
Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 1

Supplemental Modeling

Contents Page
1. Notation 1
2. A recurrent network of integrate and fire neurons 2
3. A feedforward network of non-leaky integrate and fire neurons 15
4. Information for a “pure” f ′f ′ component 17
5. Detecting differential correlations 24
6. Empirically estimating information 27

1 Notation

Here we discuss the notation we use, along with a translation to dot product notation for

those who prefer that.

We use bold for vectors and matrices, and non-bold for scalars and components of vectors

and matrices. Two matrices next to each other corresponds to a dot product; if A and B

are matrices, then the ijth component of AB is given by

(AB)ij =
∑
k

AikBkj ↔ (A ·B)ij . (1)

A vector next to a matrix is a dot product, so long as the transpose symbol (T) is in the

right place,

(Av)i =
∑
k

Aikvk ↔ (A · v)i (2a)

(vTA)j =
∑
k

vkAkj ↔ (v ·A)j . (2b)

Finally, two vectors next to each other is either a dot product or an outer product, depending

on whether the transpose is first or second: if v and u are vectors,

vTu =
∑
i

viui ↔ v · u (3a)

(vuT)ij = viuj ↔ (vu)ij . (3b)

You should not see vA or AvT in this manuscript when v is a vector and A is a matrix; if

you do, it’s a typo.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 2

2 A recurrent network of integrate and fire neurons

Our goal in this section is to determine how much information a network of leaky integrate

and fire neurons contains about its input. The analysis for leaky integrate and fire neurons

is, however, hard, so we consider a simpler neuron: one without a leak. For that we can

compute information analytically, and we find that the information in large time windows

is independent of the connectivity, and thus independent of the correlational structure. We

apply our analysis to a network of leaky integrate and fire neurons, and we find that it works

well, in the sense that information in long time windows is very weakly dependent on both

connectivity and correlations.

2.1 The non-leaky integrate and fire neuron

Here we compute the amount of information in a network of N non-leaky integrate and

fire neurons. Our starting point is the time evolution equation for the membrane potential,

denoted Vi. For the non-leaky integrate and fire neuron, this is given by

dVi
dt

=
∑
j

Jij
∑
l

hij(t− tlj) + gi(s) +
∑
k

Mikξk(t) . (4)

Here Jij is the connectivity matrix (so the sum over j runs from 1 to N), tlj is the time of the

lth spike on neuron j, hij(t−tlj) is the synaptic response to that spike (its properties are given

in Eq. (9) and preceding text, and the form for hij(t) that we use in our simulations is given

in Eqs. (8b) and (41)), gi(s) is the mean synaptic drive, which depends on a (potentially

multi-dimensional, but time-independent) stimulus, s, and ξk(t) is time dependent Gaussian

noise,

〈ξk(t)ξk′(t′)〉 = δkk′C(t− t′) . (5)

The autocorrelation function, C(τ), is chosen to integrate to 1,∫ ∞
−∞

dτ C(τ) = 1 , (6)

and δkk′ is the Kronecker delta. The last term in Eq. (4) consists of both independent and

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 3

shared noise; the latter is taken into account by letting Mik = σindδik +σsδk0. Consequently,∑
k

Mikξk(t) = σindξi(t) + σsξ0(t) . (7)

The neuron emits a spike when the voltage reaches a threshold, denoted θi for neuron i,

after which the voltage is reset to Vr, which we take to be 0. To take care of the reset, we

introduce a negative self-current,

Jii = −θi (8a)

hii(t) = δ(t) (8b)

where δ(t) is the Dirac delta function.

When i 6= j, hij(t) corresponds to a brief current pulse; it is zero when t < 0 and, for

convenience we choose it so that it integrates to 1,∫ ∞
0

dt hij(t) = 1 . (9)

This gives hij(t) units of inverse time, and so Jij has units of voltage. For now we take Jij

to be an arbitrary matrix. In our simulations, however, we consider excitatory-inhibitory

networks.

For this model, computing spike count in a window of size T is straightforward: simply

integrate both sides of Eq. (4) from 0 to T . This gives

∆Vi(T) =
∑
j

Jij

∫ T

0

dt
∑
l

hij(t− tlj) + Tgi(s) +
∑
k

Mik

∫ T

0

dt ξk(t) (10)

where ∆Vi(T) ≡ Vi(T) − Vi(0). The first integral is approximately the spike count at time

T , denoted nj(T) for neuron j,∫ T

0

dt
∑
l

hij(t− tlj) = nj(T) + δnj(T) . (11)

The term δnj(t) comes from the fact that hij(t) has finite width in time (if i 6= j). Note that

δnj is at most 1. The mean of the second integral is zero, and, using Eq. (5), its variance is

given by

Var

[∫ T

0

dt ξk(t)

]
=

∫ T

0

dt

∫ T

0

dt′C(t− t′) . (12)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 4

If the correlation time is zero (corresponding to delta-correlated white noise), the double

integral on the right is just T . However, for finite correlation time there is a small reduction

due to edge effects. To take that into account, we write

Var

[∫ T

0

dt ξk(t)

]
= Tc (13)

where Tc is smaller than T by about the correlation time. Thus,∫ T

0

dt ξk(t) = T 1/2
c ηk (14)

where the ηk are a set of uncorrelated, zero mean, unit variance Gaussian random variables,

〈ηkηk′〉 = δkk′ . (15)

Inserting Eqs. (11) and (14) into Eq. (10), we have

0 =
∑
j

Jijnj(T) + Tgi(s) + T 1/2
c

∑
k

Mikηk + γi(T) (16)

and the noise term, γi, given by

γi(T) ≡
∑
j

Jijδnj(T)−∆Vi(T) . (17)

How big is γi(T)? In the large T limit there are typically a large number of spikes, so

δnj is small compared to nj. Moreover, ∆Vi is at most θi. Consequently, in this limit,

γi(T) is usually small compared to T . However, it isn’t always small: although ∆Vi can be

at most θi, it can be negative, and it can be large and negative. This happens whenever

a neuron receives a consistently negative current, in which case ∆Vi(T) is proportional to

−T . We can partially solve this problem by simply ignoring any neuron that doesn’t spike.

Unfortunately, this is only a partial solution, because it’s possible for a neuron to fire once or

twice due to noise, and then for the voltage to steadily decrease with time; this would again

mean ∆Vi ∝ −T in the large T limit. This can be taken care of by ignoring the transients,

which we effectively do in our simulations: we run one very long simulation, divide them

into intervals of either 2 or 10 s, and collect spike counts in those intervals.

Assuming the connectivity matrix, Jij, is invertible, we can solve Eq. (16) directly for

spike count. To simplify notation we switch to vectors and matrices, for which we use bold

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 5

font. Multiplying both sides of Eq. (16) by J−1, we have

n = −TJ−1g(s)− J−1
(
T 1/2
c Mη + γ(T)

)
. (18)

The mean and covariance of the spike count are, therefore, given by

Mean[n] = −J−1
[
Tg(s) + 〈γ〉

]
(19a)

Covar[n] = TcJ
−1 [MMT + T−1/2c (M〈ηγT 〉+ 〈γη〉TMT) + T−1c 〈γγT 〉

]
J−T (19b)

where the superscript −T denotes transpose and inverse, and, for clarity, we suppress the

fact that η and γ depend on T .

2.2 Linear Fisher information

Our next step is to compute the linear Fisher information, both in the input and in the

output. In general, for a random variable with stimulus-dependent mean f(s) and covariance

matrix Σ(s), the linear Fisher information is given by [1]

I = f ′(s)TΣ−1(s)f ′(s) (20)

where a prime denotes a derivative with respect to s (if s were a vector, I would be the

Fisher information matrix, but here we restrict ourselves to scalars). Using Eq. (19), and

working to lowest non-vanishing order in 1/T 1/2, we find that the linear Fisher information

in the spike train, denoted Iout, is given by

Iout = T g′(s)T
[
MMT +O(T−1/2)

]−1
g′(s) . (21)

How does this compare to the information in the input? The latter is the information

available to an observer that has direct access to the current, g(s) + Mξ. After observing

this current for time T , the mean is Tg(s) and, to lowest nonvanishing order in 1/T , the

variance is TMMT . Thus, using Eq. (20), the Fisher information in the input, denoted Iin,

is given by

Iin = T g′(s)T
[
MMT

]−1
g′(s) . (22)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 6

This is almost the same as the Fisher information in the output, Iout. The difference is that

there is extra noise, captured by the O(T−1/2) correction, associated with spikes. Essentially,

for small times, spikes inject additional noise into the estimate of the mean, but as time

increases, that noise diminishes. Note, though, that in general there is one more potential

loss of information: if some neurons never spike, they need to be taken out of the network.

See, for example, the comments following Eq. (26).

Here, and in the simulations, we consider a simple model in which the noise is given in

Eq. (7), so that

MMT = σ2
indI + σ2

s11T (23)

where I is the identity matrix, 1 is a vector consisting of all 1’s (so 11T is a matrix with all

elements equal to 1), and the signal, g(s), is given by

g(s) = s1 . (24)

In this case, as is straightforward to show, the input information is given by

Iin =
T

σ2
s + σ2

ind/N
. (25)

The output information, Iout, is only slightly smaller,

Iout =
T

σ2
s + σ2

ind/N +O(T−1/2)
. (26)

Note that here N should really be the number of neurons that fire. However, assuming that

number is large, it doesn’t really matter what it is – the Fisher information is determined

mainly by the shared noise, σ2
s

Equations (25) and (26) correspond to Eqs. (1) and (2) of the main text, except that in

the main text we report information rates, so we divide by T .

2.3 Correlation coefficients

The output information, Eq. (26), is independent of the network parameters. But what about

the correlation coefficients – do they depend on network parameters? If so, that would mean

the information is independent of the correlational structure in the network. Typically it is

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 7

not easy to compute correlation coefficients analytically, but for the non-leaky integrate and

fire neuron with the noise models given in (23), we can. Essentially, we compute the right

hand side of Eq. (19b). We work to lowest nonvanishing order in T , so the quantity we are

interested in is

Σ ≡ J−1
[
σ2
indI + σ2

s11T
]
J−T (27)

where we used Eq. (23) for MMT , and J−T ≡ (J−1)T (when T appears as a superscript, it

means transpose, not observation time window).

For the weight matrix, J, we use the homogeneous model given in Eq. (40) below (with

θi = 1; see Table 1, located at the end of this section), for which we may write

J = −
(

1 +
JEE

NE − 1

)
IE −

(
1 +

JII
NI − 1

)
II +

 JEE

NE−1
JEI

NI

JIE
NE

JII
NI−1

 . (28)

Here IE and IE are identity matrices in the excitatory and inhibitory subspaces, respectively,

(IE)ij =

 δij 1 ≤ i, j ≤ NE

0 otherwise
(29a)

(II)ij =

 δij NE < i, j ≤ N

0 otherwise ,
(29b)

and the last term in Eq. (28) – the matrix with the vertical and horizontal lines – is an N×N

matrix consisting of four sub-matrices of sizes NE ×NE (upper left), NE ×NI (upper right),

NI×NE (lower left), and NI×NI (lower right). All the elements of each of the sub-matrices

are the same, and equal to the value specified in the corresponding quadrant.

The inverse of J is given by

J−1 = −
IE −

1E1T
E

NE

1 + JEE

NE−1
−

II −
1I1

T
I

NI

1 + JII
NI−1

+
1

D

 JII−1
NE

−JEI

NI

−JIE
NE

JEE−1
NI

 (30)

where D is closely related to the determinant of the last term in Eq. (28),

D ≡ (JEE − 1)(JII − 1)− JEIJIE (31)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 8

and 1E and 1I are vectors of 1s in the excitatory and inhibitory spaces, respectively,

(1E)i =

 1 1 ≤ i ≤ NE

0 otherwise
(32a)

(1I)i =

 1 NE < i ≤ N

0 otherwise .
(32b)

It is relatively straightforward to show that J−1 really is the inverse of J. For that it is

helpful to notice that the first two terms on the right hand side of Eq. (30) are orthogonal

to both 1E and 1I , and that

D−1J

 JII−1
NE

−JEI

NI

−JIE
NE

JEE−1
NI

 =

 1
NE

0

0 1
NI

 =
1E1TE
NE

+
1I1

T
I

NI

. (33)

We can now insert Eq. (30) into (27) to compute the covariance matrix, Σ. There are

two components to this matrix, σ2
indJ

−1J−T and σ2
sJ
−111TJ−T . We treat these one at a time,

starting with the first,

J−1J−T =
IE −

1E1T
E

NE

(1 + JEE

NE−1
)2

+
II −

1I1
T
I

NI

(1 + JII
NI−1

)2
(34)

+
1

D2

 (JII−1)2
NE

+
J2
EI

NI
− (JII−1)JIE

NE
− (JEE−1)JEI

NI

− (JII−1)JIE
NE

− (JEE−1)JEI

NI

(JEE−1)2
NI

+
J2
IE

NE

 .

In the large N limit, J−1J−T simplifies considerably: it’s just IE + II , which in turn is the

identity matrix, I; we use that approximation here.

The second component of Σ is

J−111TJ−T =

 QEE QEI

QIE QII

 (35)

where

QEE ≡
(JII − JEI − 1)2

D2
(36a)

QEI = QIE ≡
(JII − JEI − 1)(JEE − JIE − 1)

D2
(36b)

QII ≡
(JEE − JIE − 1)2

D2
. (36c)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 9

With the approximation that J−1J−T = I, Σ has a very simple form

Σ = σ2
indI + σ2

s

 QEE QEI

QIE QII

 . (37)

An outcome of this analysis is that the covariance matrix, and thus the correlation

coefficients, depend only on neuron type. Let us use ρKL to denote the correlation coefficient

between neurons of type K and type L. Examining Eq. (37), we see that

ρKL =
σ2
sQKL(

(σ2
ind + σ2

sQKK)(σ2
ind + σ2

sQLL)
)1/2 . (38)

This equation is used to make the solid lines in Fig. 2b of the main text.

2.4 Simulations – recurrent network

Below we report the parameters we use in our simulations (summarized in Table 1 below),

the method for estimating Fisher information, and the numerical details.

Simulations were performed with leaky, rather than non-leaky, integrate and fire neurons,

as they are much more realistic. That introduces a modification to Eq. (4): a leak was added

to the time evolution equation for the membrane potential,

dVi
dt

= − Vi
τm

+
∑
j

Jij
∑
l

hij(t− tlj) + gi(s) +
∑
k

Mikξk(t) . (39)

2.4.1 Parameters

For all simulation, 80% of the neurons were excitatory and 20% were inhibitory. Connectivity

was all-to-all (except that there were no autapses), and connection strength depended only

on neuron type. Using NE and NI for the number of excitatory and inhibitory neurons,

respectively, the connection strengths between individual neurons (with i 6= j) were

Jij =



JEE/(NE − 1) 1 ≤ i ≤ NE; 1 ≤ j ≤ NE

JEI/NI 1 ≤ i ≤ NE; NE < j ≤ N

JIE/NE NE < i ≤ N ; 1 ≤ j ≤ NE

JII/(NI − 1) NE < i ≤ N ; NE < j ≤ N .

(40)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 10

If i = j, Jii = −θi, as in Eq. (8a). Note the slight abuse of notation: capital letter subscripts

on J mean something different than lower case subscripts. For the current, hij(t) with i 6= j,

we used a decaying exponential,

hij(t) = Θ(t)
e−t/τK

τK
(41)

where K is either E (excitatory) or I (inhibitory) and Θ(t) is the Heaviside step function.

The above expression applies if i 6= j; if i = j, hij(t) is a delta function. This implements

the voltage reset when the voltage reaches threshold (see Eq. (8b)).

Parameter Value Description

N 75, 125, 250, 500 number of neurons

NE 0.8N number of excitatory neurons

NI 0.2N number of inhibitory neurons

T 2, 10 s observation time window for leaky and non-leaky

integrate and fire networks, respectively

τm 20 ms membrane time constant

τE 2 ms excitatory synaptic time constant

τI 3 ms inhibitory synaptic time constant

θi 1 threshold

Vr 0 reset

σ2
ind 76.5 s−1 variance of the independent noise

σ2
s 3.5 s−1 variance of the shared noise

JEE 6 E → E connection strength

JEI -9.5 I → E connection strengths

JIE (7.6, 5.9, 5.4) E → I connection strengths (low, medium, high)

JII (-11.2, -9.4, -8.9) I → I connection strength (low, medium, high)

Table 1. Simulation parameters for the recurrent network (parameters for the feedforward

network are given in Sec. 3.3). None of the results depend critically on the values of the

parameters.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 11

For all simulations we used the input given in Eq. (24). The noise model was the one

given in Eq. (7), and the noise was delta-correlated, so that Tc = T (see Eq. (13)). We used

three different sets of connection strengths (low, medium and high), designed to provide three

different average correlation coefficients. They correspond to average correlation coefficients

of 0.013, 0.047 and 0.108, respectively, when N = 500. All parameter are listed in Table 1.

2.4.2 Estimating linear Fisher information

To compare the information in the output of the network to that in the input, we need to

estimate the Fisher information from the spike trains. For that we use a locally optimal

linear estimator. In general, for a random variable r with stimulus-dependent mean f(s) and

covariance Σ(s), that estimator, taken near a stimulus value of s0, is given by [2]

ŝ = s0 +
f ′(s0)

TΣ−1(s0)
(
r− f(s0)

)
f ′(s0)TΣ−1(s0)f ′(s0)

. (42)

Applying this equation to our problem, for which the mean and covariance are given in

Eq. (19), and ignoring corrections associated with finite observation time, T , we have

ŝ = s0 +
g′(s0)

T
(
MMT

)−1[− Jν − g(s0)
]

g′(s0)T
(
MMT

)−1
g′(s0)

(43)

where ν is a vector of firing rates: ν = (n1/T, n2/T, ..., nN/T). Specializing to the form of

g(s) given in Eq. (24), and using the noise model given in Eq. (7), for which MMT is given

in Eq. (23), this simplifies to

ŝ = − 1

N

∑
ij

Jijνj . (44)

Using Eq. (40), and taking into account the fact that Jii = −θi, it is easy to show that

∑
i

Jij = −θj +

 JEE + JIE 1 ≤ j ≤ NE

JEI + JII NE < j ≤ N .
(45)

The sum over j is now straightforward, and we arrive at

ŝ =
1

N

∑
i

θiνi −
NE

N

(
JEE + JIE

)
νE −

NI

N

(
JEI + JII

)
νI (46)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 12

where νE and νI are the population averaged excitatory and inhibitory firing rates,

νE ≡
1

NE

NE∑
j=1

νj (47a)

νI ≡
1

NI

N∑
j=NE+1

νj . (47b)

Finally, taking into account the fact that we use θi = 1 in our simulations, which implies

that N−1
∑

i θiνi = NEνE/N +NIνI/N , the expression for ŝ reduces even further,

ŝ =
NE

N

[
1−

(
JEE + JIE

)]
νE +

NI

N

[
1−

(
JEI + JII

)]
νI . (48)

This estimator applies to the non-leaky integrate and fire network. Because it is optimal

and unbiased, we can take the Fisher information to be the inverse of the variance of ŝ.

For the leaky integrate and fire neuron, Eq. (48) is not necessarily the correct estimator.

However, it is likely to have the correct form. We thus assume that the estimator for this

neuron is linear in the average excitatory and inhibitory firing rates, but with unknown

coefficients,

ŝLIF (w) = (1− w)νE + wνI . (49)

Ultimately we will optimize this estimate with respect to the weight, w. First, though, we

note that it is likely to be biased. However, we can correct for the bias [3], and at the same

time compute the Fisher information, denoted I(w), using the equation

I(w) =
[d〈ŝLIF (w)〉s/ds]2

Var[ŝLIF (w)]s
, (50)

where the angle brackets indicate an average over trials. The subscript s on both the angle

brackets and the variance indicates that the presented stimulus was s (which should be near

s0, since this is a locally optimal linear estimator).

In our simulations, we estimated the derivative numerically by presenting two different,

but nearby, values of s (denoted s1 and s2, whose average is s0), and averaging the variance

over those values. Thus, the Fisher information was estimated via

I(w) =

[
〈ŝLIF (w)〉s1 − 〈ŝLIF (w)〉s2

s1 − s2

]2
2

Var[ŝLIF (w)]s1 + Var[ŝLIF (w)]s2
. (51)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 13

This estimate depends on the choice of the weight, w. To find the optimal weight, we used

cross-validation: for each simulation, we created a training and a test set; the information,

I(w), was maximized on the training test, resulting in an optimal weight, wopt; the reported

information was then I(wopt), evaluated on the test set.

2.5 Effect of observation time on information

In the main text we showed that information in the spike trains for the non-leaky integrate

and fire network is almost identical to input information for all network sizes (see open circles

in Fig. 2d, main text). This is expected to occur, however, only for large observation time,

T . What happens when T isn’t so large? To answer that, we plot, in Supplementary Fig. 1,

information per unit time versus network size, N , for T ranging from 100 ms to 10 seconds.

Not surprisingly, the shorter the time window, the smaller the information. However, the

time window becomes less and less important as the number of neurons increases.

2.6 Numerical details

Simulations were performed using custom C code, with the parameters given in Table 1. For

each set of parameters, simulations were run for 12000 seconds with a one-step Euler method

and a time step of 0.01 ms.

To estimate the linear Fisher information for the leaky integrate and fire network, we

used Eq. (51) with s0 = 182.5 Hz, s1 = 180 Hz and s2 = 185 Hz. Specifically, we simulated

the network for 12000 seconds with s = s1 and 12000 seconds with s = s2, and divided both

runs into 6000 two second intervals (corresponding to an observation time window, T , of 2

seconds). The 6000 intervals were randomly split into two halves to create a training and a

test set; this procedure was iterated ten times. For each iteration, information was optimized

on the training test and estimated, using Eq. (51), on the test set. The mean values were

plotted in Fig. 2d, with error bars given by the standard error of the mean.

To estimate the linear Fisher information for the non-leaky integrate and fire network, we

use the inverse of variance of the estimator given in Eq. (48). Simulations were run for 12000

seconds and were divided into 1200 ten second intervals (corresponding to an observation

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 14

time window, T , of 10 seconds). The mean values were plotted in Fig. 2d of the main text,

with error bars corresponding to the standard error of the mean computed from 20 random

subgroups of intervals.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

N

In
fo

rm
at

io
n

ra
te

Figure 1: Effect of observation time. Output information for a non-leaky integrate and fire

network as a function of network size, N for several values of the observation time, T : 100

ms (pink), 500 ms (purple), 2 seconds (red), and 10 seconds (green). The black solid line is

the information in the input, Eq. (25). Parameters correspond to those of the network with

high correlations (Table 1 with JIE = 5.4 and JII = −8.9); this is the same network we used

to make Fig. 2d of the main text. The open green circles here correspond to the ones in

Fig. 2d of the main text; slight differences between the open green circles in this figure and

in Fig. 2d are because we used a different seed in the random number generator in the two

sets of simulations; those differences are within error bars. Small observation times reduce

information, but the effect diminishes as the number of neurons increases.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 15

3 A feedforward network of non-leaky integrate and

fire neurons

As in Sec. 2, we study a network of N non-leaky integrate and fire neurons with current based

synapses, driven by a stimulus-dependent input corrupted by Gaussian noise. The main

difference is that the network is purely feedforward rather than recurrent. Again, though,

our goal is to compute how much information about the stimulus there is in the spike trains.

We start by describing the network; we then compute the linear Fisher information. We end

with details of the numerical simulations.

3.1 The model

The network consists of N input “neurons” (quotes because we modeled them as white noise)

and N output neurons. The membrane potential of the ith output neuron evolves according

to

dVi
dt

=
J0
N1/2

N∑
j=1

Wij

(
s+ ξj(t)

)
+ g0i (52)

where s is the stimulus, g0i is an offset drive to ensure that the mean output firing rate was

50 Hz, ξj(t) is independent white noise (Eq. (5) with C(t− t′) = δ(t− t′); note that the noise

is independent across neurons as well as time), and Wij is a binary connectivity matrix,

Wij =

 1 with probability f

0 with probability 1− f .
(53)

Integrating Eq. (52) with respect to t from 0 to T (as in Eq. (10)), and keeping terms only

up to O(T 1/2), we can derive an equation for n, the vector of spike counts,

n =
J0
N1/2

[
TsW1 + T 1/2Wη

]
+ Tg0 (54)

where η is uncorrelated, zero mean, unit variance Gaussian noise, as in Eq. (15): 〈η〉 = 0

and 〈ηηT 〉 = I. The mean and covariance of the spike count are, then, given by

Mean[n] =
J0
N1/2

TsW1 + Tg0 (55a)

Covar[n] =
J2
0

N
TWWT . (55b)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 16

3.2 Linear Fisher information

Using Eq. (20) for the Fisher information, denoted Iff (for feedforward information), we

have

Iff = 1TWT (WWT)−1W1T . (56)

When W is invertible, Iff = 1T1T = NT , independent of the connectivity. This is exactly

the information in the input, so for the invertible case there is no information loss – at least

not in the large T limit.

To estimate the linear Fisher information numerically, we computed the variance of a

locally optimal linear estimator, and took the linear Fisher information to be its inverse.

The form of the locally optimal linear estimator is given in Eq. (42); using Eq. (55) for the

mean value of n (from which we can get f ′) and the covariance, and performing a small

amount of algebra, we see that the locally optimal linear estimate of the stimulus is

ŝ =
N1/2

J0

1TWT (WWT)−1(ν − g0)

1TWT (WWT)−1W1
(57)

where, as above, ν ≡ n/T is a vector of firing rates. When W is invertible, this simplifies to

ŝ =
1

J0N1/2
1TW−1(ν − g0) . (58)

In our numerical simulations we did not assume that W was invertible, and so we used

Eq. (57) to estimate the stimulus.

3.3 Simulations – feedforward network

For each set of parameters, simulations were run for 12000 seconds with a one-step Euler

method and a time step of 0.01 ms. Runs were broken into 6000 two second intervals

(corresponding to an observation time window, T , of 2 seconds); those intervals were used

to compute the Fano factors and information. We took information to be the inverse of the

variance of ŝ, computed via Eq. (57) at s = 0. The model has two parameters, J0 and f ;

these were set to 20 and 0.1, respectively. We used 40, 80, 160 and 500 neurons. Results are

shown in Fig. 4 of the main text.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 17

4 Theoretical analysis of differential correlations

In this section we leave simulations, and turn to theoretical analysis of differential correla-

tions. In Sec. 4.1 we analyze information when there is a “pure” f ′f ′T component and, just

as importantly, when there is a not so pure component. We show that in the former case

information saturates with N ; in the latter case it doesn’t. We also show, somewhat sur-

prisingly, that the optimal decoder doesn’t need to know about the f ′f ′T component of the

correlations. In Sec. 4.2 we provide further insight into differential correlations by express-

ing them in terms of the eigenvectors and eigenvalues of the covariance matrix. Finally, in

Sec. 4.3, we use that analysis to understand why, and when, it’s hard to accurately estimate

Fisher information.

4.1 Information for “pure” (and not so pure) f ′f ′T correlations

Here we ask how the linear Fisher information scales with the number of neurons, N , when

the covariance matrix contains a “pure” f ′f ′T component, (the second term in Eq. (61)

below). Our starting point is a covariance matrix, Σ0(s), that doesn’t necessarily contain an

f ′f ′T component. As in Eq. (3) of the main text, the (linear) Fisher information associated

with Σ0(s), denoted I0, is given by

I0 = f ′(s)TΣ−10 (s)f ′(s) , (59)

where, as usual, f(s) is a vector of tuning curves,

f(s) ≡ (f1(s), f2(s), ..., fN(s))T , (60)

and a prime denotes a derivative with respect to s. Note that the information also depends

on stimulus, s; we suppress that dependence for clarity. To add a pure f ′f ′T component, we

define a new covariance matrix, Σε(s), via

Σε(s) = Σ0(s) + εf ′(s)f ′T (s) . (61)

The new information, denoted Iε, is given by

Iε = f ′(s)TΣ−1ε (s)f ′(s) . (62)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 18

To compute Iε, we need the inverse of Σε. As is easy to verify, this inverse is given by

Σ−1ε (s) = Σ−10 (s)− ε

1 + εI0
Σ−10 (s)f ′(s)f ′T (s)Σ−10 (s) . (63)

Inserting Eq. (63) into (62), we arrive at

Iε = I0 −
εI20

1 + εI0
=

I0
1 + εI0

. (64)

This is Eq. (5) of the main text.

Perhaps surprisingly, although f ′f ′T correlations play a critical role in determining infor-

mation, they are irrelevant for decoding, in the sense that they have no effect on the locally

optimal linear estimator. To see this explicitly, note first of all that the locally optimal linear

estimator, denoted wT , generates an estimate of the stimulus near some particular value, s0,

by linearly operating on neural activity,

ŝ = s0 + wT
(
r− f(s0)

)
. (65)

As in Eq. (42), in the presence of the covariance matrix given in Eq. (61), the optimal weight,

wT
opt is given by

wT
opt =

f ′T
(
Σ0 + εf ′f ′T

)−1
f ′T
(
Σ0 + εf ′f ′T

)−1
f ′

(66)

where we have dropped, for clarity, the explicit dependence on s0. Using Eq. (63), this

reduces to

wT
opt =

f ′TΣ−10

f ′TΣ−10 f ′
. (67)

Thus, the locally optimal linear decoder does not need to know the size of the f ′f ′T correla-

tions.

In hindsight this makes sense: f ′f ′T correlations shift the hill of activity, and there is,

quite literally, nothing any decoder can do about this. This suggests that these correlations

are in some sense special. To determine just how special, we ask what happens when we

add correlations in a different direction – say correlations of the form uuT , where u is not

parallel to f ′. In that case, the covariance matrix becomes (with a normalization added for

convenience only)

Σu(s) = Σ0(s) + ε
f ′(s)TΣ−10 (s)f ′(s)

uTΣ−10 (s)u
uuT . (68)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 19

Repeating the steps leading to Eq. (64), we find that

Iu ≡ f ′(s)TΣ−1u (s)f ′(s) = I0 sin2 θ +
I0 cos2 θ

1 + εI0
, (69)

where I0 is defined in Eq. (59) and

cos θ ≡ f ′(s)TΣ−10 (s)u[
f ′(s)TΣ−10 (s)f ′(s) uTΣ−10 (s)u

]1/2 . (70)

Whenever θ 6= 0 – meaning u is not parallel to f ′(s) – information does not saturate as N

goes to infinity. Thus, in the large N limit, f ′(s)f ′(s)T correlations are the only ones that

cause saturation.

4.2 What does “Information limiting correlations” really mean?

To understand what it means for correlations to be information limiting, it is useful to express

the information in terms of the eigenvectors and eigenvalues of the covariance matrix. These

are denoted vk and σ2
k, respectively, and defined according to

Σvk = σ2
kvk . (71)

(Here we suppress all s-dependence for clarity.) For convenience, we’ll use an orthonormal

basis: vTk vl = δkl. In this basis, the covariance matrix is given in terms of the vk and σ2
k by

Σ =
∑
k

σ2
kvkv

T
k , (72)

and its inverse by

Σ−1 =
∑
k

vkv
T
k

σ2
k

. (73)

The square roots of the eigenvalues, σk, have a natural interpretation: they are the lengths

of the principle axes of the covariance ellipse.

Using Eq. (73), the Fisher information may be written

I = f ′T f ′
∑
k

cos2 θk
σ2
k

(74)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 20

where

cos2 θk ≡
(vTk f ′)2

f ′T f ′
(75)

is the square of the cosine of the angle between vk and f ′. Because of the completeness of

vk – that is, because
∑

k vkv
T
k = I, the identity matrix – it follows that∑

k

cos2 θk = 1 . (76)

To make sense of Eq. (74), we need several facts about how the various terms depend on

N . First, because f ′ has N components, f ′T f ′ is proportional to N . This has an immediate

and important consequence: if even one of the terms cos2 θk/σ
2
k is O(1), then information is

O(N). For information to saturate with N , the sum has to be O(1/N). To see how that

could happen, we need to know how big the eigenvalues are. For that we use∑
k

σ2
k = tr{Σ} = O(N) . (77)

Because the sum of the eigenvalues is O(N), some of them can be O(N). If information is

to saturate, it is these O(N) eigenvalues that must dominate the sum in Eq. (74): at least

one of them must have cos2 θk ∼ O(1), and for the small (i.e., O(1)) eigenvalues, cos2 θk can

be at most O(1/N). (In fact, because there are O(N) small eigenvalues, cos2 θk must be

O(1/N2) for most of them.)

From a geometrical point of view, this means correlations are information limiting if f ′

points predominantly in the high-variance directions of the covariance ellipse; that is, it

points in directions in which σ2
k ∼ O(N). It can have small components in the low-variance

directions, but they have to be very small: the eigenvectors must be almost perpendicular to

f ′ – sufficiently perpendicular that cos2 θk/σ
2
k is sometimes proportional to 1/N but usually

proportional to 1/N2.

To visualize information limiting correlations, it is convenient to consider a case in which

only one of the σ2
k, say σ2

1, is O(N) and the rest are O(1). Explicitly separating these two

components, we have

I =
f ′T f ′

σ2
1

cos2 θ1 + f ′T f ′
∑
k>1

cos2 θk
σ2
k

. (78)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 21

For information to be O(1), the sum on the right hand side must be O(1/N); this in turn

implies that
∑

k>1 cos2 θk ∼ O(1/N), which, via Eq. (76), implies that cos2 θ1 = 1−O(1/N).

Thus, for differential correlations to exist, θ1 must be O(1/N1/2). In plain language: for

correlations to be information limiting, the angle between f ′ and the O(N) direction (or,

in the more general case, directions) of the covariance ellipse must be very small – it must

scale as 1/N1/2. This is illustrated in Supplementary Fig. 2a. (We also show, mainly for

completeness, the structure of the noise when we take into account the fact that f(s) is

actually a curve, not a straight line; see Supplementary Fig. 2b.)

Of course, the eigenvalues don’t typically neatly divide into O(1) and O(N) groups (al-

though, because of Eq. (77), there are always a large number of O(1) eigenvalues). However,

this doesn’t change much the basic picture: the smaller σ2
k is, the closer f ′ must be to a direc-

tion perpendicular to vk, the corresponding eigenvector. However, it does introduce one new

ingredient: the covariance matrix can have a large direction not parallel to f ′. For instance,

if there are two large directions, say k = 1 and 2, then we would break the information up

as

I =
f ′T f ′

σ2
1

cos2 θ1 +
f ′T f ′

σ2
2

cos2 θ2 + f ′T f ′
∑
k>2

cos2 θk
σ2
k

. (79)

Again we must have
∑

k>2 cos2 ∼ O(1/N), but now this means cos2 θ1+cos2 θ2 = 1−O(1/N).

Thus, both θ1 and θ2 could be far from 0.

4.3 Implications for estimating Fisher information from data

This analysis tells us why computing information is so tricky in the presence of differential

correlations: the error in the estimates of the direction of f ′ and the O(N) directions of the

covariance ellipse must scale as 1/N1/2. Thus, if one estimated the covariance matrix and

tuning curves form data (which is equivalent to computing the angles, θk, and eigenvalues,

σ2
k), and then used that to directly estimate information via Eq. (20), large errors would be

likely. And, indeed, that is exactly what we find (see Sec 6.3 of this document, and Fig. 7b

of the main text).

Note, though, that if differential correlations are present (an important “if,” as we discuss

shortly), estimating a lower bound on information using a linear decoder is relatively easy.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 22

a b

dc

q~N
-1/2

f ()¢ s
f()s

w w

f ()¢ s
f ()¢ s

Figure 2: Visualizing information limiting correlations. All figures lie in firing rate space,

here shown as two (out of N) dimensional. Red indicates the noise; in panels a, c and d,

it denotes the noise covariance ellipse. We are assuming that one of the eigenvalues of the

noise covariance ellipse is O(N) and the rest are O(1). a. When the angle between f ′(s) and

the long (i.e, O(N)) direction of the noise covariance ellipse is O(1/N1/2), the correlations

are information limiting. b. Realistic information limiting noise tracks f(s). The thin

black curve is the covariance ellipse from panel a. c. When there are information limiting

correlations, a suboptimal linear decoder, w, predicts that information saturates with N

even if the angle between w and the long direction of the noise covariance ellipse is O(1). d.

When there are no information limiting correlations, so that information is O(N), the same

linear decoder still predicts that information saturates with N . To observe the O(N) scaling,

w would have to be nearly perpendicular to the long direction of the covariance ellipse.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 23

To see why, consider a linear decoder, w, chosen to be unbiased when s is near s0,

ŝ = s0 +
wT
(
r− f(s0)

)
wT f ′(s0)

. (80)

When s = s0, the variance of ŝ is given by

Var[ŝ] =
wTΣw(
wT f ′

)2 (81)

where both Σ and f ′ are evaluated at s = s0. Letting ψ be the angle between w and f ′, and

using Eq. (72) for Σ, this becomes

Var[ŝ] =

∑
k σ

2
k cos2 φk

f ′T f ′ cos2 ψ
(82)

where φk is the angle between w and vk: wTvk = |w| cosφk. Again, for the purpose of

visualization, consider the case in which σ2
1 is O(N) and the rest of the eigenvalues are O(1).

Separating the two components gives us

Var[ŝ] =
σ2
1 cos2 φ1

f ′T f ′ cos2 ψ
+

∑
k>1 σ

2
k cos2 φk

f ′T f ′ cos2 ψ
. (83)

Assuming that cosψ is O(1), we see that the second term is O(1/N) (because the numerator

is essentially an average of O(1) quantities and the denominator is O(N)). The first term,

on the other hand, is O(1) if cos2 φ1 is O(1). Thus, so long as w is not almost perpendicular

to either f ′ or the long direction (or, more generally directions) of the covariance ellipse, the

variance of the optimal estimator is O(1) (see Supplementary Fig. 2c). If we use the inverse

of that variance as an estimate of the Fisher information, then the Fisher information would

saturate as N becomes large.

If we estimate w – by, say, minimizing decoding error, as we do in Sec. 6.4 below – we can

get a relatively good estimate of the Fisher information (see also Fig. 7c of the main text).

Importantly, w no longer needs to be estimated all that accurately. This is in sharp contrast

to the direct approach, in which both f ′ and Σ have to be estimated very accurately.

This analysis applies, of course, only if differential correlations exist. If they don’t, then

we know Var[ŝ] is O(1/N). Consequently (assuming we’re in the interesting case in which

at least one eigenvalue of Σ is O(N)), the first term in Eq. (83) must be O(1/N). For this

to happen, the suboptimal estimator must be almost perfectly perpendicular to the long

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 24

direction (or, in the general case, the long directions) of the covariance ellipse. Again, then,

we have a hard estimation problem, as illustrated in Supplementary Fig. 2d. So if we were to

estimate a linear decoder, w from data, but didn’t estimate it perfectly, we would find that

information saturated when in fact it would not with a perfect linear decoder. This is exactly

what happened when we used ridge-regularized early stopping to compute a decoder (third

method Sec. 6.5): information associated with the decoder saturated even though the true

information did not, as can be seen in the bottom left panel of Fig. 3. Thus, although one

can use a suboptimal estimator if differential correlations exist, one cannot use a suboptimal

estimator to determine whether they exist. Fortunately, this doesn’t really matter, since

differential correlations always exist in the large N limit.

5 Detecting differential correlations

As discussed in the main text, differential correlations may be hard to detect directly. This

is because they may be masked by other correlations, as we show in two examples.

5.1 Differential correlations hidden by structured correlations

We first look at differential correlations that are large but hidden by structured correlations.

As in the main text, we consider tuning curves and correlations of the form

Σij = (1− c)δij + c cos(si − sj) (84a)

fi(s) = a+ b cos(s− si) (84b)

where a > b, the preferred stimuli, si, are equally spaced, and there are N neurons. Al-

though differential correlations are not immediately obvious, they do exist, as can be seen

by expanding the cosine,

Σij = (1− c)δij + c
[

cos(s− si) cos(s− sj) + sin(s− si) sin(s− sj)
]
. (85)

The last term, sin(s− si) sin(s− sj), is proportional to the derivatives of the tuning curves.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 25

To compute Fisher information, we need the inverse of the covariance matrix. Using the

fact that ∑
j

cos2 sj =
∑
j

sin2 sj = N/2 , (86)

it is straightforward to verify that

Σ−1ij =
1

1− c

[
δij −

c cos(si − sj)
1− c+Nc/2

]
. (87)

Consequently, the Fisher information is given by

I =
b2

1− c
∑
ij

sin(s− si)
[
δij −

c cos(si − sj)
1− c+Nc/2

]
sin(s− sj) . (88)

Again using Eq. (86) to perform the sums over i and j, this reduces to

I =
b2

1− c

[
N

2
− cN2/4

1− c+Nc/2

]
=

b2

c+ 2(1− c)/N
. (89)

Thus, Fisher information saturates, as we would expect for differential correlations.

5.2 Differential correlations hidden by non-differential correlations

Differential correlations can also be hidden by non-differential correlations. To illustrate

that, we consider a covariance matrix and tuning curves for which the information scales as

N , add differential correlations as we did in Eq. (61), and show that the correlation coef-

ficients with and without differential correlations are virtually indistinguishable – certainly

indistinguishable with the amount of data that can be collected in realistic experiments.

We consider a model in which a population of N neurons has circular Gaussian tuning

curves and, following Ecker and colleagues [4], random peak firing rates. Specifically, the

mean firing rate of neuron i is given by

fi(s) = Ai exp
(
(cos(s− si)− 1)

)
(90)

where the preferred stimuli, si, are drawn from a uniform distribution on the interval (−π, π],

and the peak firing rates, Ai, are sampled from a Gamma distribution with a mean of 40

and a standard deviation of 20,

p(A) =
A3e−A/10

104 Γ(4)
. (91)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 26

A representative sample of these tuning curves is shown in Fig. 6a of the main text. In the

absence of differential correlations, the covariance matrix, denoted Σ0(s), is given by

Σ0,ij(s) = cij
(
fi(s)fj(s)

)1/2
(92)

with correlation coefficients, cij, chosen to be

cij = (1− ρ)δij + ρ exp
(
κ (cos(si − sj)− 1)

)
. (93)

We used ρ = 0.2 and κ = 2. As above, δij is the Kronecker delta.

When differential correlations are present, the covariance matrix acquires an additional

term, εf ′f ′T , as in Eq. (61). This gives us a new covariance matrix, denoted Σε(s),

Σε,ij(s) = cij
(
fi(s)fj(s)

)1/2
+ εf ′i(s)f

′
j(s) . (94)

In our simulations we used ε = 0.002742, chosen so that, in the presence of differential

correlations, information saturates at a value that corresponds to a discrimination threshold

of approximately 3 degrees.

To show how information scales with N , we computed information both with and with-

out differential correlations. We started without differential correlations. To do that for a

particular N , we sampled N random preferred orientations, si, and for each we sampled a

random amplitude, Ai. We used those to construct tuning curves fi(s), via Eq. (90), and the

covariance matrix Σ0, via Eq. (92). Information was then computed directly from Eq. (59).

Next we computed information with differential correlations. For that we used Eq. (64),

which tells us that Iε = I0/(1 + εI0). The results are shown in Fig. 6b of the main text,

with the blue and red curves corresponding to information with and without differential

correlations, respectively.

To visualize the correlation coefficients with and without differential correlations, we plot

them versus difference in preferred stimuli (Fig. 6c, main text). Although we have analytic

expressions for the correlation coefficients, we computed them by simulating data, as that

gives a more realistic picture of what one might see in experiments. Specifically, we did the

following: Two preferred orientations, si, and their associated amplitudes, Ai, were randomly

sampled, as describe above. Using Eqs. (90-94), this fully specifies the mean, variance,

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 27

and covariance of the two neurons. We then generated 1000 samples from the associated

two dimensional Gaussian random variable, both with (ε = 0.002742) and without (ε = 0)

differential correlations. For all samples we set the stimulus, s, to 0. These 1000 samples were

used to compute the correlation coefficient between the two randomly generated neurons.

We repeated this for 400 pairs of neurons; the resulting 400 blue and 400 red dots are shown

in Fig. 6c of the main text. Blue dots come from a population with differential correlations

present; red dots from a population without differential correlations.

6 Empirically estimating information

Estimating Fisher information from data in the presence of differential correlations is non-

trivial, mainly because of limited data and access to only a subset of of the neurons. (Note

that neither of these are issues for simulated data.) Here we demonstrate that numerically.

We estimate Fisher information four ways: 1) computing a subset of the elements of the

covariance matrix and filling in the rest (Fig. 7a, main text), 2) computing all the elements

of the covariance matrix and then directly using the expression for the Fisher information,

Eq. (20) (Fig. 7b, main text), 3) using a locally near-optimal linear decoder, regularized by

early stopping (Fig. 7c, main text), and 4) using ridge regularization (Supplementary Fig. 3).

Only the third method, early stopping, worked well. This is not to say that this is the only

decoder that can be used to identify the presence of differential correlations. Other methods,

perhaps even some based on variations of ridge regression, may work. Our goal here was

simply to point out the limitations of naive approaches while providing at least one method

that works.

6.1 Simulation details

For all figures, we used data simulated from the model described in the previous section,

Sec. 5.2; see in particular Eqs. (90-94). Although there were differences in how we computed

information, simulations always proceeded in two steps: first we sampled a set of N neurons,

then we simulated data from those neurons.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 28

Step 1: Sampling neurons. Each neuron is fully described by two parameters: preferred

stimulus, si, and amplitude, Ai, where i labels neuron. Thus “sampling neurons” corresponds

to choosing a set of si and Ai, i = 1, ..., N . As discussed in the previous section, the former,

si, was chosen from a uniform distribution between −π and π, and the latter, Ai, from a

Gamma distribution with a mean of 40 and a standard deviation of 20 (see Eq. (91)). Given

these parameters, the covariance matrix for a given stimulus, s, is specified by Eq. (94).

Step 2: Simulating data. To simulate data, we drew samples from a Gaussian distribution

with mean and covariance matrix given by Eqs. (90) and (94), respectively. Because we had

to estimate the derivative of the tuning curve, we used two values for the stimulus: s+ = +ε1/2

and s− = −ε1/2. For all simulations in which differential correlations were present, we set

ε to 0.002742 (the same value we used in the previous section). We drew M samples for

s = s+ and another M for s = s−, for a total of 2M samples. Estimates of the covariance

matrix and the derivative of the tuning curves were, then, given by

Σ̂ij =
1

2M

∑
k

(
rki (s+)− f̂i

)(
rkj (s+)− f̂j

)
+
(
rki (s−)− f̂i

)(
rkj (s−)− f̂j

)
(95a)

f̂ ′i =
1

M

∑
k

rki (s+)− rki (s−)

s+ − s−
(95b)

where k labels trial and f̂i is the empirically estimated mean of the population response

averaged over both conditions,

f̂i =
1

2M

∑
k

(ri(s+) + ri(s−)) . (96)

Each point in Figs. 7a-c of the main text represents an estimate of information averaged

over 20 independent simulated data sets, each consisting of M independent samples. The

colored lines indicate the number of samples, M = 400, 800, 1600, 2400 and 4000. Each of

these 20 data sets was generated from a different population of N neurons sampled in the

manner described above. Error bars represent standard error of the mean.

6.2 Filling in the covariance matrix (Fig. 7a, main text)

It is common in experiments to record different subsets of neurons from the same animal

but at different times (often on different days), and from different animals. The question we

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 29

address here is: can these subsets be pooled to estimate Fisher information? For illustrative

purposes, we consider the case in which we have only pairs of neurons, although the results

generalize to larger subsets.

For this analysis, we generated simulated samples of neural activity from 4000 pairs

of neurons, as described in Sec. 6.1, and estimated the derivatives of the resulting tuning

curves and 2× 2 covariance matrix via Eq. (95). We then filled in the missing entries in the

covariance matrix using a slightly modified version of an approach introduced by Shadlen

and colleagues [5]. The idea is to construct an approximation to the square root of the

correlation matrix by resampling from the correlation coefficients derived from our 4000

pairs of neurons. The method, which is relatively complicated, proceeded as follows.

We first divided stimulus space into 20 uniformly spaced bins (the first bin ranged from

−π to −π + 2π/20, the second from −π + 2π/20 to −π + 4π/20, and so on). We then

placed each of our 8000 neurons into one of the bins, based on its preferred stimulus. Since

order doesn’t matter, this gave us 210 (= 20 × 21/2) different categories; each category

had, on average, 4000/210 (≈19) distinct pairs. Associated with each pair was a correlation

coefficient, so we had about 19 correlation coefficients for each category.

Given this simulated data, we then constructed the square root of the correlation matrix,

denoted Q. For that, we randomly selected N neurons (out of 8000) from our data set. For

each of the N(N − 1)/2 pairs of neurons (labeled by indices i and j), we determined what

category the pair was in (based on the preferred stimuli), and randomly, and uniformly,

selected a correlation coefficient, denoted rij, from that category. The diagonal elements of

square root of the correlation matrix were then set to

Qii =
1

r̄
√
N

√
r̄ +

2

N

(
1− r̄ −

√
(1− r̄)(1− r̄ + r̄N)

)(
1 +

√
(1− r̄)(1− r̄ + r̄N)

)
(97)

and the off-diagonal elements to

Qi 6=j =
1√
N

√
rij +

2

N

(
1− rij −

√
(1− rij)(1− rij + rijN))

)
(98)

where r̄ is the average of the randomly selected correlation coefficients, rij,

r̄ =
2

N(N − 1)

∑
i<j

rij . (99)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 30

The matrix of correlation coefficients was obtained by setting C∗ = QQT , and then setting

the diagonal entries of C∗ to one.

While the method looks obscure, it simplifies considerably in the large N limit. In that

limit, Qii → 1 and Qi 6=j → (rij/N)1/2 and, as is relatively easy to show,

C∗i 6=j →
1

N − 2

∑
k 6=i,j

(rikrjk)
1/2 . (100)

This tells us something reasonable: the correlation coefficient between neurons i and j is the

(nonlinearly) weighted sum of the correlation coefficients from those neurons to the neurons

that they both have in common. The downside is that this works only if all the correlation

coefficients are positive (which they were for us, but that’s not the case in general).

The correlation matrix C∗ was turned into a covariance matrix by multiplying it on

each side by a diagonal matrix which contains the square root of the empirically observed

average variances of each of the selected neurons. Fisher information was then computed

from Eq. (20). The results are shown in Fig. 7a of the main text. As can be seen in that

figure, this approach greatly overestimates information.

6.3 Direct estimate (Fig. 7b, main text)

Given that filling in the missing elements doesn’t work, we computed Fisher information

from neurons that were simulated simultaneously, as described in Sec. (6.1). Again we used

a direct estimate, Eq. (20). The results are shown in Fig. 7b of the main text. This method

also tended to over-estimate information, although not as badly.

6.4 Decoding with early stopping (Fig. 7c, main text)

Next we consider a decoding method – we use a locally optimal linear decoder to estimate

the stimulus, and we take the inverse of the variance of the estimate of the stimulus (with a

slight modification to account for bias) to be the Fisher information. As discussed in Sec. 4.2,

this should provide reasonably good results.

The linear decoder is a set of weights, which we denote w. To find w, we combined linear

regression with early stopping, the latter important because it avoids overfitting. Specifically,

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 31

we divided our 2M samples into three data sets of approximately equal size: the training set

(size MTR), test set (size MTE), and validation set (size MV AL), with MTR+MTE +MV AL =

2M . The squared error for the training and test data sets are

E2
TR =

∑
m∈TR

(
sm − s̄TR −wT (rm − r̄TR)

)2
(101a)

E2
TE =

∑
m∈TE

(
sm − s̄TR −wT (rm − r̄TR)

)2
. (101b)

Here the notation ∈ TR and ∈ TM means include data in the training and test sets,

respectively, sm can be either s+ or s− (taken as usual to be ±ε1/2), and a bar indicates an

empirical average,

s̄TR =
1

MTR

∑
m∈TR

sm (102a)

r̄TR =
1

MTR

∑
m∈TR

rm . (102b)

Note that these empirical averages are taken over the training set, not the test set.

The weights of the linear estimator were updated by gradient descent applied to the

training error,

dw

dt
∝ −∂E

2
TR

∂w
. (103)

Weights were initialized to random values, and gradient decent updates were stopped when

the error on the test data started to increase; that is, when dE2
TE/dt changed sign from

negative to positive, where

dE2
TE

dt
=

(
∂E2

TE

∂w

)T
dw

dt
∝ −

(
∂E2

TE

∂w

)T
∂E2

TR

∂w
. (104)

(Note that ∂w is a vector whose ith component is ∂wi
.)

To estimate the linear Fisher information given the decoder, w, we need to account for

bias, as in Eq. (51); approximating f ′ using the two values of the stimulus, s+ and s−, we

have

IEarly Stopping =

[
wT
(
r̄V AL (s+)− r̄V AL (s−)

)
s+ − s−

]2
2

wT Σ̄V AL(s+)w + wT Σ̄V AL(s−)w
. (105)

Here r̄(s±)V AL is the mean activity and Σ̄V AL(s±) is the covariance of the activity, computed

at either s = s+ or s = s−, using the validation data set. This quantity is plotted in Fig. 7c

of the main text.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 32

6.5 Ridge regularization

In Sec. 6.3 we saw that the direct approach for estimating Fisher information did not work

well. One of the reasons is that it required the inversion of a covariance matrix. This can

cause problems if some of the eigenvalues are near zero. We thus used exactly the same

method as for the direct approach, but we regularized the covariance matrix by adding an

additional diagonal component to the estimated covariance matrix,

Σij → Σij + λδij . (106)

The parameter λ was chosen using three methods. The first two are relatively standard; the

last involves decoding.

In the first method, we simply use λ = 0.1 – large enough to ensure that the covariance

matrix is not ill-conditioned, but not so large that it adds a great deal of bias. In the second,

we selected λ so that the effective number of degrees of freedom of the covariance matrix

was 0.9 ∗N , where N is the number of neurons [6]. Specifically, λ was chosen by solving the

equation

0.9 ∗N =
∑
k

σ2
k

σ2
k + λ

(107)

where σ2
k is the kth eigenvalue of the empirically estimated covariance matrix. This also led

to relatively small values (λ ≈ 0.25).

For both methods we estimated the tuning curves and covariance matrix as described

in Sec. 6.1, and then estimated information using Eq. (20) but with the ridge-regularized

covariance matrix (Eq. (106)). The results are shown in the first and second rows of Supple-

mentary Fig. 3. In the presence of differential correlations, there is improvement compared

to the direct approach (compare the right column of Supplementary Fig. 3 with Fig. 7b of

the main text). However, the improvement is not all that large.

In the third method, we optimize the ridge parameter, λ, using held out data [7]. Note,

though, that this method is somewhat different than the previous two: rather than directly

estimating the Fisher information with a regularized covariance matrix, as in Eq. (106), we

decode the neural responses with a ridge-regularized decoder. We do not discuss this analysis

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 33

in the main text, as it is a decoding-based means of estimating information, one that doesn’t

work as well as the early stopping algorithm used in Sec. 6.4 above (compare the bottom

row of Supplementary Fig. 3 to Fig. 7c of the main text).

The method follows closely the early stopping method presented in the previous section.

The only real difference is that we restrict the readout weights; rather than letting w be

0 200 400 600 800 1000
0

500

1000

In
fo

rm
at

io
n

(λ
=

0.
1)

No Differential Correlations

0 200 400 600 800 1000
0

500

1000
With Differential Correlations

0 200 400 600 800 1000
0

500

1000

In
fo

rm
at

io
n

(N
do

f=
0.

9*
N

)

0 200 400 600 800 1000
0

500

1000

0 200 400 600 800 1000
0

500

1000

In
fo

rm
at

io
n

(’
O

pt
im

al
’ λ

)

Number of sampled neurons
0 200 400 600 800 1000

0

500

1000

Number of sampled neurons

Figure 3: Empirically estimated information using ridge regularization. The black lines on

the right show the upper bound on information given by 1/ε (see Eq. (64)); the dashed

blue lines are the true information. Different colors indicate different number of samples

(M) used to estimate information: from top to bottom, M is 400, 800, 1600, 2400, 3200,

and 4000. On the left, differential correlations are not present and information grows with

the number of neurons. On the right, differential correlations are present and information

saturates at the black line. First row: The ridge parameter, λ, is fixed at 0.1. Second

row: The ridge parameter is chosen so that the effective number of degrees of freedom of the

resulting covariance matrix is 90% of the maximum number of degrees of freedom possible

(see Eq. (107)); typically λ ≈ 0.25. Third row: The inverse of the variance of a decoder

regularized using ridge regression and optimized by minimizing cross-validation error.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 34

arbitrary, we use weights of the form

wTR(λ) =
s+ − s−

4
(ΣTR + λI)−1

(
fTR(s+)− fTR(s−)

)
. (108)

(The reason for the prefactor, (s+−s−)/4, will be discussed shortly.) As above, we randomly

divided our 2M samples of population patterns of activity into three data sets of roughly

equal size: a training set (of size MTR), a test set (of size MTE), and a validation set (of size

MV AL). The covariance matrix, ΣTR, was computed via

ΣTR =
1

MTR

∑
m∈TR

(rm − r̄TR)(rm − r̄TR)T (109)

with r̄TR given in Eq. (102b), and the tuning curves, fTR(s±), were computed via

fTR(s±) =
1

MTR(s±)

∑
m∈TR;sm=s±

rm (110)

where MTR(s±) is the number of training samples with sm = s±.

The ridge parameter, λ, was selected to minimize decoding error on the test set, E2
TE in

Eq. (101b) with w is replaced by w(λ). Information was then estimated using Eq. (105),

again with w replaced by w(λ). Results are shown in the last row of Supplementary Fig. 3.

The method worked reasonable well when information saturated (right plot). However,

because the information is based on a suboptimal decoder, information computed this way

saturated when the true information did not, as predicted in Sec. 4.3.

Properly normalizing the decoding weights is important. Here we show that the prefactor,

(s+ − s−)/4, in Eq. (108) does provide the correct normalization, in the following sense: in

the limit of infinite data, if s+ is close to s−, the correct weight vector is wTR(0); i.e., in the

limit of infinite date, the ridge parameter, λ, becomes zero. To do that we need to show that

the correct weight vector in the infinite data limit is equal to wTR(0).

We start with a generic regression problem, in which we want to minimize

mean squared error =
〈
(δs−wT δr)2

〉
(111)

with respect to w, where

δs ≡ s− s (112a)

δr ≡ f(s)− f(s) + ξ , (112b)

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 35

ξ is zero mean noise with covariance Σ, s is the mean value of s, and the angle brackets

indicate an average over the true distributions of both s and ξ. As usual, the weight vector

that minimizes the mean squared error, denoted wopt, is

wopt = 〈δrδrT 〉−1〈δsδr〉 . (113)

We’ll consider a regime in which δs is small. In that case,

δr = δsf ′(s) + ξ . (114)

Consequently, assuming δs and ξ are independent,

〈δrδrT 〉 = Σ + σ2
s f ′f ′ (115a)

〈δsδr〉 = σ2
s f ′ (115b)

where f ′ is short for f ′(s), and

σ2
s ≡ 〈δs2〉 (116)

(here the angle brackets indicate an average only over s). Inserting Eq. (115) into (113), we

arrive at

wopt = σ2
s

(
Σ + σ2

s f ′f ′
T)−1

f ′ . (117)

How does this compare to wTR(0) when s+ is close to s−? To answer that, we first note

that

s+ − s−
4

(
fTR(s+)− fTR(s−)

)
=

(s+ − s−)2

4

fTR(s+)− fTR(s−)

s+ − s−
≈ (s+ − s−)2

4
f ′(s) . (118)

Second, note that because we are using only two value of s, s+ and s−, it follows that

(s+ − s−)2

4
= σ2

s . (119)

Finally, note, via Eqs. (109) and (114), that in the limit of infinite data (and, again, s+ close

to s−),

ΣTR =
〈(

r− f(s)
)(

r− f(s)
)T〉

=
〈(
δr + δsf ′(s)

)(
δr + δsf ′(s)

)T〉
= Σ + σ2

s f
′(s)f ′(s)

T
.

(120)

Combining this with Eqs. (118) and (119), we arrive at

wTR(λ) = σ2
s

(
Σ + σ2

s f
′(s)f ′(s)

T
+ λI

)−1
f ′(s) . (121)

Comparing this to Eq. (117), we see that wTR(0) is the correct weight vector.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 36

6.6 Coarse discrimination (Fig. 6d, main text)

So far we have focused on Fisher information, which is reasonable for continuous-valued

stimuli. However, our analysis applies also to coarse discrimination, in which the goal is to

discriminate between two discrete stimuli. Here Fisher information cannot be used. We can,

though, measure performance using percent correct.

To investigate how differential correlations affect decoding in a coarse discrimination task,

we used the model described in Sec. 5.2, with some minor modifications: First, we allow the

stimulus to take on only two values: s+ and s−, with s± = ±0.5236 radians (corresponding

to ±30 degrees). Second, we chose ε = s2± = 0.2742 radians squared, so that performance is

expected to saturate around 70%. And third, we reduced the average peak firing rate; we

chose the amplitudes from a Gamma distribution with a mean and standard deviation of 4

and 2, respectively (rather than 40 and 20, as in our previous simulations), for which the

distribution of amplitudes was

p(A) =
A3e−A

Γ(4)
. (122)

Covariance matrices were again computed using Eq. (94). Because of the Gaussian noise, the

lower amplitude sometimes led to negative firing rates; those were set to zero. The number

of samples was set to M = 4000.

When firing rates are this small, Fisher information no longer adequately captures the

quality of the neural code. Therefore, we quantified performance using percent correct in a

two alternative forced choice task. Weights of the separating hyperplane were computed by

minimizing mean square error using the early stopping algorithm that is described in Sec. 6.4

above. Training, test, and validation sets were randomly selected and were of approximately

equal size (about 1333 each, corresponding to a total of 4000 trials). Results are plotted in

Fig. 6d of the main text. Once again, error bars represent standard error of the mean.

Supplemental Modeling for Moreno-Bote et al., “Information-limiting correlations” 37

References

[1] J Beck, V R Bejjanki, and A Pouget. Insights from a simple expression for linear fisher

information in a recurrently connected population of spiking neurons. Neural Comput,

23(6):1484–1502, 2011.

[2] P Seriès, P E Latham, and A Pouget. Tuning curve sharpening for orientation selectivity:

coding efficiency and the impact of correlations. Nat Neurosci, 7(10):1129–1135, 2004.

[3] T.M. Cover and J.A. Thomas. Elements of information theory. John Wiley & Sons, New

York, 1991.

[4] A S Ecker, P Berens, A S Tolias, and M Bethge. The effect of noise correlations in

populations of diversely tuned neurons. J. Neurosci., 31(40):14272–14283, 2011.

[5] Michael N. Shadlen, Kenneth H. Britten, William T. Newsome, and Anthony J. Movshon.

A computational analysis of the relationship between neuronal and behavioral responses

to visual motion. Journal of Neuroscience, 16(4):1486–1510, 1996.

[6] T Hastie, R Tibshirani, and J Friedman. The Elements of Statistical Learning. 2nd

edition, 2009.

[7] GH Golub, M Heath, and G Wahba. Generalized cross-validation as a method for choos-

ing a good ridge parameter. Technometrics, 21(2), 1979.

