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83: 808827, 2000. Many networks in the mammalian nervous sys-From g theoretical point of view, it has been relatively easy to
tem remain active in the absence of stimuli. This activity falls into Wanderstand how large neuronal networks might generate rhythmic

main patterns: steady firing at low rates and rhythmic bursting. H . . .
are these firing patterns generated? Specifically, how do dynal Crstlng (Feldman and Cleland 1982; Perkel and Mulloney 1974;

interactions between excitatory and inhibitory neurons produce the3gKIiNg and Feldman 1998; Rybak et al. 1997; Smith 1997) but

firing patterns, and how do networks switch from one firing pattern @fficult to understand how such networks might generate steady,

the other? We investigated these questions theoretically by examiniay firing rates (Abeles 1991). Several investigators have ex-

the intrinsic dynamics of large networks of neurons. Using both glored the latter problem theoretically (Amit and Treves 1989;

semianalytic model based on mean firing rate dynamics and simugshmann 1989; Treves and Amit 1989). Their approach was to

tions with large neuronal networks, we found that the dynamics, a%ie simulated networks and attempt to generate low firing rates
e

thus the firing patterns, are controlled largely by one parameter, s - . S
fraction of endogenously active cells. When no endogenously acti ough dynamic interactions between excitatory and inhibitory

cells are present, networks are either silent or fire at a high rate: asga/rons. The networks they used weieHighly interconnected,
number of endogenously active cells increases, there is a transitiof4bisolated from any external sources of input, aBjccomprised
bursting; and, with a further increase, there is a second transitiondbneurons whose resting membrane potentials were far enough
steady firing at a low rate. A secondary role is played by netwoldelow threshold that several near-synchronous excitatory postsyn-
connectivity, which determines whether activity occurs at a constaatic potentials (EPSPs) were necessary to trigger an action po-
mean firing rate or oscillates around that mean. These conclusigaftial. Networks with these seemingly standard properties were
require only conventional assumptions: excitatory input to a neurgmaple to produce maintained low firing rates; the lowest numer-
'“Cr:%"’.‘tses.‘fs ff'””g rate, 'gh'?'ttc.’ry '”TPh“t decrea?es. i, anld “fwg%auy generated mean rates wer0 Hz, significantly larger than
exhibit spike-frequency adaptation. These conclusions also lea - e :
two experimentally testable predictioriy:isolated networks that fire tﬁ% background_ firing rates observ_ed |n_b|o_log|cal _networks. .
at low rates must contain endogenously active cellsZredreduction Thf_’se experlmental and numerical f_|nd|ngs raise Ehree ma|”n
in the fraction of endogenously active cells in such networks mudtestions. First, why were networks with the above “standard
lead to bursting. properties unable to fire at low rates? Did the numerical studies
simply miss a parameter regime that would have generated low
firing rates, or were the properties actually too restrictive? Second,
what are the conditions that allow networks to fire robustly at low
INTRODUCTION rates? And third, what is the relation between steadily firing

In the absence of stimuli, neurons in many areas of tﬁgtworks and rhythmically bursting ones? In particular, is there a
mammalian CNS remain ac’tive This activity falls into wwongle parameter, or a small set of parameters, that allow networks

main patterns: low, steady firing in the 1- to 5-Hz range arig switch naturally from one state to the other?

rhythmic bursting. The former has been widely observed in To answer these questions, we developed a model that
sensory cortex, motor cortex, and spinal cord and has been sgived us to explore analytically the intrinsic dynamics of
in both awake-behaving and anesthetized animals (CollifL9€: isolated networks in the low firing rate regime. Our main
1987; Gilbert 1977; Herrero and Headley 1997: Lamour et &°SUMptions were conventional: excitatory input to a neuron
1985; Leventhal and Hirsch 1978; Mednikova and Kopytoy4¢reases its firing rate, inhibitory input decreases it, and neu-
1994; Ochi and Eggermont 1997; Salimi et al. 1994; Szente'@PS exhibit spike-frequency adaptation (their firing rates de-

al. 1988; Zurita et al. 1994); the latter is fundamental to cent/gi€ase during repetitive firing). We found theoretically, and

pattern generators, which generate rhythmic behavior suchVgs1€d using large, simulated networks of spiking neurons,
at a single parameter plays a dominant role in controlling

respiration, locomotion, and chewing (for reviews see Marder. < >' < . .
and Calabrese 1996; Rekling and Feldman 1998). Both p trinsic firing patterns. Th_at parameter is the fraction of en-
terns may occur in the same neural tissue, with neuromodu ygenously active cells; i.e., the fraction of cells that fire

- : : : L thout input. Our primary result is that there is a sharp
tors inducing a reversible switch between steady firing a S ; . )
g y g istinction between networks in which the fraction of endog-

The costs of publication of this article were defrayed in part by the paymeﬁPOUSIy active cells is zero and those in which it is greater than

of page charges. The article must therefore be hereby maskbaftisemerit  2€r0. When the fraction is zero, a stable, low firing rate equi-
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.  librium camot exist; networks are either silent or fire at high
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rates. Only when the fraction is greater than zero are Idhe slow afterhyperpolarization current, which introduces a slowly
average firing rates possible. In this regime there is a furtr@gcaying hyperpolarization each time a neuron emits an action poten-
subdivision into networks that burst and those that fire steadif{@ is responsible for spike-frequency adaptation.
the former having fractions below a threshold and the latterRather than using conductance-based currentt,fgg, we model
having fractions above threshold. Connectivity also playst |S quantity as
ro_le in shaping firing_ patterns, but to a lesser degrg_e; it deter- V, = V)V, = V)
mines whether activity occurs at a constant mean firing rate or Ispikej = — R AV
oscillates around that mean. .
These theoretical results imply that an isolated network th@here AV = V, — V., is the nominal gap between resting,) and
fires at low rates must contain endogenously active cells. Weeshold ) voltages andR.,, is the membrane resistance of the cell
tested this strong, parameter-free prediction experimentally(Fig. 1). Typically,V, = —65 mV andV, = —50 mV, producing a
cultured neuronal networks and consistently found a largeminal gap of 15 mV. In the absence of synaptic drive and afterhy-
fraction of endogenously active cells;30% on average, in Perpolarization current&q. 1with I given byEqg. 2is identical
networks that displayed low firing rates. We also investigatdgl the 6-neuron model introduced by Ermentrout and Kopell (1986)
experimentally the transition between steady firing and bur nd explored further by Ermentrout (1996). This model describes the
ing as the fraction of endogenously active cells changed, Zgawor of type | neurons, neurons that can support arbitrarily low-

. . - uency oscillations (Hodgkin 1948). The advantage of using the
we found that networks that fired steadily could be induced [ ey ron’ rather than a conductance-based model is that relatively

burst by reducing the fraction of endogenously active cellgrge time steps can be used, on the order of 1 ms rather than the 0.1-
Both of these experimental results are presented in the followy-0.2-ms time steps required to accurately represent the rapidly
ing paper (Latham et al. 2000). varying membrane potential during a true action potential.

The above analysis applies to networks that receive externalf we were to adhere strictly to thieneuron model [which is related
input as well as to isolated ones. This is because cells th@pur model by the change of variabls~ tan (6/2) + constant] an
receive sufficient external input to make them fire are effe@ction potential would occur whenevaf reaches+= (the spike
tively endogenously active, in the sense that they can fi#€X). at which point the voltage would be reset-e (the spike
without receiving input from other neurons within the networK €Polarization). For numerical work, however, it is necessary to use
These pseudoendogenously active cells control firing patte inite spike apex and repolarization voltages. The apex we use in our

. . imulations, denote¥, is 20 mV, and the reset valu¥, is
in the same way that truly endogenously active ones controgy ., apex repor

firing patterns in isolated networks. In particular, for networks The fast and slow afterhyperpolarization currents may be written
receiving external input, firing patterns follow the same set of

@

transitions as discussed above: as activity produced by external lianpi = ki (Vi — €x) (3a)
input increases there is a transition first from silence to burst-
ing, and then from bursting to steady firing. lsanp; = Ok-cail Vi = €x) (3b)

where€y is the potassium reversal potential agd andgy_,; are
potassium conductances. The latter quantities obey the time evolution

In ResuLTswe make a series of predictions about the behavior §auations
large neuronal networks, then test those predictions by performing
large-scale network simulations. In this section we describe the single A9k _ k= — Gk + 5 E 8(t — t¥)
neuron equations and synaptic coupling used in the simulations, dt T« : '
discuss our choice of simulation parameters, and provide a particular
realization of a reduced network model that is used to illustrate the

general principles derived iRESULTS Action potential

METHODS

(49)

n

Network simulations

Our predictions about the behavior of large neuronal networks are
based on a simplified firing rate model. To verify these predictions, we
perform large-scale simulations with synaptically coupled model neu-
rons. Following are the single neuron equations used in the simula-
tions, the prescription for choosing single neuron parameters and
synaptic coupling, and a complete list of network parameters.

SINGLE NEURON EQUATIONS. Our simulated network consists bf
synaptically coupled neuronslz of which are excitatory andl, of
which are inhibitory. The time evolution equation for the membrane
potential of neuron, V;, may be written

dv,
Ceen ditl + lspikei T lianpi + Tsanp; + lsyni = lai (1) Fic. 1. Current-voltage relation fdt.. the current that generates action
potentials. Arrows indicate voltage trajectories in the absence of synaptic input

where C is the cell capacitance,. consists of the currents and_ afterhyperpolarization currents. Arro_ws _pointing to the righ_t correspond to
cell spike regions where the voltage increases in time; arrows pointing to the left

responsible for generatln_g a.cuon potentidlg, an.d lsarp are fast correspond to regions where it decreases. These arrows indicaté, thihe
and slow afterhyperpolarization currents, respectiviely,represents  resting membrane potential, is a stable equilibrium ®pdhe threshold, is an
the synaptic current, arg is a constant depolarizing current. The fasinstable onelnset action potential generated by giving the neuron an initial
afterhyperpolarization current enforces a relative refractory perioghitage slightly above threshold.
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dgk_caj _car — Ok_cai where
gl;tca _ Yx-ca= ~ Ok-ca + 80K ca E St — t) (4b)
TK-ca T =
K-c I Ii = E WiJSJ (ga)
wheregy .. andgy _c,.. are the equilibrium value of the fast and slow :

potassium conductances, c,andm._c,are their time constants; Tei= E W; s, (9b)
is time of theuth spike on neurom, and thesé-function, &(t — t*), ;

provides an impulse whenever= t!*. Those impulses causes discrete B o ) ] ] )
increases dgx and 8gx_ca N O; and ge_c.;, respectively. For Comblnlng the definitions irfEq. 9 with the time evolution for the
simplicity we assume that the equilibrium conductanags, and fraction of open channelstq. 7, we see thatl; and I,; evolve
Ok ca- and the time constants,_, andr,_, are independent of according to
voltage. Then, without loss of generality, we may assumeghaand

Ok—ca; @re zero at rest, which implies that .. = gx_cae. = 0. ai L Fr, E W, 8(t — t) (103)
CombiningEgs. 1-4the network evolution equations become dt Ts "

avi 1 [ (Vi=VI)Vi—Vy . diy; Te

—_ ' - + | . ﬁ = — ﬁ €. — t!

&t [ AV o ot > W& (t — t) (10b)

Jom

= (O + Ok-ca) (Vi = €x) — Tsyn,] (5) With this formulation there is no need to keep track of #)e
individually; Eq. 8along with the time evolution equations figrand
A Gk § I, EQ. 10,can be used to determine the synaptic current, gnd
at g O 2 8t -t (5b)  drops out of the equations.
"

DISTRIBUTION OF APPLIED CURRENTS. The applied currentfa,i,
determines how close a neuron is to the threshold for generating an
+ 80k -ca E S(t—t) (5¢)  action potential, or, if it is above threshold, its endogenous firing rate.
n This quantity is chosen probabilistically;; has a boxcar distribution,
uniform between 0 and,,,, and 0 outside those two values. We use
%his distribution because it gives us precise control over the number of
neurons that are endogenously active. The precise control arises
because neuronis endogenously active if and onlylif; > AV/4 =
linresn Consequently, when,,, < ly,.sn NO Neurons are endeg
enously active, and whelp, ., > ly,..snthe fraction of endogenously
Ty = E Ws, (D(V, — €)) ©) active cells is (nax = linresnImax
i NETWORK CONNECTIVITY. Connectivity is specified by the weight
. ) . . matrix, W;. This quantity determines both whether two neurons are
whereW; is the strength of the connection from neujdn neuroni,  connected and, if they are, the strength of that connection. Like the
s;(t) is the fraction of channels on neurothat open when neuron  4ppjied current, the weight matrix is chosen probabilistically, and the
emits an action potential, and is the reversal potential a‘SSOC'af[edfg‘lorobabiIity that neuror connects to neuronis denotedP;. If there
with the ligand-gated receptor on the cell that is postsynaptic {95 connection, the strength of that connection is set by considerations
neuronj. The weight matrixW;, is always nonnegative. This ensureg,t Epsp and inhibitory postsynaptic potential (IPSP) sizes. If there is
that excitatory drive (activity from neurons witf; greater than the g connectionW, is set to zero.
threshold for the emission of an action potential) increases the probyye yse two models of connectivity, infinite range and local, when

abili_ty_ that a postsynapt_ic neuron fires, whereas inhibitory driV@onstructingPij. For infinite range connectivity?; depends only on
(activity from neurons with€; less than threshold) decreases thg,q types of neuronsand;

probability.

The conductance change on a postsynaptic neuron is mediated by Py =Pir
the fraction of open channels;. That fraction increases instanta -~ J
neously when a spike occurs at neuijoand decays exponentially whereT specifies type
between spikes: for all

dgK7Ca,i - _ gKfca,i
dt Tk-ca

wherer,, = R.Ccq is the cell time constant and quantities with

hat have been multiplied By, |,; = R.cila;, €tc. Note that both, ;

andlg,,; have units of voltage, whereas the conductanggsand

Ok—ca and their incrementsig, and 6§, _c,, are dimensionless.
The normalized synaptic current,,, is written

E neuroni is excitatory
T, = i is inhibit
ﬁ | neuront Is innipitory
dt We do not allow autapses, which med?s= 0.
) The connection probabilities consist of four numbers, correspond-
The parameter determines how many closed channels open eafiy to the four combinations of pairs of excitatory and inhibitory
time neurorj fires. If we had included adaptation,would have been neurons. We parameterize these four numbers with the quarkities

called the use parameter (Tsodyks and Markram 1997); we adopt tha8 B, where K, is the mean number of postsynaptic neurons a

== Y e - @

name here. _ presynaptic neuron connects to aBg is the connectivity bias
Equations 5-7along with the rule that whenevét reachesV,,q. !
an action potential is emitted and the voltage is reseV{g,, Ky, = NePer + NiPyp, (118)

constitute our complete network equations. Implementing this model
as it stands, however, is costly numerically. This is because the
fraction of open channels;(t), must be integrated separately for each
synapse. These separate integrations can be avoided by noting that the ) o
relevants-dependent quantity is the sum that appears on the right hatfiere, recallNg andN, are the number of excitatory and inhibitory

side ofEq. 6. That sum can be divided into two terms neurons, respectively. Note th&; > 1 indicates a bias toward
inhibitory neurons, wherea&rj < 1lindicates a bias toward excitatory

isyn; = V|T| - Tél (8) ones.

p=
BT _m

i - o0
Per,

(11b)
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Inverting Eq. 11yields the expressions for the connection proba-

e > ) avi  (Vi— Vv — Vv,
bilities in terms of the mean number of connections and bias =T A

- E Wis; (D (Vi — €))
i

Teell

dt AV
Pir = _ Ky (12a) !_etting 8V, = \(i - Vn Ijnearizing the resulting equation, and.assum
Ne + N;Bry, ing the synaptic drive is small, we find thélt; evolves according to
) Ky By dsV,
Pir, = m (12b) Teell “gp +oV, = —Z Ws;(V, — €))

J

quation 12is sufficient to specify connectivity in the infinite rangeif neuronj fires at timet = 0, the fraction of open channel, jumps
regime. instantaneously from O to, and subsequently decays exponentially:
For local connectivityP; depends on distance between neurong,(t < 0) = 0, ;(t = 0) = r, exp(~t/7) (recall thatr, is the decay
For “distance between neurons” to make sense we need to assigtirt@ of the open channels amdis the use parameters; sgq. 7).
each neuron a spatial location. We work in a two-dimensional spa@smbining this time dependence fgy with the initial conditionsV,
and specify the location of a neuron in polar coordinatesj)( where (t = 0) = 0, the above equation has the solution
r is radius and is azimuthal angle. Neurons are randomly assigned
a position according to the probability distributi®(r, 6) whereP(r,
0)rdrd6 is the probability that a neuron falls within the area bounded
by [r, r + dr] and [6, 6 + d6]. For P(r, ) we use the azimuthally
symmetric function

exp(—t/Teen) — exp(—t/7y)

TceII/Ts -1

8V|(t) = WI](%j - Vr)rs

This expression implies thddV;(t)| is maximum whert = In (75.,/

(s — Tean) = to- DefiningVisp = 8Vi(to), it is straightforward

b ) 1 — tanh[(r? = 1)/A,] 13 to show that
' A, In [1+ exp(2/A,)]

w, = Vesn L Teen [M]

14
€ — V, Is T (14)

whereA, is the width of the transition region between approximately Tee 7s — 1
constant density and near zero density; i.e., the distribiR{on6) is
approximately flat for radius < 1 — A, and drops rapidly to nearly

zero in a transition region of width/A2.

In our simulations, rather than specifying the siz&\§fdirectly, we
specify the sizes of the excitatory and inhibitory PS#ss¢ with the

type of j ch iately) and th . 14to deter-
Using the probability distribution given ifEq. 13 to assign a ype of neurorj chosen appropriately) and then Usq o deter

position, x; = (r; cos 6, r; sin 6,), to every neurori, the distance mine W ) ) )
between two neurons is then given simply by the Euclidean norffARAMETERS. Table 1 contains a list of all parameters used in our
d; = |x, — x|. We use a Gaussian profile for local connectivity, fopimulations. Parameters followed by an asterisk are the ones we vary;
which the probability of making a connection is modulated by thtor those, a range or set of values is given. Parameters not followed by

factor exp¢-di/20%) where o is a parameter that determines thé\" asterisk remain constant throughout the simulations. The grouping
axonal spread of neurons of typeThus into single-cell, synaptic, and network parameters is in most cases

clear; the exceptions aM-pspandV,-5p the nominal amplitudes of
the excitatory and inhibitory postsynaptic potentials. These are usually

2 2
-d2r20f

e

Py = P'IQS,T] Tz
T

TABLE 1. Parameters used in the simulations

WhereZTj is chosen so that the mean connection probability of a | I
neuron placed at the originr (= 0) is equal toPZ,. In our Sngle-cell parameters

calculations we use an approximate expression for the normaliza\f/ce” 1706?;\/
. - = :
tion, valid in the limit thatA, < 1 [so thatP(r, ) = 1/m whenr = v, —50 mV
1 and zero whem > 1]. In this limit Vapex +20 mV
repol —80 mV
2y (1 G —80
Zy = J J rdr exp(—r2/2(r%) = 20%[1 - exp(—1/2<r%)] 80 1
o Tty Tk 30 ms
80k ca 0-0.08*
This expression foZTj is valid as long aZy = P°T°iTi, which can Tk—ca 2,000 ms
always be satisfied by taking the limit. — o (in this limit Z; — — 2.4-5.0*
1). We impose the conditiod; = P 'in all our simulations. ~ Synaptic parameters
We consolidate the infinite rénge and local connectivity models by's g'l
using the local connectivity d.egcription and sett'm.g: o whenever Network parameters ms
we want to recapture the infinite range case. Neurons 16
The strength of a connection, once one is made, is determined byshibitory fraction 0.2-0.3*
the size ofW;. To ensure thaW is in a biophysically reasonable K, K, 200, 1,000*
range, we need a relation between it and the sizes of both excitatorg., B, 0.8-1.4*
and inhibitory PSPs. To derive such a relation, we Esg 5ato A 0.1
compute, as a function afj;, the peak voltage in response to a single e oi 0.12-=*
presynaptic action potential. For definiteness we consider a neuroMersp 40, 1L.Omv*
whose resting membrane potential is the nominal de(which Viesp | ial _6'0'\71'5 mv
implies thatIAa = 0), and assume that the neuron has not produced a n);ﬁg;at\éc:ry reversal potentia _0 m
. . - : o y reversal potential 80 mV
action potential for a sufficiently long time that bofh and8x ca  miscellaneous
have decayed to zero. Under these conditidits, 5afor the mem-  Time step 1ms

brane potential can be combined with. 6for the synaptic current to

yield * Parameters that were different fdletworks AandB.
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thought of as synaptic or single-cell properties, but in our simulatioaptic potentials: instead of using the more realistic numbers of 0.2 mV
we use them only to determine the connectivity matik, via Eq.  for EPSPs (Komatsu et al. 1988; Matsumura et al. 1996)-ahdnV
14. Specifically, Vesp = Vepsp When neuron; is excitatory and for IPSPs (Tams et al. 1998), we typically used 1.0 ardl.5 mV.
Vesp = V,mspWhen neurorj is inhibitory. Thus they are listed under The frequency of PSPs was increased in our model by ignoring
network parameters. failures, so neurotransmitter was released every time an action poten-
We performed simulations with two networks, which we denotgal occurred.
network Aand network B.The former was chosen to simulate net- Unlike cortex and spinal cord in vivo, cultured spinal cord networks
works of cortical neurons, the latter to simulate networks of culturete intrinsically localized. However, connectivity in our particular
mouse spinal cord neurons in which we did experiments relevantgoeparation has not been characterized. We thus made estimates as
the theoretical predictions made here (Latham et al. 2000). They diffeHows. The number of connections a neuron make&daB,, where
primarily in their connectivity and postsynaptic potential amplitudéi is the area of the axonal arborizatienis the number of neurons per
network Ahaving high, infinite range connectivity and small PSPs aratea, andP, is the probability that a neuron connects to another
network Bhaving low, local connectivity and large PSPs. The paranmeuron within its axonal arborization. We measured axonal arboriza-
eters specific to each network are given in Table 2, which contain &in from neurons visualized after intracellular injection with horse-
the parameters marked with an asterisk from Table 1. A dash in Tabdelish peroxidase (Neale et al. 1978), and found it to bet2@86
2 indicates parameters that are varied during the course of the simuw® (mean+ SD,n = 12 neurons). The density of our cultures,
lations. was 23.7+ 10.2 neurons/m(n = 10 culture dishes). Thus a single
Most of the parameters in Tables 1 and 2 are either dimensionlegsiron is capable of connecting 16475 others. Finally, in paired
or have physical units. There are, however, three normalized paraeeordings (Nelson et al. 1981), approximately one-half the cell pairs
eters . Which has units of voltage, aréd), andé0,_, which are tested were connected. This gives a connectivity~@40 connec-
both dimensionless. To convert these to their correct physical urisns/neuron. We used 200 connections/neuron in most of our simu-
(Amps for current and Siemans for conductance) divide by the cédkions, although we explored a range of values.
membrane resistance. The size of the postsynaptic potentials is large in cultured spinal
Simulations were performed with a fourth-order Runge-Kutta inteord neurons; on the order of 3—10 mV for EPSPs and approximately
gration scheme. In all simulations reported we used a time step of-6 mV for IPSPs (Nelson et al. 1981, 1983). In contrast to cortex,
ms. We occasionally checked that this was short enough by decreasiagsmission failures are not observed; this is because a presynaptic
the time step to 0.5 ms, and in no cases did we see a change inmeuron makes a large number of connectiond@0) on each of its
results. postsynaptic targets (Nelson et al. 1983; Pun et al. 1986). In our
simulations we typically used EPSP and IPSP amplitudes of 4-&nd
. . . mV, respectively, and, for simplicity, we did not include variation.
Choice of simulation parameters The parameters given in Tables 1 and 2 were the ones we used in

In choosing parameters we attempted to stay close to values B’ba bU'k of our simulations. IAPPENDIX A We Studieq the effects of
served in two different systems: networks of cortical neurons, aiarying these parameters. In no cases did changing parameters pro-
networks of cultured mouse Spina| cord neurons in which we dﬂ}lce network behavior that was inconsistent with our model. This
experiments relevant to the theoretical predictions made here (Lathg#ggests that our model made robust predictions and that our simu-
et al. 2000). These two systems differ primarily in their connectivitition results were not due simply to a particular choice of parameters.
and postsynaptic potential amplitude, the former having high connec-
tivity and small PSPs, the latter low connectivity and large PSPs. TTRS
most parameters were the same for the two model networks use ﬂduced network model
our simulations, and these were relatively standard; the parameter.

. . - . [AMELEI$ 16 reduced network model we use in our analysis is based on the
that differed pertained to connectivity and PSP amplitude, mirroringy < ang Cowan equations (Wilson and Cowan ){972) in which the
the differences between cortical and cultured spinal cord network !

. YR N namical variables are the mean excitatory and inhibitory firin
As is well-known, connectivity in cortex is high; each neuror}y Y y 9

. . - ates. Those equations are given in generic forfadn16of REsuLTs
connects to approximately 7,000 others (Braitenberg and BSChye o'\ye write down a particular realization of Wilson and Cowan—
1.99.1)‘ The size Of alocal circuit, assuming such a thing exists, Is mqis o equations that we augment by including spike-frequency adap-
difficult to determine. However, given that axonal spread is measur, ion
in hundreds of micrometers and the density of neuronsig®>mm® .

. . s Although it would be desirable to start with the equations describ-
(Braitenberg and Sctaul991), a local circuit on the order of 100,000m the full network simulations and derive from those a set of mean

Fheeu(r:(())r;s Ijte?ti:)iaaslor:)?/\%? t?)sri?c?é?.stjcrx?e:trur(]aartlzltz\’/(;?ll?sdgonr?sfey(ﬁezg iNg rate equations, this is essentially impossible to do analytically
P P 9 ‘ 4 cept in highly idealized cases (van Vreeswijk and Sompolinsky

we considered networks of only 10,000 neurons, each of which m 8), and extremely difficult numerically. Thus we propose a set of

~1,000 connections. To make up for the reduced conneciivity in Otdduced equations designed to capture qualitative, but not quantita-
model network we increased the size and frequency of the pOStSKUé, features of large-scale networks. Denotipgand7, as the mean

excitatory and inhibitory firing rates (averaged over neurons)&nd
and G, as the mean level of spike-frequency adaptation of the-exci
tatory and inhibitory populations, we let these variables evolve ac-

TABLE 2. Networks used in the simulations

Parameter Network A Network B

cording to
Kg, K| 1,000 200 dp
v _ _ _ _
xﬁ::r;n\\// ];25 ﬁgo Te T: = O[A(Ceeve — Cgi¥y + Opax— Ge)/ (1 + )] — v (159)
Inhibitory fraction 0.20 0.30
Og, 0 ed 0.12 dy, B B B B
I maxe MV — — T at = O[A(Cie¥e — Cy ¥ + Onax — G)/(1 + 1) ] — 7 (15b)
t
Bg, B, — —
8@K*Ca - - dG
E

L . . . . TSFA ™ 5. — SGDE - GE (lSC)
Dash indicates parameters that were varied during the simulations. dt
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dG, B direction at bifurcation points. If the trajectory collapses onto, or
Tsea g - 9G¥ G (159 almost onto, a single curve, we may make a further, approximate,
reduction to a two-dimensional bifurcation diagramrgfversusGeg.
where r and 7, are the time scales for relaxation to a firing ratéor the parameters consideredresuLts (Fig. 6), the curve in the
equilibrium, 75x4 is the characteristic time scale for changes in thee — G, plane collapsed almost to a line, resulting in the two-
level of spike-frequency adaptatiof,is the overall amplitude of the dimensional bifurcation diagrams shown in Fig.G-E. For each of
gain functions, theC_,,, L, M = E, I, correspond to connectivity these d!agrams the Imgs were found_numerlcally using least-squares
among the excitatoryH) and inhibitory () populations,6G corre- regression. The equations for the lines were as follows: Fg. 6
sponds to the coupling between firing rate and spike-frequency adéfinax = 0), G; = 0.00+ 0.64Gg, R? = 1.0000; Fig. ® (fax = 0.25),
tation, 6,,,., controls network excitability, and(x) is a thresholding G = 0.01 + 0.65G¢, R* = 0.9996; Fig. € (6max = 0.52), G, =
function that saturates at,..., the maximum firing rate of the neurons,0-03 + 0.65G¢, R® = 0.9999.

o 0 x=0
g = ”ma*{ tanh (vme) x> 0 RESULTS
) In this section we investigate how single neuron and network
The mean levels of spike-frequency adaptatiBpandG,, are related properties affect intrinsic firing patterns. We use as our model
'oodse'y tqu_falr:jthq network simulationsiG is related td3« —ca  gystem large, isolated networks with random, sparse connec-
AN Bimax IS related (ol mqy tivity and develop a theory that describes the firing patterns in

The qualitative features that these equations capturg)dhe gain ! L -
functions, g(. . .), are generally increasing functions of excitator)?UCh networks in the low firing rate regime. We then test

firing rate and decreasing functions of inhibitory firing rate [@)g, SPecific predictions of this theory by performing simulations
are all positive andj(x) is a nondecreasing function gf, 2) increas- With large networks of spiking neurons. Robustness of the
ing the firing rate increases spike-frequency adaptati@i¢ posi- theory is verified inapPenDIX A, Where we examine a broad
tive), 3) increasing the level of spike-frequency adaptation reduceange of single neuron and network parameters.

firing rates,4) the gain functions are approximately threshold-linear,

consistent with the numerical gain functions in Fig.AB%&nd5) the h

gain is reduced by a divisive term proportional to the inhibitory firinJ eory

rate. The divisive term, which has been proposed as a mechanism fofrhe theoretical development is divided into three patjs:

gain control in cortical neurons (Carandini and Heeger 1994; Caraﬁhalysis of networks that do not exhibit adaptati@nanalysis

dini et al. 1997, Heeger 1992, Nelson 1994), was included for "8 the more realistic, and more biologically relevant, case of

reasons. First, it was observed in our simulations: FigA BillapPEN . . .
pix B shows a pronounced drop in gain as the inhibitory firing raﬂgetworks that do exhibit adaptation, agyl analysis of the

increases. Second, curved nullclines are essential for the existencetgpility of low firing rate equilibria.

the saddle-node bifurcation that produces bursting (Fig. 5), and {§w FIRING RATE EQUILIBRIA IN SPARSE, RANDOMLY CONNECTED
divisive term increases nullcline curvature, thus making bursting ma(gnvorks WITHOUT ADAPTATION. To describe the dynamics of
robust. large, sparse, randomly connected networks, we start with the

We are interested in understanding the dynamics representeql. by .
15in the regime in whichrz and, are on the order of the membranemOdeI proposed by Wilson and Cowan (1972). We use as our

time constant;-10 ms, andrgeAis on the order of the spike-l‘requencydynamlcal variables Ehe mean gxcnatory and inhibitory f'”,ng
adaptation time, which can be as high as several seconds.rghusfates, denote@g and v, respectively. In terms of these vari
7, < Top, @nd We can use the fast/slow dissection proposed by Ringdles, the Wilson and Cowan model can be cast in the form
(1987) to analyze the dynamics. With this approach, the full four-

dimensional system is reduced to two subsystems: a fast one corre- TE% = Bp(vg, 7)) — e (163)
sponding to the population firing rateg: and v,, and a slow one dt
corresponding to the level of spike-frequency adaptati@nandG,. _
Although this represents a major simplification, it still leaves us with . an _ O, (v, 7)) — 7 (16b)
three main behaviors: steady firing, oscillations, and bursting. The first dt

two can be readily understood in terms of the two-dimensional firin\% . .
rate dynamics withGg and G, held fixed; only the third, bursting, hererg andr, are time constants that determine how fast the

requires the interaction of all four variables. We thus briefly discusg¥®twork relaxes to its equilibria arle and ®, are the exei
method for its analysis. tatory and inhibitory gain functions. The gain functions deter-

The idea behind the fast/slow dissection is tixatand 7, relax mine the network firing rates at one instant of time given the
rapidly to an attractor (either a steady state or oscillations) comparfing rates at an earlier time. Specifically, if the average
with the time scale over whicBg andG, change. Motion inth&g —  excitatory and inhibitory firing rates at tini@revz andw,, then
G, plane is then determined Hegs. 15cand 15d with ve and » @ and®, are the average excitatory and inhibitory firing rates
evaluated on thglr attractor. In the purgly bursting reglr‘ne,.for attait timest + e andt + ,, respectively. In the original Wilson
able levels of spike-frequency adaptation the network is either silefif ' co\yan equations the gain functions consisted of two
or fires steadily; the attractor is a fixed point for given value&pf . . ; .

terms, one associated with the neurons’ refractory period and

andG,. In this steady-state regime, the mean inhibitory firing rate, . " . 7 )
is a single-valued function of the mean excitatory rae(see Fig. ©N€ With the “subpopulation response function” (Wilson and

3B). The dynamics associated wil. 15can thus be reduced to threeCowan 1972). Because we are interested in low firing rates, we
dimensions, and the important features of the dynamics are captuf@ye ignored the term associated with the refractory period.
by a three-dimensional bifurcation diagram that consists of a sheeiThe first step in the analysis @&qg. 16is to examine the
whose height above th&g — G, plane represents the value @f. equilibria. The equilibrium equations, which are found by
Bifurcations (sudden changes in firing rate) occur at folds in the shegétting both @</dt and dv/dt to zero, are

For a particular set of parameters, the trajectory in @e— G,
plane is typically a closed curve that exhibits sudden changes of 0=®(ve, ») — Ve (179
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0=d(ve, ) — 1 (17b)

The solutions toEqgs. 17aand 17b are curves in theig, v,)
plane. These curves are referred to as the excitatory and inhib-
itory nullclines, respectively (for a discussion of nullclines
similar to ours, see Rinzel and Ermentrout 1998). The aim of
this section is to understand how the nuliclines depend on
single neuron and network properties. Because the shapes @
the nullclines are completely determined by the gain functions,
we begin by examining how the gain functions depend on these
properties.

At high firing rates the gain functions are stereotypically
sigmoidal, independent of single neuron and network parame-
ters: wheny, is large, both gain functions approach zerovas
approaches zero, rise rapidly gsincreases past some critical
value, and approach the maximum neuronal firing rat@zas
becomes large. Similarly, whew is large, the gain functions
are sigmoidal versug, but with negative slope. At very low
firing rates, however, the gain functions become sensitive to
both single neuron and network properties. It is the single
neuron properties, however, that have the largest effect on the 0
gain functions, because at very low firing rates the gain func-
tions are determined primarily by the responses of neurons at
rest to a very small number of EPSPs. This led us to divide

networks into three regimes based on single neuron respo% ng membrane potential within one EPSP of threshoddihe J: A:

properties. Each regime prod_uces qua“tat'\_/e|¥ d|ﬁer_ent 9atcitatory gain curvespg(ve, 1), Vs. v for various values of,. Only the
functions and thus, as we will show, qualitatively differenturve with, = 0 is labeled:; the other curves correspond to increasingly larger
nullclines. Those regimes are as follows: values ofy,. Each intersection between a gain curve and the dpe= 1

1) None of the cells have their resting membrane potenti%ﬂrresponds to a point on the excitatory nulicline, as indicated by the connect-

ng dashed linesB: inhibitory gain curve®,(vg, 7)), vs. ¥, for various values

within one EPSP of threshold for the generation of an actu%rf‘?,-/E‘ Again, only the curve withy, = 0 is labeled (the straight line i, =

POtentit'?l'; i-?-, no cell fires in response to a single EPSP, Whigfa the other curves corresponds to increasingly larger valueg.ohgain,
in turn implies that no cells are endogenously active. each intersection between a gain curve and thedipe= #, corresponds to a

2) Some cells have their resting potential within one EPgpint on the excitatory nulicline, as indicated by the connecting dashed lines.
of threshold, but none are endogenously active. C: thg associated excitatory (gray) and_ |nh|b|t(_)ry _(black) nuIIc_Ilﬂnes. These
. nullclines separate regimes where the time derivatives of the firing rates are
3) Some cells are endo_genOUS|y active. positive from regimes where they are negativez/dt is positive below the
In Fig. 2A we plot ®(vg, 0) versusvg for these three excitatory nullcline and negative above it, whereagd is positive to the right

regimes. We chos‘q = 0 in this p|0t because it accentuates thef the inhibitory nulicline and negative to its left. This rule is illustrated by the
horizontal and vertical arrows, which indicate the signs @f/dt and dv/dt,

A B respectively.

differences among the gain function. The three regimes are
distinguished by the value and the slope of the gain function at
the origin of the i, 7)) plane. Inregime 1the cells are far
enough from threshold that a single action potential cannot
cause any neurons to fire, so the gain function and its slope are
both zero at the origin. Iregime 2 ,as inregime 1the neurons
cannot fire without input, s@g(0, 0) is again zero. However,

a single action potential can cause cells to fire and thus ignite
network activity; consequently the origin is unstable and the
vV, slope there is greater than one.regime 3a fraction of the

FIG. 2. Schematic of the excitatory and inhibitory gain functions in the Qe“ror?s fire without inpult, _SG)E(O’ 0)_> 0. .
regimes discussed in the main teAt.excitatory gain functions. Inegime 1, In Fig. 2B we plot (0, 1) Versusy,, again for the th(ee
®g(e, 0) is zero wher = 0 (neurons do not fire without input), and its sloperegimes listed above. The behavior here is somewhat simpler:
atvg = 0 is also zero (a single action potential cannot make a neuron fire, g regimes land 2, q)l(o, 7_/|) = 0 for all values Oﬁ’h whereas

thus cannot produce any activity in a silent network)rdgime 2the neurons in regim o 7Y i reater than zero when = n
still cannot fire without input, s@¢(0, 0) is again zero. However, because a egime 3, '(0’ ') S greate a €ro en 0 and

single action potential can cause cells to fire and thus ignite network activig/,ecreases monommca”y with mcrea_squ . .

the slope abe = 0 is greater than one. The condition for a slope greater than Armed with the shapes of the gain functions in the three
one is that at least KL¢ of the excitatory neurons have their resting membraneegimes, we are now in a position to construct the nullclines.
potential within one excitatory postsynaptic potential (EPSP) of threshoffthat construction is done graphically: starting with the excita-

whereKge is the mean number of excitatory connections made by an excitat ; ; = = =
neuron. Becausk is large, this could easily occur. hegime 3some of the O[rcxry nulicline, we plot the functionbe(ve, 1) versuse for

neurons fire without input, s®g(0, 0) > 0. B: Inhibitory gain functions. In variou_s Valge_s ofy, anc! IO(_)k for inter_seCtionS with th_e !ine
regimes land2, ®,(0, ») = 0, whereas irregime 3,®,(0, 0) > 0. @ = ve. This is shown in Fig. A for regime 1(no cells within

. 3. Gain functions and nuliclines when none of the cells have their

Dy(V,, 0)
D (v, 0)

regimes 1, 2

=]

=
|
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one EPSP of threshold). Each of the intersections, includingt A B
one at the origin, is a solution tq. 17aand thus corresponds
to a point on the excitatory nullcline. Dashed lines connect ti
intersections to the excitatory nullcline, which is drawn in gra—~
in the two dimensionali, 7,) plane directly below the gain & /

curves (Fig. ). Note that the gain curves in FigA3that & / M

correspond to low values of the inhibitory firing rate have thre
intersections with the lin@g = v¢. In addition, all gain curves &8 LS
intersect at the origin, which implies that tlgaxis is part of
the excitatory nullcline. For a similar construction in an all
excitatory network, see O’Donovan et al. (1998).

The excitatory nullcline in Fig. @ has the following inter-
pretation: for small enough inhibition the network can eithe2
fire stably at high rate (the negatively sloped region of tF=
excitatory nullcline) or be completely silent (thg axis). ™
Between those two extremes is a threshold. That threshc S
which lies on the region of the nullcline with positive slope VA /S 7
represents an unstable equilibrium at fixed inhibitory drive 2
These differences in stability naturally divide the excitator 0 0 0
nullcline: the region with positive slope is an unstable branc Excitatory firing rate (V)

the regions with negative slope, including heaxis (which is FIG. 4. Nullclines in the 3 regimes described in the main text. Excitatory

considered t.O have a slope ebo)’ are ,Stable branches. and inhibitory nullclines are shown with gray and black lines, respectively. As

Construction of the inhibitory nullcline is also done graphin Fig. 3, di/dt is positive below the excitatory nulicline and negative above
ically: again we plot®,(vg, v,) versusy, for various values of it, whereas @/dt s positive to the right of the inhibitory nullcline and negative
Ve and look for intersections with the Iinb, =7 (Fig. 3B) to its If_ft. iS,AM, and Ulindicate ?t:ililinle, niietei]stabletiia_nd ur;_stable eqit)JiIibria,

: ; . - o respectively. A regime 1,none of the cells have their resting membrane

Thes‘? mterseCt.lonS Corr.eSpond .tO points Qn the. 'nblb'm;&tgntial w?;hin onge EPSP of threshold. There is a stable equﬁibrium at zero
nullcline, which IS drawn in bl_aCk in the two'd|men5|0na‘£( firing rate and a metastable one at high firing rate, but the low firing rate
;) plane to the right of the gain curves (FigZ)3 In contrast to equilibrium is unstableB: regime 1,with strong curvature introduced in the
the excitatory one, which has both stable and unstal#iéibitory nulicline to create a metastable, low firing rate stateregime 1,n

branches. the inhibitory nullcline has a single branch that & very high connectivity limit where the nuliclines are straight. In this limit
’ properties conspire to eliminate the possibility of a low firing rate equilib-

everywhere stable at fixewt. . ) . rium: the inhibitory nullcline is tied to the origin, there is a gap between the
Construction of the nullclines in the other two regimes is @igin and the unstable branch of the excitatory nullcline, and the nullclines are

straightforward extension of the above method. We thus tusmaight. D: regime 2,some cells are within one EPSP of threshold. A
our attenton o how those nullcines sffect the sisblty arfietads Sam o, wis, TU6 e sevies ik, e U, "ormeciy
Ioc_atlon of firing rate. e_qu”lb”a' We begin wittegime 1,in cells are present. A single, globally attra%ting gquilibrium cgn eRtstzZme as
which no cells are within one EPSP of threshold. E except in the very high connectivity regime.

In regime 1we find three intersections between the excita-
tory and inhibitory nullclines, and thus three equilibria (Figrium to high firing rate or eliminate it altogether. This problem
4A). A necessary condition for the local stability of an equiis especially severe in high connectivity networks where the
librium is that the inhibitory nulicline intersect the excitatorynuliclines are straight, as shown in FigC 4van Vreeswijk and
one from below (Rinzel and Ermentrout 1998) (see also tls®mpolinsky 1996, 1998). Moreover, even if the equilibrium
SectionsTABILITY OF LOW FIRING RATE EQUILIBRIA). Consequently, does exist and is locally stable, it is only metastable: relatively
the lower intersection on the unstable branch (marked “U” small downward fluctuations in firing rate can drive the net-
Fig. 4A) is unstable. There are thus two possible locally stableork to the nearby equilibrium at zero firing rate, where it
equilibria in this figure, one at zero firing rate (marked “S,Would remain forever.
meaning absolutely stable because there are no endogenoushhe reason it is difficult to achieve robust, low firing rates in
active cells to ignite activity once the network falls silent) andegime 1is that there is a gap between the origin of the ¢,)
the other on the rightmost branch of the excitatory nuliclinglane and the unstable branch of the excitatory nullcline, as
(marked “M” for metastable, meaning the lifetime of the equishown in Fig. 4 A—C. The gap arises because neurons cannot
librium is finite). The rightmost branch corresponds to higfire below 0 Hz. This lower bound effectively cuts off the
firing rate, so neither of these equilibria are at low, but nonzerogttom portion of the excitatory nullclines, as seen in the
firing rate. Consequently, this configuration of nullclines camulicline construction, Fig. 3A and C. Thus it is the lower
not generate the low firing rates observed in vivo. bound on firing rate that ultimately constrains the nullclines to

Is it possible to achieve a locally stable equilibrium at lovinave the shapes depicted in Fig.A&C. Given those shapes,
firing rate inregime 17?Reexamining Fig. A, we see that such simple geometrical arguments determine the location and sta-
an equilibrium could be achieved by bending the inhibitorkility of the firing rate equilibria.
nullcline up so that it intersects the unstable branch of theln regime I, in which some neurons have their resting
excitatory nullcline from below (Fig. B; equilibrium marked membrane potential within one EPSP of threshold, a single
M). Although such an intersection is possible, it occurs in action potential can cause a chain reaction that ignites the
extremely restricted parameter regime: small changes in eitihetwork. Consequently, an arbitrarily small excitatory firing
network or single neuron parameters would shift the equililbate is sufficient to produce network activity. This eliminates

S_I_J/M

=

itory firin
[
S |
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the gap in Fig. 4A—C,resulting in the nullclines illustrated in A B C
Fig. 4D. Figure D shows a low firing rate equilibrium (marked

M, again for metastable) that does not require the nuliclines to
have strong curvature, so it can exist even in high connectivi§y &
networks. However, the parameter range in which the equili® 2
rium is stable is still relatively narrow: small changes in singlé .
neuron properties can cause resting membrane potentials to
shift downward so that none of the cells are within one EPSP 0 0 0
of threshold, or upward so that some cells cross threshold and
become endogenously active. In addition, because fluctuations

can cause a drop to zero firing rate, where the network WillF'e: 5. Excitatory and inhibitory nullclines at fixed levels of adaptation in
’ a regime where adaptation causes bursting. For clarity, only the parts of the

remain forever, the equilibrium is metastable. Again, this effegdiiclines at low firing rate are shown. Because the level of adaptation changes
can be traced to the fact that neurons cannot fire below 0 Hiwly, we refer to the intersections of the excitatory and inhibitory nullclines
The nuliclines forregime 3,in which some cells are endo-as equilibria. These “equilibria,” which in fact change with time, are marked

genously active. are presented in FiQE AThe addition of by black dotsA: the level of adaptation is minimum, and there is only 1 firing
! ! rate equilibrium; the equilibrium near zero has just disappeared via a saddle-

endogenously active cells eliminates the equilibrium along thigge pifurcations: the level of adaptation has increased, leading to a bistable
v, axis, transforming the excitatory nulicline from two distinctate. Barring large fluctuations, the network will stay near the higher firing
curves into one continuous one. This transformation allowsraie stateC: the level of adaptation is large enough that the equilibrium at
robust, globally stable, low firing rate equilibrium at the interbigher firing rate is eliminated, again via a saddle-node bifurcation. The

. - PR . _resulting crash to zero causes the level of adaptation to begin to decrease. With
section between the excitatory and inhibitory nullclineg o e ecuits in a shift to the low firing rate equilibriumBnWith a further

(marked Sin Fig_- E) Th_e cor'respondir_]g set of nullclines ingecrease in adaptation, the low firing rate equilibrium disappedrsd the
the high connectivity regime is shown in Fig-4 firing rate jumps to a higher value. At this point the cycle repeats.

The existence of a robust, stable low firing rate equilibrium Tpis process, slow changes in the level of adaptation accom-
when endogenously active cells are present, and the absenlt-:gBl

such an equilibrium when they are not, leads to the followi anied by rapid relaxation to a local firing rate equilibrium, can

L ! . ve two distinct outcomes. One is that the firing patterns
prediction: an isolated network that fires steadily at low rate fof o \ery Jittle: the firing rates may simply shift slightly, or
an infinitely long time must contain endogenously active ceIIE : .

a

firin,

Excitatory firing rate

. -~ Rerhaps, oscillate slowly as adaptation affects the equilibrium
Th.ls dpeg not mean t.hat such cells are absqlutely essential Rd vice versa. The other is that adaptation-induced shifts in
finite-lifetime, low firing rate states; long-lived metas;tablt?,,Iring rate may be large enough that firing rate equilibria are

states can exist in networks where all cells have their restig%ated and destroyed. This much more dramatic effect occurs
membrane potential below threshold. However, the parame & follows. Consider a network that starts in a state character-

regime for this is narrow, and, as we will see below, it vanisherc,ed by the nullclines given in Fig./6 The black dot at the
altogether when spike-frequency adaptation is taken into tersection of the excitatory and inhibitory nullclines corre-

Co.llj_ﬂgse conclusions apply whether endogenous activit ari¥Jonds to a firing rate equilibrium at a fixed level of adaptation.
throuah an intrinsic nf)epr%/brane 0 ertg e a eéiste the level of adaptation increases, the nullclines shift. Small
9 property {€.9., P ifts lead to a bistable state (Fid3)3ut produce only a small

inward current), noise-driven voltage fluctuations, or any Othgﬁ nge in firing rate. With larger shifts, however, the nullclines
mechanism. They also apply to networks that receive exter i apart (Fig. ), and bistability gives way to a single stable

input. For example, consider a network that has no end sq?te at zero firing rate. When this happens the network firing

gnously active cells, .bUt !nsteaq receves suff|C|ent' exterr}g e crashes to zero, at which point the level of adaptation starts
input that some cells fire without input from neurons within thg decrease. When the adaptation has dropped enough that the

network. The existence of these pseudoendogenously ac \(ﬁj : - . X ;
- ; ilibrium at zero firing rate disappears (Fid\ ba Fig. 3B),
cells place the network iregime 3,which allows a robust low firing resumes and a new cycle starts.

firing rate equilibrium to exist. If, on the other hand, the same The second behavior, which results in bursting, is very
network receives external input that is too weak to cause 2 Wferent from the first v,vhich is characterized by a’ shift in

neurons to fire, then a robust low firing rate equilibrium is r"?ring rate and/or slow oscillations. Because it is the endog-

possible. enously active cells that prohibit an equilibrium at zero firing
EFFECT OF ADAPTATION ON FIRING PATTERNS. So far we have rate, bursting requires the effective elimination of these cells.
assumed that the gain curves, and thus the nuliclines, are st&Ecause such elimination cannot happen if the adaptation is
In fact, this is not the case for real neurons. Because piirely synaptic, synaptic adaptation alone cannot cause the
spike-frequency and/or synaptic adaptation, nullclines are dyeriodic crashes to zero firing rate that are characteristic of
namic objects that depend on the history of activity, not just theirsting: even with total elimination of synaptic coupling,
activity at a single point in time. To incorporate this historyiring rates remain finite because of the existence of endog-
into our analysis, we assume that neurons adapt slowly coemously active cells (but see O’'Donovan et al. 1998 for an
pared with the time it takes a network to reach equilibriunalternate view in the context of a reduced firing rate model).
Consequently, at any instant in time the equilibrium firing raté®eriodic transitions between low firing rates (involving only
occur at the intersection of the excitatory and inhibitorthe endogenously active cells) and high rates (involving most
nullclines, just as they did above. However, the equilibria agf the cells in the network) may be driven by synaptic adap-
not fixed: adaptation causes slow changes in the nullclines, aatlon, but this kind of bursting is not, to our knowledge,
thus in the equilibrium firing rates. typically observed.
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FIc. 6. Particular realization of the Wilson and Cowan equati&us,150f METHODS, showing transitions from steady firing to
bursting to silenceA: equilibrium firing rate of the excitatory population as a functiom,gf,, which regulates network excitability:
Omax > 0 corresponds to the existence of endogenously active églls< 0 corresponds to their absence (see textiagmhoDs).
When6,,,., > 0.51 there is a steady, low firing rate equilibrium, indicated by the single solid line to the right of the gray region.
As 0., decreases, there is a transition to bursting. In the bursting regime Q. < 0.51) the firing rate periodically jumps
between 0 Hz and the solid black line (the mean firing rate averaged over a burst) above the gray regiof,, ke,
corresponding to the absence of endogenously active cells, the network crashes to zero firing rate and sBaysélaerexcitatory
firing rate (g, black line) and mean level of excitatory spike-frequency adaptaGgndray line) vs. time in the bursting regime,
Omax = 0.25. Note that the level of spike-frequency adapti@p, increases when the network is active and decreases when it is
silent. C-E approximate 2-dimensional bifurcation diagrams (seeHoDs). Black solid curves in each plot denote the stable
branches of the excitatory firing rate equilibrium; black dashed curve that connects them denotes the unstable one. Thick gray line
is the spike-frequency adaptation nullcline associated ®ith15c.Thin dashed gray line is the trajecto®@: 6,,. = 0O, so there
is a steady-state equilibrium at zero firing rate. A trajectory is shown that startgynea6, Gz = 0, traverses the bifurcation
diagram, and ends at the point marked “S” (for stable}at Gz = 0. D: 6,,,.= 0.25, placing the network in the bursting regime.
The trajectory in this regime, which cycles indefinitely, reveals a relaxation oscillator; we refer to the resulting dynamics as bursting
because individual neurons fire repetitively during the active plagk, ., = 0.52, placing the network just inside the steady firing
rate regime. A trajectory is shown that starts ngar 0, G > 0, traverses the bifurcation diagram, and ends at the point marked
“S.” The transition between bursting and steady firing occurs at the point predicted by the bifurcation diagram: the spike-frequency
adaptation nulicline (the heavy gray line) passes onto the stable branch of the excitatory firing rate equililfju~a0.52.
Parameters (s€eq. 19: 7= = 7, = 10 ms,7ggp = 2,000 msA = 20,Cee = 0.9,C¢, = 1.0,Ce = 1.0,C, = 1.4,G = 0.2, and
vmax = @ (chosen large because the firing rate is far from saturation). Plots were made using XPP, developed by G. B. Ermentrout.

In contrast to synaptic adaptation, spike-frequency adaptously active cells falls below a threshold, and makes a
tion (adaptation that results in a decrease in a neuron’s firisgcond sudden transition to silence when all endogenously
rate during repetitive firing; seeeTtHobs) can introduce a active cells disappear.
hyperpolarizing current sufficient to temporarily eliminate en- To test this prediction in a simplified setting, we investigated
dogenously actove cells, ultimately leading to bursting. Thua,firing rate model based on the Wilson and Cowan equations
in the remainder of this paper, the only form of adaptation waut augmented by spike-frequency adaptatteq, 150f meTH-
consider is spike-frequency adaptation. obs. In this model we regulate neuronal excitability with a

The probability of spike-frequency adaptation eliminatingingle variablef,, ., which can be thought of as the amount of
endogenously active cells is highest if there are few such catisnstant depolarizing current that is injected into each neuron.
to begin with. Consequently, we expect a transition froms long asf,,,, > 0, the fraction of endogenously active cells
steady firing to bursting as the fraction of endogenously actiircreases monotonically with,,,,, whené,,,, = 0 the fraction
cells decreases. In addition, spike-frequency adaptation shoofdendogenously active cells vanishes, andfgg, becomes
eliminate long-lived metastable states. This is because thosgative, neurons are pushed below the threshold for the emis-
states rely on the existence of neurons close to threshold, biain of an action potential. The behavior of the model is shown
neurons that exhibit spike-frequency adaptation experiencénarig. 6. Figure & confirms that,,,,, and thus the fraction of
drop in their resting membrane potential during repetitivendogenously active cells, controls firing patterns: the network
firing, and thus are pushed well below threshold. These tfices steadily wherf, . is large (many endogenously active
observations lead to the following prediction: at a fixed, butells are present), makes a transition to bursting when,
nonzero, level of spike-frequency adaptation, a network firéals below a threshold, and becomes silent wiiien, drops
steadily when there are many endogenously active cells, maketow zero and endogenously active cells vanish from the
a sudden transition to bursting when the number of endogetwork. Figure 8 summarizes the behavior of the model in
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the bursting regime: the mean excitatory firing ratg, peri (I-1) coupling is stabilizing. The latter result is somewhat
odically makes sudden jumps in firing rate, whereas the meawunterintuitive: why should-I coupling, which reduces the
level of spike-frequency adaptation for the excitatory populéevel of inhibition, have a stabilizing effect? The reason is that
tion, denotedSg, increases slowly when the network is activé-l coupling is the only coupling that provides a restoring force
and decreases slowly when the network is silent. Bifurcatiorear an equilibriume-E coupling is locally repelling, whereas
diagrams showing the equilibrium firing rate as a function d-1 and I-E coupling produce only rotation around the equi-
the level of spike-frequency adaptation (the heavy black curd@rium. Consequentlyl-I coupling must be strong enough to
and theGg nuliclines (the heavy gray line) are given in Fig. 6drive the network back to equilibrium. When it becomes too
C-E for three regimes: silenceC], bursting D), and steady weak, the trace], becomes positive and the previously stable
firing (E). The thin, gray dashed path in the bifurcation diafixed point turns into a stable limit cycle via a Hopf bifurcation.
grams indicates the trajectory in firing rate/spike-frequen&uch a limit cycle is shown in Fig. 11 of Wilson and Cowan
adaptation space. It is the sudden jumps in this trajectory, at {1972).
“knees” of the heavy black curve, that produce bursting. How does spike-frequency adaptation modify this picture?
STABILITY OF LOW FIRING RATE EQUILIBRIA. Although endog- Although it would be straightforward to formally incorporate
enously active cells are necessary for the existence of a staBich adaptation into the above stability analysis, the resulting
low firing rate equilibrium, such cells do not guarantee eith&lgenvalue equation is not especially informative. However,
of these properties. As parameters change, a low firing rdf¢ qualitative effects of spike-frequency adaptation are rela-
equilibrium can become unstable via a Hopf bifurcation (Marvely straightforward to understand. This kind of adaptation
den and McCracken 1976), or it can be driven to high firirgJEfSU“S in negative feedback: increasing firing rates raises the
rate. In this section we investigate stability, then discuss cdf¥e! of spike-frequency adaptation, which leads to a reduction
ditions under which a network is both stable and fires at loli} firing rates; decreasing firing rates lowers the level of spike-
rate. frequency adaptation, which leads to an increase in firing rates.
The stability of a firing rate equilibrium can be determine§ecause the negative feedback enters with a delay, spike-
by linearizing around a fixed point d&q. 16and solving the frequency adaptation makes a network more likely to oscillate.
resulting eigenvalue equation (Rinzel and Ermentrout 1998 Primary effect, then, is to change the threshold for oscilla-
Consider first the case without adaptation. In that case, the tff1S; qualitatively, the strict inequality that guarantees stabil-
eigenvalues of the linearized firing rate equation, denated 1Y, EQ. 19,should be replaced by an inequality of the form

are (1 - @, )7 — (Pge — 1)/7e > €, wheree depends primarily
on the level of spike-frequency adaptation.
L T+ \(T?-4D Coupling affects overall firing rate as well as stability. We
- 2 can determine the relation between coupling and firing rate by
. . fiyst categorizing its effect on the nuliclines and then examining
\tﬁgerf;—tri(ndD are the trace and determinant, respectively, ‘P\{ow shifts in the nullclines affect firing rate. This is a straight-
forward application of previous analysis [e.g., increasifg
[ N DPee— 1) e D, coupling lowers the inhibitory nullcline in theyf, 7)) plane,
Do = ( D e i D, — 1) > which in turn increases the excitatory firing rate]. The results,

however, depend on the location of the equilibrium; i.e.,
whether it occurs on the unstable (positively sloped) branch of
the excitatory nullcline, as in Fig.E4 or on the stable (nega-
tively sloped) branch, as would occur if the inhibitory nulicline
in Fig. 4E were raised slightly. ImpPenDIX B We show that the
excitatory nullcline has its minimum at a very small value of

. . : : the excitatory firing rate. The precise value depends on single
negative. This requires that the determinant of the above Suron and )rqetwo%k propertier), but for high cgnnectivity ne%—

trix, D, be positive and the tracd, negative. After minor < wnical of the mammalian cortex, we estimateen
manipulations of the determinant, we find that to satisfy thg, ' that the minimum occurs below0.1 Hz. This implies
first condition,D > 0, we must have that if excitatory firing rates above 0.1 Hz are observed in a
(Pee — 1)(1 — D) < (D) (—Dg)) (18) network firing at low rates, then the equilibriumustbe on the
unstable branch of the excitatory nullcline. In fact, networks
(The above form was adopted because bbthand®g, are gxpibiting purely inhibitory activity are unusual: whole cell
negative.) Itis not hard to show thig. 18is satisfied as long recordings in vivo (Calabresi et al. 1990; Metherate and Ashe
as the slope of the excitatory nullcline is less than the slope f§g3: \olgushev et al. 1992) and in our cultures (Latham et al.
the inhibitory one. As can be seen in Figz,4&n equilibrium 5000) show a preponderance of EPSPs. In addition, there is
with this property is guaranteed to exist in networks withacent experimental evidence indicating that the equilibrium in

® = 0D /oy, L, M = E, |, and the partial derivatives are
evaluated at the equilibrium. This last quantidy, \,, is pro-
portional to coupling from neurons of tygd to neurons of
type L; e.g., ®, g is proportional to excitatory to inhibitory
coupling.

For an equilibrium to be stable both, and A_ must be

endogenously active cells. - ) cortex occurs on the unstable branch (Tsodyks et al. 1997).
The second condition for stabilityi, < 0, may be written  Thys here and in the remainder of this paper we assume that all
1-®, ®op—1 low firing rate equilibria occur on the unstable branch of the
> (19)  excitatory nullcline, as in Fig. .

T Te

With the location of the equilibrium set, it is straightforward
This condition implies that excitatory-excitatorf-g) cou- to show the effect of coupling on firing rate. That effect can be
pling is destabilizing. It also tells us that inhibitory-inhibitorysummarized as follows: increasing same-type couplfig or
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I-1) raises firing rates, increasing opposite-type coupliatydr there is a further distinction between networks in which some
E-I) lowers firing rates. Combining these effects with the abowells have their resting membrane potential within one EPSP of
results on stability, we see that the existence of a low firing ratereshold and networks in which none do. This distinction has
equilibrium that does not oscillate requires IGE coupling, primarily qualitative bearing on firing patterns. In networks
high opposite-type coupling, arel coupling in an intermedi- containing cells that are one EPSP from threshold, a single
ate range: not so high that it drives up firing rates, but not g@tion potential can ignite activity in a silent network, so finite
low that it causes oscillations. firing rate states tend to be long lived. In networks with no cells
SUMMARY OF THEORETICAL ANALYSIS. The tool we used to within one EPSP of threshold, finite firing rate states tend to
analyze network behavior was a simplified firing rate model, imave shorter lifetimes.

which the dynamics of networks containing greater thaf 10 Networks with spike-frequency adaptation differ from those
neurons was reduced to a small number of equations describiighout it in two ways. First, as discussed in detail in the
average quantities. Rather than using a particular firing rajgevious section, networks with spike-frequency adaptation
model, we used geometrical arguments to derive generic ngkhibit a transition from steady firing to bursting as the fraction
work behavior. Our primary assumptions were that, on avejf endogenously active cells decreases. Second, in networks
age, excitatory input to a neuron increases its firing ratggntaining cells that are one EPSP from threshold but no
inhibitory input decreases it, and neurons exhibit spike-frenqogenously active ones, the lifetime of the metastable state is
guency adaptation. With these assumptions, we were abl 5&remely short—on the order of the spike-frequency adapta-

show thatl) endogenous activity is necessary for low firing;,, timescale, which is the inverse of the mean network firing
rates,2) decreasing the fraction of endogenously active cel St

causes a network to burst, al firing patterns, especially : . . . .
transitions between steady firing and oscillations, are depen-TO testthis set of predictions, and especially to examine how

dent on network connectivity. A specific realization of a Simr_\etworks with and without spike-frequency adaptation dif-

e e e fered, we performed simulations in which we varied the dis-
plified firing rate model corroborated these predictions. tribution of applied currentl,, both with and without spike-

. . frequency adaptation. We used a boxcar distribution in which
Simulations I, was restricted to values between 0 dpg,. This distribu
tion, which is completely determined by,.,, may be divided

To test th.e predictions made in the previous's.'ection, o three regimes. These correspond to the three regimes just
performed simulations with large networks of spiking mode|iscissed and to the ones listedTineory.

neurons, as describedumTHops. We examined) the effect of 1) 1,00 < le1, Wherelg, is the normalized applied current

the distribution of applied depolarizing currents, on firing - 5h6ye which the resting membrane potential is within one
patterns an@) how relative connection strengths among exCipgp of threshold. None of the cells have their resting mem-

tatory and inhibitory populations affect network behavior. ane notential within one EPSP of threshold for the generation
We used two networks, denotédand B. These networks o 4 action potential, which implies that none are endog-

differed primarily in their connectivity and the sizes of the,,q slv active
PSPs of their constituent neuromMéetwork Awas designed to Ry active.

ing the probability of 2 neurons connecting did not depend on
the distance between them; seerHops), and PSPs were on

E)huer %feerr(i)r;ér:?sw\ll_gtvr\:grrﬁ S‘tNZIS ggc())%enatno dbt?) iggf@f&}]\g'ﬁ?ﬁn simulations for 100 s and determined the excitatory and
P ( ’ ) ‘F\ibitory firing rates as follows. For networks that fired for the

predictions made for infinite range connectivity apply also %Il 100 s of the simulations, firing rates were simply averaged

local connectivity, for which the connection probability dew, o e \rons and time. For networks that burst, the averages
pends on distance between neurons. It had fewer connecti

Riste again over neurons, but only over the active phase of the

pher n.el;.rqn thaiNetwork A(2.0.0 inlstead ng}D,OC()O), Iﬁcal r(;l”‘therrb%.)xrst For networks that crashed to zero firing rate, we extrap-
than Infinite range connectivity, larger S (on the order o ) Ce L : ! -
mV rather than 1 mV), and a higher fraction of inhibitoryo ated to infinite time and assigned a value of zero to the firing

neurons (30% instead of 20%). A complete list of the param-
eters for each network is given in Tables 1 and Z1efHoDps.

Networks Aand B behaved similarly, so in the bulk of this
section we concentrate dfetwork A At the end of the section
we summarize the results dfetwork B.

3) Tiresh < Imax Endogenously active cells are present.
For values ol ranging from below, to abovel, cs,We

Figure 7A shows a plot of firing rate versiis,,, for networks
whose neurons do not exhibit spike-frequency adaptation. As
predicted, the networks fired steadily for the full 100 s of the
simulations wherl,,, exceeded,,sn (Which placed the net
works in regime 3, endogenously active cells present). In
ENDOGENOUS ACTIVITY. For networks without spike-fre- addition, long lived £100 s) metastable states were observed
guency adaptation, the theoretical analysis presented aboveldeth in regime 2,where some cells are within one EPSP of
to the following predictions. If endogenously active cells arthreshold, andegime 1 where no cells are within one EPSP of
present, then a stable, low firing rate equilibrium is possible.tlireshold. Also as predicted, the parameter regime that sup-
endogenously active cells are absent, a low firing rate equiliperted these long-lived metastable states was small; it corre-
rium is still possible. However, it is metastable; the networkponded to a range in maximum applied current of GRQ.(/

will eventually decay to a zero firing rate state. In this cas® 2.3 pA for a 30 M) cell. This is only 2% (0.07},,.sp Of the
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i times of the metastable states dropped considerably,5®

thresh (data not shown). This was much shorter than the metastable
l lifetimes observed in Fig.A, which were>100 s. Second, for

| max @bovel,,.cnthe network burst. Bursting occurred because
there is an intermediate, bistable state (e.g., the nuliclines
illustrated in Fig. B) that supports both steady firing and
silence. Transitions between steady firing and silence occur

A
‘}. \ when the bistability gives way to a single stable state, as
|
I-I-fl-l

indicated by the nullclines in Fig. 3\ andC. The theoretical
/ prediction is that these transitions should be network-wide; this
‘ / ‘ / is confirmed in Fig. 8, which shows spike rasters for 200
neurons along with a single-neuron trace of membrane voltage.
Comparing Fig. B with 6A, we see that the network simu-

lations and the reduced firing rate modek. 15, produced
similar results. There was, however, a difference in behavior at

.
—
1

=
=
1l

3.6 3.8 4.0 the transition from bursting to steady firing: in the network
simulations the firing rate varied smoothly at this transition,
B whereas in the reduced model the firing rate exhibited a down-
— ward jump. Thus, although the particular realization of the

simplified firing rate model captured the main qualitative result
(that there is a transition from steady firing to bursting to

Excitatory firing rate (Hz)

0.24 silence as the fraction of endogenously active cells decreases),
it did not capture all the quantitative details. This is not
surprising, because we made no attempt to tune the parameters

0.1+ The boxcar distribution of applied current used in the above

R

transition between networks with and without a sufficient num-
ber of endogenously active cells to ignite network activity.
However, it raises the possibility that the agreement we saw

|

I

|

|

I

I

| . .

| of the reduced model to match the network simulations.

I

: / network simulations is convenient because it produces a sharp
| ‘ /

I

I

—v

0.0+ - r . between the predictions of the Wilson and Cowan model and
3.6 3.8 4.0 the network simulations was an artifact of a current distribution

n with a sharp cutoff. To test this we performed two additional
I ...« (normalized units) sets of simulations. In one we used a smoother distribution of

applied currents than the boxcar used to produce the results

FIG. 7. Mean excitatory firing rata] vs.i,,,., for Network A(The inhibitory ; ; ; . setribg T
rate, which is not shown, is2.5 times higher for all data points.) The gray regionSummarlzed in Fig. 7: the d|§tr|butlon was flat fOEOImaX =

in B indicates bursting networks; for such networks, the top and bottom square® @nd had a Gaussian tail far,, > 3.5. In the other, we used
show the firing rates in the active and silent phases of the burst, respectivélypoxcar distribution but introduced noise-driven fluctuations
Squares at zero that are not in the gray region indicate networks that crashehtthe membrane voltage capable of generating endogenous
zero and remained there. Each firing pattern has associated with it a setaeﬁvity_ Both simulations produced identical results. and those
nuliclines with a particular underlying structure (see Fig. 4). Firing patterns are - . ' -
matched to generic examples of their associated nullclines with arrows. Bursth T ults Were Iargely In agreement W_lth the sharp CUtOﬁ/nO_nOBe
networks alternate between a set of nullclines with a stable, low firing ra@mulations. When there was no spike-frequency adaptation, as
equilibrium, and a set of nullclines in which the only equilibrium is at zero firinghe width of the Gaussian tail or the noise increased we saw a
ratte- As d?SCUStSff: ibnl thet 't“ai” teth(SeebefrF]’eCtia”Bé Fﬁfﬁ Be“N%e” ,Itgﬁse 2 transition from networks in which essentially only the endog-
extremes is a bistable state supporting both steady firing and silénce ; : ; ;

spike-frequency adaptation. The networks either fire steadily for 100 s, the IenﬁmousIy active Ce|.|S fired to networks in which most .Of the
of the simulations, or crash to zero firing rate. Some equilibria ijth < Ty, 1EUrONS were active. When spike-frequency adaptation was
(no endogenously active cells) are metastable but relatively long-Brélde cells  present, we observed transitions from silence to bursting to
exzibilt| spik(te)-frequency at()ja&tati(()jn. 'Lhis abolishes the Iongl-(live? metasta:(ble stmady firing with increasing tail width or noise. The only new
and allows bursting. For both andB the parameters were taken frosetwork A i i i oo
of Table 2 withBg = 1.4 andB, = 1.1, the difference between the 2 networks Iiesphenorr.]enon was a narrow regime in which the _network dis
in the amountdgy_ ., the normalized potassium conductance increased on eafalfiiyed irregular bursts. These bursts were assougted W't_h the
spike. INA, 83_ca = 0; in B, 83«_ca = 0.01. For these network parametersSMall number of endogenously active cells, either in the tail of
Ig, =~ 3.715 (determined numerically) afg..,= 3.75 (determined analytically; the distribution or produced by a relatively low level of noise.

see theASGCtiODISTRIBUTION OF APPLIED CURRENTSN METHODS). To Converﬂmax, Those Ce”s Caused random transrtlons between the equ”'brla
lg1, @andly,snfrom their normalized units, mV, to nA, divide by the cell membranqabeled “S” and “M” in Fig. 8

resistance in Mb.

CONNECTIVITY. The theoretical predictions concerning the ef-
rheobase current for a model cell whose resting membrajeet of coupling on stability and firing rate wefg decreasing
potential is 15 mV below threshold. I-I and increasinge-E coupling both lead to oscillations in

With spike-frequency adaptation present (FiB),network firing rate and2) increasing same-type coupling-g or 1-1)
behavior differed in two respects. First, the distinction betweeauses mean firing rates to go up, whereas increasing opposite-
regimes land 2 became irrelevant; in both regimes the lifetype coupling E-I or I-E) causes mean firing rates to go down.
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FIG. 8. Firing patterns in the bursting reginleop raster
- plots of 200 randomly chosen neurons in the burst regime.
0 25 50 The 1st 40 {-40 are inhibitory and the last 160 are

excitatory.Bottom voltage trace foneuron 40.During the
201 burst, voltage fluctuations are PSP driven; between bursts,
= the whole network is silent so the voltage decays to the
i resting membrane potentia50 mV. Because there is no
g é noise in these simulations, between bursts the voltage is
B= 2301 constant. Parameters are taken from Fig. 7 Wjth = 3.82.
EE
5]
7]
=3
& .80+
0 25 50
Time (s)

To test these predictions we performed simulations in whichIn terms of the bias parameters, the above predictions imply
we varied the relative number of connections among the extirat1) increasingd, and decreasinB. cause firing rates to go
tatory and inhibitory populations. This was done by adjustingp and2) decreasing bottB. and B, lead to oscillations. In
the bias parameterBg andB, (seemetHobs), defined byBg =  addition, because spike-frequency adaptation is most pro-
Pe/Pge and B, = Pj/Pg,, where P{, is the probability of nounced at high firing rates, we should see a transition to
making a connection from a neuron of typeto a neuron of bursting when the firing rate is high enough.
type L. IncreasingBg increase<-l (excitatory to inhibitory) Mean excitatory and inhibitory firing rates are plotted in Fig.
coupling and decreas&SE coupling; increasindg, increases 9 versus time for a range of bias parameters. These plots
I-I coupling and decreasdsE coupling. Both occur without confirm the above predictions: increasiBgand decreasinBg
changing the mean number of connections per neuron.  both produced higher firing rates, networks with smll

A £ ! D 2 ! FIG. 9. Mean firing rate vs. time for ex-

5 R i 5 , i F P citatory (—) and inhibitory (~--) popula-
h,l ,h; ﬂl\ ’t‘l My | 1\ Al \ | tions at different value of the bias parame-
0 o A N SN e ters, Bz and B,. A and D: because the-|
N ] = % L » coupling is low (smallB,), these networks
0.0 0.5 1.0 0.0 0.5 L0 oscillate. B, C, and E: with increasingl-I
coupling (increasingB,), oscillations are
eliminated and average firing rates rise. The

1091B B,=10,B8,=10 101E B,=12,B =10 small fluctuations in these plots are due to

the finite size of the networle: larger I-I
M/W 5w coupling further raises average firing rates
= i 5 and produces bursting. The gray line on this
AN A AN AT AT plot is the normalized slow potassium con-
0= r r . 0+ . . . ductance averaged over excitatory neurons
(seeEq. 59. This quantity corresponds to the
0.0 0.5 1.0 0.0 0.5 1.0 mean level of spike-frequency adaptation, so

= = = = it increases when the neurons are firing and
209C Bymddtiow 12 20qF Bpm 12 1 w12 decreases when they are silent. (To clearly

show the bursting, the time scale in this

panel is different from the other ones and the
e o e

te (Hz)

iring ra

F

15 =
inhibitory firing rate, which was~30%

lower, is not shown.) The difference between
oscillations A andD) and bursting ) is that

in the former the rise and fall of the firing
rate is slow compared with the period,
whereas in the latter it is fast. Parameters for
all panels were taken fronNetwork A of
Table 2 withl,,, ., = 5.0 anddgx_c, = 0.01.
Firing rates were computed by convolving
the spike trains with a Gaussian of width 10
ms.

10+

0.0 0.5 1.0
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>

oscillated, and high firing rates were accompanied by bursting.
Bursting, however, was not guaranteed: we incre&ed 2.4
with Bg fixed at 1.0 without observing bursting, even though
the excitatory firing rate at these parameters approached 40Hz (.2 =

For the bursting network, Fig. we plotted in gray the
slow potassium conductance averaged over excitatory neu-
rons. This quantity, which we denof_c,g, corresponds
to the mean level of excitatory spike-frequency adaptation
(O _cae = N* Zice Ok _caji» Where the sum is over excitatory
neurons; se&q. 59; Jx—_cqe IS analogous t& in the reduced
firing rate model Eq. 159. Like Gg in Fig. 6B, O«_cak
increases when the network is active and decreases when th
network is silent.

The transition from oscillations to steady firing was gradual
and never quite complete; even at high valueBofvhere the
fixed points should be attracting, there was an oscillatory .
component to the firing rates. However, the amplitude of the &=
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in Fig. 9,B, C, E,andF, the variance in the firing rate (for Fig.
9F the variance only during bursts) dropped by a factor-@f
when we doubled the number of neurons (data not shown)
This indicates that the oscillations at larBeresult from the
finite size of the network, which allows fluctuations that are
converted to oscillations by the dynamics. In contrast, doubling .’r‘r.lri"
the number of neurons had virtually no effect on the variance 0.1+ \
in the firing rate when the inhibitory-inhibitory coupling was
low enough to produce oscillations, as in Fig.AandD.

Finally, to ensure that the oscillations in FigA Svere not ‘ /
caused by spike-frequency adaptation, we performed simula-
tions with the same parameters except that spike-frequency \
adaptation was eliminateddy_ ., was set to zero; seesTH- 0.0 4
ops). We found a decrease in the oscillation period, from 180 25 3.75 5.0
to 120 ms, but no other change in the firing pattern. * : '

tatory fi

0.2+

Cl

Ex

LOCAL CONNECTIVITY. The above simulations were repeated I 1,x (normalized units)
with par_a_me_ters corresponding .N’?t‘."’ork B.in WhICh_ the Fic. 10. Mean excitatory firing rates} vs. 1., for Network B.(The
connectivity is local rather than infinite range (meaning Neymibitory rate, which is not shown, is a factor 6f2.5 higher for all data
rons that are close together are more likely to connect thpdints.) See Fig. 7 caption for details. For béttand B the parameters were
those that are far apart), the number of connections per neut@gn fromNetwork Bof Table 2 withBe = 1.4 andB, = 1.0; the difference
is smaller than inNetwork A,and the PSPs are larger (se%‘*tween the 2 networks is thatdn 5, _c, = 0, whereas ifB, 8y _c, = 0.08.
Tables 1 and 2). The results are summarized in Figs. 10 and 1%, "ése_network parametet, = 3.230 (determined numerically) and
. L gs. 19 anc I:!'hresh— 3.75 (determined analytically).

Figure 10 shows network firing rate versus the distribution ] o )
of applied currents, which, as in Fig. 7, is parameterized sterved quqtuqmons were caused by the finite size of the
T e The results were substantially the same as for the netwdigtwork. Oscillations did occur when we redudeldcoupling,
with infinite range connectivity: with no spike-frequency adbut not untilB, was below~0.6. In addition, the local con
aptation (Fig. 18y, the network fired for the full 100 s of the Nectivity network burst more easily than the infinite range one
simulation for a range dfmax extending somewhat belof/gl. and the bursting was more |rregula_1r. Bursting was observed for
With spike-frequency adaptation present (FigBLOthe net- Be = 1.0 andB, = 1.0, whereas in Fig. 9 bursting was not
work burst forl,,., close to, but slightly abové,, .., and the observed at all foBg = 1.0. _
lifetimes of the metastable state dropped considerably: for These plots indicate that, in spite of the differences between
T < Tiresn the lifetimes were<14 s (data not shown). Networks Aand B, the two networks generated strikingly

Mean excitatory and inhibitory firing rates are plotted in Figsimilar results. This indicates that our model is robust to
11 versus time for a range of bias parameters. For the netwofk&nges in connectivity (especially infinite range vs. local) as
that burst (Fig. 11B, C,andF), we plotted in gray the mean well as the number of connections per neuron and PSP size.
level of spike-frequency adaptation averaged over excitatasymMMARY OF SIMULATION RESULTS. We performed simula-
neuronsgy_c,e- Again the results were substantially the samigons with two very different networks: an infinite range, high
as for the network with infinite range connectivity. There wereonnectivity network with small PSPs, and a local, low con-
however, differences in the details. For example, we did noéctivity network with large PSPs. We also examined a broad
see regular oscillations for any of the examples shown: for alinge of parameters, including the distribution of applied cur-
plots the variance in the firing rate dropped by a factor-@ rents, spike-frequency adaptation, and network connectivity.
when we doubled the number of neurons, indicating that tfiéie results of all simulations were as predicted: for networks
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FIc. 11. Mean firing rate vs. time for ex-
; citatory (—) and inhibitory (——-) popula-
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without spike-frequency adaptation, we observed transitioashigh rate. This led to the following prediction: if low firing
from silence to steady firing as the fraction of endogenousisites are observed in an isolated network, then that network
active cell increased. For networks with spike-frequency aghust contain endogenously active cells. This prediction was
aptation, there was an intermediate regime in which the nebnfirmed by large-scale network simulations, which included
works burst. Finally, when thel coupling was strengthened,the exploration of a broad range of parameters to ensure that
we observed transitions from oscillations to steady firing {@e simulations were robustrpenpix A). It was also corrobo-
bursting and an increase in firing rate. rated by experiments in cultured neuronal networks, as de-
scribed in the accompanying paper (Latham et al. 2000).

DISCUSSION Although endogenously active cells are necessary for the

We have investigated, both theoretically and through simfxistence of a low flrlng rate equilibrium, they do not guarantee
lations with spiking model neurons, the intrinsic dynamics if{S Stability. In particular, we found that a high level of spike-
large networks of neurons. The goal of this work was twofold"duency adaptation leads to bursting: repetitive firing can
1) to understand how dynamic interactions between excitatdRfroduce a hyperpolarizing current sufficient to temporarily
and inhibitory neurons lead to stable, low firing rates, such §éminate endogenously active cells, resulting in a crash to zero
those widely observed in the mammalian central nervous sy#ing rate; after the cells stop firing, the hyperpolarizing cur-
tem, and?) to determine the conditions under which networkgent decays and firing resumes. (Interestingly, our analysis
switch from steady firing to bursting. implies that synaptic adaptation, because it does not affect the

An understanding of the mechanism for generating stabfeaction of endogenously active cells, cannot produce burst-
low firing rates in large, isolated neuronal networks has beary.) The probability of bursting is highest if there are few
elusive (Abeles 1991; Amit and Treves 1989; Buhmann 1988ndogenously active cells to begin with, and for that reason the
Treves and Amit 1989). The elusiveness stems from the diffiaction of such cells plays a key role in determining firing
culty in controlling the powerful recurrent excitation that existpatterns. Specifically, networks with no endogenously active
in such networks. To compensate for this recurrent excitatiacells are typically silent; at some finite fraction of endog-
inhibitory feedback is required. To stabilize low firing ratesgnously active cells there is a transition to bursting; and at an
that feedback must be strong enough that the inhibitory firireyen higher fraction there is a second transition to steady firing
rate is more sensitive to input from excitatory cells than thet low rate. This scenario was also confirmed by network
excitatory firing rate. Or, in the language of dynamics, th&mulations, and it was corroborated by experiments in neuro-
inhibitory nullcline in average firing rate space must be steepeal cell culture (Latham et al. 2000).
than the excitatory one at the equilibrium (e.g., Fif).AWe Although the fraction of endogenously active cells plays the
found that for isolated networks, the above condition occud®minant role in determining the primary firing patterns (si-
robustly at low firing ratenly when endogenously active cellslence, bursting, or steady firing), another parameter, network
are present; without such cells networks are either silent or fzennectivity, influences secondary features of the firing pat-
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terns. Specifically, when inhibitory-inhibitory coupling beAPPENDIX A: ROBUSTNESS TO VARIATION IN
comes too weak or excitatory-excitatory coupling becomes t8B RAMETERS
weak or excitatory-excitatory coupling becomes too strong, ar

IQW fmr}g rate_equﬂlbrlum Can b_e degtap|!|zed via a HOpI:omplete exploration of the full parameter space, which is impractical
bifurcation. This leads to oscillations in firing rate that cag the 26-dimensional space that describes our model. Instead, we
occur in both the “steady” firing and the bursting regimes. laried a selected subset of the parameters. Our starting point was a set
the latter case, the oscillations occur during the active phaseopparameters taken from two networkéetworks AandB. Recall that
the burst. most of the parameters of those networks are given in Tables 1 and 2;
These theoretical findings were based on the analysiste¢ parameters whose values are not listed there were given the
isolated networks with random, infinite-range connectivityo!lowing values:l ., = 5.0,Bg = B, = 1.0, anddg _ca = 0. This
However, theoretical considerations indicate that they apply %of parameters resulted in mean excitatory firing rates of 5.59 and

. . . . 7451 Hz forNetworks Aand B, respectively, and inhibitory rates of
networks that receive external input, and simulations indica§&g and 4.46 Hz. The firing patterns were steady: i.e., no bursting or

that they are valid for networks with local connectivity, irpscillations. Starting with this initial set of parameters, the ones we
which the connection probability is a decreasing function @tried to explore the robustness of our model were as folldyvthe
distance between neurons. The validity of the model for locamplitude of the excitatory and inhibitory postsynaptic potentials,
connectivity suggests that these findings will hold for the motégrspand Vipsp 2) the fraction of inhibitory cells3) the voltage
structured architecture that exists in the cortex. threshold,V,, 4) the cell time constantr., 5) the mean number of
connections per neuron&, 6) the number of neurond\, 7) the
distribution of applied current, an8) for Network B(the one with
Implications local connectivity), the axonal spreads of the excitatory and inhibitory
populations g and o,.
Two firing patterns that are ubiquitous in the mammalian The first four items in this list had the strongest effect on firing rate: for
CNS are steady firing at low rates and rhythmic bursting. Wasth networks, a 50% increase in EPSP amplitude, a 50% decrease in
have shown that, in isolated networks, both firing patterns dfSP amplitude, and a 25% decrease in the fraction of inhibitory cells all

controlled largely by a single parameter, the fraction of end?@used an increase in firing rate 6f50%; increasing the distance

; . tween the nominal resting membrane potential and thredhotd)/,,
ggnouslytﬁctl\;]e l(éells',[. Aj‘ Icf).n.g as the fr%?tlpg ?f Sutﬁh tctﬁ”s E?)m 15 to 25 mV while keeping the fraction of endogenously active cells
above a threshold, steady Tiring 1S possible; below thal thréggay regyited in a drop in firing rate ef50%, and doubling the time
old the network bursts. The threshold depends on the degre@Qisiant resulted in a drop in firing rate #0%.

spike-frequency adaptation, a property of neurons that has beefcreasing the mean number of connections per nettoalso had a
shown to be modulatable [e.g., by neuromodulators (Burke amdderately strong effect on firing rate: a 20% increas¢ issulted in a
Hablitz 1996; Cole and Nicoll 1984; McCormick et al. 1993¢ecrease in firing rate of 12% fdtetwork Aand 14% forNetwork B.
Pedarzani and Storm 1993; Spain, 1994)]. Thus the mod?eimewhat surprisingly, increasing the_amplitqdes of both EPSPs and
described here both accounts for the low firing rates obsery@&Ps did not have the same effect as increasing the number of connec-
in networks throughout the mammalian CNS and providestigns: a 20% increase MepspandVipspled to a 7% decrease in firing
natural mechanism for switching between steady firing af@€ forNetwork Aand a 4%increasein firing rate forNetwork B.The
bursting. A switch between these two patterns is necessaryrl% son for the difference is as follows. Although increasing PSP ampli-

e . . X . 7 tude and connectivity have approximately the same effecimean
behavior that is activated episodically, such as Iocomotloa,

0 exhaustively check the robustness of our model would require a

. ; S naptic drive, the former has a larger effect on variance. Because larger

scratching, and swallowing (Berkinblit et al. 1978; Kudo annyt variance leads to higher firing rate, increasing PSP amplitude is

Yamada 1987; Zoungrana et al. 1997). more effective in causing a cell to fire than increasing connectivity. This
Although endogenously active cells may account for thewhy firing rates were higher with a 20% increase in PSP amplitude than

observed firing patterns in mammalian neuronal networks, thiagy were with a 20% increase in the number of connections.

are notnecessarilyesponsible for those firing patterns. This is Increasing the number of neurons had almost no effect on firing rate

because the brain is neither isolated nor comprised of a sinfjfe’% change when the number of neurons doubled). However, there

network |nstead’ |t recelves Sensory |nput and COHSIStS Vb?s a substantial reduction in fluctuations: doubling the number of

feti ; _ ; urons inNetwork Acaused the variance in the firing rate to drop by
distinct areas that interact through long-range connecnor‘?§1§amor of 2.3, and doubling the number Network Breduced the

Because external input to a network can drive cells even wh%

A e . _Variance by a factor of 1.93. Both of these are close to the factor of 2
they are not receiving input from within the network (mak'n%uggested by N scaling.

those cells effectively endogenously active), it is possible thatthe analysis in the main text was based on gain curves constructed
the low firing rates observed in cortex are generated by sens@tm a unimodal distribution of applied depolarizing currehgsSuch
input, or, as has been proposed by Amit and Brunel (1997), Ayiistribution implies that the neurons in the network have a contin-
input from other brain areas. The source of the input does na@ius range of resting membrane potentials, and, if there are endog-
affect our model, however; the model applies whether the inpertously active cells, the active neurons have a continuous range of
is external or endogenous. firing rates. Different distributions, especially multimodal ones, can

The theory developed here provides a framework for undégad to different nuliclines and thus different network behavior (Wil-
standing intrinsic firing patterns and their dynamics in |arﬁ?cﬁ”tﬂ ecﬁévr?n”aﬁfg?apwm‘?ehhEﬁr?é’rﬁf'ifre%‘i r?r?érgﬁ%a\lm?:tgi?ﬁgfg in
networks (.)f. neurons. T.h|s dqes more than simply _explam (resting membrane potential 15 mV below threshold) or 5 mV
observed firing patterns; it provides a link between basic pro&s

; - ndogenously active). For the two bimodal distributions we looked
erties of networks and a way to understand how firing patteris 30" and 50% of the cells endogenously active, the firing rates

could be modified by patterned external input. This link ighanged by<5%. Thus, at least for these parameters, changing the
critical for developing models of how computations are petistribution of applied currents had little effect on firing rate.
formed by real neuronal networks. The effect of changing the axonal spread depended on whether we
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changed the spread for the inhibitory or the excitatory neurons. Increasing

the normalized radius of the inhibitory axonal spread,from 0.12 to 20
0.25 and then to 0.50 increased the firing rate by 50 and 132%, respec-
tively. (Recall that the normalized radius of the network is 1.) These
results are consistent with the view that inhibition is acting to control
local hot spots of excitatory activity, so overly diffuse inhibition is not so
effective. Increasing the excitatory axonal spread,on the other hand,

led to a decrease in firing rate that was fairly small: increasipérom

0.12 to 0.25 and 0.50 dropped the firing rate by 4 and 13%, respectively.
Our interpretation here is that longer range excitation allows the recruit-
ment of additional inhibitory neurons, thus lowering firing rates.

In all cases, the above parameter changes produce changes in firing 0+
rate consistent with our model. This is indicative that the model is 0
relatively robust. This should not be surprising, in view of Fig, 4 Excitatory input
which guarantees an equilibrium at reasonably low firing rate. firi te (Hz)

We end with a simulation closer to cortical parameters than we Iring rate (tiz
have been usingVetwork Awith IPSP and EPSP amplitudes ofl
and 0.2 mV, respectively, 20,000 neurons of which 15% were inhib- B

Excitatory gain
function (Hz)
=

itory, a threshold voltage of 40 mV, corresponding to a nominal gap o0 1.54
between resting and threshold of 25 mV, and a maximum for the = .
boxcar distribution|l, ., equal to 10 mV. The network with these E —_ K
parameters fired steadily with a mean rate of 0.9 Hz. & E 1.0 4 o
2= /!
S o
APPENDIX B: ESTIMATE OF THE MINIMUM OF :5*5 05.|/
THE EXCITATORY NULLCLINE = =
=
In this appendix we estimate the sizeidf, the average excitatory ) 0.0 4
firing rate at the minimum of the excitatory nullcline. To do this we 0'0 0'5 110 1'5
derive a differential equation fobg(vg, v,) valid whenvg is small, . e .
solve it to determine the shape of the excitatory gain function, and Excitatory firing
then find the tangential intersection with the lide(vg, v,) = ve. We rate (Hz)

start with the relation ) ) i )
FiG. B1. Gain curves and an excitatory nullcline from the network simula-

IDe(ve, 1) 9De(e, 1) Ioyne tions. A: excitatory gain curves faetwork Aof Table 2 withl ., = 5.0,Bg =
e = e (B1) 1.4,B, = 1.0, andd0x_c, = O (no adaptation). To construct these curves we
Ve syng Ve expanded the recurrent network into a 2-layer, feed-forward network, with the

herel is th ; itator naptic drive to the neuron feed-forward connections from the input to the output layer identical to the
Wherels,ng IS (e average excitatory synapuc drive to the NeUrons de rent connections in the original network. We then computed the mean output
the network. Becausk,,g is equal to the rate of incoming EPSPs;ring rate of the excitatory neurons (the gain functions) vs. the input firing rates,
times the charge transfered to the postsynaptic neuron per EPSP,@gaming Poisson statistics. The horizontal axis corresponds to the excitatory input
the rate of incoming EPSPs is the firing rate times the average numfagig rate; the numbers on each line correspond to the inhibitory input firing rates
of connections, we have in Hz. B: the excitatory nullcline for the same parameters &s ifo construct this
curve we allowed the excitatory and inhibitory neurons to have different values of
the maximum applied depolarizing currefy,,,. we fixed |, at 5 for the
PER QepspX Kee (B2)  excitatory neurons, then varidgl., for the inhibitory neurons to sweep out the
E curve. Values of the excitatory and inhibitory firing rates at the minimungare

whereQgpspis the average charge per EPSP #pg has the same 0.014 Hz and = 0.436 Hz.
definition as in the Fig. 2, the mean number of excitatory connection .

made by an excitatory neuron. The char@rsp iS computed by >The other term IrEq. B1, 90/l
integrating the voltage transient induced by the arrival of an EPSP
then dividing by the postsynaptic cell’'s membrane resistance

ad I syng

syngr 1S the rate of change of the
A\gerage firing rate of a network of neurons with respect to the synaptic
drive. This can be estimated as follows. For a single cell, the slope of
the frequency-currentF¢l) curve is small below some threshold
AV Vepot current and approximately linear above it. [For the type | neurons used
Qepsp= J dt R = R (B3) here, spike initiation occurs via a saddle-node bifurcation, which leads
cell Reel to a square-rooE-l curve with respect t@onstantinjected current
. . . . (Rinzel and Ermentrout 1998). However, the square-root singularity is
\(/)vfhi\rr?AIEVIZ(’%IL’s,ItQtee"Cir']sa?r?(ee I(r:]erITer?:r;"lat?rir?:tfggiiltgr?lcj\;s:s?isthtehzm\;C%nSid.erably flattened both .by synapt.ic variability .and by the heter-
amplitude of a typical EPSP, ankt is the characteristic width of an Qgenelty of the netv\{ork. This results in an a_pproxmately thres_hold-
EPSP. This last quantityAt, is defined by the second equality in“nef'jlr Fl curve, as |nc_i|cated by_the_ approximately threshold-linear
Eq. B3. excitatory gain curves |II_ustrated in Fig. B For a network of cells,
When the response to an EPSP is linear, it is not hard to show tH value ofd®¢/dly,. is the slope above threshold, denoted
At = 7. We will assume that EPSPs are small enough that the lindpes the fraction of cells above threshold, dengietive thus have
approximation holds, in which ca$gy. B2 can be replaced with the
inequality

’

IPe(Ve, ve)
alsyn,E
A syng - VepsKee

= Tee B4 . . Lo .
ave Tee! Reei (B4) Inserting this expression int&g. B1, we arrive at
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IDe(Vg, v IR

E(’jE VI) ~ Bp (BS) Vi = rhMcell (Bl4a)

0Vve TeenVersiee

where V,
6 - IPSFJ<EI (B14b)
VEPSFKEE
=" (86)

Ve To evaluate numericallyt, we need to know the sizes @ v,,

andé¢. A bound on the first of thes@, is found by combinindeq. B4

To solve for®c(vg, 1) as a function ofi, we need to know hovs with the definition of8 in Eq. B6, yielding
e

depends on the firing rateg, and vz. We can estimate this dependenc
as follows. LetAl,,,- be the minimum current that will make almost all VepsKee
cells in the network fire. Then, the excitatory firing rate that will make B = TeenF’ R

almost every cell fire ig\lg,,/(9l,n/07e). Defining el

(B15)

For a 30 M cell with a time constant of 10 M8, VepsdReen =
_Algyne ®7) 33X 104 nAMHz X Vepep (MV). BecauseKeeVepsp (MV) is
lsynel Ve typically at least 18, the first three terms on the right hand sideEgf
B15 should be larger than-0.33 nA/Hz. The remaining term i&q.
B15, the slope of a cell's=-I curve, is typically on the order of 250
A—jz/nA (McCormick et al. 1985). (This is consistent with our model
eurons: for cells with a membrane resistance of 30, ¥he slope of

e F-1 curve was~150 Hz/nA; simulations not shown.) Using 250
Hz/nA for theF-I curve, we arrive ag = 83.

The quantityy,,, given in Eq. Bl4ahas almost the same factors

Av=

we see that asg increases from 0 td v, the fraction of active cells
increases from its value at = 0 Hz, which we denoteg(7,), to 1.
For clarity, in the remainder of this analysis we will drop the depe
dence ofpy on ¥,. Assuming that the fraction of active cells increase
linearly for vz < Aw, we can writep = py + (1 — po)ve/Av. Then,Eq.
B5 becomes, for small values @f

aDe(ve, ) B as B; the only difference is thakF’ is replaced by 1/, and the
T ame Pleot (1= pove/av] (B8)  expression is inverted. For typical cells, is at most 0.2 nA
(McCormick et al. 1985). Combining this value with the above
Solving Eq. B8 yields estimate forr.q,Vepsdee/Reen, We find thatv,, ~ 0.6 Hz.
., Finally if excitatory and inhibitory neurons have similar PSP sizes
3 gyl ;
De(ve, ) = De(0, 7)) + Bpove + B(L — po) IEV (B9) and connectivities§ ~ 1. ThusEq. BlS_c*an be written
s v
The minimum of the excitatory nullcline occurs where the curve given vg<0.01 Hz+ 87|3 (B16)

in Eq. B9 intersects tangentially with the linbg = . It is straight
forward to show that the value of the average excitatory firing rate where we have replaced the inhibitory firing rate that appeared in

that tangential intersectiofy, is given by previous expressions with its value at the minimum of the excitatory
nullcline, denoted’}. Unlessyy is very large v will be small, almost
_ _ Av(1— Bpo) (810) certainly below 0.1 Hz.
" B po) Testing the validity of the above analysis requires that we construct

the excitatory nulicline. This can be done in our simulations by slowly
increasing the value of,,., for the inhibitory neurons only, which
shifts the inhibitory nullcline up without affecting the excitatory one.
Av By recording the equilibrium firing rates as we shift the inhibitory
vE=— (B11) nulicline, we can sweep out the excitatory nullcline. An excitatory
B nullcline constructed in this manner is shown in FigB12onsistent
Recall thatAv depends ol g, the minimum current needed toWwith the bound given inEq. B16, the minimum of the inhibitory
make all the cells in the network fir&¢. B7). The minimum current hullcline occurs at an excitatory firing rate of 0.014 Hz.
consists of two parts: the minimum rheobase current plus the total
inhibitory synaptic current delivered to a cell. The latter quantity is We thank E. Neale for providing Epon-embedded cultures containing the
7,0l /07, Denoting the minimum rheobase current gsand using HRP-injected neurons used to measure axonal arborization and C. Del Negro,
the same argument as above to expisg, /a7, in terms of physi J. Rinzel, and M. Wiener for insightful discussions and comments on this

Finally, whenB > 1, the right hand side d&q.B10is maximum when
po = 0. Consequently, we can bouad by

ological quantities, we arrive at manuscript. ) )
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9,0 gyn) VipsKel Box 95-1763, Los Angeles, CA 90095-1763.
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