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Abstract 
Bayesian parameter estimation and Shannon’s theory of information provide tools for analysing and 
understanding data from behavioural and neurobiological experiments on interval timing—and 
from experiments on Pavlovian and operant conditioning, because timing plays a fundamental role 
in associative learning. In this tutorial, we explain basic concepts behind these tools and show how 
to apply them to estimating, on a trial-by-trial, reinforcement-by-reinforcement and response-by-
response basis, important parameters of timing behaviour and of the neurobiological manifesta-
tions of timing in the brain. These tools enable quantification of relevant variables in the trade-off 
between acting as an ideal observer should act and acting as an ideal agent should act, which is also 
known as the trade-off between exploration (information gathering) and exploitation (information 
utilization) in reinforcement learning. They enable comparing the strength of the evidence for a 
measurable association to the strength of the behavioural evidence that the association has been 
perceived. A GitHub site and an OSF site give public access to well-documented Matlab and Python 
code and to raw data to which these tools have been applied.

Keywords 
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1. Introduction

Information theory and Bayesian approaches to statistics are natural companions. 
Together, they can assist us in analysing, intuitively understanding, and formally 
modelling results from experiments that investigate the role of interval timing in 
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behaviour and its role in associative learning. It has long been clear that asso-
ciative learning depends on timing (Gallistel & Gibbon, 2000; Gibbon & Balsam, 
1981; Stout & Miller, 2007; Yin et al., 1994). In this paper, we lay out the basics 
of Bayesian parameter estimation and Shannon’s theory of information, as they 
apply to the behavioural and neurobiological study of timing and associative 
learning. Then, we show how to turn this mathematics into useful tools.

Parameter estimation – for example, estimating the means and standard 
deviations of two distributions – is the first step in data processing. Frequentist 
approaches to parameter estimation require the collection of samples of pre-
specified size. Bayesian parameter estimation naturally applies datum-by-datum, 
that is response-by-response and reinforcement-by-reinforcement. That makes it 
a powerful tool in estimating learning rates – how soon timing-based changes in 
behaviour and/or in neurobiological activity appear, and how soon evidence of 
timed responses appears.

The second step in data processing is to make use of those parameters. For 
that we turn primarily to information theory, for which a fundamental quantity is 
the entropy. Especially relevant to our analysis is the entropy difference (denoted 
ΔH) between two distributions. We show that this quantity is useful even when 
the distributions are not accurately known, but are assumed to have the form 
dictated by the maximum entropy principle. This principle is an information-
theoretic realization of Occam’s razor, assume as little as possible (Jaynes, 1957,  
2003).

An example of two distributions used to analyse data from Pavlovian timing 
experiments are the distribution of inter-reinforcement intervals in the presence 
of conditional stimuli (denoted CSs, for example, a noise that comes on and off 
unpredictably) and the same distribution in the context in which the CS occurs 
(typically, a test chamber). In our analyses, we assume them to be exponential 
even when we know they are not and cannot be (for example, when we know they 
are mixture distributions).

An example from reinforcement learning experiments (a.k.a. operant con-
ditioning) is the distribution of inter-response intervals and the distribution of 
inter-reinforcement intervals. We show that ΔH  is a generally applicable measure 
of the extent to which two events or two states are associated in time. It applies in 
many circumstances where the conventional measure of association – the correla-
tion coefficient – cannot be computed (Gallistel, 2021): it can be computed even 
when n = 1; and it does not presume a linear relationship (Kinney & Atwal, 2014). 
It has most of the properties of mutual information but not those properties that 
depend on the assumption of the form of the assumed distribution (for example, 
the property of being invariant under a nonlinear change in variable).

A second fundamental quantity in information theory is the Kullback–Leibler 
divergence, denoted by DKL. The DKL is a function that measures the divergence 
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of one distribution from another of the same form, taking their parameter vectors 
as inputs.

Our nDKL statistic denotes the extent to which a distribution of interest, with 
sample size n, diverges from a reference distribution. It measures the strength of 
the evidence that the two distributions differ, with possible implications for the 
neurobiology of memory. It gives the mnemonic cost (in bits) of encoding the data 
from one distribution, for example, the distribution of waits for reinforcement 
conditioned on a CS, on the assumption that they come from a reference distri-
bution, for example, the unconditional waits for reinforcement when in the test 
chamber. The cumulative cost of coding the n conditional data already seen is, on 
average, simply, nDKL. In practice, the n derives from the sizes of both the samples 
from which the rate parameters have been estimated. The nDKL is to ΔH  as the 
significance of a correlation coefficient is to the coefficient itself: ΔH  measures the 
statistical association, while the nDKL measures the strength of the evidence for it.

The nDKL is also a simple, datum-by-datum measure of the strength of the evi-
dence that a parameter of the distribution of a behavioural or neurobiological 
variable (for example the response rate) has changed. It allows us to address ques-
tions such as: how many reinforced CSs are required for a subject to detect and 
respond to the temporal association between a CS and an unconditional stimu-
lus (US) or between a response and a reinforcement? The use of this datum-by-
datum measure obviates the need to rely on arbitrary decision criteria such as the 
number of successive trials on which a response is observed. These criteria often 
demonstrably underestimate the subject’s sensitivity to differences and changes 
in rates of responding (the reciprocals of average wait durations), probabilities 
and contingencies.

Different evidentiary decision variables – for examples, p values, odds ratios, 
and nDKLs – are monotonically related because a useful measure must depend 
monotonically on the information provided by the data. We provide a simple for-
mula that maps from nDKL to p value.

Both ΔH  and the nDKL are computed from estimates of the parameters of the 
distributions from which the data are assumed to come. In our analyses, these 
distributions are assumed to be exponential, whether they are or not. This strong 
simplifying assumption has four justifications:

– It makes ΔH  and nDKL computable by simple closed-form formulae.
– There is extensive experimental evidence that the learning rate and the differ-

ence in performance in associative protocols are primarily determined by the 
ratio of reinforcement rates (the reciprocals of the mean waits for reinforce-
ment). This dependence implies that the only statistic that matters to the sub-
ject in making these decisions is the relative rates of reinforcement. Put another 
way, the behaviourally relevant sufficient statistics from a sample of temporal 
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intervals are the number of intervals in the sample and the duration over which 
these intervals have been observed.

– The first few intervals in a sample provide the lion’s share of the information 
required to estimate the mean interval, but they give only a weak and unreli-
able estimate of the variance. Therefore, they provide little basis for deciding 
even between the exponential and the Normal as a model for the source of the 
data.

– When only the estimate of the mean is available, the maximum entropy prin-
ciple (Jaynes, 1957, 2003) dictates the assumption of the exponential form for 
the source distribution. It is the weakest possible assumption.

The approach to associative learning here developed treats association as an 
objective property of a subject’s experience, that is, as a measurable stimulus. 
These tools measure the strength of the stimulus and the strength of the evidence 
for it, given the data the subject has seen. The same tools measure the strength of 
the evidence the subject’s behaviour provides as to whether it has perceived the 
measured association.

2. Bayesian Parameter Estimation

Traditional statistics at the applied level are based on maximum likelihood esti-
mates of population parameters given a sample – and, usually also on the central 
limit theorem, which states that sample means will be normally distributed more 
or less regardless of the form of the distribution from which samples are drawn. 
In their rigorous application, these measures require one to specify sample sizes 
in advance of collecting the data. This has led to insistence on a pre-registration 
of one’s experimental protocol, in which one specifies the sample sizes in advance 
and the inferential statistics to be performed.

These traditional approaches do not work well with small samples unless the 
effect of one’s experimental manipulation is big. However, one often does not 
know the size of the effect one should expect. One commonly hopes to learn from 
a proposed experiment whether there is an effect and if so, how big. In that case, 
specifying sample size in advance is antithetical to the purpose of the experiment.

Moreover, we often want to measure the strength of the evidence as the data 
come in – that is, as the sample size grows – because the bigger the effect, the 
more rapidly strong evidence for it emerges and the sooner we can stop the exper-
iment. The slope of the nDKL when plotted as a function of n is a measure of effect 
size; the greater the divergence between two distributions, the steeper the slope.

Finally, because we are interested in acquisition and extinction and, more gen-
erally, in the course of behavioural change, we often want stimulus parameter 
estimates and behavioural parameter estimates when there are very little data. 
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An example we will treat is when the only datum is the amount of time elapsed 
before the occurrence of the first response and the first reinforcement in an oper-
ant conditioning protocol.

From a subject’s perspective, the events it experiences in our experiments are 
manifestations of a stochastic process whose form and parameters the subject 
must infer from the observable outcomes. The evidence for the form and param-
eters grows stronger as more events are experienced, leading eventually to the 
appearance of an appropriately timed anticipatory response. We want to compute 
the strength of the evidence for the form (e.g., exponential or Normal) and its 
parameter values (e.g., means and variances) as a function of time elapsed and the 
numbers of relevant events. We want then to plot the strength of the evidence for 
the behavioural change against the strength of the evidence the subject has about 
the process that generates the subject’s experiences. This enables us to answer the 
question: how much evidence is required before anticipatory behaviour appears? 
To answer these questions, we measure the strength of the evidence provided by 
the stimulus and the strength of the evidence provided by the behaviour using the 
same datum-by-datum statistic.

In Bayesian parameter estimation, one puts a prior distribution on the plausi-
ble values for the parameter(s) of the distribution that one believes approximately 
describes (or will describe) the data. We refer to distributions that describe the 
data as source distributions to distinguish them from prior distributions. What we 
call the source distribution is often called the likelihood; our reasons for our non-
standard terminology are explained later.

The distinction between the source distribution and the prior distribution 
is fundamental – and often confusing to the uninitiated. Before clarifying it, we 
cover the basics of distributions. They are often not stressed in the statistics edu-
cation many of us received.

3. Distributions

Distributions map from the members of a support set to the members of a set of 
probabilities or probability densities. In a plot of a distribution, the support set is 
composed of the possible values a datum might assume, arrayed along the x-axis. 
When the support is discrete (in technical language, finite or countably infinite), 
the distribution assigns probabilities to those possibilities (Fig. 1). When the sup-
port is continuous (in technical language, uncountably infinite), the distribution 
assigns probability densities (Fig. 2).

To every probability distribution (think histogram), there corresponds a cumu-
lative probability distribution. The cumulative distribution is the cumulative sum 
(or integral) of the probabilities (or probability densities) as one moves from left 
to right along the support axis, from the smallest possibility to the largest. As can 
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be seen in the second rows of Figs 1 and 2, cumulative distributions asymptote to 
1. That is because the support of a probability distribution is a (possibly uncount-
ably infinite) set of mutually exclusive and exhaustive possibilities, so its total 
mass must be 1. Note also that for every cumulative distribution there is a prob-
ability distribution, which is found by taking a difference (for discrete distribu-
tions) or a derivative (for continuous ones).

A continuous distribution assigns probability densities to the members of the 
support set rather than probabilities (Fig. 2). Whereas probabilities always fall 
between 0 and 1 (Fig. 1 and Fig. 2 bottom row), probability densities (Fig. 2, top 
row) may take on values from 0 to +infinity. When, for example, the cumulative 

Figure 1. Three common discrete distributions: the Bernoulli, the geometric and the Binomial. 
They are plotted with bars rather than curves because the support is discrete. Discrete support may 
always be represented by the integers, as for example in the common practice of representing ‘fail-
ure’ by the integer ‘0’ and ‘success’ by the integer ‘1’ in the support for the Bernoulli distribution. The 
cumulative probabilities in the bottom row are obtained by moving rightward from bar to bar in the 
top row, summing the successive probabilities. The geometric distribution may be thought of as the 
discrete analog of the exponential distribution and the Binomial may be thought of as the discrete 
analog of the Normal, because the exponential and the Normal are the distributions that emerge as 
the set of possibilities becomes uncountably infinite (as the bars become ever narrower and more 
numerous).
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probability function is a step from 0 to 1 at some point along the x-axis (Fig. 2, 
bottom left), the derivative at the step is infinite, and everywhere else it is 0. This 
derivative is the unit impulse; it is the limit of a rectangle whose width goes to 0 as 
its height goes to infinity while maintaining an area of 1 (the total mass of prob-
ability in any probability distribution).

Distribution functions are determined by their mathematical form and by the 
values of their parameters. The form defines a family of distributions. The mem-
bers of that family are distinguished by the values chosen (or estimated) for their 
parameters. Thus, for example, a Normal distribution is a family and a Normal 
distribution for which a mean and standard deviation have been specified is a 
member of that family.

Figure 2. Four common distributions over continuous variables. It is stipulative that a fair coin 
have a probability of heads of exactly 0.5; therefore, the distribution of the probability of obtaining 
heads when flipping a fair coins is a vertical line at p = 0.5 with no width, infinite height and area 
(width × height) = 1. The cumulative distribution for the p values of fair coins is a step from 0 to 1 at 
0.5. The beta distribution is a commonly used prior distribution on the Bernoulli p in Bayesian sta-
tistics. It has two parameters, which may assume values between 0 and +infinity. The example here 
uses A = B = 0.5. These are the values for the so-called Jeffreys prior on the Bernoulli. The probabil-
ity densities at both extremes become infinite, but, like all proper distributions, the beta distribution 
integrates to 1 (bottom row). The exponential describes the distribution of the intervals between 
randomly scheduled events. The support for distributions over continuous variables like interval 
duration is said to be uncountably infinite because of Cantor’s famous proof that there are uncount-
ably many different intervals within any finite interval, no matter how small that finite interval is.
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A distribution with a given form may be parameterized in different ways. This 
becomes important in Bayesian analysis. For example, the Bernoulli and the geo-
metric distributions may both be parameterized either by p (the probability of 
a success) or by the odds of a success, p/(1 − p). Statisticians prefer the former 
parameterization; bookies prefer the latter. The exponential may be parameter-
ized either by the rate at which events occur, λ, or by the average interval between 
them, μ = 1/λ. The Normal may be parameterized by its mean (μ) and standard 
deviation (σ), or by its mean and variance (σ2), by its mean and precision (τ = 1/σ2),  
or even by its mean and coefficient of variation (σ/μ).

Having covered the basics of probability distributions, we can explain the two 
distributions that are always in play in Bayesian parameter estimation, the source 
distribution, which is supported by possible values for the data, and the prior/pos-
terior distribution, which is supported by possible values for the parameter(s) of 
the source distribution. The source distribution and its prior distribution are dis-
tinguished by their support, not by their form; however, generally speaking, they 
also have different forms.

3.1. Source Distributions

Stochastic models for data may have any number of parameters. In deep learning 
models, they have millions, even billions. However, the source distributions com-
monly used in modelling behaviour have only one or two parameters. For exam-
ple, for Normal distributions, 𝜃𝜃 = [μ σ], whereas for the Bernoulli, 𝜃𝜃 = p; and for 
the Exponential, 𝜃𝜃 = λ, the rate parameter.

3.2. Prior Distributions

The support for a prior is the parameter vector of the source – not the possible 
values for a datum. Thus, for example, the support for the beta distribution is the 
Bernoulli distribution’s p parameter. The Bernoulli support vector contains only 
two elements, failure (0) and success (1), but the support for the prior on p is 
uncountably infinite, because there are uncountably many different possible val-
ues for p.

The prior distributions for the Bernoulli, the geometric and the exponential 
distributions are one-dimensional because these source distributions have only 
one parameter. The support for a prior distribution on the parameters of the 
Normal distribution is two-dimensional, because the Normal’s parameter vector 
has two elements (for example, its mean, μ, and sigma, σ). The support set for the 
prior distribution on the Normal’s parameter vector is the cross product of two 
uncountably infinite sets: it consists of every possible combination of values for μ, 
which ranges from minus to plus infinity, and for σ, which ranges from 0 to +infin-
ity. There are, of course, uncountably many combinations.

Prior distributions also have parameters. They are called hyperparameters to 
distinguish them from the parameters of the corresponding source distribution. 
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For the common distributions we here consider, the number of hyperparameters 
is twice the number of source distribution parameters to be estimated.

The source distribution represents uncertainty about what the value of the 
next datum will be; the prior/posterior distribution represents uncertainty about 
the value(s) of the parameter(s) of the source distribution, given the finite amount 
of data from which we have estimated the parameter(s).

3.3. Posterior Distributions

In a frequentist approach, one typically gathers a set of data – fills out a prespeci-
fied sample – and then computes estimates of the parameter(s) of the source distri-
bution. One often does not assume a form for the source distribution, because the 
central limit theorem assures us that the sample means will be normally distrib-
uted almost regardless of what the form of the source distribution is. In a Bayesian 
approach, by contrast, one assumes a form for both the source distribution and 
the prior. The assumption about the form of the source distribution is implicit in 
the prior distribution, because the parameters of the source distribution are the 
support for the prior. In some denotations of Bayes’ Rule, the dependence on the 
assumed form for the source is made explicit by including an ‘M’ (for Model) in 
the denotation of the prior distribution, but often the ‘M’ is not included.

Rather than working with samples of pre-specified size, it is not uncommon 
to update the posterior distribution over the parameter(s) of the source distribu-
tion datum by datum – either as the data come in or post hoc, as one considers, 
for example, more and more trials or more and more responses or more and more 
reinforcements.

The updated posterior distribution is often referred to as the prior (as in ‘inte-
grating over the priors’). This is potentially confusing, as one usually thinks of the 
prior as the distribution before seeing any data. However, we can also think of the 
prior as being our belief about future data based on past data. The fact that one 
and the same distribution is regarded as the posterior distribution at one time – 
typically when it has just been updated – and as the prior distribution at another 
time – typically when one is about to bring in more data – takes some getting 
used to. However, this terminology is deeply engrained in the Bayesian approach 
to estimating parameters.

Consider for illustrative example the problem of estimating quickly and accu-
rately subjects’ timing coefficient of variation (CoV) from the distribution of stop 
latencies in the peak procedure. This distribution is known to be approximately 
Normal (Gallistel et al., 2004). Estimating the CoV requires estimating both the 
mean and standard deviation. For reasons to be explained when we come to 
conjugate priors, a good choice for the prior is the Normal-gamma distribution, 
which has four parameters. We know from extensive prior research that the mean 
will be positive. Although a subject may occasionally stop before the target time 
has elapsed, the subject will on average stop after that time. We also know from 
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extensive prior research that the standard deviation will be less than half the 
mean. Because experimental science is a cumulative enterprise, it makes sense 
to take advantage of this hard-won prior knowledge. We do that by bringing it to 
bear on our choice of initial values for parameters of the Normal-gamma, as that 
can substantially reduce the amount of data required to estimate the CoV to a 
desired level of accuracy. Moreover, by updating the prior datum by datum, we 
can stop as soon as we have the desired precision in our estimate, because the 
updated posterior distribution on the CoV gives us a measure of the precision we 
have attained (the credible interval). Intuitively, the credible interval is the inter-
val over which the plot of the posterior distribution is distinguishably above the 
x-axis (its support).

When using informative priors, one should bear in mind that if the data do 
not agree with the prior, the parameter estimates will be badly biased by the prior 
when there are little data. The inappropriateness of a prior will become evident if 
the parameter estimates after a modest amount of data diverge substantially from 
the mean of the initial prior distribution.

A common misunderstanding is that a prior distribution is an early version 
of the assumed source distribution. Purge oneself of this misconception! Repeat 
some large number of times: ‘The support for the prior is the parameter vector for 
the source; it is not the possible values that data may take.’ The source distribution 
represents uncertainty about what the value of a datum may be.

3.4. Conjugate Priors

For practical work, it is often advantageous to use a conjugate prior. A conjugate 
prior has the mathematical form that makes updating the prior maximally simple, 
because the form does not change when it is updated. This property is unique: 
one can assume whatever form for a prior one thinks makes sense; however, if one 
chooses a form other than the conjugate form, the posterior will no longer have 
the same form as the prior. Moreover, the posterior will often not be ‘analytic’ – 
not one of the distributions that are available in standard scientific programming 
languages. One has to proceed numerically, which can be tricky and tedious. For 
example, if one chooses any form for the prior on the Bernoulli other than the beta 
form, then one has to compute the likelihood function, take the product between 
it and the prior distribution function, and compute the integral of that product 
over the parameters of the source distribution to obtain the normalization factor. 
That is intimidating, both conceptually and practically

In summary, using the conjugate form for the prior has several advantages:
– The form of the posterior does not change when new data arrive.
– Therefore, when the prior is updated, only the values of its parameters (the so-

called hyperparameters) change.
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– The new values are computed from the old values and from the new data by 
update formulae, which are often computationally trivial.

– The update formulae take as their arguments the previous values of the hyper-
parameters and basic sample statistics (usually sums and counts).

– The conjugate prior for a given source distribution, if it exists, is unique.

3.5. Three Common Source Distributions and Their Conjugate Priors

In this primer, we deal with the three most common source distributions: the 
Bernoulli, the exponential and the Normal (a.k.a. Gaussian). Their conjugate prior 
distributions are the beta, the gamma and the Normal-gamma.

Both the source and the prior distributions may be parameterized in different 
ways. The different possible parameterizations can cause confusion and opportu-
nity for error when using the distribution functions in a programming language. 
Make sure your programming language parameterizes a distribution in the same 
way you parameterize it. If it does not, use an appropriate change-of-variable 
formula. A list of the different parameterizations may be found in the Appendix 
A1 along with simple custom Matlab™ (MathWorks, Natick, MA, USA) functions 
implementing the updating functions. These same custom updating functions in 
both Matlab and Python (Python Software Foundation, Friedricksburg, VA, USA) 
may be found on at https://github.com/bendecorte/gallistelWorkshop. To get 
started – before one brings in data – one has to assign initial values to the hyper-
parameters. We denote the initial hyperparameter vectors by 𝜃𝜃0 (or theta0 in code 
documentation). Thus, in what follows, 𝜃 without subscript refers to the param-
eter vector of the source; 𝜃0 to the initial value assumed for the prior’s parameter 
vector, and 𝜃n to the parameter vector of an updated posterior. For many – but not 
all(!) – purposes, one wants to use a minimally informative prior, which means 
one wants to assign initial values that have a noticeable impact on the estimated 
source parameter vector only when there are very little data (e.g., one datum).

Often, even when one knows that one does have prior information, one wants 
to pretend ignorance, because ignorance is often equated with lack of bias. Also, 
specifying priors that actually do take into account what one already knows 
arouses anxiety the first few times one does it. If for whatever motive, one wants 
to be (or appear to be) unbiased, one should use the Jeffreys prior. It has a small – 
and most importantly – a readily defensible ‘bias’.

A Jeffreys prior is a conjugate prior with a special and unique choice of ini-
tial value(s) for its hyperparameter(s): 𝜃𝜃beta0 = [0.5 0.5]; 𝜃𝜃gam0 = [0.5 0]; 
𝜃𝜃ng0 = [0 0 − 0.5 0]. Jeffreys priors are minimally informative. They have the fur-
ther technical advantage that the parameter estimates obtained are invariant 
under a change of parameters. What that means is that, if one chose to work with 
a different parameterization of the source distribution – for example, with mean 
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Figure 3. Estimated source distributions (odd rows) and the corresponding conjugate posterior 
distributions (even rows) for the Bernoulli source (col. 1), the exponential (col. 2), and the Normal  
(col. 3). The estimate of the source distribution’s parameter(s) is shown on each source plot. The 
updated hyperparameters are shown on (cols 1 and 2) or above (col. 3) each posterior distribution. 
The posteriors in col. 3 are contour plots, because the posterior depends on two variables. The asterisk 
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and variance rather than mean and precision – and if one worked with the equiva-
lent forms for the prior distributions (the prior distribution after transformation 
by the change-of-variable formula), then the estimates obtained for the source 
distribution’s parameters would agree with the estimates obtained using the alter-
native parameterization. It is startling and a bit disconcerting to learn that this 
will not be true for any choice of prior other than the Jeffreys prior! In practice, the 
disagreements are negligible except when there are very little data. However, we, 
like our subjects, are interested in the conclusions one may rationally draw when 
there are almost no data.

Figure 3 plots the estimated source distributions and the posterior distribu-
tions on their parameter(s) for different amounts of simulated data. The left col-
umn plots the estimated Bernoulli sources and their beta-distribution posterior 
on the source’s p parameter, given 1, 5 and 20 draws from a Bernoulli distribution 
whose true p value was 0.5. The initial parameter vector for the beta distribution 
was 𝜃𝜃 = [0.5 0.5], which makes it the Jeffreys prior on the Bernoulli. The esti-
mated values of p and q = 1 − p are shown on the estimates of the source distribu-
tion. The updated values for the α and β hyperparameters (the parameters of the 
beta posterior) are shown on the posterior. Note that the integers 0 and 1 (‘failure’ 
and ‘success’) are the support for the source distribution, while the support for the 
beta posterior is the interval from 0 to 1, the uncountably infinite number of dif-
ferent possible values for a Benoulli p.

The middle column of Fig. 3 plots the estimates of an exponential source dis-
tribution and the gamma distribution posterior on its rate parameter, given 1, 3 
and 10 draws from an exponential distribution whose true rate parameter was 0.2 
responses/s. This rate corresponds to an average inter-response interval of 5 s. The 
estimated value for the rate parameter, λ, is shown on each plot of the estimated 
source distribution, along with its reciprocal, the estimated value of the mean. The 
initial values of the gamma hyperparameters were 𝜃𝜃 = [0.5 0]. Those initial values 
make the gamma distribution the Jeffreys prior on an exponential source distribu-
tion. The updated values for these hyperparameters are shown on the plots of the 
posterior distribution (even rows).

The right column of Fig. 3 plots the estimated Normal distribution and the 
Normal-gamma posterior distribution on its mean and precision (= 1/var), given 

marks the maximum likelihood point (the summit). The contour levels are at 0.5, 0.1, 0.05 and 0.01  
times the summit level. Note that the 1st element in the hyperparameter vector in col. 3 is the esti-
mate of the mean. This estimate is not biased by the informative prior; it biases only the variance. 
Thus, the estimate of the mean given only one datum is the value of that datum. Without the inform-
ative prior (see text), it would not be possible to estimate the precision given only one datum. The 
informative prior supplies the estimate of the variance when there is but one datum and biases later 
estimates.
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1, 4 and 20 draws from a Normal distribution with a mean of 2 and a standard 
deviation of 0.4 (therefore, a CoV of 0.2).

An informative prior was used to illustrate what one might do in estimating a 
temporal CoV. It was 𝜃𝜃0 = [0 0 4 0.36]. It asserts that, before we have seen any real 
data, we have seen four ‘ghost’ data – that yield the sufficient statistics needed to 
estimate a variance. A variance is the mean of the squared deviations. To compute 
it, you need the sum of the deviations and the number of deviations that went into 
that sum. The fourth element in the informative 𝜃𝜃0 is a suggested sum of squared 
deviations and the third element is the number of deviations on which this sug-
gestion is notionally based.

For two reasons, the third element is the one that had to be considered first 
in constructing this informative prior given our prior knowledge of the ballpark 
in which the variance should fall: (i) it determines the weight given to our prior 
knowledge: the bigger that number, the more informative the prior. (ii) One needs 
that number to convert a variance into a sum of squared deviations. The start-
ing point for the conversion was the prior knowledge that the standard deviation 
would probably be less than 0.3. Another way of stating that knowledge is that 
the variance will probably be 0.32 ≤ 0.09. (Squaring σ to get the variance is an 
example of a change-of-variable formula.) To get that variance given an n of 4, the 
sum of squared deviations has to be 4∗0.09 = 0.36 (another example of applying 
a change-of-variable formula).

The posterior on the Normal is a contour plot on a 2D support plane. The sup-
port plane contains the points that are the cross product of the plausible values 
for the mean and the plausible values for the precision. The contours in a contour 
plot enclose the combinations that have a likelihood above some given level. They 
are the contours on the posterior distribution ‘hill’, just as the contours on a topo-
graphic map are the equal-elevation contours on real hills.

3.6. Note for Those Who Know Bayes’ Rule

What we called the source distribution is usually called the likelihood. The likeli-
hood function plays a fundamental role in Bayes’ Rule,

 p(𝜃𝜃𝜃D) ∝ p(D𝜃𝜃𝜃)π(𝜃𝜃) (1)

Here, p(𝜃𝜃𝜃D) is the posterior distribution over the parameter vector, 𝜃𝜃, given the 
data, D; p(𝜃𝜃𝜃D) is the likelihood function, and π(𝜃𝜃𝜃 is a prior distribution over 
the possible values for the parameter vector of the assumed source distribution. 
While ‘likelihood’ and ‘source distribution’ refer to the same function – p(D|𝜃𝜃𝜃 – 
they mean different things: p(D|𝜃𝜃𝜃 is the source distribution when viewed as a 
function of the data, D, but it is the likelihood when viewed as a function of the 
parameters, 𝜃𝜃.
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To take a concrete example, assume that successes and failures are drawn from 
a Bernoulli distribution with parameter p. Assume also that there have been four 
draws, and p = 0.5. The source distribution is the probability of each of the five 
possible outcomes – 0, 1, 2, 3 or 4 successes – given that p = 0.5. These probabili-
ties follow a binomial, and their respective values are 1/16, 4/16, 6/16, 4/16 and 
1/16 – which sum to 1, as they should. The likelihood, on the other hand, is the 
probability of having observed the data – let’s say three failures and one success 
– for all the values p might possibly assume; it is given by 4 × (1 − p)3 p. Unlike 
source distributions, likelihoods functions do not integrate to 1 (in this example, 
the integral over p of the likelihood is 1/5), further driving home the point that 
likelihoods are not probabilities.

It may help to think of p(D|𝜃𝜃𝜃 as a function (command, sub-routine) in a pro-
gramming language: To compute the likelihood function, you run the function 
‘backwards’ – with the data regarded as parameters and different possible val-
ues for 𝜃𝜃 regarded as the input. In that case, the function delivers as output the 
likelihoods (N.B., not the probabilities) of different possible values for the source 
distribution’s parameter. To compute the source distribution, you run the func-
tion ‘forwards’ – with 𝜃𝜃 regarded as parameters and different values of the data 
regarded as the input. In both cases the output of the subroutine is commonly 
denoted by p(D|𝜃𝜃𝜃; what differs is what one thinks of as parameters and what one 
thinks of as input.

Our expression for Bayes Rule (1) asserts a proportion (∝) not an equality (=). 
That is because when the right-hand side is integrated over 𝜃𝜃 (or summed for dis-
crete variables), it does not equal 1, whereas the integral of the left-hand side does 
(because it is a probability distribution). The factor by which the right-hand side 
of (1) must be rescaled is called the normalizing factor. It is the reciprocal of the 
integral of the product on the right. This product is sometimes called the marginal 
likelihood or the model evidence. It is all one needs in computing a point estimate 
for the source parameter(s) and a credible interval (or contour) on that estimate. 
That is one reason why the normalizing factor is often omitted from the functional 
form of Bayes Rule and the equals sign replaced by the proportion sign. The other 
reason is to keep the expression as simple as possible.

4. Fundamentals of Information Theory

We do experiments to gain information. Intuitively, some experiments produce 
more information than others. The information we have gained from past experi-
ence enables us to anticipate what may happen next and to infer what may have 
happened in the past. The information from observing outcomes enables us to 
infer the events and processes that produced them. This is equally true of the 
information that non-human animals gain from their experiences in Pavlovian 
and instrumental conditioning experiments. It enables them to anticipate what 

 Timing & Time Perception (2022) DOI: 10.1163/22134468-bja10069

Downloaded from Brill.com01/18/2023 10:33:40PM
via free access



16

will happen and the consequences of their actions. It also enables them to infer 
models of the processes and events that produce their experiences (model-based 
learning).

The study of timing behaviour is the study of how brains acquire and use the 
information provided by objectively measurable associations (see below for how 
they may be measured). It cannot be distinguished from the study of associative 
learning, because associative learning supervenes on a temporal map (Balsam 
& Gallistel, 2009; Chandran & Thorwart, 2021; Honig, 1981; Taylor et al., 2014). 
The temporal map – a time-stamped record of past episodes – makes possible the 
computation of the intervals between events. That computation makes possible 
the inference of predictive and retrodictive models of the experienced world.

The preceding two paragraphs presuppose we understand what information is. 
Until, 1948, one could only babble when asked to say what it is. Shannon (1948) 
made it a scientifically useful concept by defining it mathematically.1 Thus, we 
suggest that students of timing and associative learning learn to measure the 
information that events provide about the form and parameters of the stochas-
tic processes that generate those events. Bayesian parameter estimation works 
together with simple information-theoretic computations in a modern timing 
research toolkit.

To understand Shannon’s definition of information, we need to understand 
entropy. The entropy of a probability distribution, commonly denoted by H , is 
given by

 
H =

i=n

∑
i=1

pi logb
1
pi  

(2)

where pi  is the probability of the ith member of the support set, n is the number of 
elements in the support set (the number of possibilities, which could be infinite) 
and b is the base of the logarithm. The base, b, can be any number greater than 
1. In practice, it is usually e (the base of the natural logarithms) or 2. The units of 
entropy are nats in the first instance and bits in the second; they differ only by a 
scaling factor, log2(e) ≃ 0.693. Because entropy depends on log(1/p), it must be 
non-negative.

Entropy is a measure of uncertainty: the higher the entropy of a distribution on 
some empirical variable, the more uncertain one is about the value that variable 

1 “In physical science a first essential step in the direction of learning any subject is to find prin-
ciples of numerical reckoning and methods for practically measuring some quality connected 
with it. When you can measure what you are speaking about, and express it in numbers, you 
know something about it, when you cannot express it in numbers, your knowledge is of a meager 
and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your 
thoughts advanced to the stage of science.” (Thomson, 1883, p. 72).
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will take when next encountered. For instance, a die has higher entropy than a 
coin because the chances of correctly guessing the outcome of a die roll is 1/6 
while the chances of correctly guessing the outcome of a coin flip is 1/2 (so you are 
much more likely to correctly guess the coin than the die). A biased coin has lower 
entropy than an unbiased one, because you are more likely to correctly guess the 
outcome (provided you know which call is the better bet). In the extreme case in 
which the probability of, say heads, is 1, the entropy is zero, and you are sure of the 
outcome before the coin is flipped.

The entropy of a distribution is the average surprisal of a datum drawn from 
it. The surprisal is log(1/p), where p is the probability of drawing (observing) that 
datum. This measure of surprise is intuitive, because the more improbable some-
thing is, the more surprised we are when we see it. At the other extreme, because 
the probability of the sun rising in the morning is 1, our surprise when it happens 
is 0. Taking the log of the reciprocal of p makes surprisals additive, which is what 
makes them averageable.

4.1. Entropy of a Continuous Distribution

Most of the time, continuous functions and distributions can be discretized, and if 
the discretization is fine enough the quantities one cares about do not change. For 
example, we could replace a probability distribution p(x) with its discretized ver-
sion, in which the probability that a variable lies between x and x + dx is p(x)dx.  
In the limit of small dx, the discrete distribution still sums to 1 (or very close to 1), 
and we can still do statistical inference. Moreover, as dx approaches zero, those 
operations become increasingly accurate. However, one thing we cannot do when 
we discretize is compute entropy. It is easy to see why: entropy is a measure of 
uncertainty, and as dx becomes small, we become increasingly uncertain which 
interval our variable lies in. As dx goes to zero, we become completely uncertain, 
because the possibilities are infinite, and the entropy goes to infinity.

When confronted with infinities, a common approach is to simply throw them 
away. This is what early information theorists did: they defined the differential 
entropy analogously to Equation (1), but for continuous distributions,

 
H[p(x)] = ∫ dxp(x) logb(1/p(x)) 

(3)

This is, typically, finite, but it is no longer the entropy as defined in Equation (1) – 
the infinite part of the entropy has been thrown away (technically, the part with 
log(dx) in it). The problem with throwing away infinities is that it is hard to do 
rigorously. And, in fact, the numerical value of differential entropy varies with the 
units attached to the data. Changing the units can give it any value one likes. It 
also changes under a nonlinear change of variables – a point we shall return to 
shortly.
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Fortunately, we are almost always interested in differences in entropy, which are 
much better behaved. A particularly important difference is the mutual informa-
tion, I, between two variables, say x and y, defined as

 
I(x, y) = H[p(x)] −∫ dyp(y)H[p(x|y)]

 
(4)

where the notation p(x|y) means the probability distribution over x conditioned 
on y. Information, as defined here, has several features (none of which are espe-
cially obvious) that make it especially useful. First, I(x, y) = I(y, x), meaning the 
information y tells us about x is exactly the same as the information x tells us 
about y. Second, information is independent of the units with which one mea-
sures x and y, and it is even invariant under a nonlinear change of variables. Third, 
the above definition of mutual information applies to discrete distributions as 
well (simply replace the integral over y by a sum), and to mixed discrete and con-
tinuous distributions

Mutual information is the difference in the entropy of very specific distribu-
tions. Is the difference in entropy of an arbitrary pair of distributions also well 
behaved? It is slightly better behaved than entropy, since it does not depend on 
units. However, it does change under a nonlinear change of variables. This is of 
practical importance only when it is not clear how to parameterize quantities of 
interest, which usually hinges around the question of whether to use log or linear 
units. But when it is clear which we should use, this is a technical issue we can 
ignore.

4.1.1. Available Information
Mutual information has a natural interpretation of obvious psychological and 
neuroscientific importance: it is the average reduction in uncertainty about x 
one can get from observing y – and vice versa, because I(x, y) = I(y, x). To make 
this more intuitive, we note that when y is a direct measure of x, but with error 
bars (i.e., y = x ± Δx), then information is approximately equal to the entropy 
of p(x) with x expressed in the units equal to the error bars, Δx. For instance, 
if observing y told us the value of x to within 2 cm, then I(x, y) ≈ H[p(x)] if x is 
measured in units of 2 cm. More concretely: if p(x) is uniformly distributed in the 
range 0–16, and observing y pins down x to within 2 cm, then H[p(x)] is 3 bits 
[log2 8 = log2(16/2)] when x is measured in units of 2 cm. Which makes sense, as 
there are about eight distinguishable intervals.

Approximating information by entropy measured in units of the error bars is 
valid only if H[p(x)] is large; it breaks down if H[p(x)] is small, and it breaks espe-
cially badly if H[p(x)] is negative, since mutual information cannot be negative. 
It also breaks down if the error bars are not independent of x. However, for small 
measurement errors – that is, small Δx – compared to the width of p(x), and mea-
surement errors that do not depend on x, it is a good approximation.
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For any distribution p(x), we can identify the entropy of p(x), when x is mea-
sured in units of our measurement error, as the available information. This gives us 
the intuitively sensible result that the smaller the measurement error, the higher 
the available information: knowing the value of x to within 1 nanometre will 
give us much more information than knowing the value of x to within 1 metre. 
Importantly, the available information gives us a bound on the mutual informa-
tion, I(x, y) – a bound that is very often not reached. For instance, the GPS on 
modern phones gives our location to within about 10 metres, whereas by looking 
at nearby landmarks we know where we are to within about half a metre. Thus, 
the information provided by the GPS is about 4.3 bits (log2 20) smaller than the 
available information. On the flip side, given that we can only locate ourselves to 
within about half a metre, it would make no sense for GPS to give us our location 
with smaller error bars – we simply could not make use of that information.

Importantly, the available information is an approximate bound on the mutual 
information, because a signal cannot communicate more information than is 
available to be communicated. Put another way, there is no such thing as negative 
uncertainty.

4.2. Shannon’s Coding Theorem

Shannon’s (1948) coding theorem proves that, in the maximally efficient code for 
data coming from some distribution, the length of the code for a given datum is 
proportional to log(1/p), where p is the probability of that datum, the relative fre-
quency with which it has to be encoded. His theorem entails that to minimize the 
amount of memory used to store the data coming from some source, the lengths 
of the code words must be adjusted to make them proportional to the logs of their 
relative frequencies. Shannon’s coding theorem is the foundation of modern com-
munication technology; it tells us how to make maximally efficient use of physical 
resources such as memory and signal bandwidth.

4.3. Measured Divergence

The Kullback–Leibler divergence of a distribution, P, from a distribution, Q, is 
denoted DKL(P||Q). It gives the average cost (usually in bits or nats) of encoding 
a datum from the P distribution using a code optimized for the Q distribution. In 
other words, the cost of erroneously assuming that the two distributions are one 
and the same. The prepositions ‘of ’ and ‘from’ are stressed because the divergence 
is not symmetric, that is, DKL(P||Q) ≠ DKL(Q||P).

Some information theorists consider the Kullback–Leibler divergence to be a 
more foundational information-theoretic measure than entropy. Unlike entropy, 
it is well defined for both continuous and discrete distributions (although it can-
not mix the two) and invariant under a change of variables.

When nY  data have come from a distribution, Y , that diverges from a distri-
bution, X , by DKL(Y ||X ), the cumulative number of memory bits that have been 
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wasted encoding the ys on the assumption they were xs is nDKL. We call this the 
cumulative coding cost.

In our practice, neither Y  nor X  – the arguments of the DKL – are known 
exactly. Therefore, both sample sizes must be taken into account. We show in 
the Appendix A2 that when two distributions with the same form do not differ, 
then n = (ny/ (1 + ny/nx) × DKL is asymptotically distributed Γ (np/2, 1), where Γ  
denotes the gamma distribution and np is the number of parameters (e.g., 1 for 
the Bernoulli and exponential, 2 for the Normal). Hereafter, for simplicity, when 
we say we have computed nDKL, we did so for n = n1/ (1 + n1/n2). This expression 
gives the value for the n in nDKL that takes proper account of the sample sizes on 
which the estimates of the probability distributions are based.

The nDKL statistic is a simple information-theoretic measure of the strength 
of stochastic evidence. Unlike a p value, it has physical meaning; it estimates the 
amount of memory to be saved by recoding the Y  data in the light of the evidence 
that the Y  distribution diverges from the X  distribution. The uncertainty about 
the true value of the nDKL is conditional on the data – as is an F  ratio or p value 
or any measure of the strength of the evidence. The fewer data, the greater the 
uncertainty.

5. Measuring Association and Contingency

Events are temporally associated to the extent that the temporal location of the 
next event may be predicted from knowledge of the location of the preceding 
event, and vice versa. For events occurring at a given rate, an exponential distribu-
tion of event times maximizes entropy (uncertainty) about where in time the next 
event and the preceding event may be found. In information-theoretic terms, it is 
the maximum entropy distribution (Jaynes, 1957, 2003). The maximum entropy 
principle is an information-theoretic formulation of Occam’s razor: assume as 
little as possible.

One way to think about the exponential distribution is that in any (infinitesi-
mal) time bin dt, the probability of an event occurring – say the appearance of a 
food pellet – is λ × dt where λ is the (constant) rate of events. This means events 
are completely randomly distributed in time; in other words, they are not self-
associated. Knowing, for instance, the most recent tx does not alter an observer’s 
uncertainty about where in time the next tx may be encountered nor where in 
time the preceding tx may be found. Any other distribution induces some degree 
of self-association; that is, the location of the next point can to some extent be 
predicted from the location of the preceding point, and vice versa. This gives the 
exponential distribution a very counter-intuitive property: suppose we repeatedly 
drop a pointer onto the time line at randomly chosen points in time, and we com-
pute the intervals looking forward in time from the pointer to the next tx and also 
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backward in time to the most recent tx – the prospective and retrospective intervals. 
The distributions of both the forward and backward intervals are exponential with 
rate λ – exactly the same distribution as the original set of points! (The reason is 
that we are more likely to drop our pointer onto long intervals.)

Consider a stream of events, [y1, y2, …], occurring at times t y1 , t
y
2 … ., constrained 

to occur at a fixed rate, λ. As just mentioned, the distribution with the maximum 
possible uncertainty about t yn+1 given t yn  is the exponential with rate λ. The more 
predictable t yn+1 becomes, the more the entropy decreases. When t yn+1 − t yn  is a con-
stant, t yn+1 is completely predictable when given t yn , and the y events are maximally 
self-associated. In that case the entropy of t yn+1 given t yn  is minus infinity [log(0)] 
– a fact that should not bother us because measurement error, which is always 
present, will make the entropy finite. In practice, there is never an infinite amount 
of available information.

Consider now a second stream of events, [x1, x2, …], occurring at times tx1 , tx2 … ..  
We want a measure of the extent to which the x events are associated with the y 
events, a measure of how predictable the next tx is when given a ty. We also want 
a measure of how retrodictable the preceding ty is when given a tx.

A natural measure of the predictability of the next tx given a ty is the conditional 
entropy, denoted H(X |Y ), which is the entropy of p (tx|ty) averaged over ty (the 
second term in Equation (4), but without the minus sign). High conditional entropy 
– more uncertainty about the value of tx given ty – implies low predictability, and 
vice versa. Predictability is maximized when ty predicts tx to within measurement 
error, at which point H(X |Y ) = 0 when tx is measured in units of the measurement 
error. Predictability is minimized when tx tells us nothing about ty, in which case 
H(X |Y ) = H(X ). Similarly, the retrodictability of the preceding ty given a tx is max-
imized when H(Y |X ) = 0 (again when ty is measured in units of the measurement 
error) and minimized when H(Y |X ) = H(Y ). The maximization in both cases (pre-
diction and retrodiction) occurs only when tx and ty always coincide (within mea-
surement error). The minimization of predictability (maximization of uncertainty) 
occurs when both distributions are independent. In that case, the mutual informa-
tion is 0, because H(X |Y ) = H(X ) − H(X |Y ) = 0 = H(Y ) − H(Y |X ).

A measure related to the mutual information between X and Y may therefore 
be constructed as follows:
– Let C be an unconditional distribution of intervals, with rate parameter λ|C. In 

the examples considered, these intervals will be the inter-reinforcement inter-
vals when the subject is in a test chamber in which a transient CS, such as a 
noise or light, creates mutual exclusive and exhaustive periods denoted by CS 
and ∼ CS (not CS). That is why we denote the unconditional distribution by C: 
one can think it means either Chamber or Context.

– In operant conditioning (reinforcement learning), the prospective contex-
tual distribution – looking ahead from response to later reinforcement – is 
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the distribution of the intervals between reinforcements, while the retrospec-
tive contextual distribution – looking back from reinforcement to the earlier 
response – is the distribution of inter-response intervals.

– Let Y be the conditional distribution of intervals, with rate parameter λ|Y . In 
excitatory Pavlovian conditioning, this is the distribution of waits for reinforce-
ment signalled by CS onsets. In inhibitory Pavlovian conditioning and in trace 
conditioning, it is the distribution of waits for reinforcements signalled by CS 
offsets. In operant conditioning, the retrospective conditional distribution is 
the distribution of intervals looking back from the reinforcements to the most 
recent responses. There is also a prospective conditional distribution in operant 
conditioning, but its definition differs depending on the protocol (VI, FI, FR, 
VR, etc).]

– The contextual and conditional distributions are always chosen such that 
λ|C ≤ λ|Y , the contextual rate is less than or equal to the conditional rate.

– We treat the contextual and conditional distributions as maximum entropy 
given the rates, which means we treat them as exponential. Their entropies are 
thus computed using the formula for the differential entropy of the exponen-
tial, 1 − ln(λ), where λ is the rate parameter (λ = 1/μ).

The proposed measure of association is

ΔH |Y&C = (1 − ln(λ|C)) − (1 − ln(λ|Y )) = ln (ln(λ|Y )) − ln (ln(λ|C)) = ln
λ|Y
λ|C .

 
(5)

Since, as stipulated above, λ |C ≤ λ| Y , ΔH |Y&C is always positive.
The contingency, denoted 𝒞𝒞𝒞X ; Y ), is (under the same restrictions):

 
𝒞𝒞𝒞X ; Y ) =

ΔH |Y&C
Imax  

(6)

where X denotes the distribution of intervals in the context in which the ys occur 
(that is, the contextual distribution or the marginal distribution), Y denotes the 
distribution of the ys, ΔH |Y&C is, roughly speaking, the mutual information 
between the xs and the ys, and Imax denotes the available information – which, as 
discussed above, depends on measurement error.

In words – using a well-known example – Equation (5) says that the associa-
tion between the CS and the US in excitatory Pavlovian conditioning is measured 
by the reduction in uncertainty about the waits for reinforcement following the 
onset of a CS. Equation (6) says that the contingency is that reduction normalized 
by the available information, the amount of information that a CS could convey. 
Note that Equation (6) applies more generally than for exponential distributions; 
in the general case we could replace the numerator with the mutual information 
and the denominator either with the maximum information or, equivalently, the 
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entropy of the prior distribution with the relevant variables measured in units of 
the measurement error.

For rates, we can take Imax to be the entropy of the unconditional entropy mea-
sured in units of time corresponding to the interval within which events are per-
ceived to be simultaneous. This, together with the stipulation that the λY&C ≤ λC,  
bounds contingency at 1. For human observers, the interval within which events 
are perceived as simultaneous is measured in tenths of a second (Grabot & van 
Wassenhove, 2017; Stone et al., 2001; van Wassenhove et al., 2007), with sub-
stantial between-subject differences. In the case of anticipatory behaviour, the 
divisor is the minimum interval within which subjects can make an anticipatory 
response, such as a peck or a freeze – the interval that is too short to make antici-
patory behaviour possible. In rabbit eyeblink conditioning, this interval is 0.1s. In 
pigeon autoshaping protocols, it is perhaps a second or two.

For a concrete example of a contingency computation, Levinthal et al. (1985)  
did rabbit eyeblink conditioning with one trial per day and a CS–US interval  
of 2 s – much longer than the intervals commonly used. Taking 0.1 s as the  
measurement error, hence the appropriate unit of time, we have Imax  
Imax = log2[(60

∗60∗24)/0.1)] = 19.7 bits and ΔH |Y&C = log2 [(1/2)/1/86400]
= 15.4 bits, so 𝒞𝒞𝒞X ; Y ) = 15.4/19.7 = 0.78.

The rabbits learned to blink to the CS in five or six trials. By contrast, when the 
US–US intervals in rabbit eyeblink conditioning are measured in seconds rather 
than days, rabbits learn to blink much more slowly, even when the delay of rein-
forcement is much shorter (see Fig. 10 in Gallistel and Gibbon, 2000). That fact 
brings us to a discussion of time-scale invariance in association perception.

5.1. The Time-Scale Invariance of Association

The proposed measure of association, Equation (5), does not measure the strength 
of a hypothetical construct in the mind or brain, such as a connection weight, or 
the strength of a Hebbian synapse or the value attributed to a reinforcement; it 
measures a quantitative fact about the temporal distribution of events. The rate 
ratio in Equation (5) is unitless, and thus time-scale-invariant. There is extensive 
evidence that Pavlovian conditioning is also time-scale-invariant (Gallistel & 
Gibbon, 2000), suggesting that it depends on the perception of the association 
measured by ΔH .

The evidence for time-scale invariance first emerged in a meta-analysis of trials 
to acquisition in pigeon autoshaping done by Gibbon and Balsam (1981). Pigeon 
autoshaping is a Pavlovian protocol in which an illuminated key takes the role of 
the bell (the CS) and pecking that key takes the role of salivation (the conditioned 
response). It was studied intensively by many labs in the 1970s because it proved 
to be a more efficient way of training pigeons to peck keys than the shaping rec-
ommended by Skinner (1938).

Until the discovery of autoshaping, it had been assumed that teaching a pigeon 
to peck a key was the paradigmatic example of reinforcement learning (a.k.a. 
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operant conditioning). In reinforcement learning, the subject not only learns what 
predicts and retrodicts what, it also learns a reinforcement-producing or avoiding 
action. Moreover, its previous behaviour determines whether it has the informa-
tion necessary to identify a motivationally appropriate action (in RL language, to 
choose or activate a policy).

In Pavlovian conditioning, the behaviour is irrelevant to the learning process. 
Its only role is to reveal to the experimenter whether or not the subject has per-
ceived the association. However, behavioural and electrophysiological research 
has shown that retrospection – looks back in time – occurs even in Pavlovian 
paradigms (Komura et al., 2001; Matzel et al., 1988; Miller & Barnet, 1993; 
Namboodiri & Stuber, 2021; Namboodiri et al., 2019; Savastano & Miller, 1998). 
On the assumption that reinforcing events are rarer than events that might (but 
very often do not) predict reinforcements, retrospective interval computation may 
be the rule rather than the exception. It may be that prospective and retrospective 
intervals are computed from a temporal map only when something worth predict-
ing actually happens (Arcediano et al., 2003; Balsam & Gallistel, 2009; Chandran 
& Thorwart, 2021; Honig, 1981). On this hypothesis, all knowledge of temporal 
intervals derives from looks back in time made possible by a temporal map, a 
time-stamped record of events. The map makes retrospection possible, just as a 
spatial map makes navigation possible.

Balsam and Gallistel (2009) suggest that the rate ratio in Equation (5) be called 
a protocol’s informativeness, because it determines ΔH , the amount of informa-
tion a subject may gain from a CS. Gibbon and Balsam (1981) called it the C/T  
ratio for the following reason: in a pigeon autoshaping protocol, the key on the 
wall of the chamber is illuminated at more or less random intervals for a fixed 
duration, at the end of which the food (US) is delivered, regardless of anything 
the subject does. Each illumination is called a trial. Different labs used different 
trial durations (denoted T) and different US–US intervals (denoted C for cycle 
duration). The wait for reinforcement after CS onset is T, and the average interval 
between the termination of the previous trial and the onset of the next is com-
monly called the intertrial interval or ITI for short; in other words C = T + ITI  in 
pigeon autoshaping.

The now widely accepted operating definition of rate of learning – the recipro-
cal of USs to acquisition – was then little attended to. It was often not reported for 
individual subjects, as is now best practice. However, Gibbon and Balsam obtained 
the raw data from 12 different labs, which enabled them to compute, for each bird, 
the trial at which it satisfied an acquisition criterion (one or more pecks on three 
out of four successive trials).

They discovered a surprising regularity (Fig. 4): the data are well described  
by a one-parameter regression equation: nR (λR |CS/λR| C − 1)
= nR(mean (US − US) / (mean (CS − US) − 1) = k, where k = 294 ± 28, nR is the 
number of reinforcements prior to the appearance of a conditioned response and 
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λR is the rate of reinforcement. The learning rate is, by definition, 1/nR. The regres-
sion model applies over learning rates, from 0 (infinite USs to acquisition) to 1 
(acquisition following the first US) – a span of almost three orders of magnitude 
on both axes. It accounts for 75% of the variance in Fig. 4, with no evidence of 
systematic deviation, as evidenced by the out-of-sample circles, which were not 
included in the fit nor in the variance calculation.

The success of the regression model in Fig. 4 is a theory killer. It kills every 
formal model of associative learning based on delta-rule updating, because it is 
not reconcilable with the assumption that the updating of associative strength 
depends on the probabilities of the occurrence and non-occurrence of reinforce-
ments in the presence of a cue. When informativeness is 300, the conditioned 
response appears after one reinforcement. When informativeness is 1.5, 200 rein-
forcements do not suffice to make it appear. In both cases, the probability of CS 

Figure 4. Median unconditional stimuli (US) (reinforcements) to the acquisition of a conditioned 
response in pigeon autoshaping protocols, as a function of the informativeness (I) of the protocol, 
on double-logarithmic coordinates. The asterisks are the data plotted in figure 7.11 on p. 245 of 
Gibbon and Balsam (1981). The regression line was fit to those data. The three open circles are 
out-of-sample data from Jenkins et al. (1981 Grp 300 Table 8.1 p. 259, Grp W300 Table 8.3 p. 261, 
and Grp No F Table 8.5 p. 264). The second x-axis shows the relation between informativeness and 
its logarithm, ΔH , our suggested measure of associative strength. The horizontal deviation from 
the regression of the open circle on the x-axis was determined by the experimental design, not the 
subjects.
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reinforcement is 1 and the probability of intertrial interval (ITI) reinforcement is 
0. We are not aware of a formalized theory of associative learning that can explain 
the simple quantitative relation between informativeness and the rate of learn-
ing. It would appear to be unreconcilable with any ‘neurobiologically plausible’ 
model in which synaptic strengths (connection weights) are increased on every 
reinforced trial and decreased on every unreinforced trial.

The quantity on which the rate of learning depends, λR |CS/λR|C − 1, where C 
now stands for context, not cycle duration, is the percent increase in the rate of 
reinforcement to be expected when the CS is present (λR|CS), relative to the rate 
expected simply from being in the context in which the CS occurs (λR|C). Thus, 
when λR |CS/λR|C = 1.5 there is a 50% increase in reinforcement rate when the 
CS comes on. That makes intuitive sense on what might be called the make-hay-
while-the sun-shines principle, when pecking the key is understood as foraging 
behaviour (making hay). The parameter k has a data-anchored interpretation; it is 
the informativeness that produces one-trial learning.

One would like to understand this decision criterion. Figure 5 may give a hint. 
The nDKL is a measure of the strength of the evidence that λR|CS differs from λR|C.  
Figure 5 plots nDKL as a function of the strength of an association, as measured 
by ΔH , experienced for the first time. When the association has been perceived 
only once, the effective n in nDKL is 0.5. The dashed vertical is the ΔH  that causes 
one-trial learning in a variety of Pavlovian protocols with a variety of subjects. The 
equivalent p values are plotted as horizontal dashed lines to give a more intuitively 
accessible feel for the strength of the evidence at different cumulative coding 

Figure 5. The nDKL following the first experience of a CS-US association (when the sample size is 
1 for the conditional and unconditional rate estimates), plotted against the measure of association, 
ΔH |Y&C = log2(λ|CS/λ|C). The vertical dashed line is the association that produces one-trial 
learning in the median subject. The horizontal dashed lines give the probability of receiving this 
amount of information from a spurious association.
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costs. The amount of evidence the median subject requires to begin responding to 
a perceived association after a single experience falls comfortably within conven-
tional evidentiary bounds.

One might expect the decision to respond under circumstances that do not pro-
duce one-trial learning would be based on the strength of the evidence accrued over 
the pre-decision trials, that is, on 0.5 • nRDKL (λR|CS, λR|C) > 2.35 = 0.5 • DKL (k, 1),  
the estimated cumulative coding cost when acquisition occurs after a single 
reinforcement. Thus, on this hypothesis, nR|1st CR = 4.7/DKL (λR|CS, λR|C). 
Near the left end of the regression, when λR |CS/λR|C = 1.5, nR ≃ 400; whereas 
4.7/DKL (1.5, 1) = 4.7/0.0721 = 65. The predicted number of reinforcements 
required for acquisition is off by a factor of 6. Put another way, instead of requiring 
the 3.5 bits of evidence, which is the required amount for acquisition after a single 
experience, the median subject requires 1.44 • 400 • 0.5 • DKL (1.5,1) bits – more 
than 20 bits; an implausibly severe evidentiary criterion (p < 0.000001).

While the value for the k of the median subject is surprisingly constant for both 
pigeons and rats, in both excitatory and inhibitory protocols, there is large within-
group variation. Some subjects in every group whose data we have seen begin 
much sooner and some much later than would be expected from the regression 
equation in Fig. 4. When the mutual information exceeds 4 bits, one subject may 
begin after a single experience of the association, while another running on the 
same protocol begins only after 100 experiences. Whatever determines the value 
of k varies greatly between subjects.

The information communicated by a CS about the wait for a reinforcement 
cannot be greater than Imax, the available information. We see in Fig. 4 that the 
communicated information that produces one-trial learning in pigeon autoshap-
ing is about 8 bits. In the Jenkins et al. (1981) experiments, the wait for reinforce-
ment after CS onset was 8 s. Therefore, a pigeon’s reaction time to a peckable CS 
is shorter than 8 s. It seems unlikely that it could be shorter than 0.1 s. In prin-
ciple, the amount of information a subject can get from a cue is limited only by 
the subject’s projected life time and the estimate of its measurement error (the 
smallest duration that registers). However, when it comes to estimating learning 
rates, there are analytic limits on the relevant amounts of information. The rate 
should be 0 when the cue provides no information. The results from the experi-
ments using the truly random control suggest that this is so when care is taken to 
eliminate adventitious associations suggested by small sample noise in early trials 
(Rescorla, 2000). The empirical equation for the learning rate is also limited by the 
amount of information that produces one-trial learning and by the interval within 
which subjects perceive cue and the reinforcement to occur simultaneously.

In addition to the pigeon autoshaping data in Fig. 4 and the rabbit eyeblink 
data in Gallistel and Gibbon (2000, Fig. 10), we have seen very similar data on 
inhibitory conditioning in rats. In those protocols, the US occurred at a random 
rate only during the intertrial intervals, never during the CS. Thus, it was predicted 
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by CS offset, but the specific time at which it would occur could not be predicted, 
only its rate of occurrence. Those data come from the laboratory of Peter Balsam 
and Eleanor Simpson. They are in a paper in the late stages of preparation for 
publication. Justin Harris has graciously shared his very extensive C/T data from 
excitatory hopper-entry conditioning in rats. He has presented his results at a sci-
entific meeting and is preparing his data for publication.

Any model of associative learning must confront this startling manifestation of 
time-scale invariance: the rate of learning depends on a ratio of two average inter-
vals (C and T) – that is, on the informativeness. The duration in the numerator, C, 
may be three orders of magnitude longer than the duration in the denominator, T. 
When the informativeness ≈ 1, that is, when T ≈ C, a conditioned response never 
appears no matter how often the CS and reinforcement coincide. When C/T  is 
greater than 2, the learning rate is a linearly increasing function of informativeness 
(C/T) until the learning rate saturates at 1. Saturation occurs when C/T ≈ 300, in 
which case a single experience suffices for the median subject to begin responding 
to the perceived association.

6. Time-Scale Invariance and Contingency in Reinforcement Learning

The dependence of Pavlovian conditioning on the time-scale-invariant ΔH |CS, 
which measures the temporal association between cue and reinforcement, poses 
the question whether the same is true in reinforcement learning (a.k.a. operant 
conditioning).

Previous work in the information-theoretic framework (Gallistel et al., 2019) 
implicates the importance of two different associations in reinforcement learn-
ing – the prospective association, which is the extent to which responses predict 
reinforcements, and the retrospective association, which is the extent to which 
reinforcements retrodict responses. There is a strong prospective association when 
a response communicates substantial information about when to expect rein-
forcement. There is a strong retrospective association when a reinforcement com-
municates substantial information about the recency of a response.

If the processes that perceive these associations are time-scale invariant, then 
an arbitrarily long hang-fire latency between an act and an outcome – between 
response and reinforcement – should be no obstacle to the maximally rapid learn-
ing of an operant response. It should be learnable after only one or two reinforced 
responses.

Prospective and retrospective associations are not the same, because the dis-
tribution of intervals looking back from a reinforcement, R, to the most recent 
response (r) may be very different from the distribution of intervals looking for-
ward from rs to the next R (Gallistel et al., 2019). (In reinforcement learning – 
aka operant conditioning – responses are sometimes called “acts” or “operants” 
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because it is unclear what they are a response to; however, to avoid new nota-
tion, we will stick with r for response and R for reinforcement. We will also use 
r to denote the distribution of intervals to or from a response and R to denote 
the distribution of intervals to or from a reinforcement.) When pigeons peck a 
key on conventional variable interval schedules of reinforcement, a peck always 
precedes reinforcement at a very short fixed interval. Thus, the entropy of the 
reinforcement-conditional distribution of the retrospective intervals to a response 
from a reinforcement, H (r| ⃖R), is 0 (when, as usual, time is measured in units of 
measurement error). On the other hand, the unconditional (marginal) distribu-
tion of inter-response intervals has substantial entropy, because those intervals 
are approximately exponentially distributed (Gallistel et al., 2019). Therefore, 
adapting Equation (5) to the present case:

 Δ ⃖H(r; R) = H(r) − H (r| ⃖R) = H (r) − 0 = H (r) (7)

Thus, in this case, a reinforcement communicates all of the available information 
about the recency of the act that produced it. Therefore, when H (r| ⃖R) = 0, the 
retrospective contingency is 1.

On the other hand, pigeons pecking on variable interval schedules of reinforce-
ment peck at a much higher rate than the rate of reinforcement. Although the 
delivery of the reinforcement is triggered by a peck, the ineffective pecks between 
the reinforcements and the reinforcement-triggering peck are so numerous that 
the distribution of intervals looking forward from pecks to the next reinforcement 
– the distribution, r, of r − R intervals – is practically indistinguishable from the 
distribution of R − R intervals (Gallistel et al., 2019). In that case,

 Δ ⃗H(r; R) = H(R) − H(R| ⃗r) ≈ H(R) − H(R) = 0 (8)

so the prospective contingency, Δ ⃗H (r; R) /H (R), approximates 0.

6.1. Degrading the Retrospective Association

Lengthening the hang-fire interval between a reinforcement-triggering act and 
the reinforcement delivery allows reinforcement-irrelevant acts to intrude into 
the hang-fire intervals. Their intrusion adds entropy to the retrospective condi-
tional distribution, r| ⃖R. The longer one makes the hang-fire interval, the greater 
this entropy becomes; hence, the lower the perceivable retrospective associa-
tion becomes. Gallistel et al. (2019) found that subjects responding on variable 
interval (VI) schedules with lengthened hang-fire intervals reduced their rate of 
response so as to maintain a critical amount of Δ ⃖H (r; R). This result, together with 
some little-known previous results on instrumental learning with 30-s delays of 
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reinforcement (Lattal & Gleeson, 1990), led Gallistel et al. (2019) to conjecture 
that the computation that solves the assignment-of-credit problem in reinforce-
ment learning is time-scale-invariant.

The assignment-of-credit problem in reinforcement learning poses the ques-
tion: what did I do that made that happen? How brains solve this problem is a cen-
tral concern of computational neuroscientists working on reinforcement learning 
(Dayan & Niv, 2008; Gershman et al., 2015; Sutton, 1984; Sutton & Barto, 1998). 
If the credit-assignment process is time-scale-invariant, then the interval between 
a response and the reinforcement it triggers can be arbitrarily long, provided that 
the naive response rate is low enough so that the retrospective intervals between 
initial reinforcements and the responses that trigger them are much shorter than 
initial estimates of the reinforcement–reinforcement intervals.

A recent experiment in Shahan’s lab, now being extended, tested this conjec-
ture with the following simple protocol: naive rats were given four half-hour-long 
sessions of magazine training during which they learned that a 3-s illumination 
of the feeding hopper signalled the release of a food pellet. This hopper train-
ing was followed by an hour-long session of context extinction, during which no 
pellets dropped into the hopper and there were no hopper illuminations. The 10 
subjects were then divided into an experimental group and a group of yoked con-
trols (n = 5 in both groups). A preprint describing the experiment and its analysis, 
together with the raw data and a spreadsheet with the reinforcement-by-reinforce-
ment estimates of response and reinforcement rates may be found here: https://
osf.io/dtnq5/?view_only=9138b977adc344df85657f6bf27aaa41. The estimates 
of reinforcement rate and response rate are the arguments for the functions that 
compute the ΔH ’s – the measures of association – and the nDKLs – the strength of 
the evidence for them.

Both groups were returned to their test boxes, in which a lever was now 
extended. For subjects in the experimental group, pressing it triggered the drop of 
a pellet into the hopper (and illuminated it for 3 s coincident with the drop) – but 
only after a hang-fire delay of 2 minutes. Presses made during the hang-fire delay 
had no consequences.

When a subject in the yoked control group pressed the lever, it had no conse-
quences. However, the yoked controls experienced the same pellet releases and 
hopper illuminations as the subject in the experimental group to which they were 
yoked.

To the best of Shahan’s knowledge, a 2-minute delay is four times longer than any 
delay of reinforcement ever tested in an operant experiment. Ever since Skinner’s 
seminal work (Ferster & Skinner, 1957; Skinner, 1938), operant conditioners have 
supposed that more or less ‘immediate’ reinforcement of responses was critical. 
They have, however, remained non-committal about the definition of ‘immediate’. 
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The immediacy supposition is also explicit or implicit in most contemporary rein-
forcement learning models: the reinforcement is assumed to be delivered at the 
termination of the ‘state’ in which the causal act is made (Gershman et al., 2015; 
Niv, 2019; Niv et al., 2005).

Positing an ‘I just made a response’ state that endures for 2 minutes after the 
response seems a stretch. During that delay, rats generate many different responses 
– and they may make some of them many times. Thus, this experiment poses in 
particularly stark form the question of how brains solve the assignment-of-credit 
problem in reinforcement learning. How do they learn what works and does not 
work? How fast do they learn it? What are the crucial experiential variables that 
determine the answers to these questions? And, perhaps most importantly, what 
is the representation of their experience that enables them to solve the problem? 
Can reinforcement learning be model-free, or must it supervene on a temporal 
map, the learning of which makes possible the computation of the distributions 
of prospective and retrospective interval durations?

6.2. Estimating Prospective and Retrospective Associations After the First Few 
Reinforcements

By Equation (8), the prospective association, Δ ⃗H (r; R), is log2 (λR| ⃗r/λR), where 
λR| ⃗r is the response-conditional estimate of the rate of reinforcement [=1/(aver-
age wait for reinforcement after making a response)], and λR is the marginal 
(unconditional) rate of reinforcement [1/ (average R − R interval)]. Similarly, by 
Equation (7), the retrospective association, Δ ⃖H(r; R), is (λr| ⃖R) /λr , where λr  is the 
estimated rate of responding and λr| ⃖R is the estimated rate of responding when 
considering only the intervals looking back from each reinforcement to the most 
recent response.

The response-conditional rate of reinforcement, λR| ⃗r , cannot be less than 0.5/
minute given the protocol, because the wait for a reinforcement after making a 
response is never greater than 2 minutes. The average wait will, however, be shorter 
than 2 minutes if a subject makes further responses during the wait triggered by 
an initial response. These intruding responses do not trigger reinforcements, but 
they do reduce the average wait between a response and the next reinforcement. 
Four of the five experimental subjects made additional responses during the 
2-minute hang-fire interval after their first response. The closer these additional 
responses came to the reinforcement triggered by their first response, the shorter 
the average r − R interval. It was generally less than 2 minutes, particularly early in 
training. Thus, λR| ⃗r ≥ 0.5/min for the experimental subjects. For their yoked con-
trols, on the other hand, the average wait for a reinforcement, after a response, was 
the average wait from randomly chosen points in time. If the distribution of R − R 
(reinforcement–reinforcement) intervals is approximately exponential, then the 
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average wait for a reinforcement from a randomly chosen point in time is equal 
to the average R − R interval (that is, the contextual inter-reinforcement interval).

How to estimate the marginal distribution (the unconditional distribution of 
waits for reinforcement) is ambiguous – for us, and probably for the rats as well. 
They spent 60+ minutes in the test chamber prior to the first reinforced lever press. 
If one takes the 60 minutes with no reinforcement during context extinction into 
account, then λo < 1/60min = 0.0167min−1 after the first reinforced lever press. In 
that case, Δ ⃗H(r; R) = 4.9 bits.

The ambiguity about the relevant intervals for computing the marginal entropy 
arises because the lever was not present during context extinction. The rats may 
have taken its presence as a change in context, because the new context enabled 
an action that was not possible in the preceding context. If rats regarded the box 
with a lever as a new context, then their estimate of the contextual rate would 
have been based only on the latency of the first reinforcement in the first ses-
sion with the lever present. That latency ranged from 2.8 minutes to 13.6 minutes, 
yielding unconditional rates of reinforcement of 1/2.8 = 0.36 to 1/13.6 = 0.074 
reinforcements/minute.

The initial values for the response-conditional rates of reinforcement in this 
context depend on the initial pattern of responding. For a subject that makes only 
one response before reinforcement delivery, the initial response-conditional rate 
of reinforcement is 0.5 min-1. In that case, the prospective ΔH  would range from 
log2(0.5/0.36) = 0.47 bits to log2 (0.5/0.074) = 2.8 bits. Suppose, however, that 
a subject makes a first response, waits 110 seconds and then makes nine more 
responses in the last 10 s prior to reinforcement delivery. The average wait for rein-
forcement following a response is then mean ([1 2 3 4 5 6 7 8 9 120]) = 16.5 s, for 
a response-conditional rate of reinforcement of 60/16.5 = 3.6min−1. This rate is 
much higher than any of the unconditional rates of reinforcement in the lever 
context. On the other hand, suppose the subject responded at 60 responses/min-
ute during the entire 2 minutes between its first response and the reinforcement 
triggered by that first response. In that case, the average interval from a response 
to a reinforcement would be 1 minute, and a response-conditional rate of rein-
forcement = 1/minute. This dependence of the rates estimates on the number 
and timing of the interpolated ineffective responses highlights the fundamental 
difference between the associations that drive reinforcement learning and the 
associations that drive Pavlovian learning: in Pavlovian protocols, the associations 
between CS and reinforcement do not depend on the subject’s behaviour; in oper-
ant protocols, they do.

Figure 6a plots the prospective Δ ⃗H(r; R) over the first 10 reinforcements for 
the first pair of yoked subjects. The marginal entropy, H(r), was estimated from 
reinforcement-by-reinforcement Bayesian estimates of λr . The response condi-
tional entropy, H (R| ⃗r)reinforcement-by-reinforcement estimates of λr  using only 
the intervals observed in the context where the lever was present. As always, the 

C.R. Gallistel and P.E. Latham/ Timing & Time Perception (2022)

Downloaded from Brill.com01/18/2023 10:33:40PM
via free access



 33

unit of time for these rate estimates was chosen so that both were < 1, thereby 
avoiding negative entropies when using the formula for the differential entropy of 
the exponential. In this pair of subjects, the ΔH  was already a measurable quan-
tity (equal to almost 1 bit) after the first response made by both the experimental 
subject and its yoked control. (They happened to make their first presses at almost 
the same elapsed time in the session.) This objective aspect of the experimental 
subject’s experience was already strong (greater than 5 bits) after the experimen-
tal subject’s second response; whereas, for the yoked control, it dropped to near 0 
after its third response.

Figure 6b plots the retrospective Δ ⃖H (r; R) over the first 10 reinforcements for 
the same paired subjects. It, too, became almost immediately very strong for the 
experimental subject and 0 for the yoked control. Thus, there is a readily measur-
able objective aspect of each subject’s experience that could explain an immediate 

Figure 6. (a) The prospective change in entropy (reduction in uncertainty), Δ ⃗H(r; R), as a function 
of number of reinforcements, for one experimental subject and its yoked control. Only the first 10 
reinforcements are shown. (b) The retrospective change in entropy, Δ ⃖H(r; R) for the same pair. The 
negative ΔHs for the yoked control (dashed curves) are small sample estimation errors; they were 
asymptotically 0.
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difference in their behaviour after a single experience in which there was a 2-min-
ute separation between the causal act and its outcome.

6.3. Estimating the Strength of the Evidence

The main thing a subject wants to know is whether ΔH  is positive or zero: if it is 
positive, then actions affect reinforcements; if it is 0 or negative, actions do not 
affect reinforcements. The reinforcement-by-reinforcement estimates of the pro-
spective and retrospective associations in Fig. 6 – that is, the ΔHs on the y-axes 
– were computed by Bayesian estimation of the rate parameters. The estimate 
after one reinforcement was based on one datum; the estimate after two rein-
forcements on two data, and so on. But just computing ΔH  does not tell a subject 
whether or not it is statistically different from zero. For that we turn to the nDKL.

To assess the strength of the evidence for the association they have so far 
observed subjects need only estimate DKL from their two rate estimates and mul-
tiply it by an n derived from the two sample sizes. These computations are much 
simpler than, for example, the computation of the policy that maximizes the 
expected cumulative reinforcement (where simplicity is measured by the required 
number of elementary operations). When the nDKL stays near zero, they cannot 
rule out the possibility that the two rates are the same; when nDKL increases lin-
early, it becomes increasingly likely that the rates are different (see Fig. 5).

Figure 7 plots the nDKLs for the prospective and retrospective ΔHs against the 
number of reinforcements. In both cases, the cumulative coding cost for the yoked 
control is negative at some or even all the plotted points, which seems to contra-
dict that fact that DKL cannot be negative. However, to facilitate graphic interpre-
tation, we have added to the custom functions that compute and plot the nDKL, an 
option that allows the user to give the nDKL the sign of the difference between the 
conditional and the marginal rate estimates. When there are few data, spurious 
associations may appear giving rise to smallish nDKLs that are in the wrong direc-
tion in experimental subjects. Also, the yoked controls’ response rate drops to 
very low values, so the retrospective intervals become very large, which produces 
conditional entropies greater than the unconditional entropies. In that case, the 
divergence is in the wrong direction. In looking at nDKL graphs, one does not want 
to confuse these effects with the effects of enduring associations, which always 
grow steadily greater. Our adding sign to indicate divergences opposite to those 
expected explains the negative nDKLs.

7. Measuring the Strength of the Evidence for Differences in Probability

To illustrate the application of Bayesian parameter estimation and the cumulative 
coding cost to Bernoulli probabilities, we draw on data from a recent experiment 
conducted by Basak Akdoğan (Akdoğan et al., in press) in the lab of Peter Balsam 
and Eleanor Simpson (https://psyarxiv.com/p6v2j).
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Her experiment used tone durations as the discriminative stimuli (commonly 
denoted by SΔ in the operant literature), in a two-lever operant choice proce-
dure, with mice as subjects. An SΔ is a signal that indicates which of two possible 
acts will produce a reinforcement. It is presented just before two levers appear, 
enabling a choice of actions. In initial training, the SΔ was a tone lasting either 2 s 
or 6 s. For the subject whose data we analyse here, the choice of the left lever was 
reinforced following the 2-s tone and the choice of the right lever was reinforced 
following the 6-s tone.

The subject was pretrained until it chose the correct levers well above chance 
following both tone durations. When the subject had been responding at asymp-
tote for 600 trials, the SΔs changed: The 2-s tone no longer occurred; it was 

Figure 7. (a) The cumulative coding cost of assuming no prospective association between a 
response and the wait for reinforcement, as a function of the number of reinforcements, for both 
the experimental and the yoked subject. When this cost exceeds 3.2 nats (red dashed dot line), 
the evidence for the association is significant at beyond the 0.01 level. (b) The cumulative coding 
cost of assuming no retrospective association between a reinforcement and the recency of the last 
response, as a function of the number of reinforcements, for both the experimental and the yoked 
subject. For an explanation of how the nDKL acquires its negative sign, see text.
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replaced by an 18-s tone. The correct response to this novel SΔ was the left lever 
– the shorter of the two initial SΔs. The 6-s tone continued to occur on 50% of 
the trials. The correct response on those trials remained what it had always been.

The last 2 s, SΔ occurred on Trial 601; on Trial 602 the SΔ was the already famil-
iar 6 s, the correct response to which was well established. On Trial 603, the SΔ was 
the novel 18-s tone. The subjects had no way of knowing what the consequences 
of pressing either lever might now be when given that SΔ. They also had no way of 
knowing how frequently to expect it. In this new state of the world, there was also 
no way to know how frequently to expect the other two SΔs (2 s and 6 s) nor what 
the reinforcement contingencies might be.

In this and most experiments of a similar nature, the first statistical issue is esti-
mating a subject’s pre-switch probability of choosing the correct lever following a 
given SΔ and the uncertainty about what that value is. A more challenging issue is 
to determine whether pre-change choice performance is/was stable.

We estimate the pre-change pcorrect using the Jeffreys prior, which is the beta 
distribution with initial hyperparameters 𝜃𝜃beta = [0.5 0.5]. When updated by the 
number of correct choices, ns, and failures to choose correctly, nf, over the last 
300 pre-change 6-s trials, the (hyper)parameters of the beta prior/posterior are 
𝜃𝜃beta = [ns + 0.5 nf + 0.5]. Figure 8 plots the posterior distribution on the pre-
change probability of a correct choice following a 6-s tone. This distribution rep-
resents the uncertainty about the estimate of the subject’s probability of a correct 
choice.

We can compute critical intervals on our estimate of p from 𝜃𝜃beta, using the 
inverse function in the suite of functions that scientific programming languages 
provide for distributions in common use (Bayes & Shannon Code (https://github.
com/bendecorte/gallistelWorkshop)). Critical intervals are the Bayesian version of 
confidence intervals, but they have a less convoluted interpretation: the ratio of the 
area under the probability distribution within a critical interval to the area that 
falls outside that interval is the odds that the value of the estimated parameter 
lies within the critical interval, given the data. Using the beta inverse function, 
we find that only 1% of the area under the curve in Fig. 8 lies below 0.85 and 
only 1% lies above 0.93; thus, the odds are 50:1 in favour of the conclusion that 
the subject’s pre-change probability of choosing the right lever was in the interval 
between [0.85 0.93].

7.1. Checking on the Stability of a Parameter Estimate

An often-vexing methodological issue is the criterion for when a subject has 
attained asymptotic performance or, at least, a stable level of performance. The 
nDKL statistic can help.

To check on the stability of the pre-change lever-choice probability in this 
mouse, we call a custom function that compares an evolving p value to a reference 

C.R. Gallistel and P.E. Latham/ Timing & Time Perception (2022)

Downloaded from Brill.com01/18/2023 10:33:40PM
via free access

https://github.com/bendecorte/gallistelWorkshop
https://github.com/bendecorte/gallistelWorkshop


 37

value and computes the nDKL statistic to identify stretches of trials where there is 
strong evidence of a deviation from the reference distribution:

[CmPdif, nDkl, PnDkl, pt] = BernCCCchange (D1, theta1, theta0, 0.9, true)

D1 is the binary vector of successful (reinforced) choices of the right lever during 
the pre-change era; theta1 is the updated parameter vector for the beta posterior 
distribution as of the final (300th) pre-change trial; theta0 is the initial vector of 
hyperparameters for the beta prior; and the optional ‘true’ (the fifth input) tells 
the function to plot the figure (see Fig. 9). The fourth input argument, 0.9; is the 
complement (1 − α) of a ‘significance’ level (α) for the nDKL statistic. Including it 
among the input arguments causes the function to return NaN (not a number) 
when the number of data and the reference p are together such that a ‘significant’ 
nDKL is impossible. For example, when the α is 0.05 and there are fewer than five 
data, an nDKL significant at α is impossible, because the probability of getting four 
heads in the first four flips of a fair coin is 0.0625

Sign was added to the plot of the nDKL red curve in Fig. 9 to indicate the direc-
tion of the divergence, for the reasons described previously. The subject’s esti-
mated probability of pressing the right lever following a tone of 6 s duration was 
lower than the lower limit of the critical intervals on the terminal estimate during 
Trials 1–8 (when a significant departure of ̂p (the estimate) from a reference value 
of 0.9 was impossible) and then again from Trials 19 to 49, when a significant 
departure was entirely possible (black curve in Fig. 9). However, the signed nDKL 
reached moderate significance (dashed red horizontal at bottom of plot) on only a 
single trial (Trial 31, p < 0.05). The fact that this trend did not continue, and nDKL 
turned back toward zero, indicates that it is a statistical fluctuation that implies 
no departure from a stable choice probability of 0.9. In general, the longer one 

Figure 8. The posterior beta distribution on the estimate of the Bernoulli probability, p, of a correct 
choice given the 6-s discriminative stimulus SΔ before the change in the SΔs.
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continues to flip a fair coin, the more certain it becomes that one will observe 
atypical sequences that seem to imply the coin was not fair over that stretch of 
flips. Thus, brief excursions in nDKL beyond essentially arbitrary alpha levels, such 
as the one that valleys at Trial 31 in Fig. 9, should be ignored. The fluctuations in 
the nDKL already observed between trials 0 and 150 fall well within those expected 
on the null hypothesis. Therefore, this experiment could have gone on to the next 
phase much sooner had these analytic methods been used while the experiment 
was running.

The convergence of the red curve plotting nDKL to close to 0 as the number 
of trials approaches 300 is a peculiarity of this data set. The distribution of the 
nDKL under the null hypothesis is independent of n; it does not become narrower 
as n grows larger. The fact that it is close to zero in this plot just means that the 
subject’s probability of pressing the right level was within about one part in 300 of 
0.9. If the experiment went on longer, the nDKL would eventually explore values 
within about ±1 of 0.

7.2. Measuring the Growing Strength of Stochastic Stimuli

From an information-theoretic perspective, conditioning protocols are stochas-
tic stimuli unfolding in time: the amount of information available to the subject 
about the contingencies in the protocol increases as the protocol persists.

Similarly, the subject’s behaviour is a stochastic stimulus for the experimenter 
and/or the data analyst: as we observe more behaviour, the evidence for (or 

Figure 9. The trial-by-trial estimate of the probability of choosing the right lever as a function of the 
pre-change sequence of trials (black curve, plotted against left axis). The thin black dashed lines give 
the critical levels for this estimate, given the complete data set. The red curve is the signed nDKL sta-
tistic, plotted against the right axis. The thin red horizontal dashed lines (bottom and top of panel) 
represent alpha levels of 0.05 on this statistic.
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against) a contingency between the SΔ and a subject’s choices appears and grows 
stronger. The cumulative coding cost allows us to compare the growth of the objec-
tive evidence of reinforcing contingencies observed by a subject – the strength of 
the stimulus as a function of time – to the strength of the behavioural evidence for 
contingency perception, as a function of time.

When the 2-s duration ceased to occur and a novel 18-s duration began to 
occur, the mouse was confronted with a novel discriminative stimulus (a tone 
lasting 18 s). A question of central interest was the rapidity with which the mouse 
would adapt its behaviour to the contingency between this new stimulus and 
reinforcement.

As stressed in a previous section, a consideration of fundamental importance 
in the analysis of instrumental behaviour is that the rate at which the subject 
acquires information about the true state of affairs depends on what reinforce-
ment learning theorists call exploratory behaviour, and we call information-gath-
ering behaviour. One of the many interesting aspects of Akdoğan’s experiment is 
that it pits the ideal observer against the ideal agent. The ideal observer is often 
taken to be the observer that performs Bayesian statistical inference given the 
data. However, the performance of perfect statistical inference presupposes that 
the observer has the correct model. More importantly, this conception of the ideal 
observer implicitly assumes that their behaviour has no effect on the data it has 
seen (and will see).

The ideal agent, by contrast, tries to maximize its return, the amount of some 
desired outcome attained per unit time invested in acting. A properly informed 
agent is one that has gained the knowledge necessary to act optimally.

There is a vast machine-learning literature on the exploration–exploitation 
trade-off, with several important mathematical results. However, little research 
of a quantitative nature has focused on understanding how non-human animals 
deal with the trade-off between acting so as to gain relevant information and act-
ing so as to maximize return.

A recent machine-learning development of possible relevance to those of us 
interested in animal behaviour is the emergence of Thompson sampling as one of 
the leading approaches to the trade-off (Russo et al., 2018). Thompson sampling 
is otherwise known as posterior sampling and as probability matching. Probability 
matching is a striking feature of operant behaviour (Commons et al., 1982; 
Gallistel et al., 2007; Graf et al., 1964; Herrnstein, 1961; Herrnstein & Loveland, 
1975; Maddox & Bohill, 2004). Unlike model-free approaches, Thompson sam-
pling algorithms explicitly model the distributions on the expected loss/gain from 
each possible action using conjugate priors.

As we have explained, in Bayesian approaches to parameter estimation, pos-
terior distributions are computed as soon as any data are seen and they evolve 
as more data are seen. These are the tools we need to quantify the evidence our 
subjects have seen and to quantify the evidence their behaviour provides us as to 
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the conclusions they have drawn at any given point – the tools required to begin to 
assess how animal brains deal with the exploration–exploitation trade-off.

7.3. The Growth of Behaviour-Independent Probability Estimates

Among the things the subject does not know after the first 18-s tone is the proba-
bility of the three different durations so far encountered. Figure 10 plots Bayesian 

Figure 10. (a) Bayesian estimate of the probability of an 18-s duration tone as a function of the 
number of trials, counting from its first occurrence. (b) Bayesian estimate of the probability of the 
6-s ΔS given a weak presumption that it continues to be 0.5 (black curve, plotted against the left axis) 
and the (unsigned) nDKL statistic for its divergence from the pre-change probability (red curve, plot-
ted against the right axis). The thin red dashed line at top of plot is the 0.05 alpha level on the nDKL. 
(c) Bayesian estimate of the probability of the 2-s ΔS (black, left axis) and nDKL (red, right axis). The 
odds that it has diminished exceed 20:1 after the 11th post-change trial.
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estimates of these probabilities as a function of the number of post-change trials. 
The estimate for the 18-s tone duration rapidly stabilizes to near its true value (top 
panel).

The middle panel plots the ideal observer’s estimate of the probability of a tone 
lasting 6s, on the assumption that the first occurrence of the 18-s tone leads this 
ideal observer to wonder whether all bets are off. In this computation, the observ-
er’s uncertainty about that is captured by putting a weakly informative prior of 
𝜃𝜃0 = [5 5] on the new probability of a 6-s tone. (Note the contrast to the uninfor-
mative prior in which 𝜃𝜃0 = [0.5 0.5]). The red plot in that panel is the cumulative 
coding cost of assuming that the new probability of a 6-s tone (when estimated 
using a weakly informative prior) is the same as the old one. The nDKL is stable 
and low, giving no suggestion that this probability has changed.

By contrast, the black curve in the bottom panel of Fig. 10 plots the Bayesian 
observer’s estimate of the probability of a 2-s tone, on the same assumption, while 
the red curve plots the cumulative coding cost of making that assumption. The 
odds against the no-change assumption are 20:1 after the 11th trial.

Because of the informative prior, the Bayesian estimate of the new probability 
is 0.23 after 11 successive trials during which a 2-s duration has not occurred. 
The increasing odds against the no-change hypothesis give reason to abandon 
the informative prior. When one replaces it with the uninformative Jeffreys prior, 
𝜃𝜃0 = [0.5 0.5], the odds against the assumption that the new probability is the 
same as the old are better than 20:1 after the fifth trial and the estimate of the 
new probability is 0.08. With the new improved (uninformative) prior, the odds 
against the no-change hypothesis are then 1,000:1 after the 11th post-change trial. 
A rational observer would change her prior, because, when assessing stochastic 
stimuli, the future is informative about the best representation of the past.

In sum, the results in Fig. 10 tell a Bayesian observer that by the 11th post-
change trial, the probability of an 18-s tone is approximately 0.5, the probability 
of a 6-s tone remains approximately 0.5, and the probability of a 2-s tone is trend-
ing toward 0.

7.4. Tracking the Change in the Behavioural Probabilities

In behaviourist models of choice, subjects do not learn probabilities; rather they 
form habits (Hull, 1930). This is called model-free learning in contemporary rein-
forcement learning theories. For the mouse whose data are here featured, the 
habit of choosing the right lever following a 6-s SΔ was reinforced on every 6-s 
trial both before and after the substitution of an 18-s SΔ for the 2-s SΔ. Its reaction 
to this change shows that choosing the right lever following a 6-s tone was not a 
habit; it depended on the arithmetic relation between the three SΔs. (Our focus in 
what follows is on the tools, not this conclusion; for the full force of Basak’s data, 
see the preprint https://psyarxiv.com/p6v2j.)
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In reaction to the appearance of 18-s SΔs and the disappearance of 2-s SΔs, 
the mouse reduced its probability of pressing the right lever following the 6-s SΔ, 
even though that response to that stimulus continued to be unfailingly reinforced 
(Fig. 11a). The reduced probability of pressing the right lever and the correspond-
ingly increased probability of pressing the left lever following 6-s tones became 
evident on the 14th post-change trial, which was the seventh 6-s trial following 
the first occurrence of an 18-s tone. The behavioural change is indicated by the 
downward inflection in the black curve and the corresponding sharp upward 
inflection in the red curve in Fig. 11a. The odds confirming the existence of this 

Figure 11. (a) The conditional probability of sampling (pressing) the right lever as a function of 
all the trials (pre- and post-change) on which the ΔS was 6 s (black curve plotted against left axis) 
and the cumulative cost of assuming the post-change probability equals the pre-change (in nats, 
red curve, plotted against right axis). The thin, black, dashed, horizontal lines indicate upper and 
lower limits on critical intervals for the pre-change estimate (intervals containing 0.8, 0.9 and 0.98 
of the probability mass). The odds against the null hypothesis are 20:1 above the thin, red, horizontal 
dashed line. The thin vertical dashed black line indicates the first occurrence of the 18-s tone. (b) 
Same plots for the novel 18-s tone.
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change permanently exceeded 20:1 after the next 15 6-s trials (red curve, Fig. 
11a). At that point, the Bayesian estimate of the probability of choosing the right 
lever had dropped below the lower 0.01 boundary of the 98% critical interval on 
the Bayesian estimate of the pre-change probability of this choice (black curve,  
Fig. 11a).

As may be seen from Fig. 11b, the subject began to respond correctly to the 
novel 18-s tone long before it recovered its ‘habitual’ response to the 6-s tone. 
The enduring disruption of the correct response to the 6-s stimulus reduced the 
subject’s overall rate of reinforcement. It was striking in seven of the eight mice in 
this protocol. Two of them reduced their probability of pressing the correct lever 
to below chance and kept it there for hundreds of trials.

One mouse, in strong contrast, did not reduce at all its high probability of press-
ing the correct lever following the 6-s tone, strongly implying that it construed the 
same experience differently from the other mice. It construed the 6-s tone as the 
tone lasting 6 s.

In ‘model-free’ models of brain-mediated reinforcement learning, little atten-
tion has been paid to the effects of the different ways in which the same experi-
ence (the same state) may be construed and the impact of that variable on the 
effects of changing circumstances (non-stationarity). Under some construals, no 
change in policy may be necessary, whereas under others, it may be. We define a 
construal to be a choice among different representations of its past experience 
available to a subject. Subjects that represent durations by arithmetically manipu-
lable numerons (neurobiological numerals, see Gallistel, 2018) may construe their 
experience in different ways – both before experiencing a change and/or retro-
spectively, in the light of information gained after the change.

Many other mice, in both this condition and other conditions, construed the 
6-s tone as the shorter of two tones. That construal facilitated the discovery of the 
optimal action in some of Basak’s conditions and hindered it in others (https://
psyarxiv.com/p6v2j).

The sustained and substantial reduction in the post-change probability of 
choosing the right lever following a 6-s tone can be understood on the assumption 
that subjects place a high value on information in a changing world. When things 
change, it pays to behave so as to learn the new contingencies, because knowing 
them is a pre-condition for optimal behaviour. When the 18-s ΔS supplants the 
2-s ΔS, for all the mouse knows, pressing the left lever following a 6-s ΔS may 
sometimes yield a bigger reinforcement than that yielded by pressing the right 
lever. Continuing to press the left lever only very rarely on 6-s trials will retard 
the forming of an estimate of what those two probabilities might be – the prob-
able size of a possibly bigger reinforcement and the probability of producing it. 
Thus, the rationality/optimality of a subject’s post-change behaviour can only be 
judged when we know the value it places on the information to be gained about 
the variety of consequences that might follow from pressing the left lever on 6-s 
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trials relative to the value it places on maintaining the previously experienced rate 
of reinforcement on those trials.

8. Measuring Contingency Detection Behaviourally and Photometrically

Kalmbach et al. (2022) measured mesolimbic dopamine activity photometrically 
in mice that had previously learned to press a lever for food reinforcement. The 
photometric monitoring of dopamine activity began when these mice first began 
to hear tones that lasted 80 s, during which lever presses did not produce rein-
forcements. In other words, the already learned contingency between pressing a 
lever and obtaining food was now contingent on the absence of the tone (a second 
order contingency).

A CS subdivides the context in which it occurs into mutually exclusive and 
exhaustive intervals, the CS and the ∼ CS intervals. The ∼ CS intervals are usually 
called the ITIs. When calculating associative strength, the conditional distribu-
tion must always be the distribution whose rate of reinforcement is higher than 
the contextual rate of reinforcement. Thus, the conditional distribution in this 
protocol is the distribution of US–US intervals during the ITIs. Its rate parameter 
is λ (US| ∼ CS), the informativeness is λ (US| ∼ CS) /λ (US|C).

Figure 12 plots the trial-by-trial response rate estimates and the nDKL for two 
subjects. In Fig. 12a, the subject began to respond at a higher rate during the ITIs 
than during the tones only after 300 trials. In Fig. 12b, the subject consistently 
responded at a higher rate during the ITIs after the eighth trial. This 37-fold differ-
ence in the rate of learning is an example of the variability commonly seen in this 
statistic (trials to acquisition).

To delimit the training interval within which the conditioned behaviour or 
neurobiological activity appeared, we extracted two measures from these plots:  
(1) the trial after which the evidence for a CS–ITI difference in the behaviour (or 
neurobiological activity) permanently exceeded an evidentiary criterion; (2) the 
trial after which the estimated response rate during the ITIs permanently exceeded 
the estimated response rate during the CSs. This latter trial may be regarded as the 
trial after which the conditioned behaviour appeared, while the former is the trial 
at which the evidence that it had appeared became decisive. Because the strength 
of the evidence for a change grows as more data come in, the evidence for it often 
becomes decisive only after the change is apparent in retrospect. These two trials 
– the trial after which the conditioned response appeared and the trial after which 
the evidence for it was decisive – are marked, respectively, by a vertical dotted red 
line and by a vertical dash-dot red line in Fig. 12.

Figure 13 plots the signed cumulative coding cost of assuming that the CS rates 
are the same as the ITI rates for the eight subjects in the negative-contingency 
(‘inhibitory’) protocol (top two rows) and the four subjects in the truly random 
control (no contingency). For the four subjects in the non-contingent condition 
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(bottom row of Fig. 13), the nDKL was positive throughout training. Note also that 
these nDKLs did not continue to climb, unlike nDKLs for the negative-contingency 
subjects, which maintained or often increased their downward slope as training 
continued. The slope of the nDKL is proportionate to the difference in the rate 
estimates. When the slope is 0, so is the difference in the rate estimates.

8.1. Applying the nDKL to the Photometric Data on Dopaminergic Activity

Abby Kalmbach recorded dopaminergic activity photometrically on most of the 
training sessions. Technical problems sometimes prevented her obtaining a signal 
on some sessions, particularly with the first few subjects. In the course of training, 
a marked drop in the mean signal appeared in the negative-contingency subjects. 
In these subjects, the onset of the CS signalled a decrease in the rate of reinforce-
ment to below the contextual rate and its offset signalled an increase to above the 
contextual rate. A striking feature of the drop was a negative spike during the first 
1.5 seconds of each CS and a positive spike during the 1.5 s following the termina-
tion of the CS.

To measure trial-by-trial the development of the photometric spikes, we con-
structed templates for them by averaging the same 1.5-s initial and final segments 
across the last 200 training trials, when the spikes were well developed. We then 

Figure 12. Trial-by-trial estimates of the response rates during the conditional stimuli (CSs) and 
the intertrial intervals (ITIs) (black solid and dashed curves, left axis) and the signed cumulative 
cost of assuming that the CS rate is the same as the ITI rate (red curve, right axis). Vertical dotted 
red lines indicate the trial after which (λr|CS − λr|ITI) is enduringly negative. Vertical dash-dot red 
lines are the trials after which the signed nDKL remained less that 3.3 nats (the p < 0.01 level). (a) 
The rate estimates (black plots) cross at Trial 308, where the vertical dotted red line is; the vertical 
red dash-dot red line is at Trial 320. The x-axis is linear. (b) The black curves cross for the last time at 
Trial 8. This is also the trial after which the signed nDKL is permanently less than 3.3 nats (p < 0.01).  
Therefore, the vertical red dash-dot line superposes on the vertical red dotted line. The x-axis has 
been logged to better reveal what happened over the first 10 trials. (Recall that we assign to the nDKL 
the sign of the difference in response rates.)
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correlated these templates with the corresponding segments in the individual 
traces from the early trials. The trial-by-trial correlation coefficients were approxi-
mately normally distributed. We updated trial by trial the Normal-gamma pos-
terior distribution on the mean and posterior of this source distribution – the 
Normal distribution of the correlation coefficients.

We did not, however, use the Jeffreys values for the 𝜃0 of the Normal-gamma 
(the Jeffreys 𝜃𝜃0 =< 0 0 − 0.5 0 >). We are interested in the mean value of the cor-
relations, not their variance. The variance is what is called a nuisance parameter. 
The variance of a Normal distribution, hence its precision, which is the reciprocal 
of the variance, can assume any positive value. However, because these data are 
correlations, we have analytic prior knowledge of the variance: The variance of a 
distribution of correlations cannot be greater than 1. Generally speaking, it will 
be substantially less than 1. We also had confirmatory empirical prior knowledge: 
across subjects and regardless of the protocol (negatively contingent or truly ran-
dom), the variance in the correlations was approximately 0.22.

Given this analytic and empirical prior knowledge, we used 𝜃𝜃0 = [0 0 4 0.9]. 
This prior implicitly assumes that we had already seen four correlations (third ele-
ment of the parameter vector) and that the sum of their squared deviations from 
the mean correlation was 0.9 (fourth element). This prior biased the variance 

Figure 13. The signed cumulative coding cost (in nats) of assuming that the rate of pressing during 
the conditional stimuli (CSs) is the same as the rate during the ITIs for all 12 subjects. The thinner 
vertical line indicates the trial at which the response appeared; the thick vertical line, the trial at 
which the evidence for it became decisive.
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estimate toward what we knew must be about the right value, thereby heighten-
ing the sensitivity of the nDKL. The nDKL in the Gaussian case depends on the 
(pooled) variance estimate as well as on the difference between the means. We did 
not bias the estimate of the mean, which was the parameter of interest.

Figure 14 plots the photometric nDKLs (right two columns) alongside the (nega-
tively signed) behavioural ones (left column). For most subjects, decisive evidence 
(indicated by blue verticals) for a negative photometric spike at CS onset and a 
positive spike at CS offset appeared sooner than decisive behavioural evidence 
for the detection of the negative contingency between the CS and reinforcement 
delivery. However, in one subject, decisive behavioural evidence appeared very 
quickly and well before decisive photometric evidence (see row 2 in Fig. 14). In 
all the subjects, the behavioural evidence rapidly got very much stronger than 
the photometric evidence, because the behavioural ‘signal’ (the magnitude of the 
difference in response rates) got stronger soon after evidence for it became deci-
sive. The photometric signals also tended to strengthen, leading to the moderate 
upward concavity seen in the nDkls in the right two columns. The strengthening 
of the photometric signals was, however, less pronounced than the strengthening 
in the behavioural signals.

9. Conclusions

A temporal map of past experience enables the replay of episodes and the recov-
ery of associative structure (Gupta et al., 2010; Mattar & Daw, 2018; Ólafsdóttir 
et al., 2018; Panoz-Brown et al., 2018; van de Ven et al., 2022; Zentall, 2019). 
Information-theoretic tools quantify associative structure by ΔH , which is the 
information conveyed by the CS in Pavlovian protocols. In reinforcement learning 
protocols, it can be the prospective information about the expected wait for rein-
forcement conveyed by a response and/or the retrospective information about 
the recency of a response conveyed by a reinforcement. The rates, which are the 
inverses of the mean waits, are computed on the maximum entropy assumption, 
which is that the distributions are exponential.

Bayesian parameter estimation enables us to estimate ΔH , which measures the 
strength of these temporal associations, after the first US in the Pavlovian proto-
col, and after the first reinforced response in operant protocols. The nDKL (cumu-
lative coding cost) measures the strength of the evidence for the association. The 
ΔH  is the information-theoretic analogue of a correlation coefficient (but with a 
range from 0 to +infinity), while nDKL is the information-theoretic analogue of its 
statistical significance, but with a range from 0 to +infinity.

The nDKL measure might prove relevant to the search for the engram (Langille 
& Gallistel, 2020; Poo et al., 2016), because it gives the amount of memory a brain 
can save by recoding the temporal map in memory using a stochastic model that 
takes into account the observed temporal associations. The mnemonic benefits 
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Figure 14. The signed nDKL plots (in nats) for the behavioral ‘signal’ alongside the (unsigned) pho-
tometric nDKLss for the onset and offset spikes in the dopaminergic photometry signal. Blue verti-
cals mark the trials where evidence becomes decisive; dotted red verticals mark the trial where it 
first appears. Grey verticals in the photometric columns indicate sessions where photometry signal 
could not be obtained. In the control subjects, the photometric nDKLs were similar to the behavioral 
ones (bottom row of Figure 13), in that there was little evidence for the spikes at conditional-stimu-
lus (CS) onset and offset in the photometric signals from the control subjects.
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from recoding previously stored data in the light of an improved stochastic model 
provide a computational rationale for consolidation and reconsolidation, which 
appear to be fundamental aspects of memory management (McKenzie & 
Eichenbaum, 2011). If memory capacity is an important resource, brains should 
recode the data when they discover the associative structure in it.

Adopting improved stochastic models to conserve memory resources also 
improves a brain’s ability to anticipate future reinforcements and punishments 
and to recognize the causal effects of the behaviour it generates. A model that 
better explains the data already seen better predicts the data not yet seen, when 
model complexity is properly accounted for (Grünwald, 2007). These consid-
erations suggest that information theory may prove relevant to discovering the 
neurobiological processes that construct the temporal map and that do the com-
putations that lead to anticipatory behaviour in Pavlovian conditioning and to 
operant behaviour in reinforcement learning.

Whether consolidation and reconsolidation are manifestations of memory 
saving based on the recognition of stochastic structure proves to be true or not, 
these tools enable us to measure on a reinforcement-by-reinforcement basis the 
strength of the evidence that a subject’s ongoing experience provides about the 
contingencies we create when we define an experimental protocol. By enabling 
us to measure the evolving strength of the evidence for the associative structure 
of the experimental environment, these tools put the study of timed behaviour 
and associative learning on the same conceptual footings as the study of sen-
sory processing and perception. In those fields Bayesian inference and informa-
tion theory play fundamental roles (Brainard, 2009; Chater et al., 2006; Feldman, 
2016, 2021; Froyen et al., 2015; Ganguli & Simoncelli, 2016; Hiratani & Latham, 
2020; Maloney, 2003; Panzeri et al., 2016; Simoncelli & Olshausen, 2001; Stocker 
& Simoncelli, 2008). Using the same tools, we can measure simultaneously: (i) the 
strength of the stochastic stimulus; (ii) the strength of the evidence for it; (iii) the 
strength of the behavioural and neurobiological changes induced by the percep-
tion of the association; and (iv) the strength of the evidence for the behavioural 
and neurobiological changes.

In 1967, Rescorla pointed out that Pavlovian conditioning depended on tem-
poral contingencies, not temporal pairing (Rescorla, 1967). He further pointed 
out that contingencies were determined by how events were distributed in time. 
He confessed, however, that he did not have a way of computing contingency. That 
problem has now been solved, not only for Pavlovian conditioning, but also for 
operant conditioning.

Given a contextual distribution of expected waits, X , and a distribution, Y , of 
waits conditioned on an event that occurs within that context, the contingency 
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between Y  and X  is the information that the y events convey about the expected 
waits, ΔH |Y , normalized by the available information, Imax:

 
𝒞𝒞𝒞X ; Y ) =

ΔH |Y
Imax  (9)

where both the numerator and the denominator are computed from the recipro-
cals of the mean waits using the formula for the differential entropy of an expo-
nential distribution: H = 1 − ln(λ).

The numerator in Equation (9) is well defined because it is the log of the unitless 
ratio of a conditional rate and the contextual (unconditional) rate, always chosen 
such that the conditional rate is greater than or equal to the unconditional rate. 
The temporal unit used in computing the entropies must be the interval within 
which a subject judges two events to have occurred simultaneously. The choice of 
a temporal unit has no effect on the numerator in Equation (9), because ΔH |Y  is 
the log of a unitless rate ratio; it does, however, strongly affect Imax, because it is a 
differential entropy.

In this approach to associative learning, an association is not an associative 
bond in the subject’s mind or brain – not a connection weight nor a Hebbian syn-
apse. Nor is it a subjective value placed on reinforcement. It is a measurable fact 
about the distribution of events in time. The computations that enable the percep-
tion of this fact presuppose a temporal map, a time-stamped record of the events. 
The temporal map enables a brain to look back in time to compute the intervals 
and the rate parameters of distributions that it implicitly treats as exponential.

Our use of the entropy difference as a measure of temporal association is 
related to a more general approach to defining clusters of events information-
theoretically (Slonim et al., 2005). Events are temporally associated when they 
cluster in time (or in the frequency domain, which is 1/time). When they do so, 
knowledge of the location of one event in the cluster provides information about 
where the other events may be found (van de Ven et al., 2022). It also provides evi-
dence for some causal process that explains the cluster. Clustering is a time-scale-
invariant phenomenon, because mutual information has units determined by the 
base of the logarithm, not by the units that attach to distributional parameters.
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Appendix A1

Mathematical Forms for the Conjugate Priors and Their Hyperparameters

Mathematical forms of the posteriors:

(1) The beta distribution for the Bernoulli source distribution, when it is param-
eterized by 𝜃𝜃B = p

(2) The gamma distribution for the exponential source distribution, with 𝜃𝜃E = λ
(3) The normal-gamma distribution for the Gaussian, with 𝜃𝜃G = [μ τ], where  

τ = precision = 1/variance

The hyperparameter vectors, that is, the parameters of these conjugate prior  
distributions, are:

(1) 𝜃𝜃beta = [A B], where A and B are both shape parameters
(2) 𝜃𝜃gam = [α β], where α is the shape parameter and β is the inverse scale or 

rate parameter. (In Matlab™, 𝜃𝜃E = [A B], where A is the shape parameter and  
B the scale parameter. This necessitates transforming rate to its inverse.)

(3) 𝜃𝜃ng = [μ ν α β] aka [mu nu alpha beta], where ν (nu) is a pseudo-n, α is a dif-
ferent pseudo-n and β is a pseudo-sum of squared deviations (further expla-
nation below)

Change of variable formulae (with common parameter names and 
denotations)

Bernoulli

O = p/(1 − p), where O is the odds ratio, e.g., 2:1
p = O/(O + 1)

Exponential
λ = 1/μ(rate)
μ = 1/λ(mean)

Normal (‘mean’ a.k.a. ‘average’ a.k.a. ‘location’ is almost always denoted by μ)
σ = √var = 1/√τ (standard deviation)
var = σ2 = 1/τ (variance)
τ = 1/var = 1/σ2 (precision)

Gamma
shape (commonly denoted by k or α or A)
scale (commonly denoted by 𝜃𝜃 or β or B) = 1/λ
λ = rate or inverse scale) = 1/scale
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Normal-gamma
μ (‘location’)

λ or ν (‘lambda’ or often ‘nu’, which is Greek small n. The latter denotation indi-
cates that the initial value assigned to this hyperparameter is a ‘ghost’ n. Like 
the 0.5s that occur in the Jeffreys priors for the Bernoulli and the exponential;  
the initial value for this parameter adjusts the n used to compute the mean  
of the source distribution)

α the initial value assigned to this hyperparameter is also a ‘ghost’ n; it alters the 
value used in computing the variance from the sum of squared deviations

β the initial value assigned to this hyperparameter is a ghost sum of squared 
deviations.

Update Formulae

(1) 𝜃𝜃Bu = [ns + A0 nf + B0] = [nsnf] + 𝜃𝜃0, where ns and nf are the numbers of 
failures and successes in the data. For the custom Matlab™ function named 
BayesEstBernP.m see Bayes&ShannonCode. [The custom Matlab and Python 
functions here mentioned have been created by CRG (Matlab) and by Ben 
DeCorte (Python); they cannot be found on the Matlab user website.]

(2) 𝜃𝜃Eu = [ns + α0 T + β0] = [ns T] + 𝜃𝜃0, where ns is the sample n and T is the 
cumulative duration of observation (the sum of the vector of inter-event 
intervals whose first element is 0). The Matlab™ custom update function, 
expoupdate.m, is in Bayes&ShannonCode.

(3) ,
 μu = (ν0 • μ0 + n • ̄x) / (ν0 + μ0)
 νu = n + ν0
 αu = n/2 + α0
 βu = β0 + 0.5 {n • σ + [ν0 • n • ( ̄x − mu)2] / (ν0 + n)} ,

where (xbar = sample mean; σ = sample sigma; n = sample n)
The custom Matlab™ update function is normalgamma_update.m

Appendix A

Distribution of the Kullback-Leibler divergence under maximum likelihood

The problem
Suppose we have two data sets, x(1)i , i = 1, … , n1 and x(2)i , i = 1, … , n2. We’ll assume 
they’re both generated from the same family, which is parameterized by 𝜃𝜃. We 
want to know if they came from the same distribution; that is, if they were gen-
erated from the same value of 𝜃𝜃. Our approach is to compute the maximum 
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likelihood estimate of 𝜃𝜃 for both of them, write down a test statistic, and compute 
its distribution under the null hypotheses that both data sets came from the same 
distribution.

Distribution of the maximum likelihood estimate
We’ll start by computing the distribution of the maximum likelihood estimate of 
𝜃𝜃. For that we can drop the superscript telling us which data set it is, but we’ll 
restore it when we generate the test statistic. For that we follow the usual steps. 
Using D to denote the data,

 D = {xi, x2, … , xn} . (A.1)

the log likelihood, L(𝜃𝜃𝜃, is given by

 L(𝜃𝜃𝜃 = log P(D|𝜃𝜃𝜃. (A.2)

The maximum likelihood estimate of 𝜃𝜃, denoted, 𝜃𝜃ML is found from by

 
𝜕𝜕L(𝜃𝜃𝜃
𝜕𝜕𝜃𝜃

||𝜃𝜃=𝜃𝜃ML
= 0.

 (A.3)

Letting 𝜃𝜃 = 𝜃𝜃∗ + (𝜃𝜃ML − 𝜃𝜃∗), where 𝜃𝜃∗ is the value of 𝜃𝜃 that generated the data, 
we have

 
𝜕𝜕L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗ + (𝜃𝜃ML − 𝜃𝜃∗) ⋅

𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ≈ 0

 (A.4)

where “⋅” is the usual dot product. As usual, we’ll assume that the second deriva-
tive self averages,

 
𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ≈ ⟨

𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ⟩ (A.5)

where the angle brackets indicate an average over the data conditioned on 𝜃𝜃∗; 
that is, an average with respect to P (D|𝜃𝜃∗). We thus have

 
𝜃𝜃ML − 𝜃𝜃∗ ≈ − ⟨

𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ⟩

−1

⋅ 𝜕𝜕L (𝜃𝜃
∗)

𝜕𝜕𝜃𝜃∗ .
 (A.6)
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We’ll assume that 𝜃𝜃ML is Gaussian, so all we need is its mean and covariance. The 
right hand side should be zero on average, so the mean value of 𝜃𝜃ML is 𝜃𝜃∗. Its vari-
ance is given by

⟨(𝜃𝜃ML − 𝜃𝜃∗) (𝜃𝜃ML − 𝜃𝜃∗)⟩ ≈ ⟨
𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ⟩

−1

⋅ ⟨
𝜕𝜕L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗

𝜕𝜕L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗ ⟩ ⋅ ⟨

𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ⟩

−1

.

 (A.7)

To cast this expression into a simpler, and more familiar, form we assume, as 
usual, that the data is independent. In that case,

 
P(D|𝜃𝜃𝜃 =

n

∏
i=1

P (xi| 𝜃𝜃𝜃
 

(A.8)

and so the log likelihood may be written

 
L(𝜃𝜃𝜃 =

n

∑
i=1

log P (xi| 𝜃𝜃𝜃 .
 

(A.9)

Defining

 
J ≡ −∫ dx P (x| 𝜃𝜃∗)

𝜕𝜕2 log P (x| 𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗  (A.10)

(note the minus sign, which is needed to make J positive definite), it’s easy to see 
that

 
⟨
𝜕𝜕2L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗𝜕𝜕𝜃𝜃∗ ⟩ = −nJ,

 (A.11)

and not much harder to see (via integration by parts) that

 
⟨
𝜕𝜕L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗

𝜕𝜕L (𝜃𝜃∗)
𝜕𝜕𝜃𝜃∗ ⟩ = nJ.

 (A.12)

Consequently, Eq. (A.7) becomes

 
⟨(𝜃𝜃ML − 𝜃𝜃∗)(𝜃𝜃ML − 𝜃𝜃∗)⟩ ≈ 1

n
J−1.

 (A.13)

C.R. Gallistel and P.E. Latham/ Timing & Time Perception (2022)

Downloaded from Brill.com01/18/2023 10:33:40PM
via free access



 59

Alternatively,

 
P(𝜃𝜃ML| 𝜃𝜃∗) ≈

1

Det(2π(nJ)−1)1/2
e−n(𝜃𝜃ML−𝜃𝜃∗)⋅J⋅(𝜃𝜃ML−𝜃𝜃∗)/2

 (A.14)

where Det denotes determinant.

The test statistic

For the test statistic, which we denote z, we’ll use the Kullback-Leibler diver-
gence between the two distributions parameterized by their maximum likelihood 
estimates,

 

z ≡ m∫ dx P (x ||𝜃𝜃
(1)
ML ) log

P (x| 𝜃𝜃(1)ML)

P (x| 𝜃𝜃(2)ML)  
(A.15)

where m is, for now, a placeholder; it will be chosen later to make the distribution 
of z as simple as possible. Taylor expanding around 𝜃𝜃∗ and working to second 
order in 𝜃𝜃(1)ML − 𝜃𝜃∗ and 𝜃𝜃(2)ML − 𝜃𝜃∗, we arrive at the somewhat surprising result

 
z ≈

m
2
(𝜃𝜃(1)ML − 𝜃𝜃(2)ML) ⋅ J ⋅ (𝜃𝜃

(1)
ML − 𝜃𝜃(2)ML) . (A.16)

Our goal now is to find the distribution of z. For that we use the usual expression,

P(z) ≈ ∫ d𝜃𝜃(1)ML d𝜃𝜃
(2)
ML

Det (2π(n1/2
1 n

1/2
2 J)

−1
)
e−n1(𝜃𝜃

(1)
ML−𝜃𝜃∗)⋅J⋅ (𝜃𝜃

(1)
ML−𝜃𝜃∗)/2−n2(𝜃𝜃

(2)
ML−𝜃𝜃∗)⋅J⋅ (𝜃𝜃

(2)
ML−𝜃𝜃∗)/2

× δ (z − m(𝜃𝜃(1)ML − 𝜃𝜃(2)ML) ⋅ J ⋅ (𝜃𝜃
(1)
ML − 𝜃𝜃(2)ML)/ 2)

 
(A.17)

where δ(.) is the Dirac delta distribution. To simplify this expression, we’ll let

 𝜃𝜃(1)ML = 𝜃𝜃∗ + J−1/2 ⋅ y(1) (A.18a)

 𝜃𝜃(2)ML = 𝜃𝜃∗ + J−1/2 ⋅ y(2). (A.18b)
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Under this change of variables, Eq. (A.17) becomes

P(z) ≈ ∫
dy(1)dy(2)

(2πn1/2
1 n1/2

2 )
d e

−n1y(1)⋅y(1)/2−n2y(2)⋅y(2)/2 δ (z − m(y(1) − y(2)) ⋅ (y(1) − y(2))/2 )

 (A.19)

where d is the dimension of 𝜃𝜃; that is, the number of parameters needed to 
describe P(x| 𝜃𝜃𝜃. Although it won’t obviously help at this point, we compute the 
moment generating function of P (z), denoted ̃P (s),

 (A.20)

The integrals over y(1) and y(2) are reasonably straightforward, and we arrive at

 

̃P(s) ≈ 1

(1 + s (m

n1
+ m

n2
))

d/2 .

 
(A.21)

This is the moment generating function of the Gamma distribution,

 
∫

∞

0

dy e−sy
βαyα−1e−βy

Γ(α)
=

1
(1 + s/β)α

.
 (A22)

Using this expression, we see that, at least in the limit of large n1 and n2 (where the 
Gaussian approximation is good),

 z ∼ Γ(d/2, 1/(m/n1, m/n2)); (A.23)

that is, z is approximately Gamma distributed with shape parameters d/2 and 
scale parameter m/n1 + m/n2.

A convenient choice for m is the one that makes the scale parameter equal to 
1, which is

 
m =

n1

1 + n1/n2
.
 (A.24)
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Thus, if we set (in a slight abuse of notation)

 

z ≡ n1

1 + n1/n2
⋅ ∫ dx P (x ||𝜃𝜃

(1)
ML ) log

P (x ||𝜃𝜃
(1)
ML )

P (x ||𝜃𝜃
(2)
ML )

,

 
(A.25)

then z will be approximately Gamma distributed with shape parameter d/2 and 
scale parameter 1.

Finally, we note two cases of interest. First, we’re sure about the value of 𝜃𝜃 for 
the second data set. To capture that, we let n2 → ∞, and the Kullback- Leibler 
divergence gets multiplied by n1. Second, n1 = n2, as would happen when we’re 
comparing US-US and CS-US intervals. In that case, the Kullback-Leibler diver-
gence gets multiplied by n1/2.
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