlations for non-leaky integrate-and-fire neurons, and only weakly dependent on 
correlations for leaky integrate-and-fire neurons. Thus, smaller correlations do not necessarily imply more information. Error bars correspond to s.e.m.
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computations. The first factor is quite simple. If the information pro-
vided by the outside world about a stimulus, s, is finite, then infor-
mation must saturate as we increase the number of neurons coding 
for s, just as in Figures 1c (with ρ ≠ 0) and 2d. This in turn implies 
the presence of differential correlations (assuming the tuning curves 
don’t disappear altogether). The second factor is suboptimal compu-
tations28. If information saturates because of finite information in 
the world, and the brain performs suboptimal computation on this 
input, the value at which information saturates must decrease. This 
is because, by definition, suboptimal computation must induce an 
information loss. Given that the amount of information at saturation 
is controlled by differential correlations, suboptimal computations 
must also increase differential correlations (again assuming that the 
tuning curves don’t change and that suboptimal computations intro-
duce additional variance, not bias).

This tells us when differential correlations arise, but it doesn’t tell 
us how they arise. A natural culprit is shared connectivity. Indeed, 
it has been proposed that shared connectivity among neurons with 
similar tuning properties induces positive correlations that limit 
information29. The intuition is quite simple. If neurons share input, 
the resulting shared variability in their response cannot be averaged 
out. Although this intuition is sometimes valid, it isn’t always: mul-
tiple neurons may partially share different aspects of the variability, 
and those differences can be combined to eliminate the variability 
almost entirely8,30. To demonstrate this, we simulated a feedforward 
network, wired so that each neuron in the output layer received a 
large number of shared connections from neurons in the input layer 

(Fig. 4a). We used independent neurons in the input layer, and the 
input and output layers contained the same number of neurons, 
such that input information scaled with the number of neurons. The 
drive to the neurons in the output layer was chosen so that they all 
fired at close to 50 Hz; this produced near Poisson statistics (Fano 
factors of 0.9; Fig. 4b). Because of shared connections, the neurons 
in the output layer were correlated, with average correlation coef-
ficients around 0.1 (Fig. 4c and Supplementary Modeling). Despite 
these correlations, information grows linearly with the number of 
neurons (Fig. 4d), with the same slope as the information in the 
input layer (data not shown). Thus, this network, similar to the one 
we studied in Figure 2, preserves the information it receives. Shared 
connectivity therefore does not necessarily induce information- 
limiting correlations.

Another potential source of information-limiting correlations is 
shared fluctuations in the excitability, or gain, of neurons. This has 
recently been shown to be a major source of correlations in cortex, 
particularly in anesthetized animals31,32. In the case of population 
codes like the one shown in Figure 3, this would induce fluctua-
tions in the height of the hill of activity, but not in the position of 
this hill. As such, the correlations induced by these shared fluctua-
tions have little effect on discrimination tasks. However, they could 
create differential correlations for detection task, thereby making 
it harder to determine whether or not an object is present or what 
its overall contrast is. Note that these arguments are not specific 
to bell-shaped tuning curves, but also apply to curves with other 
shapes, including sigmoidal.
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Figure 4  Shared connections do not necessarily induce information 
limiting correlations. (a) Network architecture. The network consists of 
two layers. The input layer contains N neurons. These are modeled as 
white noise process and they project to N output neurons. The output 
neurons, which were not recurrently connected, were modeled as non-leaky 
integrate-and-fire neurons. The output neurons also receive independent 
and identically distributed (i.i.d.) noise. A parameter f controls the 
probability that a connection is shared by two neurons. (b) The Fano factor 
was roughly constant at around 0.9. Not shown are the firing rates; these 
were held at 50 Hz, independent of network size, by adjusting the mean 
drive to each neuron. (c) Correlations were also roughly constant as the size 
of the network increases. (d) Information in the output layer (which was 
the same as in the input layer; data not shown). Unlike in Figure 1c, where 
positive correlations led to information saturation as a function of the 
number of neurons, information increased linearly with network size. Thus, 
the correlations induced by the shared connectivity do not limit information 
in this case. In b–d, the solid lines indicate analytical predictions, the dots 
show the results of simulations and error bars represent s.e.m.

Figure 3  Differential correlations induced by a shifting hill. (a) Population 
activity for neurons with translation invariant tuning curves (as in  
Fig. 1a), with neurons ranked according to their preferred stimulus. The 
red and pink curves correspond to the population response to the same 
input on two different trials. We assumed that the variability is such 
that the hill simply translated sideways from trial to trial. When this was 
the case, correlations were mostly proportional to the product of the 
derivatives of the tuning curves. The two blue neurons were positively 
correlated because the derivatives of their tuning curves were negative for 
both neurons, and the product of their derivatives was therefore positive. 
In contrast, the green neuron was negatively correlated with either of the 
blue neurons because its derivative had the opposite sign as theirs.  
(b) Population patterns of activity, as in a, can be thought of as points in an N-dimensional space, in which each axis corresponds to the activity of one 
neuron. Only two neural dimensions are shown here, out of N. As the hill of activity shifts with s, the mean population activity traces out a curve (the 
black curve labeled f(s)). Pure information-limiting noise looks like a sideways shift of the hill, corresponding to movement along the curve. In this case, 
the activity has a probability distribution that wraps along the curve f(s), as shown in yellow. If the variability is small compared with the curvature of 
the manifold, the yellow distribution can be approximated by the blue distribution that lies along the tangent to the curve, corresponding to the f′(s) 
direction, with a resultant covariance matrix proportional to f′(s)f′(s)T.

a 100 b
80

60

40

20

0
–2 –1

Preferred s

A
ct

iv
ity

0 1 2

p(r |s)

f′

Information-
limiting noise

f(s)

ri

rj

f′f′T noise

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1414	 VOLUME 17 | NUMBER 10 | OCTOBER 2014  nature NEUROSCIENCE

a r t ic  l e s

Differential correlations might be small and masked
We then turned to the problem of detecting differential correlations in 
experimental data. One approach is to look for them directly. When 
differential correlations are the only correlations, they are easy to 
find. One can simply plot the correlation coefficient between any pair 
of neurons as a function of the difference in preferred stimulus, and 
average over preferred stimuli, as is often done in experiments33. For 
bell-shaped tuning curves, the resulting plots have a very character-
istic shape (Fig. 5a): positive when the difference in preferred stimu-
lus is small and negative when the difference is large. Moreover the 
correlations between pairs of cells are stimulus dependent and have 
a characteristic shape when plotted as a function of stimulus. We plot-
ted the correlation coefficient versus stimulus for two pairs of neurons 
(Fig. 5b), one with preferred stimuli at ±0.5 and the other with pre-
ferred stimuli at ±0.25. The negative correlations at zero (where the 
stimulus falls on parts of the tuning curves that have opposite slope 
for the two neurons) and the positive side lobes (where the stimulus 
falls on parts of the tuning curves that have the same slope for the two 
neurons) were telltale signs of differential correlations.

Correlations such as these (Fig. 5a) have, to the best of our 
knowledge, been seen in only one study34. In that study, activity  
corresponded to a slowly diffusing hill of activity in a working  
memory—ideal conditions for the emergence of differential correla-
tions. However, such correlations have not been observed in other 
experiments. Instead, correlations, particularly in sensory areas, 
look like those shown in Figure 1b; they do not have the stimulus 
dependence shown in Figure 5b33,35. This would appear to suggest 
that differential correlations in vivo are very rare, or at the very least 
show up under only the most favorable conditions. However, that 
is not the case. Figure 5a,b correspond to almost pure differential 
correlations (with additional independent noise), but it is quite likely 
that the nervous system contains additional correlations that do not 
limit information, and those correlations can mask the differential 
component. Thus, the pattern of correlations predicted by pure dif-
ferential correlations may be very hard to see. Indeed, in Figure 2 of  
ref. 36, the correlations look somewhat like those shown in Figure 5b,  
in the sense that they are slightly negative when the preferred stimu-
lus is zero and slightly positive away from zero. However, the modu-
lation was weak compared with the error bars, making it difficult to 
draw strong conclusions.

To see the masking effect in a simplified setting, consider tuning 
curves of the form

f s a b s si i( ) cos( )= + −

with a > b (to avoid negative or zero firing rates), and a covariance 
matrix given by

Σij ij i jc c s s= − + −( ) cos( )1 d

where δij is 1 when i = j and 0 otherwise and the preferred stimuli, 
si, are equally spaced. It can be shown for this case that information 
saturates with the number of neurons (Supplementary Modeling). 
Yet the correlations have no stimulus dependence (unlike in Fig. 5a), 
and there appears to be no differential component. This, however, is a 
bit of an illusion. We can rewrite the covariance matrix as

Σij ij i j i jc c s s s s c s s s s= − + − − + − −( ) cos( )cos( ) sin( )sin( ).1 d

The last term, c sin(s − si) sin(s − sj), is proportional to ′ ′f s f si j( ) ( ), 
which is exactly the kind of correlation that limits information.

Masking via the above mechanism is one way that differential cor-
relations can be hidden. They may also simply be small compared 
with the other correlations. To illustrate this, we considered the more 
biologically realistic case of heterogeneous tuning curves, with ampli-
tudes and widths varying from one neuron to the next (Fig. 6a). This 
case is important because, for heterogeneous tuning curves and the 
correlations shown in Figure 1b (and, in fact, for any correlational 
structure that is sufficiently independent of the tuning curves), infor-
mation does not saturate with N15,16 (Fig. 6b). However, adding even 
a small differential component causes information to saturate. This 
saturation is shown by the blue curve in Figure 6b, which is the infor-
mation in a population with heterogeneous tuning curves (that is, a 
set of tuning curves with varying peak firing rates; Fig. 6a), with the 
covariance matrix set to Σ0 + εf′f′T. Here, Σ0 corresponds to the kind 
of correlations shown in Figure 1b, and ε = 0.0027 (Supplementary 
Modeling). Notably, the presence of the differential component (f′f′T) 
cannot be revealed by plotting the correlations as a function of the 
difference in preferred stimuli. The correlation coefficients estimated 
empirically from 1,000 trials looked essentially the same whether or 
not there were information-limiting correlations (Fig. 6c).

These examples show that it is difficult to detect differential cor-
relations simply by inspecting the noise correlations. This is because 
differential correlations can be very small and may be masked by non–
information-limiting correlations. However, it is possible to detect 
the effect of differential correlations on information (see below). This 
must be done by estimating information directly, rather than by esti-
mating correlations.

Discrete classification and other performance measures
Although our results thus far were derived for fine discrimination 
and Fisher information, they generalize to coarse discrimination 
between two classes. In this case the information-limiting correla-
tions are proportional to ∆f∆fT, where ∆f is the mean difference in 
neural responses for the two classes; this is just the discrete version 
of correlations proportional to f′f′T. To illustrate this, we plotted the 
percent correct in a binary categorization task as a function of the 
number of neurons (Fig. 6d). As before, we compare two correla-
tional structures: Σ0 and Σ0 + ε∆f ∆fT, where Σ0 corresponds to the 
kind of correlations shown in Figure 1b (the same covariance matrix 
used in Fig. 6b) and ε was set to 0.2742 (Supplementary Modeling). 
Asymptotic performance was 75% in the presence of correlations, but 
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Figure 5  Differential correlations. (a) Average correlation coefficient as a 
function of the difference in preferred stimuli for a population of neurons 
with differential correlations (as shown in Fig. 3a) plus independent 
Poisson noise. The average was taken over all pairs of neurons with the 
same difference in preferred stimuli, δs. Correlations were negative  
for large δs, in contrast to the correlations found in vivo (Fig. 1b).  
(b) Correlation coefficient between two pairs of neurons as a function  
the stimulus. The blue line represents a pair of neurons with preferred 
stimuli −0.5 and 0.5. The red line represents a pair with preferred  
stimuli −0.25 and 0.25. Correlations were strongly modulated by the 
value of the stimulus.
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100% when these correlations were removed, once again illustrating 
that differential correlations limit performance.

Our results are also valid for two-alternative forced-choice tasks in 
which subjects are asked to effectively determine a boundary. A classic 
example is the well-known motion dot task37, in which subjects are 
asked to discriminate upward versus downward motion. The difficulty 
of this task is determined by the coherence of the dots (the percent-
age of dots moving coherently upward or downward), and is hardest 
when the coherence is near zero. This task would seem to involve a 
coarse discrimination of direction of motion (up versus down), and 
is often referred to as a coarse discrimination task. However, subjects 
are effectively asked whether coherence is greater than or less than 
zero, with greater than zero corresponding to up, and less than zero 
to down, so this is really a fine discrimination task around a coher-
ence of zero. Information-limiting correlations are, then, the ones 
proportional to the product of the derivative of the tuning curves with 
respect to coherence, evaluated at a coherence of zero. The fact that 
the derivative is with respect to coherence, rather than direction of 
motion, illustrates an important point: correlations that limit infor-
mation are different for different stimuli and tasks.

Detecting differential correlations by directly measuring 
information
Although it is typically not possible to observe differential correla-
tions directly, we can infer their existence by computing information 
versus the number of neurons, and determining where the informa-
tion saturates. However, although it is straightforward in principle to 
compute information from data, in practice, care must be taken.

Correlations between spike trains are typically collected by record-
ing a few neurons at a time with single electrodes, tetrodes or elec-
trode arrays. Even with large electrode arrays, most neurons are not 
recorded simultaneously. Thus, if one built a covariance matrix based 
on that data, many entries would be empty. Unfortunately, estimating 
information from such an incomplete covariance matrix is prone to 
profound errors. This is because one must use interpolation tech-
niques to fill in the missing entries. For example, a common approach 
is to assume that correlations decrease with the distance between pre-
ferred stimuli (Fig. 1b). However, this is almost guaranteed to lead to 
a serious mis-estimation of information: if the tuning curves are not  
translation invariant, as is the case in vivo (and as is shown in Fig. 6a),  
then correlations of this type do not limit information (Fig. 6b).  

One would mistakenly conclude that information is not limited 
even when the population code contains an information-limiting  
component. This is, in fact, a general problem: one usually relies on 
strong assumptions about the parametric form of the covariance 
matrix, and estimates of information will depend more on the param-
eterization than on the scarce covariance data.

To illustrate this point, we performed simulations in which we 
measured correlations among N/2 pairs of neurons and, as proposed 
previously38 (Supplementary Modeling), we filled in the missing 
elements by approximately resampling the measured correlation coef-
ficients. This approach greatly over-estimated the information and, 
not surprisingly15,16, failed to reveal that the information saturates 
(Fig. 7a). It should be noted that, in a previous study10, this approach 
did reveal saturating information. This is because the study used a 
suboptimal decoder (Supplementary Modeling).

Even when all the neurons are recorded simultaneously, such that all 
pairwise correlations can be measured, estimating information can be 
tricky because of the limited number of trials. In Figure 7b, we show 
the information obtained directly via equation (3) for the information-
limited neuronal population simulated in Figure 6a. Here, ‘directly’ 
means that we estimated derivatives of the tuning curves and the correla-
tions from data, inverted the covariance matrix, and used equation (3). 
Even for 2,400 trials, the information obtained in this way grew linearly 
with the number of neurons; it took 4,000 trials for a hint of saturation 
to emerge. Similar results were obtained with ridge regularization of the 
covariance matrix (Supplementary Modeling).

Fortunately, so long as enough neurons are recorded simulta-
neously, it is possible to obtain a reliable estimate of information. 
This can be done using a cross-validated decoder of neural activity 
(trained with gradient descent and early stopping39, a method that 
bypasses the matrix inversion step of the direct method described 
above, making it much more robust; Supplementary Modeling). This 
approach revealed information saturation with only a few hundred 
trials (Fig. 7c). It should be noted, however, that although a linear 
decoder is guaranteed to reveal information saturation when the true 
information saturates, the reverse is not true: finding that the infor-
mation estimated by a linear decoder saturates does not imply that 
the true information saturates, as that decoder may be suboptimal 
(Supplementary Modeling).

Perhaps surprisingly, although differential correlations almost 
exclusively determine information in the large N limit, the locally 

Figure 6  Small differential correlations can have a large effect on 
information. (a) A population code with tuning curves of varying 
amplitudes. (b) Information as a function of the number of neurons  
for the population code shown in a. The two curves correspond to  
two different covariance matrices, Σ0 (red) and Σ0 + εf′f′T (blue),  
where Σ0 is a covariance matrix in which pairwise covariances  
follow a decaying exponential function of the cosine of the difference 
in preferred stimuli (as in Fig. 1b; see Supplementary Modeling). 
Information saturated in the presence of differential correlations  
(the εf′f′T component). (c) Empirically estimated correlations from 1,000 
trials plotted as function of the difference in preferred stimuli for the  
two covariance matrices Σ0 (red) and Σ0 + εf′f′T (blue). The two 
distributions of correlation coefficients were nearly indistinguishable 
even though the amount of information was very different (b).  
(d) Percentage correct in a binary classification task as a function  
of the number of neurons. The red and blue curves correspond  
to two different covariance matrices, Σ0 (red) and Σ0 + ε∆f ∆fT (blue), 
where Σ0 is as described in b and ∆f is the mean difference of  
activity of the neurons for the two stimulus classes; the black  
curve corresponds to the performance of an independent population. 
Performance was limited to 72% when ∆f∆fT correlations were present, but reached the value predicted for an independent code when there were no 
∆f∆fT correlations (Supplementary Modeling). Data points and error bars represent mean and s.e.m., respectively.
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optimal linear decoder does not depend on them. Specifically, if 
the covariance matrix is Σ0 + εf′f′T, as in equation (4), the optimal 
decoder depends on Σ0, but not on ε. Intuitively, this is because even 
an optimal decoder cannot get rid of the fluctuations resulting from 
the differential correlations, as they simply shift the hill of activity 
without leaving any trace of whether it was shifted by the stimulus 
or by noise. All the decoder can do is to ensure that the correlations 
resulting from Σ0 have been properly taken into account (Online 
Methods, equations (33), (36) and (37)).

To conclude, in large populations of neurons, it is typically difficult 
to assess the patterns of correlated activity with sufficient accuracy to 
determine whether or not differential correlations exist, and so it is 
difficult to conclude anything about information in a population from 
measurements of correlations. Nonetheless, it is possible to accurately 
assess information and, if enough neurons are recorded, to find out 
whether sensory information in a neural population saturates. It is 
critical to always use neurons that are recorded simultaneously (that 
is, never fill in missing entries in the covariance matrix). But even with 
simultaneously recorded neurons, it is best to use a method such as a 
cross-validated decoder to obtain accurate estimates of information 
(Fig. 7c and Supplementary Fig. 3), as opposed to direct estimates 
obtained via equation (3) (Fig. 7b).

DISCUSSION
The fact that information can saturate in population codes with posi-
tive correlations, such as those shown in Figure 1b, has often been 
used to argue that positive noise correlations among neurons with 
similar tuning properties limit information. It has also been proposed 
that such positive correlations are the unavoidable consequence of 
shared input connections between neurons with similar tuning, 
thereby suggesting that shared connections might be the main cause 
of information limitation in neural circuits29.

Our results contradict this perspective in several respects. First, we 
found that, when information is limited, the limit is a result of dif-
ferential correlations; that is, correlations proportional to the product 
of the derivatives of the tuning curves. These correlations necessarily 
emerge in any (sufficiently large) network receiving finite information 
and/or performing suboptimal computations. Second, correlations 
induced by shared connections did not necessarily limit information. 
And third, information was not limited by the overall level of correla-
tions or by correlations that fell off with the difference in preferred 
stimuli (also see refs. 15,16), from which it follows that decorrelation 
does not necessarily increase information.

It is crucial to keep in mind that these results, particularly the last 
one about decorrelation, are valid only for noise correlations (the 
correlations among neurons at fixed stimulus). In the case of sig-
nal correlations (the correlations between the mean responses of the 
neurons as the stimulus varies), the story is very different and is very 
well understood, thanks to previous studies (for a thorough discus-
sion, see ref. 40).

We also found that it is very difficult to detect differential correla-
tions in vivo by measuring the correlations directly, as the differential 
correlations are likely to be masked by other correlations that do not 
limit information. Ultimately, however, the main reason to look for 
such correlations is to determine whether information is limited in 
a particular area. Thus, a better approach is to measure information 
directly by decoding the neural activity. Notably, this decoding must 
be done on simultaneously recorded neurons, and not on sets of neu-
rons recorded on different trials. In the latter case, even if one fills in 
the missing entries in the covariance matrix, it is very likely that the 
critical differential component will be missed, and the information 
will therefore be radically overestimated.

These results have an important implication: the effect of attention 
or perceptual learning on information in a particular area cannot be 
assessed by simply measuring pairwise correlations. Thus, the fact 
that pairwise correlations decrease when attention is engaged, which 
has been observed in several studies10,11, cannot be taken as evidence 
that information must have gone up, nor as a mechanism that can 
explain any improved performance. The only way to determine the 
true effect of correlations in these kinds of studies is to record from 
large populations of neurons in parallel and decode the neural activity 
with and without attention, or before and after perceptual learning.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 7  Estimating information from neuronal 
populations with differential correlations 
(Supplementary Modeling). (a–c) Empirical 
estimate of Fisher information versus the 
number of sampled neurons (N) and number  
of trials (M). In all panels, the solid blue  
line shows the average Fisher information as 
a function of the number of simultaneously 
sampled neurons, with the average calculated 
over 20 random sets of N neurons; the black horizontal line shows the true Fisher information for the entire population, which is assumed to have 
infinite size. Error bars represent s.e.m. The same color code for M is used in all panels. (a) Fisher information computed from equation (3), using 
a covariance matrix in which only N/2 correlation values were measured experimentally. The missing entries were estimated from the empirical 
measurements by requiring that they have approximately the same statistics as the observed correlation coefficients27. Regardless of the number of 
trials, the estimated information failed to reveal the saturation of information, thereby missing the presence of differential correlations. (b) Fisher 
information again computed from equation (3), but using a covariance matrix estimated from N simultaneously recorded neurons. The estimated 
information still missed the information saturation even for thousands of trials. (c) Fisher information estimated with a locally optimal linear estimator 
trained with early stopping to prevent overfitting. This method consistently returned a lower bound on the true information for the entire population 
(horizontal black line), even for a small number of trials and neurons. As a result, it revealed the presence of information limiting correlations.  
Data points represent mean values in all panels.

0 200 400 600 800 1,000
0

a

M = 2,400
M = 4,000

M = 400

M = 1,600
M = 800

Number of sampled neurons

1,000

2,000

3,000

4,000

In
fo

rm
at

io
n

In
fo

rm
at

io
n

b

Number of sampled neurons
0 200 400 600 800 1,000

0

200

400

600

800

1,000

In
fo

rm
at

io
n

c

Number of sampled neurons
0 200 400 600 800 1,000

0

200

400

600

800

1,000

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3807
http://www.nature.com/doifinder/10.1038/nn.3807
http://www.nature.com/doifinder/10.1038/nn.3807


nature NEUROSCIENCE  VOLUME 17 | NUMBER 10 | OCTOBER 2014	 1417

a r t ic  l e s

AUTHOR CONTRIBUTIONS
R.M.-B., J.B., P.L. and A.P. conceived the project. R.M.-B., J.B., I.K., X.P., P.L. and 
A.P. developed the theory and wrote the manuscript. 

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1.	 Tolhurst, D.J., Movshon, J.A. & Dean, A.D. The statistical reliability of signals in 
single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 
(1983).

2.	 Averbeck, B.B., Latham, P.E. & Pouget, A. Neural correlations, population coding 
and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

3.	 Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and 
its implication for psychophysical performance. Nature 370, 140–143 (1994).

4.	 Maynard, E.M. et al. Neuronal interactions improve cortical population coding of 
movement direction. J. Neurosci. 19, 8083–8093 (1999).

5.	 Averbeck, B.B. & Lee, D. Neural noise and movement-related codes in the macaque 
supplementary motor area. J. Neurosci. 23, 7630–7641 (2003).

6.	 Gu, Y. et al. Perceptual learning reduces interneuronal correlations in macaque 
visual cortex. Neuron 71, 750–761 (2011).

7.	 Adibi, M., McDonald, J.S., Clifford, C.W. & Arabzadeh, E. Adaptation improves 
neural coding efficiency despite increasing correlations in variability. J. Neurosci. 
33, 2108–2120 (2013).

8.	 Abbott, L.F. & Dayan, P. The effect of correlated variability on the accuracy of a 
population code. Neural Comput. 11, 91–101 (1999).

9.	 Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 
(2010).

10.	Cohen, M.R. & Maunsell, J.H. Attention improves performance primarily by reducing 
interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

11.	Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Spatial attention decorrelates 
intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 
(2009).

12.	Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 
327, 584–587 (2010).

13.	Sompolinsky, H., Yoon, H., Kang, K. & Shamir, M. Population coding in neuronal 
systems with correlated noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 
051904 (2001).

14.	Yoon, H. & Sompolinsky, H. The effect of correlations on the Fisher information  
of population codes. in Advances in Neural Information Processing Systems  
(eds. Kearns, M.S., Solla, S. & Cohn, D.A.) 167–173 (MIT Press, Cambridge, 
Massachusetts, 1999).

15.	Shamir, M. & Sompolinsky, H. Implications of neuronal diversity on population 
coding. Neural Comput. 18, 1951–1986 (2006).

16.	Ecker, A.S., Berens, P., Tolias, A.S. & Bethge, M. The effect of noise correlations in 
populations of diversely tuned neurons. J. Neurosci. 31, 14272–14283 (2011).

17.	Papoulis, A. Probability, Random Variables and Stochastic Process (McGraw-Hill, 
New York, 1991).

18.	Paradiso, M.A. A theory of the use of visual orientation information which exploits 
the columnar structure of striate cortex. Biol. Cybern. 58, 35–49 (1988).

19.	Graf, A.B., Kohn, A., Jazayeri, M. & Movshon, J.A. Decoding the activity of neuronal 
populations in macaque primary visual cortex. Nat. Neurosci. 14, 239–245 
(2011).

20.	Berens, P. et al. A fast and simple population code for orientation in primate V1. 
J. Neurosci. 32, 10618–10626 (2012).

21.	Maimon, G. & Assad, J.A. Beyond Poisson: increased spike-time regularity across 
primate parietal cortex. Neuron 62, 426–440 (2009).

22.	Gershon, E.D., Wiener, M.C., Latham, P.E. & Richmond, B.J. Coding strategies in 
monkey V1 and inferior temporal cortices. J. Neurophysiol. 79, 1135–1144 (1998).

23.	Qi, X.L. & Constantinidis, C. Variability of prefrontal neuronal discharges before and 
after training in a working memory task. PLoS ONE 7, e41053 (2012).

24.	Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread 
cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

25.	Beck, J., Bejjanki, V.R. & Pouget, A. Insights from a simple expression for linear 
fisher information in a recurrently connected population of spiking neurons. Neural 
Comput. 23, 1484–1502 (2011).

26.	Churchland, M.M. & Shenoy, K.V. Temporal complexity and heterogeneity of single-
neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 4235–4257 
(2007).

27.	Berens, P., Ecker, A.S., Gerwinn, S., Tolias, A.S. & Bethge, M. Reassessing optimal 
neural population codes with neurometric functions. Proc. Natl. Acad. Sci. USA 
108, 4423–4428 (2011).

28.	Beck, J.M., Ma, W.J., Pitkow, X., Latham, P.E. & Pouget, A. Not noisy, just wrong: the 
role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

29.	Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: 
Implications for connectivity, computation and information coding. J. Neurosci. 18, 
3870–3896 (1998).

30.	Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Correlated neuronal discharges 
that increase coding efficiency during perceptual discrimination. Neuron 38,  
649–657 (2003).

31.	Goris, R.L., Movshon, J.A. & Simoncelli, E.P. Partitioning neuronal variability.  
Nat. Neurosci. 17, 858–865 (2014).

32.	Ecker, A.S. et al. State dependence of noise correlations in macaque primary visual 
cortex. Neuron 82, 235–248 (2014).

33.	Kohn, A. & Smith, M.A. Stimulus dependence of neuronal correlation in primary 
visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

34.	Wimmer, K., Nykamp, D.Q., Constantinidis, C. & Compte, A. Bump attractor 
dynamics in prefrontal cortex explains behavioral precision in spatial working 
memory. Nat. Neurosci. 17, 431–439 (2014).

35.	Huang, X. & Lisberger, S.G. Noise correlations in cortical area MT and their potential 
impact on trial-by-trial variation in the direction and speed of smooth-pursuit eye 
movements. J. Neurophysiol. 101, 3012–3030 (2009).

36.	Ponce-Alvarez, A., Thiele, A., Albright, T.D., Stoner, G.R. & Deco, G. Stimulus-
dependent variability and noise correlations in cortical MT neurons. Proc. Natl. 
Acad. Sci. USA 110, 13162–13167 (2013).

37.	Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual 
decision. Nature 341, 52–54 (1989).

38.	Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, T.A. A computational 
analysis of the relationship between neuronal and behavioral responses to visual 
motion. J. Neurosci. 16, 1486–1510 (1996).

39.	Series, P., Latham, P. & Pouget, A. Tuning curve sharpening for orientation 
selectivity: coding efficiency and the impact of correlations. Nat. Neurosci. 7, 
1129–1135 (2004).

40.	Barlow, H. Redundancy reduction revisited. Network 12, 241–253 (2001).np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


nature NEUROSCIENCE doi:10.1038/nn.3807

ONLINE METHODS
Here we describe the recurrent network of leaky integrate-and-fire neurons used 
in our simulations, and compute information analytically in that network in the 
limit of long time windows and small leak. We then switch to a more theoretical 
topic and show that differential correlations, and only differential correlations, 
limit information in large networks.

A network of leaky integrate-and-fire neurons. We computed the mean and 
covariance of the response of a network of N leaky integrate-and-fire neurons. 
Our starting point is the time evolution equation for the membrane potential, 
denoted Vi. For the leaky integrate-and-fire neuron, this is given by

dV
dt

V J h t t g s M ti i

m
ij

j
ij

l
j
l

i ik
k

k= − + − + +∑ ∑ ∑t
x( ) ( ) ( )

Here τm is the membrane time constant (set to 20 ms), Jij is the connectivity 
matrix (so the sum over j runs from 1 to N), t j

l  is the time of the lth spike of  
neuron j, h t tij j

l( )−  is the synaptic response to that spike (its properties are given 
in equation (11) and preceding text, and the form for hij(t) that we use in our 
simulations is given in Supplementary Modeling), gi(s) is the mean synaptic 
drive, which depends on a (potentially multi-dimensional, but time-independent) 
stimulus, s, and ξk(t) is time-dependent Gaussian noise

〈 ′ 〉 = − ′′ ′x x dk k kkt t C t t( ) ( ) ( )

The autocorrelation function, C(τ), is chosen to integrate to 1,

d C
−∞
∞

∫ =t t( ) 1

and δkk′ is the Kronecker delta. The last term in equation (6) corresponds to a 
mixing of noises, where Mik is an arbitrary mixing matrix, taken in our simula-
tions to consist of both independent and shared noise; the latter is taken into 
account by letting Mik ind ik s k= +s d s d 0. Consequently,

M t t tik
k

k ind i s∑ = +x s x s x( ) ( ) ( )0

The neuron emits a spike when the voltage reaches a threshold, denoted θi for 
neuron i, after which the voltage is reset to Vr , which we take to be 0. To take care 
of the reset, we introduce a negative self-current,

J

h t t
ii i

ii

= −
=

q
d( ) ( )

where δ(t) is the Dirac delta function. When i ≠ j, hij(t) corresponds to a brief 
current pulse; it is zero when t < 0 and, for convenience we choose it so that it 
integrates to 1,

dth tij0
1

∞
∫ =( )

This gives hij(t) units of inverse time, and so Jij has units of voltage. For now, 
we take Jij to be an arbitrary matrix. In our simulations, however, we consider 
excitatory-inhibitory networks.

Fisher information for long time windows and small leak. Although we would 
like to compute Fisher information analytically for this network, that is not, as far 
as we know, possible. However, there is one limit in which we can compute it: the 
observation time window is long, and the leak time constant, τm, is infinite (corre-
sponding to a non-leaky integrate-and-fire neuron). We consider that limit here.

Our starting point is to compute spike count in a window of size T. This is 
straightforward: simply integrate both sides of equation (6) from 0 to T. This 
gives

∆V T J dt h t t Tg s M dt ti ij
j

T
ij

l
j
l

i ik
k

T
k( ) ( ) ( ) ( )= − + +∑ ∫ ∑ ∑ ∫0 0

x

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)

(12)(12)

where ∆V T V T Vi i i( ) ( ) ( )≡ − 0 . The first integral is approximately the spike count 
at time T, denoted nj(T) for neuron j,

dt h t t n T n T
T

ij
l

j
l

j j0∫ ∑ − = +( ) ( ) ( )d

The term dn tj( ) comes from the fact that hij(t) has finite width in time (if i ≠ j). 
Note that δnj is at most 1. The mean of the second integral is zero, and, using 
equation (7), its variance is given by

Var dt t dt dt C t t
T

k
T T

0 0 0∫ ∫ ∫





= ′ − ′x ( ) ( )

If the correlation time is zero (corresponding to delta-correlated white noise), the 
double integral on the right is just T. However, for finite correlation time, there is 
a small reduction due to edge effects. To take that into account, we write

Var dt t T
T

k c0∫






=x ( )

where Tc is smaller than T by about the correlation time. Thus,

dt t T
T

k c k0
1 2∫ =x h( ) /

where ηk are a set of uncorrelated, zero mean, unit variance Gaussian random 
variables,

〈 〉 =′ ′h h dk k kk

Inserting equations (13) and (16) into equation (12), yields

0 1 2= + + +∑ ∑J n T Tg s T M Tij
j

j i c ik
k

k i( ) ( ) ( )/ h g

where the noise term, γi, is given by

g di ij
j

j iT J n T V T( ) ( ) ( )≡ −∑ ∆

How big is γi(T)? In the large T limit, there are typically a large number of 
spikes, so δnj is small compared to nj. Moreover, ∆Vi is at most θi. Consequently, 
in this limit, γi(T) is usually small compared with T. However, it isn’t always 
small: although ∆Vi can be at most θi, it can be negative, and it can be large and  
negative. This happens whenever a neuron receives a consistently negative cur-
rent, in which case ∆Vi(T) is proportional to −T. We can partially solve this 
problem by simply ignoring any neuron that doesn’t spike. Unfortunately, this 
is only a partial solution, because it’s possible for a neuron to fire once or twice 
due to noise, and then for the voltage to steadily decrease with time; this would 
again mean ∆Vi ∝ −T in the large T limit. This can be taken care of by ignoring 
the transients, which we effectively do in our simulations: we run one very long 
simulation, divide them into intervals of either 2 or 10 s, and collect spike counts 
in those intervals.

Assuming that the connectivity matrix, Jij, is invertible, we can solve equation 
(18) directly for spike count. To simplify notation we switch to vectors and matrices,  
for which we use bold font. Multiplying both sides of equation (18) by J−1,  
we have

n J g J M= − − +− −T s T Tc
1 1 1 2( ) ( )( )/  

The mean and covariance of the spike count are therefore given by

Mean

Covar

[ ] ( )

[ ] (

[ ]
/

n J g

n J MM M

= − + 〈 〉

= + 〈 〉 + 〈

−

− −

1

1 1 2

T s

T Tc c



 T T 〉〉 + 〈 〉





− −T T T TM J) Tc
1 

where the superscript −T denotes transpose and inverse, and, for clarity,  
we suppress the fact that h and g depend on T.

(13)(13)

(14)(14)

(15)(15)

(16)(16)

(17)(17)

(18)(18)

(19)(19)

(20)(20)

(21)(21)
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Linear Fisher information. Our next step is to compute the linear Fisher infor-
mation, both in the input and in the output. In general, for a random variable 
with stimulus-dependent mean f(s) and covariance matrix Σ(s), the linear Fisher 
information is given by41

I s s s= ′ ′−f f( ) ( ) ( )T 1

where a prime denotes a derivative with respect to s (if s were a vector, I would 
be the Fisher information matrix, but here we restrict ourselves to scalars). Using 
the expression of the covariance in equation (21), and working to lowest non-
vanishing order in 1/T1/2, we find that the linear Fisher information in the spike 
train, denoted Iout, is given by

I T s O T sout = ′ +



 ′− −

g MM g( ) ( ) ( )/T T 1 2 1

How does this compare to the information in the input? The latter is the infor-
mation available to an observer that has direct access to the current, g M( )s + .  
After observing this current for time T, the mean is T sg( ) and, to lowest non-
vanishing order in 1/T, the variance is TMMT. Thus, using equation (22), the 
Fisher information in the input, denoted Iin, is given by

I T s sin = ′ ′−g MM g( ) ( )[ ]T T 1

This is almost the same as the Fisher information in the output, Iout. The differ-
ence is that there is extra noise, captured by the O T( )/−1 2  correction, associated 
with spikes. Essentially, for small times, spikes inject additional noise into the 
estimate of the mean, but as time increases, that noise diminishes. Note, however, 
that in general there is one more potential loss of information: if some neurons 
never spike, they need to be taken out of the network. See, for example, the com-
ments following equation (28).

Here, and in the simulations, we consider a simple model in which the noise 
is given in equation (9), so that

MM I 11T T= +s sind s
2 2

where I is the identity matrix, 1 is a vector consisting of all 1’s (so 11T is a matrix 
with all elements equal to 1), and the signal, g(s), is given by

g 1( )s s=

In this case, as is straightforward to show, the input information is given by

I T
Ns ind

in =
+s s2 2 /

The output information, Iout, is only slightly smaller,

I T
N O Ts ind

out =
+ + −s s2 2 1 2/ ( )/

Note that here N should really be the number of neurons that fire. However, 
assuming that number is large, it doesn’t really matter what it is—the Fisher 
information is determined mainly by the shared noise, s s

2.
Equations (27) and (28) correspond to equations (1) and (2), except that in the 

main text we report information rates, so we divide by T.

Theoretical analysis of differential correlations. In this section we leave neural 
networks, and turn to theoretical analysis of differential correlations. We analyze 
information when there is a ‘pure’ f′f′T component and, just as importantly, when 
there is a not so pure component. We show that in the former case information 
saturates with N; in the latter case it doesn’t. We also show, somewhat surpris-
ingly, that the optimal decoder doesn’t need to know about the f′f′T component 
of the correlations. In the Supplementary Modeling, we provide further insight 
into differential correlations by expressing them in terms of the eigenvectors and 
eigenvalues of the covariance matrix, and we use that analysis to understand why, 
and when, it’s hard to accurately estimate Fisher information.

(22)(22)

(23)(23)

(24)(24)

(25)(25)

(26)(26)

(27)(27)

(28)(28)

Here we ask how the linear Fisher information scales with the number of 
neurons, N, when the covariance matrix contains a pure f′f′T component (the 
second term in equation (31)). Our starting point is a covariance matrix, Σ0(s), 
that doesn’t necessarily contain an f′f′T component. As in equation (3), the (lin-
ear) Fisher information associated with Σ0(s), denoted I0, is given by

I s s s0 0
1= ′ − ′f f( ) ( ) ( )T

where, as usual, f(s) is a vector of tuning curves,

f( ) ( ( ), ( ),..., ( ))s f s f s f sN≡ 1 2
T

and a prime denotes a derivative with respect to s. Note that the information also 
depends on stimulus, s; we suppress that dependence for clarity. To add a pure 
f′f′T component, we define a new covariance matrix, ε( )s , via

 ε ε( ) ( ) ( ) ( )s s s s= + ′ ′0 f f T

The new information, denoted Iε , is given by

I s s sε ε= ′ − ′f f( ) ( ) ( )T 1

To compute Iε , we need the inverse of ε. As is easy to verify, this inverse is 
given by

   ε
ε

ε
− − − −= −

+
′ ′1

0
1

0
0
1

0
1

1
( ) ( ) ( ) ( ) ( ) ( )s s

I
s s s sf f T

Inserting equation (33) into (32), we arrive at

I I I
I

I
Iε

ε

ε ε
= −

+
=

+0
0
2

0

0

01 1

which is equation (5).
Perhaps surprisingly, although f ′f ′T correlations have a critical role in deter-

mining information, they are irrelevant for decoding, in the sense that they have 
no effect on the locally optimal linear estimator. To see this explicitly, note first 
of all that the locally optimal linear estimator, denoted wT, generates an estimate 
of the stimulus near some particular value, s0, by linearly operating on neural 
activity,

ˆ ( )( )s s s= + −0 0wT r f

In the presence of the covariance matrix given in equation (31), the optimal 
weight, wopt

T  is given by

w
f f f

f f f f
opt
T

T T

T T=
′ + ′ ′

′ + ′ ′ ′

−

−
( )

( )





0
1

0
1

ε

ε

where we have dropped, for clarity, the explicit dependence on s0. Using equation 
(33), this reduces to

w f
f f

opt
T

T

T=
′

′ ′

−

−




0
1

0
1

Thus, the locally optimal linear decoder does not need to know the size of the 
f′f′T correlations.

In hindsight this makes sense: f′f′T correlations shift the hill of activity, and 
there is, quite literally, nothing any decoder can do about this. This suggests that 
these correlations are in some sense special. To determine just how special, we ask 
what happens when we add correlations in a different direction—say correlations 
of the form uuT, where u is not parallel to f′. In that case, the covariance matrix 
becomes (with a normalization added for convenience only)

 



u s s s s s

s
( ) ( ) ( ) ( ) ( )

( )
= +

′ ′−

−0
0
1

0
1ε

f f
u u

uu
T

T
T

(29)(29)

(30)(30)

(31)(31)

(32)(32)

(33)(33)

(34)(34)

(35)(35)

(36)(36)

(37)(37)

(38)(38)
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Repeating the steps leading to equation (34), we find that

I s s s I I
Iu u≡ ′ ′ = +

+
−f f( ) ( ) ( ) sin cosT 1

0
2 0

2

01
q q

ε

where I0 is defined in equation (29) and

cos ( ) ( )

( ) ( ) ( ) ( )
/q ≡

′

′ ′





−

− −

f u

f f u u

s s

s s s s

T

T T



 

0
1

0
1

0
1 1 2

(39)(39)

(40)(40)

Whenever θ ≠ 0—meaning u is not parallel to f′(s)—information does not satu-
rate as N goes to infinity. Thus, in the large N limit, f′(s)f′(s)T correlations are the 
only ones that cause saturation.

A Supplementary Methods Checklist is available.

41.	Beck, J., Bejjanki, V.R. & Pouget, A. Insights from a simple expression for linear 
Fisher information in a recurrently connected population of spiking neurons. Neural 
Comput. 23, 1484–1502 (2011).
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