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This paper provides an important proposal for why learning can be much faster and
more accurate if synapses have a fast component that immediately corrects errors, as
well as a slower component that corrects behavior averaged over a longer timescale.
It is convincingly shown that integrating these two learning timescales improves
performance compared to classical strategies, particularly in terms of robustness and
generalization when learning new target signals. However, the biological plausibility
and justification for the proposed rapid learning mechanism require further
elaboration and supporting mechanistic examples.
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Abstract

During many tasks the brain receives real-time feedback about performance. What should it
do with that information, at the synaptic level, so that tasks can be performed as well as
possible? The conventional answer is that it should learn by incrementally adjusting synaptic
strengths. We show, however, that learning on its own is severely suboptimal. To maximize
performance, synaptic plasticity should also operate on a much faster timescale – essentially,
the synaptic weights should act as a control signal. We propose a normative plasticity rule
that embodies this principle. In this, fast synaptic weight changes greedily suppress
downstream errors, while slow synaptic weight changes implement statistically optimal
learning. This enables near-perfect task performance immediately, efficient task execution on
longer timescales, and confers robustness to noise and other perturbations. Applied in a
cerebellar microcircuit model, the theory explains longstanding experimental observations
and makes novel testable predictions.
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Introduction

The standard view of learning is that synaptic strengths are adjusted to minimize some loss –
typically the performance on a task, or set of tasks (Richards and Kording 2023     ; Bredenberg and
Savin 2023     ). From this perspective, given the complexity of the nervous system and the range of
tasks it must perform, conventional wisdom is that synaptic strengths change slowly. This makes
sense for tasks with a discrete set of responses: Do I lick left or right in response to a stimulus? Is
that grating oriented to the right or left of vertical? However, for naturalistic tasks with
continuous output, such as reaching for an object, feedback about performance could be used to
adjust weights on much faster timescales. In fact, for sufficiently fast feedback compared to the
timescale over which the world changes, fast weight changes could, at least in principle, enable
near-perfect performance.

Here we propose that synapses can maximize task performance by adjusting weights on two
timescales. On fast timescales, synapses can use real-time feedback to suppress immediate errors.
As long as the world changes relatively smoothly over time, if feedback at one moment indicates
that neural output is too high or low, synaptic strengths can be transiently decreased or increased
to compensate. On slow timescales, synapses can use the same feedback signal for statistically
optimal learning.

We first illustrate the main concept with a toy model, demonstrating how two timescales of
plasticity can work in concert. We then consider a more realistic model of a neuron, where
synapses dynamically integrate input and feedback to extract useful learning signals from noisy
observations. We derive synaptic update rules for this model by framing synaptic plasticity as an
optimal control problem. This leads to substantial improvements over classical gradient-based
learning. We then generalize the theory to incorporate small populations of neurons and delayed
feedback transmitted via spikes. Applied to a model of temporal processing in the cerebellum, our
theory provides normative explanations for common experimental observations, and makes novel
testable predictions. Altogether, these results provide a principled account of how the brain can
exploit multiple timescales of plasticity for efficient online adaptation and learning.

Results

We propose that neurons can optimize their performance by having two separate timescales of
synaptic plasticity. To illustrate the general idea, consider a simple online linear regression
problem. We model a single neuron that must learn to transform a set of time-varying input rates,
νi(t), into a target output, y*(t). The output of the neuron is given by

with parameters wi denoting its tunable synaptic weights. The classical solution to this problem is
to discretize time and iteratively modify the weights using the delta rule (Widrow and Hoff
1960     ),

where Δwi ≡ wi(t + Δt) − wi(t). This eventually minimizes the output error provided the learning
rate, η, is small.

https://doi.org/10.7554/eLife.105043.1
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The delta rule is attractive because it is generally effective and it is biologically plausible – each
synapse requires access only to its own local input rate, νi, and a global error feedback signal, y −
y*. If, however, νi and target output, y*, change smoothly over time, temporal correlations can be
exploited to dramatically improve performance. To exploit temporal correlations, we endow the
synaptic weights with independent fast and slow components,

The role of the fast weights, δwi, is to transiently adjust neuronal output to suppress immediate
errors – errors that can be predicted if y* changes slowly. The role of the slow weights, wi, is to
adapt, on a much slower timescale, to the true weights, thereby reducing the need for ongoing fast-
weight corrections (Fig. 1a     ).

For the model described by equation (1)     , a simple implementation of this strategy is to observe
the error at discrete times t, and then update all of the fast weights uniformly via

where Δδwi ≡ δwi(t + Δt) − δwi(t) and  is the expected input rate per synapse

(computed via a time average, or assumed as a known parameter). Summed over synapses, the
fast weights subtract the observed error from the output, and straightforward algebra gives us

where the approximation is good if there are a large number of synapses and Δt is small relative to
how fast the target and input firing rates change (Methods: Online linear regression).

While suppressing error with rapidly fluctuating weights is effective, continually making these
shortterm adjustments is likely to be energetically costly. This can be addressed by allowing the
slow weights to learn. Intuitively, the closer the output is to the target, the less work will be needed
to correct it. Seeking to make long-term adjustments to the slow weights, such that, ultimately,

, leads to local updates,

where  is a small learning rate (Methods: Online linear regression). This is similar to the usual
delta rule, but with the fast weights subtracted off: it’s not hard to see that .

Slow-weight learning is thus driven by a modified error signal that represents what would have
been observed in the absence of all of the fast corrections, isolating the contribution of . This
coupling between the two update rules makes them compatible: so long as the slow weights know
what the fast weights are doing, greedily suppressing error does not come at the expense of
learning – even though the error is a crucial teaching signal.

In simulations of this simple strategy, the weights that solve the regression problem can be learned
just as efficiently as in the classical case, but with the striking difference that the output is pinned
to the target from the outset (Fig. 1b     ). Thus, a neuron, or indeed an animal, could accurately
execute a task even while it is still being learned. Below we develop a control theory framework
that generalizes this to more realistic scenarios.

Synaptic plasticity as optimal control
We now apply this idea to a more realistic setting: a model neuron driven by multiple spike trains
and subject to intrinsic noise. Similar to the regression problem above, the neuron must tune its
synaptic weights to drive a downstream output, y, to match a time-varying target, y*. The target

https://doi.org/10.7554/eLife.105043.1
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Figure 1

A theory of fast and slow synaptic plasticity.

a) Left: A synapse must make online adjustments to its strength by integrating local signals, such as its own input and error
feedback. We propose that these signals can be optimally exploited through two timescales of plasticity. ‘Fast weights’, δwi,
fluctuate rapidly to suppress downstream error, whereas ‘slow weights’, wi, converge gradually to the values required of a
given task. Right: In the toy-model simulation from panel (b), as the slow weights find the solution, fast-weight fluctuations
are reduced. Shown are example weight trajectories from one randomly selected synapse out of 20. b) In an illustrative
online regression task, a neuron must learn to match its output to a time-varying target (gray dashed line). With a classical
delta rule (black line), weights adapt over time to eventually correct the output. With two timescales of plasticity (purple line),
fast weights can pin the output to the target from the outset, while slow weights evolve in the background to learn the task.
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could represent, for instance, the movement of a limb, but in this analysis we will take it to be an
abstract, time-varying one-dimensional signal. We assume there are N synapses, and each one has
access to two sources of information: the presynaptic spikes it receives, and an error signal.

The dynamics of the model neuron are described by equations for the total synaptic current, I, and
firing rate, r,

where a dot denotes a time derivative. In these equations, τI ∼ 5 ms and τr ∼ 50 ms denote the
synaptic and rate-modulation time constants, wi denotes the weight of synapse i, and each xi is an
independent Poisson spike train represented by a sum of delta functions,

where ti,k is the time of the kth spike arriving at synapse i. The parameter α sets the scale of firing
rate response to synaptic current, and the final terms, ξI and ξr, denote zero-mean, unit-variance
Gaussian white noise processes: ⟨ξI(t)ξI(t′)⟩ = δ(t − t′), and similarly for ξr. Functionally, a barrage of
input spikes is linearly filtered to drive the firing rate of the neuron.

The downstream output of the neuron, y, is driven by the firing rate of the neuron and white
noise,

The time constant, τy (taken to be ∼100 ms), determines how quickly the output responds to
changes in firing rate, and the final term is, as above, zero-mean, unit-variance Gaussian white
noise.

We develop the theory using a teacher-student learning framework: the target, y*, is generated by
simulating equations (7)      and (9)     , except with no noise and with a set of target weights,
denoted , in place of wi. The target weights drift slowly around a mean value, µw, with time
constant τw ∼ 103 s, modeling environmental variability or ongoing changes in the rest of the
brain (Aitchison et al. 2021     ). We assume, for simplicity, that an instantaneous, continuous error
signal is provided to all synapses, such as by diffuse transmission of a neuromodulator (Magee
and Grienberger 2020     ); below we will relax this assumption, and incorporate delayed feedback
communicated by spikes. The error signal is modeled as

where ξf is zero-mean, unit-variance Gaussian white noise.

The full derivation of the plasticity rule is provided in Methods: Derivation of the Bayesian
plasticity rule. Here we outline the general approach and main results. Similar to the analysis
above, we decompose the synaptic weights into independent fast and slow components,

, as in equation (3)     . Framing synaptic plasticity as an optimal control problem,

we find that by deriving fast-weight dynamics that minimize the error we simultaneously obtain a
highly effective slow-weight learning rule.

https://doi.org/10.7554/eLife.105043.1
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To derive the fast-weight rule, we consider a typical control strategy: using past error signals
(equa-tion (10)), compute a control variable, , such that applying it as an input to the system
(in our case, at the level of synaptic currents) will minimize future output error. Analogous to the
toy model above, rather than invoke an external control system for this purpose, we assume
everything is implemented locally at individual synapses.

Suppose that each synapse can compute such an error-minimizing control, . Setting the fast

weights uniformly as

with ν denoting the expected input rate per synapse, then leads to .

We would like to choose  to minimize the squared error, (y − y*)2. However, there is a cost to

making the squared error very small: , and thus δwi, will undergo large fluctuations. To
navigate the tradeoff between minimizing the squared error while making sure the fast-weight
fluctuations aren’t so large, we find  via

where T is the task duration and the expectation, 𝔼 […], is over the noise. The parameter λu is the
‘cost of control’; making it larger reduces fluctuations in the fast weights but increases the squared
error between y and y*; making it smaller has the opposite effect. The quadratic loss in equation
(12)     , along with the Gaussian white noise in the dynamical equations, means that  can be
computed as a solution to the classic linear-quadratic-Gaussian (LQG) control problem. This
approach results in a dynamical system that performs a Bayes-optimal estimate of unobserved
states (such as the true underlying error, y −y*), and uses that to construct an optimal linear
controller (Crassidis and Junkins 2011     ).

The resulting equations predict how synapses should process input and feedback for optimal
plasticity. For ease of intuition, we present the results here with some simplifying approximations.
The results without approximations, given by equation (76)     , are used in simulations, although
the approximate equations below provide comparable performance (Fig. S1     ).

To set the fast weights, u is computed by processing the error feedback signal, f (equation (10)     ),
via

(Methods, equations (80a)      and (92)     ). Equation (13a)      filters the noisy feedback to compute
an online estimate, , of the true error, δ = y − y*, using an optimal feedback gain, 𝒦. The control
variable is designed to negate the estimated error, with the magnitude of corrections determined
by the optimal control gain, ℒ (equation (13b)     ). The gains 𝒦 and ℒ depend on the model
parameters, reflecting both the integrative dynamics of the neuron and downstream output, and
the statistics of the noise.

How do the fast weights evolve in this scenario? Taking a time derivative of equation (11)     , and
substituting equations (13a)      and (13b)     , leads to

https://doi.org/10.7554/eLife.105043.1
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The fast weights are thus a low-pass filtered version of the negative of the error signal, which is
the optimal strategy in the presence of noise. To see how this relates to the toy-model strategy
above, we use the fact that when the control cost, λu, and feedback noise variance, , are small,

the optimal gains ℒ and 𝒦 are large (Methods, equations (87)      and (91)     ). In this regime, the
last term on the right-hand side of equation (14)      dominates the dynamics; if we consider
discrete updates with a time step Δt, equation (14)      becomes

where we used equation (10)      for f. Choosing the control cost to ensure that the product 𝒦ℒ
obeys the relationship  and ignoring the noise, we recover the fast-weight updates for the

toy model (equation (4)     ). Details aside, the key principle is the same: observe the current error,
then greedily adjust weights to compensate.

What about the slow weights – should they even be updated? And if so, how? To answer the first
question, we note that much of the error being controlled by the fast weights is due to mismatch
between the slow weights, , and the target weights, . Which makes sense: in the absence of
noise, when  the weights do not need to be adjusted. That can be seen for the toy model in

the right panel of Fig. 1a     ; for the more realistic model it’s shown explicitly in Methods, equation
(48a)     . This tells us that the closer the slow weights are to their target values, the smaller the
required control signal. Thus, given there is always a maximum control that can be applied,
pushing the slow weights towards the target weights will improve performance.

A simple approach to updating the slow weights would be to use a modified delta rule, similar to
equation (6)     . However, in this more realistic setting, the delta rule is suboptimal for two
reasons. First, the error feedback signal, f, is noisy, which leads to noisy weight fluctuations, and
even instability unless the learning rate is very small. Second, as pointed out by Aitchison et al.
(2021)     , efficient weight updates should depend on uncertainty, with more uncertain weights
updated more rapidly.

Qualitatively at least, the first problem can be fixed by filtering the feedback signal, f, and the
second by scaling the learning rate by the uncertainty. Determining exactly how to design the filter
and how much to scale, is, however, somewhat nontrivial. Fortunately, the analysis used to derive
the update rule for the fast weights leads naturally to a rule for updating the slow weights that
addresses these problems.

As shown in Methods: Derivation of the Bayesian learning rule (see in particular equation (80)     ),
the update rule for the slow weights is

The first term on the right-hand side of equation (16a)      looks very similar to the delta rule.
However, there are three notable differences. First, the term proportional to  leads to
relaxation to the target-weight mean in the absence of feedback. This reflects the fact that, as
mentioned above, the weights drift on a timescale of τw, so without feedback the mean, µw,
becomes the optimal estimate of the weight. Second, the raw error feedback signal, f, is replaced
by a prediction error, . Because  is just a filtered version of f (equation (13a)     ), 
reflects deviations of the error signal about its time-averaged value. Third, and most important,

https://doi.org/10.7554/eLife.105043.1
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the effective learning rate is proportional to zi, which plays the role of an eligibility trace, so is
different for every synapse. Equation (16c)      tells us that zi increases with the variable , which

reflects weight uncertainty, so the higher the uncertainty the higher the learning rate – as
expected. Determining the dependence of  on the firing rate is not completely straightforward,

but we show in Methods (see in particular equation (99)     ) that it scales as  where, recall,

νi is the rate of input to synapse i. This too is expected, at least qualitatively: the higher the firing
rate, the more certain a synapse is about its value, and the lower the learning rate.

Mathematically, equations (16a)      and (16b)      represent the evolving mean and variance of a
posterior distribution over target weights, similar to the approach introduced by Aitchison et al.
(2021)     . This is the best estimate that can be formed by the synapse, given the observed data, and
therefore the most efficient learning rule for . To highlight this qualitative difference from

classical counterparts, and make connections to previous work, we will refer to our plasticity rule
and its generalizations as ‘Bayesian plasticity’, in line with Aitchison et al. (2021)     .

Using the teacher-student task, we compared our plasticity rule to a classical gradient-based rule
for a neuron with 1000 synapses. The results are shown in Fig. 2     . The classical approach is a
generalized delta rule based on the Real-Time Recurrent Learning algorithm (Williams and Zipser
1989     ; Pearlmutter 1995     ), which is the canonical approach for online learning in dynamic
models. We included simulations of the full Bayesian rule, as well as versions using the slow and
fast components alone. Learning with the Bayesian slow-weight rule alone is already superior to
the classical rule, both in terms of total output error (Fig. 2a     ) and the speed of convergence of
the weights towards their target values (Fig. 2b     ). Output error is reduced further still when the
fast weights are included, due to suppression of noise and compensation for weight mismatch at
early stages of learning. Moreover, weight convergence in this case is almost indistinguishable
from when slow-weight learning is implemented in isolation. Although a similarly low level of
error is obtained using the fast weights alone, this requires much larger control currents (Fig.
2c     ), and no memory of the task is actually retained in the weights. With some small
modifications (Methods: Feedback delays), our rule also accounts for time lags in the feedback
signal, representing communication delays in the brain. In this case, slow-weight learning is
virtually unaffected and fast-weight control remains effective for delays on the order of the
downstream time constant (Fig. 2d     ).

Control and learning with spiking feedback
So far we have considered a continuous feedback signal, representing diffuse transmission of a
neuromodulator. But many important feedback pathways in the brain communicate via spikes; we
now generalize the theory to incorporate these signals. Our modeling choices are specifically
motivated by the sparse climbing-fiber inputs to cerebellar Purkinje cells, which provide
instructive signals that drive plasticity at parallel-fiber synapses (Hull and Regehr 2022     ; Silva et
al. 2024     ). However, the general formulation is applicable to other scenarios, such as dendritic
spikes in cortical neurons that are triggered by feedback connections (Larkum 2013     ; Richards
and Lillicrap 2019     ; Fişek et al. 2023     ).

We model the spiking feedback signal, fS, as an inhomogeneous Poisson process with rate

Concretely, fS comprises a series of delta functions centered at spike times that are generated with
instantaneous rate γ(t). The synapses ‘see’ the spikes, and can use those to update synaptic
strength. The parameters γ0 and ρ set the spontaneous rate of feedback and steepness of the
nonlinear response to output error (representing, for instance, the transfer function of an error-
coding neuron).

https://doi.org/10.7554/eLife.105043.1
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Figure 2

Synaptic plasticity as optimal control.

a) Performance comparison between the classical gradient-based rule (black) and Bayesian rule without fast weights (blue),
with plastic fast weights and frozen slow weights (red), and with plastic slow and fast weights (purple). Bars denote root-
mean-squared error (RMSE) between output, y, and target output, y*, averaged over the entire task. Data points denote
different random seeds. The dashed line gives the average error when slow weights are set to their target values at every
point in time. The learning rate for the classical rule and control cost for the Bayesian rule were selected via grid search to
minimize output error. b) The Bayesian rules yield faster convergence of weights to their target values compared to the
classical rule, quantified as RMSE between weight vectors. Shaded areas are standard deviation from 10 random seeds. c)
Root-mean-squared output error versus fast weight fluctuations, the latter computed as the root-mean-squared fast weight
divided by root-mean-squared slow weight (averages taken over entire task). The size of the fast weight fluctuations were
controlled by the cost parameter λu (see equation (12)     ). In the full plasticity rule (purple), even small fluctuations of ∼ 10%
lead to a large reduction in error. Without slow-weight learning (red), much more control is needed for a similar level of
performance. Points denote the average over seeds for a fixed λu; the shaded ellipses denote standard deviation across
seeds. d) Control is effective for feedback delays shorter than the output time constant (here, τy = 100 ms). Shaded areas are
standard deviation from 10 random seeds.

https://doi.org/10.7554/eLife.105043.1
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With spiking feedback, the standard formalism cannot be used for estimating the error and target
weights. Instead, similar to Eden et al. (2004)      and Pfister et al. (2010)     , we derived a recursive
Bayesian algorithm. The details are provided in Methods: Spiking feedback, with the full plasticity
rule described by equation (117)     . This has a similar structure to the rule discussed above
(equations (13)      and (16)     ). Incoming feedback spikes are optimally filtered to form an
estimate, , of the continuous-valued output error (Fig. 3a     ). This is used to set the fast weights
via an optimal control gain as before. For the slow weights,  is transformed into an estimate of

the instantaneous feedback rate, , and combined with an eligibility trace, zi, to drive learning,

The eligibility trace, which evolves similarly to equation (16c)     , records the recent activity level
of the synapse. Qualitatively, the slow weights of recently active synapses tend to decrease in steps
when feedback spikes arrive and increase gradually in between. This process eventually reaches a
steady state where the observed feedback rate is equal to the predicted rate, which happens when
the target weights have been accurately estimated.

We compare the Bayesian rules to a spiking-feedback version of the classical rule used in the
continuous model above (Methods, equation (38)     ). Notably, the classical spike-based rule
conforms to the standard model of Purkinje cell plasticity (Ito 2001     ; Coesmans et al. 2004     ):
synaptic input alone leads to long-term potentiation (LTP), whereas the conjunction of synaptic
input and feedback spikes are required for long-term depression (LTD).

Simulations with the spiking-feedback model were consistent with those of the continuous model,
recapitulating all of the previously observed advantages of Bayesian plasticity (Figs. 3b      and
S2     ). Learning in this case is substantially harder, requiring an order of magnitude more time to
reach equivalent levels of performance, primarily because spikes occur rarely. The spontaneous
feedback rate, γ0, is therefore a key determinant of performance, with higher rates leading to
faster learning and lower output error (Fig. S2     ).

Not only does a low feedback rate make learning hard, it also makes fast-weight updates less
effective. This is not surprising, since online corrections can only be reliably made soon after
receiving an error-encoding spike. However, we found performance can be boosted by
distributing the task and feedback across multiple neurons. We explored this by simulating M = 20
neurons, each as described by equation (7)     . For ease of comparison with the single-neuron
simulations, we placed 50 synapses on each of the M neurons to give the same total number of
synapses. The firing rates in the population model, rm, are summed to drive a common
downstream output, modifying equation (9)     ,

Each neuron receives a separate Poisson feedback signal, with spikes generated independently
from the common error-dependent rate γ(t). Because the collected feedback spikes now provide a
denser error signal, effective control can be achieved at the population level even when γ0 is small
(Fig. 3b     , dashed line).

Fast and slow synaptic plasticity in the cerebellum
Our theory was derived in a setting where the target weights are defined explicitly and the target
output is guaranteed to be realizable by the model. To validate our results in a biological setting
and, cucially, to make experimentally testable predictions, we apply it to a cerebellar learning
problem.

https://doi.org/10.7554/eLife.105043.1
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Figure 3

Control and learning with spiking feedback.

a) When feedback is communicated via noisy spiking activity, optimal plasticity requires the synapse to infer the true
underlying continuous error signal. The estimated error is then used to drive both control and learning. Fast weights seek to
improve performance by canceling the estimated error (lower panel), while slow weights seek to reduce the error
permanently. b) Performance depends on the rate of feedback. High feedback spike rates increase the precision of error
estimates, thereby enhancing learning and control. A population of neurons acting on multiple independent feedback signals
(dashed purple trace) can compensate for very low individual feedback rates. Shaded areas are standard deviation from 10
random seeds.

https://doi.org/10.7554/eLife.105043.1
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Our population model can be mapped onto the structure of a cerebellar microzone – a group of
Purkinje cells receiving correlated climbing-fiber input and whose outputs converge on common
down-stream targets (Fig. 4a     ) (Apps et al. 2018). As an abstraction of microzone processing, we
consider a population of 20 neurons that must learn to transform patterns of synaptic input into
time-varying outputs (Fig. 4b     ). The inputs come from parallel fiber spikes, assumed to be driven
by time-varying patterns of granule cell activity (Medina et al. 2000     ; Gilmer et al. 2023     ). The
output represents a downstream motor signal, or a predicted motor output (Wolpert et al. 1998     ).
Feedback is provided by sparse climbing-fiber spikes, with γ0 = 2 spikes/s, leading to firing rates
close to that observed in vivo (Armstrong and Rawson 1979     ).

We defined 10 pairs of input-output patterns {νp(t), ; p = 1, …, 10}, each lasting 1 s (Fig. 4b     ).
The input patterns comprised time-varying vectors of synaptic input rates, νp, realized with
Poisson spiking. We used 2000 synapses in total, distributed equally across the 20 Purkinje cells.
The target output trajectories were defined as random wavelets with shapes that drift on a slow
timescale of ∼104 s (analogous to the target-weight drift in the teacher-student task). Input-output
pairs were presented in a continuous stream in random order for 500 s. While all of the models
can eventually solve this task, the Bayesian models learn much faster, and control via the fast
weights can pin the output to the target from the outset (Fig. 4c,d     ).

So far we have focused on learning a particular input-output mapping. What happens when the
desired input-output mapping changes? To address this, we tested the response of the trained
models to changes in the target outputs. As above, we trained on 10 input-output mappings, but
after training we changed 5 of the outputs (Fig. 4e     ). An efficient response requires synapses to
adapt selectively to learn the new input-output pairs, without disrupting previously learned pairs.
We find that Bayesian plasticity is much more robust than the classical approach, enabling rapid
recovery over a few tens of pattern presentations. With fast-weight updates, the output error is
almost unaffected by the perturbation. And in the background, the slow weights gradually
converge to their new target values, reducing the magnitude of ongoing control currents and
updating the stored memory of the task.

Signatures of fast and slow synaptic plasticity
We use the cerebellar learning task to make experimental predictions for the control and learning
components of our theory. In the cerebellar model, the control signal depends strongly on
climbing-fiber input, transiently adjusting activity whenever a feedback spike arrives. To measure
the size of this effect in our model, we plotted the firing rates of neurons relative to the time of
their associated climbing-fiber spikes. These simulations show a pronounced dip in firing rates
after a climbing-fiber spike, but only when there are fast-weight updates; the dip disappears both
for classical and Bayesian updates of slow weights only (Fig. 5a     ). Such patterns of activity –
climbing-fiber-induced ‘spike pauses’ – have been widely observed in vivo (Bell and Grimm
1969     ; Bloedel and Roberts 1971     ; Sato et al. 1992     ; Barmack and Yakhnitsa 2003     ; Han et al.
2020     ). However, while widely observed, their computational significance has remained unclear;
our model provides a novel, normative explanation that spike pauses are a strategy for
suppressing downstream error. Moreover, it makes two experimentally testable predictions: the
duration of the dip increases with the time constant of downstream dynamics, τy, and the
magnitude of the dip decreases with feedback delays (Fig. 5b     ). Both predictions could be tested
by manipulating output dynamics experimentally, or exploiting the fact that feedback delays vary
across different regions of the cerebellum (Suvrathan et al. 2016     ; Jayabal et al. 2022     ).

Our model also makes predictions about the slow-weight dynamics. For that we used the trained
models to simulate a common experimental plasticity protocol. In this protocol, synapses are
repeatedly stimulated with a short burst of parallel fiber spikes, followed by one or more climbing-
fiber spikes (here repeated 50 times at 2 repetitions/s) (Fig. 5c     ). In experiments, LTP is generally
observed at zero or negative intervals between parallel and climbing-fiber stimulation, but
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Figure 4

Fast and slow plasticity in the cerebellum.

a) Schematic of the cerebellar microzone model. A group of Purkinje cells receiving synaptic input from parallel fibers project
to a common downstream output. Each Purkinje cell receives feedback spikes from a separate climbing fiber, signaling the
error between actual and target outputs. b) Schematic of the learning task. Ten patterns of temporally organized parallel-
fiber input must be mapped by a population of Purkinje cells to time-varying target outputs. c) Example outputs early and
late in learning, replicating the results from the toy model in Fig. 1b     . d) Performance during early (100 − 200 s) and late
(5000 − 5100 s) stages of learning. Bars denote RMSE between output and target output, averaged over 100 s. e) Left: After
training on 10 input-output mappings, half of the target outputs were changed. Right: Bayesian plasticity confers faster
recovery than the classical approach. With fast weights, the output is largely insensitive to the perturbation. Error curves have
been smoothed with a moving average filter of width 10 s. Shaded areas are standard deviations from simulations pooled
over 10 random training seeds × 10 perturbations.
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Figure 5

Signatures of fast and slow synaptic plasticity.

a) Suppression of Purkinje-cell firing rates after climbing-fiber input is a signature of fast-weight updates. The solid lines
denote averages of firing rates aligned to climbing-fiber feedback spikes during the cerebellar learning task. Shaded areas
are the standard deviation of the average firing rate change of 20 neurons × 10 random seeds. b) The duration and
magnitude of the predicted firing rate suppression vary systematically with the time constant of the downstream output and
the feedback delay. c) A standard experimental protocol can discriminate between classical and Bayesian plasticity. After
training on the cerebellar learning task, synapses were stimulated with conjunctions of parallel-fiber input bursts and
climbing-fiber feedback spikes (50 repetitions at 2 reps/s). d) Left: The Bayesian rules produce LTD over a narrower range of
PF-CF intervals than the classical rule, and also exhibit greater variability across synapses. Right: The variability is due to the
adaptive learning rate: in the Bayesian rules, unlike the classical rule, the magnitude of weight changes depend on the
average rate of input during the task. Solid lines denote synaptic weight changes measured at the end of the protocol,
averaged over 100 tested synapses. Shaded areas are standard deviation.
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switches to LTD for sufficiently positive intervals or sufficiently many climbing-fiber spikes (Wang
et al. 2000     ; Safo and Regehr 2008     ; Mathy et al. 2009     ; Suvrathan et al. 2016     ; Bouvier et al.
2018). All of our models reproduced these observations, and have qualitatively similar behavior as
the parameters of the plasticity protocol are varied (Fig. S3     ). However, the Bayesian rules
yielded sharper tuning to the interval, and, importantly, greater variability across synapses (Fig.
5d     ). The source of this variability is the adaptive learning rate of Bayesian plasticity: the
magnitude of slow-weight changes during the protocol depends on the average rate of input
received during the task. Our theory can therefore be discriminated from the standard model by
combining well-established plasticity protocols with recording or manipulation of input rates.
While this may be possible in vivo in the near future with optogenetics and voltage imaging (Fan et
al. 2023), in vitro, we predict that preconditioning a synapse with a long train of parallel fiber
spikes can block subsequent plasticity induction by driving down its intrinsic learning rate.

Discussion

We proposed that synaptic plasticity should operate at two timescales: a fast timescale to suppress
immediate errors, and a slow timescale to learn. This multiscale plasticity rule significantly
outperforms online gradient-based learning, confers robustness to noise and other perturbations,
and means that neurons can accurately perform a task almost immediately – well before learning
has stored a longer-term solution in the weights.

Fast weights for feedback control
Our theory frames synaptic plasticity as an optimal control problem. This is a natural framework
for any system where real-time feedback is available to guide the dynamics. While there is a long
tradition of using control theory to understand neural function (Todorov 2004     ; McNamee and
Wolpert 2019     ), our work is most closely related to recent studies that have also connected fast
control mechanisms with slower processes of learning. In one approach, fast feedback was used to
drive spiking network dynamics to a regime that enables local learning of complex tasks
(Bourdoukan and Denève 2015     ; Denève et al. 2017     ; Alemi et al. 2018     ). In another, the Deep
Feedback Control theory uses feedback to drive network output to a target steady-state, and then
exploits credit assignment signals implicit within the controller to gradually tune feedforward
weights (Meulemans et al. 2021     ; Meulemans et al. 2022     ; Rossbroich and Zenke 2023     ). In a
recurrent network model of motor adaptation, Feulner et al. (2022)      notably used the same error
feedback signal for both control and learning, finding network dynamics resembling data from
monkeys. Our theory differs markedly from all of these approaches, however, as the control
signals in our models can be computed and implemented by individual synapses. Thus, in place of
complex network-level control structures, we are positing a novel processing role for intracellular
signaling at the synapse (Bhalla 2014     ; Benna and Fusi 2016     ; Zenke et al. 2017     ). Exploiting
this local layer of processing could allow the brain to operate much more efficiently: physically, it
reduces the amount of wiring and neurons needed for high performance; algorithmically, neurons
make dual use of the feedback signals they receive.

The fast mechanism we propose differs from typical forms of short-term plasticity (Zucker and
Regehr 2002     ; Abbott and Regehr 2004     ). Namely, in our model, fast weight changes depend
strongly on error feedback, rather than presynaptic spike patterns alone. How could this be
implemented biologically? If error signals are carried by a neuromodulator, as assumed in our
continuous-feedback model, there are a range of candidate pathways. Neuromodulators including
acetylcholine (McGehee et al. 1995     ; Gil et al. 1997     ), serotonin (Feng et al. 2001     ), dopamine
(Higley and Sabatini 2010     ), norepinephrine (Cheun and Yeh 1992     ), among others (Marder
2012     ; Nadim and Bucher 2014     ), are all capable of selectively regulating synaptic transmission
and the magnitudes of postsynaptic currents. In common with our model, these effects are
transient, can be bidirectional, and are distinct from influences on membrane excitability and
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long-term plasticity. Alternatively, feedback signals might be processed by closely apposed glia. For
instance, astrocytes would be well-placed to perform the computations we describe: they are
known to integrate a variety of molecular signals and dynamically fine-tune both both pre and
postsynaptic properties (Perea et al. 2009     ; De Pittà et al. 2016     ; Papouin et al. 2017     ).

In our cerebellar model, we assume that the fast fluctuations are driven by climbing fiber input. At
a functional level, decades of past experiments are in striking agreement with our theory: when a
climbing fiber spike is received by a Purkinje cell, there is a brief pause in output firing. Previous
functional explanations for spike pauses include precise temporal or multiplexed coding (Steuber
et al. 2007     ; De Schutter and Steuber 2009     ; Han et al. 2020     ), encoding dendritic spike rates
(Davie et al. 2008     ), and transmitting teaching signals to downstream neurons (Mathews et al.
2012     ). While not mutually exclusive, we offer the simple explanation that if climbing fibers are
indeed signaling error, then pauses are an effective mechanism for making short-term corrections.
Our modeling predicts this mechanism would be most apparent in experiments focused on regions
and modalities with short feedback delays, such as those receiving signals from the spinal cord for
postural maintenance, or proprioceptive feedback from the periphery. It will be interesting to
investigate how feedback control of cerebellar output could also support the function of more
complex, nested motor-control loops (Wolpert et al. 1998     ; Rotondo et al. 2023     ), and cognitive
computations more generally (Hull 2020     ; Kostadinov and Häusser 2022     ; Pemberton et al.
2023     ).

Slow weights for learning
Optimizing weights for control on fast timescales also leads to highly efficient learning on slow
timescales. The rule that arises naturally in our framework works efficiently by maintaining a
Bayesian estimate of the target synaptic weight and its uncertainty – the best a synapse can do,
given a sequence of noisy local observations. Updating weights slowly in line with this evolving
estimate gradually reduces the magnitude of corrections that need to be applied via the fast
weights.

Bayesian approaches to plasticity were explored in much earlier work, both in machine learning
(Bun-tine and Weigend 1991; MacKay 1992     ) and neuroscience (Dayan and Kakade 2000     ), but
have only recently begun to be broadly exploited (Blundell et al. 2015     ; Hernández-Lobato and
Adams 2015     ; Kappel et al. 2015     ; Kirkpatrick et al. 2017     ; Drugowitsch et al. 2019     ; Hiratani
and Latham 2020     ; Aitchison et al. 2021     ; Jegminat et al. 2022     ; Malkin et al. 2024     ). Aitchison
et al. (2021)     , in particular, were the first to develop a Bayesian theory of local synaptic plasticity.
In common with our slow-weight rule, they found that tracking weight uncertainty leads to an
adaptive learning rate, yielding superior performance to a simple online delta rule. As well as the
novel connection to control, the slow-weight component of our theory generalizes their results in
two important directions. First, Aitchison et al. (2021)      assume that data seen by a synapse
comprises independent samples, approximating away any history dependence. By contrast, our
dynamic model and learning rule accounts for, and crucially exploits, the temporal correlations
inherent in neural signals. Second, our theory incorporates sources of spiking feedback and
communication delays, making Bayesian plasticity more widely applicable as a theory of learning
in the brain. Simulating our more realistic model, we outlined how this theory could be tested (Fig.
5     ): if synapses have evolved to use local data as efficiently as possible, then adding a pre-
conditioning train of input to common in vitro plasticity protocols should unmask the
characteristic adaptive learning rate.

Outlook
Our general framework can be used to make predictions about plasticity in other cells and circuits,
including more complex scenarios than we have studied here. For instance, while we have focused
on linear neural dynamics – a suitable approximation for cerebellar Purkinje cells (Llinás and
Sugimori 1980     ; Brunel et al. 2004     ; Walter and Khodakhah 2006     ) – the theory could be
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adapted to account for nonlinear integration in cortical and hippocampal neurons (Poirazi et al.
2003     ; Payeur et al. 2021     ; Bicknell and Häusser 2021     ). This could be achieved with a
straightforward modification of the Kalman filtering approach that we used, for which there are
already established theoretical tools for nonlinear filtering and control (Crassidis and Junkins
2011     ; Kutschireiter et al. 2020     ). At the network level, combining fast and slow plasticity with
recurrent connectivity would be a challenging, but likely very fruitful, direction. It has previously
been shown, for instance, that the concerted action of multiple plasticity rules can enhance
memory formation and stability (Zenke et al. 2015     ).

Finally, to derive our fast and slow plasticity rules, the synapses had to know the underlying
equations that transform synaptic drive to the output. How this is learned is an interesting, and
important, problem. It is likely that some of the learning can be accomplished on much slower,
even evolutionary, timescales (Friedrich et al. 2021     ). On shorter timescales, Moore et al. (2024)     
proposed an elegant solution: learn the optimal controller from data without ever learning the
underlying equations. Applying this formalism, they demonstrated that a wide range of
neurophysiological data can be explained by modeling individual neurons as optimal feedback
controllers. Incorporating similar ideas to study nonlinear computations in hierarchical and
recurrent neural circuits is an important avenue for future work.

Methods

Online linear regression
Using the simple linear regression model described by equation (1)     , we illustrated how
concurrent fast and slow updates to synaptic weights can be exploited to optimize task
performance. Here we provide the derivation of the plasticity rules for that model (equations
(4)      and (6)     ).

We consider a discrete-time setting where the inputs, output and weights are updated at small
intervals, Δt. Decomposing synaptic weights into fast and slow components, equation (1)     
becomes

After observing the local inputs, νi, and error, y − y*, at time t, synapses update their fast and slow
weight components in parallel,

The role of the fast weights, δwi, is to greedily suppress the current error, so that y approximately
matches y* – independent of the setting of the slow weights. We achieve this by choosing the fast-
weight updates to be proportional to the negative of the error,
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where N is the total number of synapses and  is the expected input rate. Using this

expression, and inserting equation (21)      into equation (20)     , at the next time step we have

To derive the approximate expression in the second line, we replaced νi(t +Δt) by νi(t), which is
valid if Δt is small compared to the timescale over which the firing rates change, and dropped the
term , which is valid if the slow weight updates are small. The first term is just y(t) (see

equation (20)     ); approximating Σi νi by its expectation then gives

Thus, with mild assumptions, the fast-weight updates given in equation (22)      force the output to
closely match the target at all times.

While the fast-weight updates ensure low output error, this comes at the cost of ongoing, and
potentially large, fluctuations in weights. Those fluctuations can be seen in the right panel of Fig.
1a     , especially at early times before the slow weights have been updated. We address this with a
local rule for the slow weights that permanently pushes y closer to y*, thereby reducing the need
for ongoing corrections. To that end, at each time step, we adjust the slow weights with the aim of
minimizing the loss

The loss is minimized by making updates in steps proportional to the negative of the gradient

For the last line we used the fact that the fast weights do not depend on the synapse index, so Σj
δwjνj = δwi Σj νj ≈ Nνδwi. This leads to a local slow-weight update rule

where  is a small learning rate. Equations (22)      and (27)      for the fast and slow updates
correspond to equations (4)      and (6)      in the main text.

Classical online learning
For the model described by equations (7)      and (9)     , with either continuous feedback
(equation (10)     ) or spiking feedback (equation (17)     ), we compared our Bayesian plasticity
rules to classical, gradient-based counterparts. The classical rules are based on the Real Time
Recurrent Learning algorithm (RTRL; Williams and Zipser 1989     ; Pearlmutter 1995     ), which is
the canonical online, gradient-based learning rule for dynamic models. While typically employed
in recurrent neural networks, here we apply it to a single-neuron model, adapted slightly to enable
fair comparisons with alternatives.
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For continuous feedback, we aim to minimize the squared output error, (y − y*)2. However, unlike
the simple model, here we need to account for history dependence – the output at any given time
depends on inputs that were received in the past. To account for this, we start by considering a
loss integrated over a time horizon, h, in which the weights are held fixed,

The derivative of the loss with respect to the weight of synapse i over that period is

The second factor in the integral is a dynamic quantity, which can be computed by taking
derivatives of equations (7)      and (9)      with respect to wi. This gives the linear system

for the sensitivities , and . Equation (30)      is solved from the initial

condition sI,i(t0), sI,i(t0), sI,i(t0) = 0. An exact gradient-descent weight update could then be applied
at time t0 + h as

where η is the learning rate. Functionally, sy,i plays the role of an eligibility trace by recording the
recent impact of the synapse on the output.

Formally, after the weights have been updated, the sensitivities should then be reset to the zero
initial condition to track activity over the next time interval. However, assuming weight changes
are slow compared to the model dynamics, the RTRL rule is commonly run as a fully online
approximation by taking h → 0, giving a differential equation for the weight dynamics, and
neglecting the reset of the sensitivities (Pearlmutter 1995     ). We take this approach here and make
two further modifications. First, we replace the term (y − y*) with its noisy observation, f. Second,
we append an additional weight decay term to account for the slow drift of the target weights (see
Aitchison et al. (2021)      and the derivation of the Bayesian rule below for motivation). This leads
to classical online updates for each synapse

For spiking feedback, we use the same approach, but with a different loss function. In this case the
output error is communicated via a Poisson process with rate γ(t), as described by equation (17)     .
To handle the random and discrete nature of spiking feedback, we work with spike probabilities.

Over a time horizon h, the feedback spike count, denoted n, will be distributed as
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Updates to the weights should seek to match this distribution to the one that would arise if all of
the weights were set correctly. We express this in terms of a ‘target rate’, γ*, which defines a target
distribution, P (n|γ*), via equation (33)     .

We use the cross-entropy loss between target and actual distributions to derive the updates; this is
given by

The derivative of the loss with respect to weight wi is, using ,

As before, we use equation (30)      to compute the  term, accounting for the history dependence.

Similar to the continuous feedback model, we define weight updates to be proportional to the
negative of the loss gradient, and then take h → 0 to yield a continJuous-time expression.
Expanding equation (35)      to first order in h, approximating the integrals as ,

and exponentials as e−hγ ≈ 1 − hγ, only the n = 0 and n = 1 terms survive from the sum. Some
straightforward algebra then leads to

Thus, the spiking-feedback analogue of equation (31)      is

where ηS is the learning rate.

Taking h → 0, and approximating the unobserved rate γ with feedback spikes, fS, leads to a
continuous-time learning rule

where we have appended a weight decay term as before.

Finally, to set γ*, we use the fact that when the weights are set correctly, the error comprises
Gaussian fluctuations about zero due to noise. With the exponential nonlinearity in the feedback
rate function (equation (17)     ), the expected rate is the mean of a log-normal variable, giving

where  is the stationary variance of the output noise. The stationary variance can be

computed numerically in terms of the model parameters via the Lyapunov equation
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In equation (40)     , A is a matrix encoding the model dynamics (see equation (70)     , below), and
Λnoise is diagonal matrix comprising noise variances  on the diagonal. The relevant term

 is found at the last row and last column of Σnoise.

In all simulations, learning rates for the classical rules were selected via grid search to minimize
output error.

Derivation of the Bayesian plasticity rule

Problem setting

Given the model dynamics described by equations (7)      and (9)     , we consider a general task in
which the goal is choose weights, wi, to match the output, y, to a time-varying target, y*. We assume
y* is generated via deterministic dynamics identical to y, using a set of target weights .
Following Aitchison et al. (2021)     , to represent environmental variability or ongoing changes in
the local circuit, we assume the mapping between input and target output drifts slowly over time,
modeled as random drift of the target weights about a constant mean, µw,

The drift timescale, τw ∼ 1000 s, is orders of magnitude slower than the neuronal and output
dynamics.

The above assumptions about the relationship of target weights to y*, and the drift described by
equation (41)     , are exact in the teacher-student learning paradigm. In the cerebellar learning
simulations, target weights are instead defined implicitly as weight values that would solve the
task.

Error minimization from the perspective of a single synapse

As in the simple online linear regression model, we decompose the weights into independent slow
and fast components, . The fast weights, δwi, will be responsible for suppressing

error, while the slow weights, , gradually converge to the target weights, thereby reducing the
magnitude of ongoing corrections. However, with the more realistic dynamics described by
equations (7)      and (9)     , writing down the plasticity rule is considerably more challenging.
That’s because the mapping from the weights, wi, to the output, y, is more complicated: rather than
a simple sum, as in equation (1)     , there are several differential equations separating the weights
from the output (equations (7)      and (9)     ).

To derive learning rules in this more complicated setting, we start by introducing a set of variables
equal to the difference between actual and target quantities,
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From equations (7)      and (9)     , these evolve via

The target weights, , are unknown, so on the surface these equations don’t seem especially

useful. However, the synapses have access to the feedback, f, which is a noisy version of δy (see
equation (10)     ). Thus, they can use these equations to estimate  based on the mismatch

between δy and f, and update the actual weights, wj, with the aim of making δy as small as
possible.

However, there’s a problem: δy depends on the activity of all the synapses; information that any
one synapse doesn’t have. To remedy this, we’ll work from the perspective of synapse i, and model
δy in terms of local variables.

Decomposing synaptic weights into slow and fast components, the sum in equation (43a)      can be
expanded as

The first term depends only on synapse i, so it’s local. The second term represents a source of error
due to the other N − 1 unobserved synapses. For Poisson input and large N, this can be
approximated as Gaussian white noise (Fourcaud and Brunel 2002     ),

As above, ν denotes the expected input rate per synapse.

For the third term in equation (44)     , we view the sum over fast weights as approximating a
single scalar control variable, denoted u, later to be chosen to minimize output error. Assuming
that all of the synapses can compute u locally, by setting the fast weights uniformly as

the third term in equation (44)      can be expressed as

where the approximation is good in the large N limit. Inserting equations (45)      and (47)      into
equation (44)     , and inserting that into equation (43)     , we arrive at a set of equations that uses
only information local to synapse i,
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Equation (48)      is a model of the error that the synapse can use to guide plasticity. In our rule, the
synapse learns by updating its slow weight, , to be equal to an evolving estimate of the target,

, while choosing u, and thereby the fast weight, δwi, to cancel out the remaining error.

Optimal control solution
Because the noise in equation (48)      is Gaussian and we want to minimize the squared error, (y −
y*)2, the problem of finding the optimal u reduces to the well-known linear-quadratic-Gaussian
(LQG) control problem (Crassidis and Junkins 2011     ). In this setting, the optimal control, denoted

, satisfies

Note that this includes a control cost, λuu2, which limits the size of ; without that cost,  would

diverge. In general, LQG control employs a Bayesian filter to estimate unobserved model variables,
and then uses those estimates to construct the controller.

To solve equation (49)      using standard methods, we first need to express our model for the error
(equation (48)     ) and feedback signal (equation (10)     ) in a canonical linear state space form. We
start by combining the model variables into a single vector,

Then, we express the control variable as a vector, ui, and make a change of variables that will
clean up an offset term,

Introducing the vector

the dynamics of Φi and feedback, f, can be expressed together as

where
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and ξ′ is Gaussian white noise with covariance matrix

With this set up, the control problem in equation (49)      can be written

where HH is an outer product.

Although the control variable, vi, is now a vector instead of a scalar, u, the optimal solution will
still only have one non-zero component (the second one). This is because multiplication by B in
equation (53a)      means that only the second component of vi will influence the output, so the
control cost term in equation (56)      will force the other components to be zero. The scalar  is
recovered from  by selecting the second component and then reversing the variable change in

equation (51)     ,

where the subscript 2 denotes the second component of the vector.

Nevertheless, equation (56)      is still not identical to equation (49)     , because the variable change
in equation (51)      has shifted the quantity  from the first term in the integral to the
second term. This means λu parameterizes a slightly different control cost. We will ignore this
detail, however, as it doesn’t influence any of our modeling choices or the interpretation of results.

Note also that we have written the control variable with a subscript i, since at this stage the
solution depends on local variables. We will later make approximations that remove this
dependence, so that the control variables are the same for all synapses, as assumed in equation
(46)     .

Ignoring biological constraints, LQG theory gives the solution to the problem defined by equations
(50)     –(56)      as

The vector  is a Bayesian (Kalman filter) estimate of the values of the unobserved variables in

equation (50)     . Ki and Li are optimal feedback and control gains, given by
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where Pi and Si are determined by a pair of matrix Riccati equations (Crassidis and Junkins
2011     ),

The equation for Pi, a covariance matrix representing uncertainty about the estimate , is solved

forwards in time from an initial condition, whereas the equation for Si, used to compute the
optimal control, is solved backwards in time from a terminal condition.

While these equations are exact, they are far from biologically plausible. In the next several
sections we remedy that by making several approximations.

Control gain approximation
Solving equation (60b)      backwards in time poses a problem for online implementation, because
the dynamics matrix, Ci (equation (54a)     ), depends on the synaptic input, xi, which cannot be
known in advance. We therefore simply drop the term xi from the matrix Ci. With this
approximation and sufficiently large T, equation (60b)      relaxes to a steady state that is
independent of the terminal condition and synapse index. The steady-state matrix S is then
defined implicitly as the positive-semidefinite solution to the algebraic Riccati equation

where C is the same as Ci but with xi set to zero.

Writing equation (61)      in component form, and using the fact that S is positive-semidefinite,
straight-forward algebra shows that the first row and column of S are all zero. Consequently,
because of the structure of B (equation (54b)     ), the only nonzero elements of Li are the second
through fourth elements of the second row. That in turn implies that only the second element of

 (equation (58b)     ) is nonzero. That element is given by

where ℒ is proportional to the second through fourth elements of the second row of S,

and  consists of the second through fourth elements of ,

We can now use equation (58b)      to derive an explicit expression for the control variable, ,

In the approximation in the last line, we ignored the second term, which will allow us to make the
controller independent of i, and makes little difference to performance in practice.
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We solve equation (61)      numerically to obtain the control gain for simulations. An analytical
approximation is provided in equation (91)      below, for the simpler version of the plasticity rule
presented in the main text; that approximation also works well in practice (Fig. S1     ).

Feedback gain approximation
Although we now have all the ingredients for a local online plasticity rule, we also approximate
the feedback gain Ki for the sake of interpretability.

We first unpack equation (60a)      by partitioning the state-estimate covariance matrix into
blocks,

where, to highlight the functional roles that each block will play in the plasticity rule, we
introduced the variables

where the numeric subscripts on the right-hand side denote the range of row and column indices
for each each block. The variable  represents the uncertainty about the target weight, zi

represents the covariance between the target weight and error vector (see equation (64)     ),
which will act as an eligibility trace in the plasticity rule, and Σi represents the uncertainty about
the estimate of the error vector.

Defining

and using the definitions in equations (70)      and (71)     , equation (60a)      can be expanded to
give the dynamics of each of the blocks as

where 0(3×2) denotes a 3 × 2 matrix of zeros, A is the lower right (2 : 4) × (2 : 4) block of Ci,

https://doi.org/10.7554/eLife.105043.1


Brendan A Bicknell et al., 2025 eLife. https://doi.org/10.7554/eLife.105043.1 27 of 49

and Λ is the lower right (2 : 4) × (2 : 4) block of Λ′,

Because equations (69a)      and (69b)      track uncertainty related to the target weight, their
temporal dynamics are strongly dependent on the local synaptic input, xi – this is what that
couples the weight to the observed feedback. By contrast, equation (69c)      tracks the uncertainty
of δi, which is dominated by uncertainty about the activity of unobserved synapses, so depends
only weakly on xi. Mathematically, this is reflected in the fourth term of equation (69c)      being
dominated by the order-N synaptic noise term in Λ (see equations (45)      and (71)     ). We can,
therefore, ignore the xi-dependent term in equation (69c)     . Then, Σi relaxes to a steady state that
is independent of the synapse index. That steady state is the solution to the algebraic Riccati
equation,

We use equation (72)      in place of (69c). But to capture the most important dependence on input,
xi, we solve equations (69a)      and (69b)      individually for each synapse.

Finally, we can express Ki, equation (59a)     , in terms of the quantities in equation (69)     . Using
the fact that Ki is proportional to the fourth column of Pi (see equation (52)      for H), the first
component is given by

which is used to update the estimate of the target weight, . The remaining three components,
used update the estimate of the error vector, , are given by the constant vector

Computations that should be performed by a synapse
Bringing everything together, we express the plasticity rule as a system of differential equations
that optimally process local signals to enable concurrent control and learning.

Unpacking the error estimate from equation (58a)     , expressing the feedback gain via equations
(72)      and (74)     , and approximating , which is valid because1 is orders of

magnitude smaller than other terms on the diagonal of A, we get

The only remaining issue is that the control variable,  (equation (65)     ), still depends

on the synapse index via . As discussed when introducing the fast weights in equation (46)     ,
we would like this to be identical for all synapses. To address this, we need only make the obvious
choice of setting  equal to its estimated target  at all times. This makes the i-dependent term

in the brackets in equation (75)      vanish, and so too the i-dependence of  (assuming the system

has been running long enough that initial conditions are forgotten).

https://doi.org/10.7554/eLife.105043.1


Brendan A Bicknell et al., 2025 eLife. https://doi.org/10.7554/eLife.105043.1 28 of 49

Setting , thereby dropping the synapse index on  and , and unpacking the rest of

equations (58a)      and (69)      leads to

Altogether, this gives synaptic weights

Plasticity rule approximation for τI, τr ≪ τy
Control is most effective when the downstream time constant is large. This regime also permits a
simple approximation of the plasticity rule that makes parameter dependencies explicit. We use
these equations in the main text for ease of intuition (equations (13a)      – (16b)     ). Here we
provide the details of the approximation.

Starting from equations (76a)      and (76d)     , we express the components of the vectors  and zi
using I, r and y subscripts. Assuming τI, τr ≪ τy, and using equation (70)      for A, we treat the I
and r components as reacting instantaneously to their inputs,

where the subscripts on 𝒦 indicate their components,

With these approximations, equation (76)      becomes

https://doi.org/10.7554/eLife.105043.1
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where

is a weighted sum of the three components of the Kalman gain (equation (74)     ). Equation (80)     
has been copied to the main-text equations (13)      and (16)      with some minor cosmetic changes;
to clean up the presentation, there we have dropped the y subscripts, explicitly denoted ,
and made a sign change for the eligibility trace variable, zi ≡ −zy,i.

To compute 𝒦, we note first of all that

where the second equality comes from equation (74)      and we have defined

To derive an explicit expression for τ · Σ · h, we operate on both sides of equation (72)      with τ,
giving us

Then, combining the fact that τ · A = −h with equation (82)     , we arrive at

Where

Solving equation (85)      gives the scalar feedback gain explicitly as

For the control gain, we make use of the duality of state-estimation and control for the LQG
problem (Crassidis and Junkins 2011     ), which means that knowing the parameters of the
equation for  (equation (80a)     ) allows us to easily write down the Riccati equation needed to

compute the corresponding controller. The analogue of equation (61)     , now for the scalar
variable s, and with equivalent scalar parameters  and h = 1, in place of C, B and H, is

Defining

as the analogue of equation (59b)      then leads to

https://doi.org/10.7554/eLife.105043.1


Brendan A Bicknell et al., 2025 eLife. https://doi.org/10.7554/eLife.105043.1 30 of 49

and thus a scalar control gain

Here we have used the notation  to signify that the control cost parameter is not identical to λu,
used above, and is fit separately in simulations of the approximate rule.

Inserting the optimal control

into equation (80a)      yields the plasticity rule corresponding to equations (13)      and (16)      in
the main text.

Steady-state learning rate
Using the approximate plasticity rule given in equation (16)     , we can derive an expression for
how the steady-state learning rate of a Bayesian synapse depends on key parameters, and
especially on the firing rate.

The first observation is that because 𝒦 is typically large, after a spike zi decays rapidly, and so
whenever a new spike arrives it’s effectively zero. Thus, assuming for the moment that σi is
constant, equation (16c)      tells us that when a spike occurs at time t = 0, zi(t) is given by (for times
t > 0)

Inserting this into equations (16a)      and (16b)     , and assuming for the moment that both are
constant on a timescale of τy/𝒦, we see that when a spike occurs they change by

where the subscript ‘spike’ indicates that these are changes in response to a spike.

In the large 𝒦 limit, both  and  are small, justifying our assumption that wi and 

are approximately constant during a spike. The noise term in equation (94a)      arises because the
feedback error, f, has a white noise component (see equation (10)     ), so fluctuates around the
relevant signal, y − y*.

Because equation (94a)      tells us the weight change per pre-synaptic spike, we can identify the
term in front of  as the effective learning rate,

https://doi.org/10.7554/eLife.105043.1
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To derive an explicit expression for , we need the steady state value of σi. Using equation
(16b)     , that’s given by

where we used equation (93)      for the time course of zi(t) after a spike and, recall, νi is the input
firing rate to synapse i. Note the slight abuse of notation: above, and in what follows in this
section,  is the steady state variance; to reduce clutter we don’t make this explicit. Solving

equation (96)      gives us

For typical parameter values (see Table 1     ), and using the definitions in equations (86)      and
(87)     , we find that the second term inside the square root is large (∼ 103 − 104) as long as input
rates, νi, are greater than ∼ 0.1 spikes/s. Equation (97)      thus simplifies to

Inserting this into equation (95)     , we arrive at

Notably, this scaling with input rate is consistent with the results of Aitchison et al. (2021)     , which
they demonstrated was consistent with experiments.

Spiking feedback
We now consider the case where feedback is communicated via spikes. The spiking feedback
signal, fS, is modeled as an inhomogeneous Poisson processes with rate γ, as described by equation
(17)     . The derivation is essentially the same as for the continuous feedback case above; the
difference is that it’s not a textbook problem, so we have to do it ourselves. The approach, though,
is relatively standard: we compute the time evolution of the mean and covariance of Φi
conditioned on feedback spikes. These correspond to  and Pi above, but their time evolution is,

of course, different because of the spiking feedback.

Model discretization and notation
To model feedback spikes, we discretize time into bins of size Δt, and assume that there are either
zero or one spike in each bin; this assumption is valid because we will eventually take the limit Δt
→ 0. Our first step is to turn equation (53a)      into discrete time updates rather than differential
equations.

https://doi.org/10.7554/eLife.105043.1
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Table 1

Model and simulation parameters.
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Discrete time variables are distinguished from their continuous versions with a t subscript, and
several quantities are rescaled by the time step to reduce clutter. We define

The synaptic inputs xi,t are implemented as discrete-time delta functions, taking the value 1/Δt
when there is a spike and zero otherwise. The discrete-time version of equation (53a)      is, then,
given by

For Poisson feedback with the rate determined by equation (17)     , the analogue of equation
(53b)      is an expression for the probability of observing a feedback spike given Φi. Assuming
small Δt, and treating spikes as Bernoulli random variables fS,t ∈ {0, 1}, this is given by

with H = (0, 0, 0, 1), as above (see equation (52)     ).

Using equations (101)      and (102)      as the model for feedback observations, we aim to infer a
distribution over the unobserved states, Φi,t, conditioned on the history of local data seen by the
synapse. The data is denoted

The distribution is modeled as a Gaussian with conditional mean and covariance

Recursive Bayesian filter
We use standard Bayesian recursion to derive explicit expressions for the mean and covariance of
Φi. Our approach is similar to that of Eden et al. (2004)      and Pfister et al. (2010)     .

At each time step, we first update the distribution over Φi,t using observation fS,t, via Bayes
theorem, and then predict Φi,t+Δt from the model dynamics,

The first equation holds for our model because fS,t only depends on Φi,t, and Φi,t only depends on
the input and weight from previous time steps. We use assumed density filtering for the update
step, approximating the left-hand side of equation (105a)      as Gaussian by matching the mean
and covariance of the right-hand side.

https://doi.org/10.7554/eLife.105043.1
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When fS,t = 1, the approximation is exact, giving a Gaussian

The normalizer is given by

After some straightforward algebra, the updated mean and covariance are found to be

When fS,t = 0,

which leads to, again after some straightforward algebra,

Putting both cases together, we arrive at

which characterizes the posterior distribution on the left-hand side of the update step in equation
(105a)     .

Next, having completed the update step, we perform the prediction step in equation (105b)      by
evaluating the integral. The second factor in the integral is Gaussian by assumption, following
from the previous update. The first factor, describing the state transition probability, is also
Gaussian, following from the dynamics of equation (53a)     . This means the left-hand side of
equation (105b)      is Gaussian with

Substituting equations (111a)      and (111b)      into these expressions, and using the definitions in
equations (104a)      and (104b)     , gives a discrete-time estimator

https://doi.org/10.7554/eLife.105043.1
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Expanding to first order in Δt, using equations (100a)     –(100d)     , and taking Δt → 0 gives the
continuous-time version:

Here, the discrete-time feedback fS,t has converged to a sum of delta functions fS, and

is the estimated feedback rate.

equations (114a)      and (114b)      correspond to equations (58a)      and (60a)      in the continuous
feedback case, with ρPi · H playing the role of feedback gain Ki, and  playing the role of the
prediction error. Whereas the optimal gain scales with the precision of feedback observations in
the continuous case, here it scales with the steepness of the feedback rate function.

As above, the feedback gain can be approximated by partitioning the covariance matrix Pi (see
equation (66)     ), and ignoring the minor contribution of xi to the lower-right block,

A key difference between these equations and equation (69)      is that in the latter Σi relaxes to a
steady state, whereas here it depends dynamically on the estimate of the feedback rate .

Intuitively, the higher the feedback rate, the more uncertainty about the error is reduced.

The rest of the derivation proceeds identically to the continuous case. Unpacking equation
(114a)      into the original notation, and setting , yields an error estimate, , covariance,
Σ, and feedback rate estimate, , that are all independent of the synapse index. The control gain is

computed identically to that above (equations (61)      and (65)     ), yielding a control variable
.

Putting everything together, the plasticity rule for spiking feedback is

https://doi.org/10.7554/eLife.105043.1
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with weights set via equation (77)      as before.

Feedback delays
In the brain, error feedback cannot be provided instantaneously to a neuron due to
communication and sensory processing delays, typically on the order of ∼ 10 − 100 ms. We model
this constraint by introducing a lag of time τ into the feedback signal, modifying equation (10)      to
become

Similarly, for the spiking feedback model, equation (17)      becomes

For the slow weights, the learning rules can be adapted by simply feeding lagged copies of the
input and weight parameters into the governing equations, such that the Bayesian filter estimate
reflects the unobserved states as they were at time t − τ. Working through the details, the only
change required to the learning rules is to replace xi(t) with xi(t − τ) in equation (76d)     , and
similarly in the spiking feedback case. Such a lagged copy of the input could be maintained at the
synapse via simple chemical signaling cascades, as shown by Jayabal et al. (2022)     . As long as the
assumed target-weight drift is slow relative to the feedback delay, τw ≫ τ, this simple modification
of the learning rule maintains consistent performance in the presence of delays.

For the fast weights, we employ the Smith predictor technique to build a controller that accounts
for the delay (Smith 1959     ). Conceptually, we need to compute a control signal at time t that will
cancel the current error, but we only have an estimate from feedback observations of the error as
it was at time t − τ. We therefore use the known model dynamics and recent history of applied
control signals to predict the current error by propagating the estimate δ forward in time. We use
this to construct the controller

and thus the fast-weight rule

where the control gain ℒ is the same as that above.

Writing , the predicted error can be computed via

The first term propagates  forward in time via a matrix exponential that encodes the

deterministic dynamics of the error vector. The second term is a convolution that accounts for the
influence of past controls – propagating the corrections applied by the controller at each time s
(whose effects have not yet been observed) to the current time t.

https://doi.org/10.7554/eLife.105043.1
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The convolution can be simplified by considering an online implementation. Denoting the integral
by U(t), differentiation gives

which only requires knowing the most recently applied control and a single lagged variable from
the past.

Multiple neurons
In Fig. 3C      and Fig. 4     , we simulated a small feedforward network of M neurons. In this model,
each of the neurons has identical dynamics, as described by equations (7a)      and (7b)     , but
receives independent synaptic input and noise. Noise variances were scaled by a factor 1/M
relative to the single neuron simulations, for ease of comparison (see Table 1      for parameters). A
common downstream output is driven by the sum over firing rates, rm, described by equation
(19)     . A spiking feedback signal, fS,m, is generated independently for each neuron using the
Poisson rate function in equation (17)     .

In the plasticity rule, the current, rate and synaptic noise terms in equation (71)      are scaled by
M to reflect the contribution of all neurons to the error. The fast weight rule (equation (46)     )
also needs to be modified to account for the fact that the feedback signals, and therefore error
estimates, differ across neurons. Ignoring locality constraints, the optimal strategy would be to
combine the error estimates computed by each of the M neurons, , and their uncertainties, Σm,

as a precision-weighted average,

and use that to construct a single global control variable, . We use a local

approximation of this strategy, by replacing the precision weighting in equation (124)      with a
scaled identity matrix,

In equation (125)     ,  is the control variable computed locally by neuron m, and β

∈ [0, 1] is a free parameter (fitted in pilot simulations to minimize task output error). When
feedback rates are very low, a small number of neurons would dominate the sum in equation
(124)      at any given time (error estimates are most precise immediately following a feedback
spike, but relax to small, uncertain baseline values soon afterwards), so β should be small. In the
limit of very high feedback rates, all terms would be weighted equally, so β ≈ 1. Intuitively, β
interpolates between sparse and dense feedback regimes. Using this approximation leads to scaled
fast weights

Simulation details
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Online linear regression

For the simulations in Fig. 1     , the model neuron was driven with sinusoidal inputs and required
to learn weights that would produce a time-varying, periodic target output. We used N = 20
synapses and a period Tperiod = 1 s.

Input rates were defined as

The target output was generated as

With . Learning rules were as described by equations (2)     , (4)      and (6)     , with

learning rates .

Teacher-student task
In Figs. 2      and 3     , simulations were initialized by independently drawing target weights

, input rates νi ∼ uniform(0, νmax), slow weights , and setting

fast weights δwi = 0. The weight uncertainties  were initialized with value . Input spikes

were generated at each time step by drawing binary variables xi ∼ Bernoulli(νiΔt). Feedback spikes
were generated similarly in the spiking-feedback case, using the rate function in equation (17)     ,
and also enforcing a hard maximum of 200 spikes/s for stability. Target weights drifted slowly
about the mean µw, as described by the Euler discretization of equation (41)     . Actual weights
were updated according to the Euler discretization of equation (76)      in the continuous case,
equation (117)      in the spiking-feedback case, and analogously for the classical rules.
Performance was quantified by computing the root-mean-squared error between output and
target output over all time points in the simulation, thus measuring both learning speed and
steady-state error.

Cerebellar learning task
The cerebellar learning task in Fig. 4      requires mapping time-varying patterns of synaptic input
to associated target outputs. Unlike the teacher-student task, the target outputs are generated as
random wavelets, rather than through explicit target weights.

Input patterns of duration Tpattern = 1 s were constructed in a similar manner to Bicknell and
Häusser (2021)     . A synapse was selected to be active on a given pattern with probability pactive =
0.5. If active, its time-dependent presynaptic firing rate in that pattern was defined by drawing a
peak time tpeak,i ∼ Uniform(0, Tpattern), maximum amplitude νmax,i ∼ Uniform(90, 110) (spikes/s)
and centering a Gaussian bump of activity within the pattern interval,

with width parameter σν = 0.1 s. Input spikes were generated stochastically each pattern
presentation using this rate function.

For the target outputs, we generated random trajectories that drift slowly over time and could be
stitched together in random order to yield a single continuous target (analogous to composing
different sequences of motor actions). This was implemented using truncated Fourier series with

https://doi.org/10.7554/eLife.105043.1
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random coefficients that drift via Ornstein-Uhlenbeck processes. Different trajectories are forced
to agree at the endpoints by using a common constant offset and multiplying the time-dependent
parts by a bump function. Specifically, the drifting target output for pattern p was defined via

with initial coefficients ap,n, . We used parameters Nmodes = 3, which sets the

maximum temporal frequency, and τw = 104 s, equal to the weight drift parameter in the spiking-
feedback teacher-student task.

Plasticity protocol
For the simulated plasticity experiments in Fig. 5     , we used models that had been trained on the
cerebellar learning task. We applied the protocol to 100 synapses using the classical and Bayesian
learning rules, initializing with the trained weights and uncertainties. The classical learning rate,
η, and control cost, λu, were set at the values that minimized output error during the task. For most
simulations, the protocol consisted of repeated pairings of parallel fiber input bursts (5 spikes at
10 ms intervals) and single climbing fiber spikes at a given delay. The numbers of spikes were
varied in a subset of simulations (Fig. S3c,d     ). The pairing was repeated 50 times at 500 ms
intervals. Plasticity effects were computed at the end of the protocol as the change in slow-weights
(or classical weights) from their initial trained values.

Supplementary Figures
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Figure S1

Approximation of the Bayesian learning rule.

Comparison of the full Bayesian rule, given by equation (76)     , and the approximation presented for ease of interpretation in
equations (13)      and (16)     , in terms of output error (a) and weight error (b). The approximation is valid whenever the
output time constant dominates the model dynamics, τr, τI ≪ τy. Here we use parameters τI = 1 ms, τr = 10 ms, and τy = 100
ms.

Figure S2

Simulations with spiking feedback.

Results from the spiking feedback model are consistent with the continuous feedback model (Fig. 2     ), although learning
takes longer and performance depends strongly on the spontaneous feedback rate γ0. a) Performance as a function of
feedback rate (replotted from Fig. 3      for context). Shaded areas are s.d. from 10 random seeds. b) Detailed comparison
between learning rules with γ0 = 64 spikes/s. c) Control remains effective in the presence of feedback delays. Shaded areas
are s.d. from 10 random seeds. d) Weights converge to their target values more quickly with increasing rates of feedback.
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Figure S3

Parameter dependence of simulated plasticity experiments.

The LTP/LTD curve produced using the protocol in Fig. 5c      depends systematically on the parameters of the model and
protocol. a) Tuning to the PF-CF interval becomes broader as the output time constant τy increases. b) Peaks in the LTP and
LTD lobes of the curve are shifted in proportion to the feedback delay. c) The magnitude of plasticity increases with the
number of spikes in the parallel fiber burst. d) LTD is amplified and shifted to earlier PF-CF intervals with increasing numbers
of climbing fiber spikes.
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Reviewer #1 (Public review):

Summary:

This paper proposes a new set of local synaptic plasticity rules that differs from classic rules
in two regards: First, working under the assumption that signals coming into synapses
change smoothly over time and thus have temporal correlations such that immediate activity
is positively correlated with subsequent activity, it proposes both fast plasticity that
immediately corrects errors as well as slower plasticity. Second, it derives these rules from
optimal, Bayesian control theory principles that, even without the fast component of
plasticity, are shown to provide more accurate performance than classic, non-Bayesian
plasticity rules. As a proof of principle, it applies these to a simple cerebellar learning
example that demonstrates how the proposed rules lead to learning performance that
exceeds that achieved with classic cerebellar learning rules. The work also provides a
potential normative explanation for post-climbing fiber spike pauses in Purkinje cell firing
and proposes testable predictions for cerebellar experiments. Overall, I found the idea to be
compelling and potentially broadly applicable across many systems. Further, I thought the
work was a rare, very beautiful display of the application of optimal control theory to
fundamental problems in neuroscience. My comments are all relatively minor and more
expressions of interest than criticism.

Comments:

(1) The algorithm assumes, reasonably, that inputs are relatively smooth. However, I was
wondering if this could make additional experimental predictions for the system being
exceptionally noisy or otherwise behaving in signature ways if one were able to train a real
biological network to match a rapidly changing or non-smooth function that does not align
with the underlying assumptions of the model.
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(2) The algorithm assumes that one can, to a good approximation, replace individual input
rates by their across-synapse average. How sensitive is the learning to this assumption, as one
might imagine scenarios where a neuron is sensitive to different inputs for different tasks or
contexts so that a grand average might not be correct? Or, the functional number of inputs
driving the output might be relatively low or otherwise highly fluctuating and less easily
averaged over.

(3) On the cerebellar example, it is nice that the Bayesian example provides a narrower PF-CF
interval for plasticity than the classical rules, but the window is not nearly as narrow as the
Suvrathan et al. 2016 paper cited by the authors. Maybe this is something special about that
system having well-defined, delayed feedback, but (optional) further comments or insights
would be welcome if available.

(4) In the discussion, I appreciated the comparison with the Deneve work which has fast and
slow feedback components. I was curious whether, although non-local, there were also
conceptual similarities with FORCE learning in which there is also an immediate correction
of activity through fast changing of synaptic weights, which then aids the slow long-term
learning of synaptic weights.
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Reviewer #2 (Public review):

Summary:

Bricknell and Latham investigate the computational benefits of a dual-learning algorithm
that combines a rapid, millisecond-scale weight adjustment mechanism with a conventional,
slower gradient descent approach. A feedback error signal drives both mechanisms at the
synaptic level.

Strengths:

Integrating these two learning timescales is intriguing and demonstrates improved
performance compared to classical strategies, particularly in terms of robustness and
generalization when learning new target signals.

Weaknesses:

The biological plausibility and justification for the proposed rapid learning mechanism
require further elaboration and supporting mechanistic examples.
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