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Latham, P. E., B. J. Richmond, P. G. Nelson, and S. Nirenberg.
Intrinsic dynamics in neuronal networks. I. Theory.J. Neurophysiol.
83: 808–827, 2000. Many networks in the mammalian nervous sys-
tem remain active in the absence of stimuli. This activity falls into two
main patterns: steady firing at low rates and rhythmic bursting. How
are these firing patterns generated? Specifically, how do dynamic
interactions between excitatory and inhibitory neurons produce these
firing patterns, and how do networks switch from one firing pattern to
the other? We investigated these questions theoretically by examining
the intrinsic dynamics of large networks of neurons. Using both a
semianalytic model based on mean firing rate dynamics and simula-
tions with large neuronal networks, we found that the dynamics, and
thus the firing patterns, are controlled largely by one parameter, the
fraction of endogenously active cells. When no endogenously active
cells are present, networks are either silent or fire at a high rate; as the
number of endogenously active cells increases, there is a transition to
bursting; and, with a further increase, there is a second transition to
steady firing at a low rate. A secondary role is played by network
connectivity, which determines whether activity occurs at a constant
mean firing rate or oscillates around that mean. These conclusions
require only conventional assumptions: excitatory input to a neuron
increases its firing rate, inhibitory input decreases it, and neurons
exhibit spike-frequency adaptation. These conclusions also lead to
two experimentally testable predictions:1) isolated networks that fire
at low rates must contain endogenously active cells and2) a reduction
in the fraction of endogenously active cells in such networks must
lead to bursting.

I N T R O D U C T I O N

In the absence of stimuli, neurons in many areas of the
mammalian CNS remain active. This activity falls into two
main patterns: low, steady firing in the 1- to 5-Hz range and
rhythmic bursting. The former has been widely observed in
sensory cortex, motor cortex, and spinal cord and has been seen
in both awake-behaving and anesthetized animals (Collins
1987; Gilbert 1977; Herrero and Headley 1997; Lamour et al.
1985; Leventhal and Hirsch 1978; Mednikova and Kopytova
1994; Ochi and Eggermont 1997; Salimi et al. 1994; Szente et
al. 1988; Zurita et al. 1994); the latter is fundamental to central
pattern generators, which generate rhythmic behavior such as
respiration, locomotion, and chewing (for reviews see Marder
and Calabrese 1996; Rekling and Feldman 1998). Both pat-
terns may occur in the same neural tissue, with neuromodula-
tors inducing a reversible switch between steady firing and

bursting (Berkinblit et al. 1978; Kudo and Yamada 1987;
Zoungrana et al. 1997).

From a theoretical point of view, it has been relatively easy to
understand how large neuronal networks might generate rhythmic
bursting (Feldman and Cleland 1982; Perkel and Mulloney 1974;
Rekling and Feldman 1998; Rybak et al. 1997; Smith 1997) but
difficult to understand how such networks might generate steady,
low firing rates (Abeles 1991). Several investigators have ex-
plored the latter problem theoretically (Amit and Treves 1989;
Buhmann 1989; Treves and Amit 1989). Their approach was to
use simulated networks and attempt to generate low firing rates
through dynamic interactions between excitatory and inhibitory
neurons. The networks they used were (1) highly interconnected,
(2) isolated from any external sources of input, and (3) comprised
of neurons whose resting membrane potentials were far enough
below threshold that several near-synchronous excitatory postsyn-
aptic potentials (EPSPs) were necessary to trigger an action po-
tential. Networks with these seemingly standard properties were
unable to produce maintained low firing rates; the lowest numer-
ically generated mean rates were;20 Hz, significantly larger than
the background firing rates observed in biological networks.

These experimental and numerical findings raise three main
questions. First, why were networks with the above “standard”
properties unable to fire at low rates? Did the numerical studies
simply miss a parameter regime that would have generated low
firing rates, or were the properties actually too restrictive? Second,
what are the conditions that allow networks to fire robustly at low
rates? And third, what is the relation between steadily firing
networks and rhythmically bursting ones? In particular, is there a
single parameter, or a small set of parameters, that allow networks
to switch naturally from one state to the other?

To answer these questions, we developed a model that
allowed us to explore analytically the intrinsic dynamics of
large, isolated networks in the low firing rate regime. Our main
assumptions were conventional: excitatory input to a neuron
increases its firing rate, inhibitory input decreases it, and neu-
rons exhibit spike-frequency adaptation (their firing rates de-
crease during repetitive firing). We found theoretically, and
verified using large, simulated networks of spiking neurons,
that a single parameter plays a dominant role in controlling
intrinsic firing patterns. That parameter is the fraction of en-
dogenously active cells; i.e., the fraction of cells that fire
without input. Our primary result is that there is a sharp
distinction between networks in which the fraction of endog-
enously active cells is zero and those in which it is greater than
zero. When the fraction is zero, a stable, low firing rate equi-
librium cannot exist; networks are either silent or fire at high
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rates. Only when the fraction is greater than zero are low
average firing rates possible. In this regime there is a further
subdivision into networks that burst and those that fire steadily,
the former having fractions below a threshold and the latter
having fractions above threshold. Connectivity also plays a
role in shaping firing patterns, but to a lesser degree; it deter-
mines whether activity occurs at a constant mean firing rate or
oscillates around that mean.

These theoretical results imply that an isolated network that
fires at low rates must contain endogenously active cells. We
tested this strong, parameter-free prediction experimentally in
cultured neuronal networks and consistently found a large
fraction of endogenously active cells,;30% on average, in
networks that displayed low firing rates. We also investigated
experimentally the transition between steady firing and burst-
ing as the fraction of endogenously active cells changed, and
we found that networks that fired steadily could be induced to
burst by reducing the fraction of endogenously active cells.
Both of these experimental results are presented in the follow-
ing paper (Latham et al. 2000).

The above analysis applies to networks that receive external
input as well as to isolated ones. This is because cells that
receive sufficient external input to make them fire are effec-
tively endogenously active, in the sense that they can fire
without receiving input from other neurons within the network.
These pseudoendogenously active cells control firing patterns
in the same way that truly endogenously active ones control
firing patterns in isolated networks. In particular, for networks
receiving external input, firing patterns follow the same set of
transitions as discussed above: as activity produced by external
input increases there is a transition first from silence to burst-
ing, and then from bursting to steady firing.

M E T H O D S

In RESULTS we make a series of predictions about the behavior of
large neuronal networks, then test those predictions by performing
large-scale network simulations. In this section we describe the single
neuron equations and synaptic coupling used in the simulations,
discuss our choice of simulation parameters, and provide a particular
realization of a reduced network model that is used to illustrate the
general principles derived inRESULTS.

Network simulations

Our predictions about the behavior of large neuronal networks are
based on a simplified firing rate model. To verify these predictions, we
perform large-scale simulations with synaptically coupled model neu-
rons. Following are the single neuron equations used in the simula-
tions, the prescription for choosing single neuron parameters and
synaptic coupling, and a complete list of network parameters.

SINGLE NEURON EQUATIONS. Our simulated network consists ofN
synaptically coupled neurons,NE of which are excitatory andNI of
which are inhibitory. The time evolution equation for the membrane
potential of neuroni, Vi, may be written

Ccell

dVi

dt
1 I spike,i 1 I fAHP,i 1 I sAHP,i 1 I syn,i 5 I a,i (1)

where Ccell is the cell capacitance,Ispike consists of the currents
responsible for generating action potentials,IfAHP and IsAHP are fast
and slow afterhyperpolarization currents, respectively,Isyn represents
the synaptic current, andIa is a constant depolarizing current. The fast
afterhyperpolarization current enforces a relative refractory period;

the slow afterhyperpolarization current, which introduces a slowly
decaying hyperpolarization each time a neuron emits an action poten-
tial, is responsible for spike-frequency adaptation.

Rather than using conductance-based currents forIspike, we model
this quantity as

I spike,i 5 2
~Vi 2 Vr!~Vi 2 Vt!

RcellDV
(2)

whereDV [ Vt 2 Vr is the nominal gap between resting (Vr) and
threshold (Vt) voltages andRcell is the membrane resistance of the cell
(Fig. 1). Typically,Vr 5 265 mV andVt 5 250 mV, producing a
nominal gap of 15 mV. In the absence of synaptic drive and afterhy-
perpolarization currents,Eq. 1with Ispike,i given byEq. 2 is identical
to the u-neuron model introduced by Ermentrout and Kopell (1986)
and explored further by Ermentrout (1996). This model describes the
behavior of type I neurons, neurons that can support arbitrarily low-
frequency oscillations (Hodgkin 1948). The advantage of using the
u-neuron rather than a conductance-based model is that relatively
large time steps can be used, on the order of 1 ms rather than the 0.1-
to 0.2-ms time steps required to accurately represent the rapidly
varying membrane potential during a true action potential.

If we were to adhere strictly to theu-neuron model [which is related
to our model by the change of variablesVi ; tan (u/2) 1 constant] an
action potential would occur wheneverVi reaches1` (the spike
apex), at which point the voltage would be reset to2` (the spike
repolarization). For numerical work, however, it is necessary to use
finite spike apex and repolarization voltages. The apex we use in our
simulations, denotedVapex, is 20 mV, and the reset value,Vrepol, is
280 mV.

The fast and slow afterhyperpolarization currents may be written

I fAHP,i 5 gK,i~Vi 2 %K! (3a)

I sAHP,i 5 gK2Ca,i~Vi 2 %K! (3b)

where%K is the potassium reversal potential andgK,i andgK2Ca,i are
potassium conductances. The latter quantities obey the time evolution
equations

dgK,i

dt
5

gK,` 2 gK,i

tK

1 dgK O
m

d~t 2 ti
m! (4a)

FIG. 1. Current-voltage relation forIspike, the current that generates action
potentials. Arrows indicate voltage trajectories in the absence of synaptic input
and afterhyperpolarization currents. Arrows pointing to the right correspond to
regions where the voltage increases in time; arrows pointing to the left
correspond to regions where it decreases. These arrows indicate thatVr, the
resting membrane potential, is a stable equilibrium andVt, the threshold, is an
unstable one.Inset: action potential generated by giving the neuron an initial
voltage slightly above threshold.
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dgK2Ca,i

dt
5

gK2Ca,` 2 gK2Ca,i

tK2Ca

1 dgK2Ca O
m

d~t 2 ti
m! (4b)

wheregK,` andgK2Ca,` are the equilibrium value of the fast and slow
potassium conductances,tK2Ca andtK2Ca are their time constants,ti

m

is time of themth spike on neuroni, and thed-function, d(t 2 ti
m),

provides an impulse whenevert 5 ti
m. Those impulses causes discrete

increases,dgK and dgK2Ca, in gK,i and gK2Ca,i, respectively. For
simplicity we assume that the equilibrium conductances,gK,` and
gK2Ca,`, and the time constants,tK2Ca andtK2Ca are independent of
voltage. Then, without loss of generality, we may assume thatgK,i and
gK2Ca,i are zero at rest, which implies thatgK,` 5 gK2Ca,` 5 0.

CombiningEqs. 1–4,the network evolution equations become

dVi

dt
5

1

tcell
F ~Vi 2 Vr!~Vi 2 Vt!

DV
1 Î a,i

2 ~ĝK,i 1 ĝK2Ca,i!~Vi 2 %K! 2 Î syn,iG (5a)

dĝK,i

dt
5 2

ĝK,i

tK

1 dĝK O
m

d~t 2 ti
m! (5b)

dĝK2Ca,i

dt
5 2

ĝK2Ca,i

tK2Ca

1 dĝK2Ca O
m

d~t 2 ti
m! (5c)

wheretcell [ RcellCcell is the cell time constant and quantities with a
hat have been multiplied byRcell: Îa,i [ RcellIa,i, etc. Note that bothÎa,i

and Îsyn,i have units of voltage, whereas the conductances,ĝK and
ĝK2Ca, and their increments,dĝK anddĝK2Ca, are dimensionless.

The normalized synaptic current,Îsyn, is written

Î syn,i 5 O
j

Wijsij~t!~Vi 2 % j! (6)

whereWij is the strength of the connection from neuronj to neuroni,
sij(t) is the fraction of channels on neuroni that open when neuronj
emits an action potential, and%j is the reversal potential associated
with the ligand-gated receptor on the cell that is postsynaptic to
neuronj. The weight matrix,Wij , is always nonnegative. This ensures
that excitatory drive (activity from neurons with%j greater than the
threshold for the emission of an action potential) increases the prob-
ability that a postsynaptic neuron fires, whereas inhibitory drive
(activity from neurons with%j less than threshold) decreases the
probability.

The conductance change on a postsynaptic neuron is mediated by
the fraction of open channels,sij . That fraction increases instanta-
neously when a spike occurs at neuronj and decays exponentially
between spikes: for alli

dsij

dt
5 2

sij

ts

1 r s O
m

d~t 2 tj
m! (7)

The parameterrs determines how many closed channels open each
time neuronj fires. If we had included adaptation,rs would have been
called the use parameter (Tsodyks and Markram 1997); we adopt that
name here.

Equations 5–7,along with the rule that wheneverVi reachesVapex

an action potential is emitted and the voltage is reset toVrepol,
constitute our complete network equations. Implementing this model
as it stands, however, is costly numerically. This is because the
fraction of open channels,sij(t), must be integrated separately for each
synapse. These separate integrations can be avoided by noting that the
relevants-dependent quantity is the sum that appears on the right hand
side ofEq. 6.That sum can be divided into two terms

Î syn,i 5 ViĨ i 2 Ĩ%,i (8)

where

Ĩ i ; O
j

Wijsij (9a)

Ĩ%,i ; O
j

Wijsij% j (9b)

Combining the definitions inEq. 9 with the time evolution for the
fraction of open channels,Eq. 7, we see thatĨ i and Ĩ%,i evolve
according to

dĨ i

dt
5 2

Ĩ i

ts

1 r s O
j ,m

Wijd~t 2 tj
m! (10a)

dĨ%,i

dt
5 2

Ĩ%,i

ts

1 r s O
j ,m

Wij% jd~t 2 tj
m! (10b)

With this formulation there is no need to keep track of thesij

individually; Eq. 8along with the time evolution equations forĨ i and
Ĩ%,i, Eq. 10, can be used to determine the synaptic current, andsij

drops out of the equations.

DISTRIBUTION OF APPLIED CURRENTS. The applied current,Îa,i,
determines how close a neuron is to the threshold for generating an
action potential, or, if it is above threshold, its endogenous firing rate.
This quantity is chosen probabilistically:Îa,i has a boxcar distribution,
uniform between 0 andÎmax and 0 outside those two values. We use
this distribution because it gives us precise control over the number of
neurons that are endogenously active. The precise control arises
because neuroni is endogenously active if and only ifÎa,i . DV/4 [
Îthresh. Consequently, whenÎmax , Îthresh no neurons are endog-
enously active, and whenÎmax . Îthreshthe fraction of endogenously
active cells is (Îmax 2 Îthresh)/Îmax.

NETWORK CONNECTIVITY. Connectivity is specified by the weight
matrix, Wij . This quantity determines both whether two neurons are
connected and, if they are, the strength of that connection. Like the
applied current, the weight matrix is chosen probabilistically, and the
probability that neuronj connects to neuroni is denotedPij . If there
is a connection, the strength of that connection is set by considerations
of EPSP and inhibitory postsynaptic potential (IPSP) sizes. If there is
no connection,Wij is set to zero.

We use two models of connectivity, infinite range and local, when
constructingPij . For infinite range connectivity,Pij depends only on
the types of neuronsi and j

Pij 5 PTi ,Tj

`

whereT specifies type

Ti 5 H E neuroni is excitatory
I neuroni is inhibitory

We do not allow autapses, which meansPii 5 0.
The connection probabilities consist of four numbers, correspond-

ing to the four combinations of pairs of excitatory and inhibitory
neurons. We parameterize these four numbers with the quantitiesKTj

and BTj
, whereKTj

is the mean number of postsynaptic neurons a
presynaptic neuron connects to andBTj

is the connectivity bias

KTj
; NEPETj

1 NIPITj
(11a)

BTj
;

PITj

`

PETj

` (11b)

where, recall,NE andNI are the number of excitatory and inhibitory
neurons, respectively. Note thatBTj

. 1 indicates a bias toward
inhibitory neurons, whereasBTj

, 1 indicates a bias toward excitatory
ones.
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Inverting Eq. 11yields the expressions for the connection proba-
bilities in terms of the mean number of connections and bias

PETj

` 5
KTj

NE 1 NIBTj

(12a)

PITj

` 5
KTj

BTj

NE 1 NIBTj

(12b)

Equation 12is sufficient to specify connectivity in the infinite range
regime.

For local connectivity,Pij depends on distance between neurons.
For “distance between neurons” to make sense we need to assign to
each neuron a spatial location. We work in a two-dimensional space,
and specify the location of a neuron in polar coordinates, (r, u), where
r is radius andu is azimuthal angle. Neurons are randomly assigned
a position according to the probability distributionP(r, u) whereP(r,
u)rdrdu is the probability that a neuron falls within the area bounded
by [r, r 1 dr] and [u, u 1 du]. For P(r, u) we use the azimuthally
symmetric function

P~r , u! 5
1 2 tanh @~r 2 2 1!/Dr#

pDr ln @1 1 exp~2/Dr!#
(13)

whereDr is the width of the transition region between approximately
constant density and near zero density; i.e., the distributionP(r, u) is
approximately flat for radiusr , 1 2 Dr and drops rapidly to nearly
zero in a transition region of width 2Dr.

Using the probability distribution given inEq. 13 to assign a
position, xi [ (ri cos ui, ri sin ui), to every neuroni, the distance
between two neurons is then given simply by the Euclidean norm,
dij [ uxi 2 xju. We use a Gaussian profile for local connectivity, for
which the probability of making a connection is modulated by the
factor exp(2dij

2/2sTj

2 ) where sTj
is a parameter that determines the

axonal spread of neurons of typej. Thus

Pij 5 PTiTj

`
e2dij

2/2sTj

2

ZTj

whereZTj
is chosen so that the mean connection probability of a

neuron placed at the origin (r 5 0) is equal toPTiTj

` . In our
calculations we use an approximate expression for the normaliza-
tion, valid in the limit thatDr ! 1 [so thatP(r, u) 5 1/p whenr #
1 and zero whenr . 1]. In this limit

ZTj
5 E

0

2p du

p E
0

1

rdr exp~2r 2/2sTj

2 ! 5 2sTj

2 @1 2 exp~21/2sTj

2 !#

This expression forZTj
is valid as long asZTj

$ PTiTj

` , which can
always be satisfied by taking the limitsTj

3 ` (in this limit ZTj
3

1). We impose the conditionZTj
$ PTiTj

` in all our simulations.
We consolidate the infinite range and local connectivity models by

using the local connectivity description and settingsTj
5 ` whenever

we want to recapture the infinite range case.
The strength of a connection, once one is made, is determined by

the size ofWij . To ensure thatWij is in a biophysically reasonable
range, we need a relation between it and the sizes of both excitatory
and inhibitory PSPs. To derive such a relation, we useEq. 5a to
compute, as a function ofWij , the peak voltage in response to a single
presynaptic action potential. For definiteness we consider a neuron
whose resting membrane potential is the nominal one,Vr (which
implies thatÎa 5 0), and assume that the neuron has not produced an
action potential for a sufficiently long time that bothĝK and ĝK2Ca

have decayed to zero. Under these conditions,Eq. 5a for the mem-
brane potential can be combined withEq. 6for the synaptic current to
yield

tcell

dVi

dt
5

~Vi 2 Vr!~Vi 2 Vt!

DV
2 O

j

Wijsij~t!~Vi 2 % j!

Letting dVi [ Vi 2 Vr, linearizing the resulting equation, and assum-
ing the synaptic drive is small, we find thatdVi evolves according to

tcell

ddVi

dt
1 dVi 5 2O

j

Wijsij~Vr 2 % j!

If neuronj fires at timet 5 0, the fraction of open channels,sij , jumps
instantaneously from 0 tors and subsequently decays exponentially:
sij(t , 0) 5 0, sij(t $ 0) 5 rs exp(2t/ts) (recall thatts is the decay
time of the open channels andrs is the use parameters; seeEq. 7).
Combining this time dependence forsij with the initial conditiondVi

(t 5 0) 5 0, the above equation has the solution

dVi~t! 5 Wij~% j 2 Vr!r s

exp~2t/tcell! 2 exp~2t/ts!

tcell/ts 2 1

This expression implies thatudVi(t)u is maximum whent 5 ln (tcell/
ts)/(ts

21 2 tcell
21) [ t0. DefiningVPSPij

[ dVi(t0), it is straightforward
to show that

Wij 5
VPSPij

% j 2 Vr

1

r s

tcell

ts

expF log ~tcell/ts!

tcell/ts 2 1 G (14)

In our simulations, rather than specifying the size ofWij directly, we
specify the sizes of the excitatory and inhibitory PSPs (VPSPij

with the
type of neuronj chosen appropriately) and then useEq. 14to deter-
mine Wij .

PARAMETERS. Table 1 contains a list of all parameters used in our
simulations. Parameters followed by an asterisk are the ones we vary;
for those, a range or set of values is given. Parameters not followed by
an asterisk remain constant throughout the simulations. The grouping
into single-cell, synaptic, and network parameters is in most cases
clear; the exceptions areVEPSPandVIPSP, the nominal amplitudes of
the excitatory and inhibitory postsynaptic potentials. These are usually

TABLE 1. Parameters used in the simulations

Single-cell parameters
tcell 10 ms
Vr 265 mV
Vt 250 mV
Vapex 120 mV
Vrepol 280 mV
%K 280
dĝK 1
tK 30 ms
dĝK2Ca 0–0.08*
tK2Ca 2,000 ms
Îmax 2.4–5.0*

Synaptic parameters
rs 0.1
ts 3 ms

Network parameters
Neurons 104

Inhibitory fraction 0.2–0.3*
KE, KI 200, 1,000*
BE, BI 0.8–1.4*
Dr 0.1
sE, sI 0.12–̀ *
VEPSP 4.0, 1.0 mV*
VIPSP 26.0, 21.5 mV*
Excitatory reversal potential 0 mV
Inhibitory reversal potential 280 mV

Miscellaneous
Time step 1 ms

* Parameters that were different forNetworks AandB.

811INTRINSIC DYNAMICS IN NEURONAL NETWORKS. I. THEORY



thought of as synaptic or single-cell properties, but in our simulations
we use them only to determine the connectivity matrix,Wij , via Eq.
14. Specifically, VPSPij

5 VEPSP when neuronj is excitatory and
VPSPij

5 VIPSPwhen neuronj is inhibitory. Thus they are listed under
network parameters.

We performed simulations with two networks, which we denote
network Aand network B.The former was chosen to simulate net-
works of cortical neurons, the latter to simulate networks of cultured
mouse spinal cord neurons in which we did experiments relevant to
the theoretical predictions made here (Latham et al. 2000). They differ
primarily in their connectivity and postsynaptic potential amplitude,
network Ahaving high, infinite range connectivity and small PSPs and
network Bhaving low, local connectivity and large PSPs. The param-
eters specific to each network are given in Table 2, which contain all
the parameters marked with an asterisk from Table 1. A dash in Table
2 indicates parameters that are varied during the course of the simu-
lations.

Most of the parameters in Tables 1 and 2 are either dimensionless
or have physical units. There are, however, three normalized param-
eters:Îmax, which has units of voltage, anddĝK anddĝK2Ca, which are
both dimensionless. To convert these to their correct physical units
(Amps for current and Siemans for conductance) divide by the cell
membrane resistance.

Simulations were performed with a fourth-order Runge-Kutta inte-
gration scheme. In all simulations reported we used a time step of 1
ms. We occasionally checked that this was short enough by decreasing
the time step to 0.5 ms, and in no cases did we see a change in our
results.

Choice of simulation parameters

In choosing parameters we attempted to stay close to values ob-
served in two different systems: networks of cortical neurons, and
networks of cultured mouse spinal cord neurons in which we did
experiments relevant to the theoretical predictions made here (Latham
et al. 2000). These two systems differ primarily in their connectivity
and postsynaptic potential amplitude, the former having high connec-
tivity and small PSPs, the latter low connectivity and large PSPs. Thus
most parameters were the same for the two model networks used in
our simulations, and these were relatively standard; the parameters
that differed pertained to connectivity and PSP amplitude, mirroring
the differences between cortical and cultured spinal cord networks.

As is well-known, connectivity in cortex is high; each neuron
connects to approximately 7,000 others (Braitenberg and Schu¨z
1991). The size of a local circuit, assuming such a thing exists, is more
difficult to determine. However, given that axonal spread is measured
in hundreds of micrometers and the density of neurons is;105/mm3

(Braitenberg and Schu¨z 1991), a local circuit on the order of 100,000
neurons is a reasonable estimate. Unfortunately, we do not yet have
the computational power to model such large networks. Consequently,
we considered networks of only 10,000 neurons, each of which made
;1,000 connections. To make up for the reduced connectivity in our
model network we increased the size and frequency of the postsyn-

aptic potentials: instead of using the more realistic numbers of 0.2 mV
for EPSPs (Komatsu et al. 1988; Matsumura et al. 1996) and21 mV
for IPSPs (Tama´s et al. 1998), we typically used 1.0 and21.5 mV.
The frequency of PSPs was increased in our model by ignoring
failures, so neurotransmitter was released every time an action poten-
tial occurred.

Unlike cortex and spinal cord in vivo, cultured spinal cord networks
are intrinsically localized. However, connectivity in our particular
preparation has not been characterized. We thus made estimates as
follows. The number of connections a neuron makes isAsPA, where
A is the area of the axonal arborization,s is the number of neurons per
area, andPA is the probability that a neuron connects to another
neuron within its axonal arborization. We measured axonal arboriza-
tion from neurons visualized after intracellular injection with horse-
radish peroxidase (Neale et al. 1978), and found it to be 2.06 0.86
mm2 (mean6 SD, n 5 12 neurons). The density of our cultures,s,
was 23.76 10.2 neurons/mm2 (n 5 10 culture dishes). Thus a single
neuron is capable of connecting to;475 others. Finally, in paired
recordings (Nelson et al. 1981), approximately one-half the cell pairs
tested were connected. This gives a connectivity of;240 connec-
tions/neuron. We used 200 connections/neuron in most of our simu-
lations, although we explored a range of values.

The size of the postsynaptic potentials is large in cultured spinal
cord neurons; on the order of 3–10 mV for EPSPs and approximately
26 mV for IPSPs (Nelson et al. 1981, 1983). In contrast to cortex,
transmission failures are not observed; this is because a presynaptic
neuron makes a large number of connections (;100) on each of its
postsynaptic targets (Nelson et al. 1983; Pun et al. 1986). In our
simulations we typically used EPSP and IPSP amplitudes of 4 and26
mV, respectively, and, for simplicity, we did not include variation.

The parameters given in Tables 1 and 2 were the ones we used in
the bulk of our simulations. InAPPENDIX A we studied the effects of
varying these parameters. In no cases did changing parameters pro-
duce network behavior that was inconsistent with our model. This
suggests that our model made robust predictions and that our simu-
lation results were not due simply to a particular choice of parameters.

Reduced network model

The reduced network model we use in our analysis is based on the
Wilson and Cowan equations (Wilson and Cowan 1972), in which the
dynamical variables are the mean excitatory and inhibitory firing
rates. Those equations are given in generic form inEq. 16of RESULTS.
Here we write down a particular realization of Wilson and Cowan–
type equations that we augment by including spike-frequency adap-
tation.

Although it would be desirable to start with the equations describ-
ing the full network simulations and derive from those a set of mean
firing rate equations, this is essentially impossible to do analytically
except in highly idealized cases (van Vreeswijk and Sompolinsky
1998), and extremely difficult numerically. Thus we propose a set of
reduced equations designed to capture qualitative, but not quantita-
tive, features of large-scale networks. Denotingn#E andn# I as the mean
excitatory and inhibitory firing rates (averaged over neurons), andGE

andGI as the mean level of spike-frequency adaptation of the exci-
tatory and inhibitory populations, we let these variables evolve ac-
cording to

tE

dn# E

dt
5 g@A~CEEn# E 2 CEIn# I 1 umax 2 GE!/~1 1 n# I!# 2 n# E (15a)

tI

dn# I

dt
5 g@A~CIEn# E 2 CIIn# I 1 umax 2 GI!/~1 1 n# I!# 2 n# I (15b)

tSFA

dGE

dt
5 dGn# E 2 GE (15c)

TABLE 2. Networks used in the simulations

Parameter Network A Network B

KE, KI 1,000 200
VEPSP, mV 1.0 4.0
VIPSP, mV 21.5 26.0
Inhibitory fraction 0.20 0.30
sE, sI ` 0.12
Îmax, mV — —
BE, BI — —
dĝK2Ca — —

Dash indicates parameters that were varied during the simulations.
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tSFA

dGI

dt
5 dGn# I 2 GI (15d)

where tE and tI are the time scales for relaxation to a firing rate
equilibrium, tSFA is the characteristic time scale for changes in the
level of spike-frequency adaptation,A is the overall amplitude of the
gain functions, theCLM, L, M 5 E, I, correspond to connectivity
among the excitatory (E) and inhibitory (I) populations,dG corre-
sponds to the coupling between firing rate and spike-frequency adap-
tation, umax controls network excitability, andg(x) is a thresholding
function that saturates atnmax, the maximum firing rate of the neurons,

g~x! ; nmaxH 0 x # 0
tanh ~x/nmax! x . 0

The mean levels of spike-frequency adaptation,GE andGI, are related
loosely togK2Ca in the network simulations,dG is related todĝK2Ca,
andumax is related toÎmax.

The qualitative features that these equations capture are1) the gain
functions, g(. . .), are generally increasing functions of excitatory
firing rate and decreasing functions of inhibitory firing rate [theCLM

are all positive andg(x) is a nondecreasing function ofx], 2) increas-
ing the firing rate increases spike-frequency adaptation (dG is posi-
tive), 3) increasing the level of spike-frequency adaptation reduces
firing rates,4) the gain functions are approximately threshold-linear,
consistent with the numerical gain functions in Fig. B1A, and5) the
gain is reduced by a divisive term proportional to the inhibitory firing
rate. The divisive term, which has been proposed as a mechanism for
gain control in cortical neurons (Carandini and Heeger 1994; Caran-
dini et al. 1997; Heeger 1992; Nelson 1994), was included for two
reasons. First, it was observed in our simulations: Fig. B1A in APPEN-
DIX B shows a pronounced drop in gain as the inhibitory firing rate
increases. Second, curved nullclines are essential for the existence of
the saddle-node bifurcation that produces bursting (Fig. 5), and the
divisive term increases nullcline curvature, thus making bursting more
robust.

We are interested in understanding the dynamics represented byEq.
15 in the regime in whichtE andtI are on the order of the membrane
time constant,;10 ms, andtSFAis on the order of the spike-frequency
adaptation time, which can be as high as several seconds. ThustE,
tI ! tSFA, and we can use the fast/slow dissection proposed by Rinzel
(1987) to analyze the dynamics. With this approach, the full four-
dimensional system is reduced to two subsystems: a fast one corre-
sponding to the population firing rates,n#E and n# I, and a slow one
corresponding to the level of spike-frequency adaptation,GE andGI.
Although this represents a major simplification, it still leaves us with
three main behaviors: steady firing, oscillations, and bursting. The first
two can be readily understood in terms of the two-dimensional firing
rate dynamics withGE and GI held fixed; only the third, bursting,
requires the interaction of all four variables. We thus briefly discuss a
method for its analysis.

The idea behind the fast/slow dissection is thatn#E and n# I relax
rapidly to an attractor (either a steady state or oscillations) compared
with the time scale over whichGE andGI change. Motion in theGE 2
GI plane is then determined beEqs. 15cand 15d with n#E and n# I

evaluated on their attractor. In the purely bursting regime, for attain-
able levels of spike-frequency adaptation the network is either silent
or fires steadily; the attractor is a fixed point for given values ofGE

andGI. In this steady-state regime, the mean inhibitory firing rate,n# I,
is a single-valued function of the mean excitatory rate,n#E (see Fig.
3B). The dynamics associated withEq. 15can thus be reduced to three
dimensions, and the important features of the dynamics are captured
by a three-dimensional bifurcation diagram that consists of a sheet
whose height above theGE 2 GI plane represents the value ofn#E.
Bifurcations (sudden changes in firing rate) occur at folds in the sheet.

For a particular set of parameters, the trajectory in theGE 2 GI

plane is typically a closed curve that exhibits sudden changes of

direction at bifurcation points. If the trajectory collapses onto, or
almost onto, a single curve, we may make a further, approximate,
reduction to a two-dimensional bifurcation diagram ofn#E versusGE.
For the parameters considered inRESULTS (Fig. 6), the curve in the
GE 2 GI plane collapsed almost to a line, resulting in the two-
dimensional bifurcation diagrams shown in Fig. 6,C–E.For each of
these diagrams the lines were found numerically using least-squares
regression. The equations for the lines were as follows: Fig. 6C
(umax5 0),GI 5 0.001 0.64GE, R2 5 1.0000; Fig. 6D (umax5 0.25),
GI 5 0.01 1 0.65GE, R2 5 0.9996; Fig. 6E (umax 5 0.52), GI 5
0.031 0.65GE, R2 5 0.9999.

R E S U L T S

In this section we investigate how single neuron and network
properties affect intrinsic firing patterns. We use as our model
system large, isolated networks with random, sparse connec-
tivity and develop a theory that describes the firing patterns in
such networks in the low firing rate regime. We then test
specific predictions of this theory by performing simulations
with large networks of spiking neurons. Robustness of the
theory is verified inAPPENDIX A, where we examine a broad
range of single neuron and network parameters.

Theory

The theoretical development is divided into three parts:1)
analysis of networks that do not exhibit adaptation,2) analysis
of the more realistic, and more biologically relevant, case of
networks that do exhibit adaptation, and3) analysis of the
stability of low firing rate equilibria.

LOW FIRING RATE EQUILIBRIA IN SPARSE, RANDOMLY CONNECTED

NETWORKS WITHOUT ADAPTATION. To describe the dynamics of
large, sparse, randomly connected networks, we start with the
model proposed by Wilson and Cowan (1972). We use as our
dynamical variables the mean excitatory and inhibitory firing
rates, denotedn#E and n# I, respectively. In terms of these vari-
ables, the Wilson and Cowan model can be cast in the form

tE

dn# E

dt
5 FE~n# E, n# I! 2 n# E (16a)

tI

dn# I

dt
5 FI~n# E, n# I! 2 n# I (16b)

wheretE andtI are time constants that determine how fast the
network relaxes to its equilibria andFE andFI are the exci-
tatory and inhibitory gain functions. The gain functions deter-
mine the network firing rates at one instant of time given the
firing rates at an earlier time. Specifically, if the average
excitatory and inhibitory firing rates at timet aren#E andn# I, then
FE andFI are the average excitatory and inhibitory firing rates
at timest 1 tE andt 1 tI, respectively. In the original Wilson
and Cowan equations the gain functions consisted of two
terms, one associated with the neurons’ refractory period and
one with the “subpopulation response function” (Wilson and
Cowan 1972). Because we are interested in low firing rates, we
have ignored the term associated with the refractory period.

The first step in the analysis ofEq. 16 is to examine the
equilibria. The equilibrium equations, which are found by
setting both dn#E/dt and dn# I/dt to zero, are

0 5 FE~n# E, n# I! 2 n# E (17a)
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0 5 FI~n# E, n# I! 2 n# I (17b)

The solutions toEqs. 17aand 17b are curves in the (n#E, n# I)
plane. These curves are referred to as the excitatory and inhib-
itory nullclines, respectively (for a discussion of nullclines
similar to ours, see Rinzel and Ermentrout 1998). The aim of
this section is to understand how the nullclines depend on
single neuron and network properties. Because the shapes of
the nullclines are completely determined by the gain functions,
we begin by examining how the gain functions depend on these
properties.

At high firing rates the gain functions are stereotypically
sigmoidal, independent of single neuron and network parame-
ters: whenn# I is large, both gain functions approach zero asn#E
approaches zero, rise rapidly asn#E increases past some critical
value, and approach the maximum neuronal firing rate asn#E
becomes large. Similarly, whenn#E is large, the gain functions
are sigmoidal versusn# I but with negative slope. At very low
firing rates, however, the gain functions become sensitive to
both single neuron and network properties. It is the single
neuron properties, however, that have the largest effect on the
gain functions, because at very low firing rates the gain func-
tions are determined primarily by the responses of neurons at
rest to a very small number of EPSPs. This led us to divide
networks into three regimes based on single neuron response
properties. Each regime produces qualitatively different gain
functions and thus, as we will show, qualitatively different
nullclines. Those regimes are as follows:

1) None of the cells have their resting membrane potential
within one EPSP of threshold for the generation of an action
potential; i.e., no cell fires in response to a single EPSP, which
in turn implies that no cells are endogenously active.

2) Some cells have their resting potential within one EPSP
of threshold, but none are endogenously active.

3) Some cells are endogenously active.
In Fig. 2A we plot FE(n#E, 0) versusn#E for these three

regimes. We chosen# I 5 0 in this plot because it accentuates the

differences among the gain function. The three regimes are
distinguished by the value and the slope of the gain function at
the origin of the (n#E, n# I) plane. Inregime 1the cells are far
enough from threshold that a single action potential cannot
cause any neurons to fire, so the gain function and its slope are
both zero at the origin. Inregime 2,as inregime 1,the neurons
cannot fire without input, soFE(0, 0) is again zero. However,
a single action potential can cause cells to fire and thus ignite
network activity; consequently the origin is unstable and the
slope there is greater than one. Inregime 3a fraction of the
neurons fire without input, soFE(0, 0) . 0.

In Fig. 2B we plot FI(0, n# I) versusn# I, again for the three
regimes listed above. The behavior here is somewhat simpler:
in regimes 1and2, FI(0, n# I) 5 0 for all values ofn# I, whereas
in regime 3,FI(0, n# I) is greater than zero whenn# I 5 0 and
decreases monotonically with increasingn# I.

Armed with the shapes of the gain functions in the three
regimes, we are now in a position to construct the nullclines.
That construction is done graphically: starting with the excita-
tory nullcline, we plot the functionFE(n#E, n# I) versusn#E for
various values ofn# I and look for intersections with the line
FE 5 n#E. This is shown in Fig. 3A for regime 1(no cells within

FIG. 2. Schematic of the excitatory and inhibitory gain functions in the 3
regimes discussed in the main text.A: excitatory gain functions. Inregime 1,
FE(n#E, 0) is zero whenn#E 5 0 (neurons do not fire without input), and its slope
at n#E 5 0 is also zero (a single action potential cannot make a neuron fire, and
thus cannot produce any activity in a silent network). Inregime 2the neurons
still cannot fire without input, soFE(0, 0) is again zero. However, because a
single action potential can cause cells to fire and thus ignite network activity,
the slope atn#E 5 0 is greater than one. The condition for a slope greater than
one is that at least 1/KEE of the excitatory neurons have their resting membrane
potential within one excitatory postsynaptic potential (EPSP) of threshold,
whereKEE is the mean number of excitatory connections made by an excitatory
neuron. BecauseKEE is large, this could easily occur. Inregime 3some of the
neurons fire without input, soFE(0, 0) . 0. B: Inhibitory gain functions. In
regimes 1and2, FI(0, n# I) 5 0, whereas inregime 3,FI(0, 0) . 0.

FIG. 3. Gain functions and nullclines when none of the cells have their
resting membrane potential within one EPSP of threshold (regime 1): A:
excitatory gain curves,FE(n#E, n# I), vs. n#E for various values ofn# I. Only the
curve withn# I 5 0 is labeled; the other curves correspond to increasingly larger
values ofn# I. Each intersection between a gain curve and the lineFE 5 n#E

corresponds to a point on the excitatory nullcline, as indicated by the connect-
ing dashed lines.B: inhibitory gain curve,FI(n#E, n# I), vs.n# I for various values
of n#E. Again, only the curve withn#E 5 0 is labeled (the straight line atFI 5
0); the other curves corresponds to increasingly larger values ofn#E. Again,
each intersection between a gain curve and the lineFI 5 n# I corresponds to a
point on the excitatory nullcline, as indicated by the connecting dashed lines.
C: the associated excitatory (gray) and inhibitory (black) nullclines. These
nullclines separate regimes where the time derivatives of the firing rates are
positive from regimes where they are negative: dn#E/dt is positive below the
excitatory nullcline and negative above it, whereas dn# I/dt is positive to the right
of the inhibitory nullcline and negative to its left. This rule is illustrated by the
horizontal and vertical arrows, which indicate the signs of dn#E/dt and dn# I/dt,
respectively.
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one EPSP of threshold). Each of the intersections, including the
one at the origin, is a solution toEq. 17aand thus corresponds
to a point on the excitatory nullcline. Dashed lines connect the
intersections to the excitatory nullcline, which is drawn in gray
in the two dimensional (n#E, n# I) plane directly below the gain
curves (Fig. 3C). Note that the gain curves in Fig. 3A that
correspond to low values of the inhibitory firing rate have three
intersections with the lineFE 5 n#E. In addition, all gain curves
intersect at the origin, which implies that then# I axis is part of
the excitatory nullcline. For a similar construction in an all-
excitatory network, see O’Donovan et al. (1998).

The excitatory nullcline in Fig. 3C has the following inter-
pretation: for small enough inhibition the network can either
fire stably at high rate (the negatively sloped region of the
excitatory nullcline) or be completely silent (then# I axis).
Between those two extremes is a threshold. That threshold,
which lies on the region of the nullcline with positive slope,
represents an unstable equilibrium at fixed inhibitory drive.
These differences in stability naturally divide the excitatory
nullcline: the region with positive slope is an unstable branch;
the regions with negative slope, including then# I axis (which is
considered to have a slope of2`), are stable branches.

Construction of the inhibitory nullcline is also done graph-
ically: again we plotFI(n#E, n# I) versusn# I for various values of
n#E and look for intersections with the lineFI 5 n# I (Fig. 3B).
These intersections correspond to points on the inhibitory
nullcline, which is drawn in black in the two-dimensional (n#E,
n# I) plane to the right of the gain curves (Fig. 3C). In contrast to
the excitatory one, which has both stable and unstable
branches, the inhibitory nullcline has a single branch that is
everywhere stable at fixedn#E.

Construction of the nullclines in the other two regimes is a
straightforward extension of the above method. We thus turn
our attention to how those nullclines affect the stability and
location of firing rate equilibria. We begin withregime 1,in
which no cells are within one EPSP of threshold.

In regime 1we find three intersections between the excita-
tory and inhibitory nullclines, and thus three equilibria (Fig.
4A). A necessary condition for the local stability of an equi-
librium is that the inhibitory nullcline intersect the excitatory
one from below (Rinzel and Ermentrout 1998) (see also the
sectionSTABILITY OF LOW FIRING RATE EQUILIBRIA). Consequently,
the lower intersection on the unstable branch (marked “U” in
Fig. 4A) is unstable. There are thus two possible locally stable
equilibria in this figure, one at zero firing rate (marked “S,”
meaning absolutely stable because there are no endogenously
active cells to ignite activity once the network falls silent) and
the other on the rightmost branch of the excitatory nullcline
(marked “M” for metastable, meaning the lifetime of the equi-
librium is finite). The rightmost branch corresponds to high
firing rate, so neither of these equilibria are at low, but nonzero,
firing rate. Consequently, this configuration of nullclines can-
not generate the low firing rates observed in vivo.

Is it possible to achieve a locally stable equilibrium at low
firing rate inregime 1?Reexamining Fig. 4A, we see that such
an equilibrium could be achieved by bending the inhibitory
nullcline up so that it intersects the unstable branch of the
excitatory nullcline from below (Fig. 4B; equilibrium marked
M). Although such an intersection is possible, it occurs in an
extremely restricted parameter regime: small changes in either
network or single neuron parameters would shift the equilib-

rium to high firing rate or eliminate it altogether. This problem
is especially severe in high connectivity networks where the
nullclines are straight, as shown in Fig. 4C (van Vreeswijk and
Sompolinsky 1996, 1998). Moreover, even if the equilibrium
does exist and is locally stable, it is only metastable: relatively
small downward fluctuations in firing rate can drive the net-
work to the nearby equilibrium at zero firing rate, where it
would remain forever.

The reason it is difficult to achieve robust, low firing rates in
regime 1is that there is a gap between the origin of the (n#E, n# I)
plane and the unstable branch of the excitatory nullcline, as
shown in Fig. 4,A–C.The gap arises because neurons cannot
fire below 0 Hz. This lower bound effectively cuts off the
bottom portion of the excitatory nullclines, as seen in the
nullcline construction, Fig. 3,A and C. Thus it is the lower
bound on firing rate that ultimately constrains the nullclines to
have the shapes depicted in Fig. 4,A–C. Given those shapes,
simple geometrical arguments determine the location and sta-
bility of the firing rate equilibria.

In regime II, in which some neurons have their resting
membrane potential within one EPSP of threshold, a single
action potential can cause a chain reaction that ignites the
network. Consequently, an arbitrarily small excitatory firing
rate is sufficient to produce network activity. This eliminates

FIG. 4. Nullclines in the 3 regimes described in the main text. Excitatory
and inhibitory nullclines are shown with gray and black lines, respectively. As
in Fig. 3, dn#E/dt is positive below the excitatory nullcline and negative above
it, whereas dn# I/dt is positive to the right of the inhibitory nullcline and negative
to its left. S, M, and U indicate stable, metastable, and unstable equilibria,
respectively.A: regime 1,none of the cells have their resting membrane
potential within one EPSP of threshold. There is a stable equilibrium at zero
firing rate and a metastable one at high firing rate, but the low firing rate
equilibrium is unstable.B: regime 1,with strong curvature introduced in the
inhibitory nullcline to create a metastable, low firing rate state.C: regime 1,in
the very high connectivity limit where the nullclines are straight. In this limit
3 properties conspire to eliminate the possibility of a low firing rate equilib-
rium: the inhibitory nullcline is tied to the origin, there is a gap between the
origin and the unstable branch of the excitatory nullcline, and the nullclines are
straight. D: regime 2, some cells are within one EPSP of threshold. A
metastable state can exist. This state persists even in the high connectivity
limit, where the nullclines become straight.E: regime 3,endogenously active
cells are present. A single, globally attracting equilibrium can exist.F: same as
E except in the very high connectivity regime.
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the gap in Fig. 4,A–C,resulting in the nullclines illustrated in
Fig. 4D. Figure 4D shows a low firing rate equilibrium (marked
M, again for metastable) that does not require the nullclines to
have strong curvature, so it can exist even in high connectivity
networks. However, the parameter range in which the equilib-
rium is stable is still relatively narrow: small changes in single
neuron properties can cause resting membrane potentials to
shift downward so that none of the cells are within one EPSP
of threshold, or upward so that some cells cross threshold and
become endogenously active. In addition, because fluctuations
can cause a drop to zero firing rate, where the network will
remain forever, the equilibrium is metastable. Again, this effect
can be traced to the fact that neurons cannot fire below 0 Hz.

The nullclines forregime 3,in which some cells are endo-
genously active, are presented in Fig. 4E. The addition of
endogenously active cells eliminates the equilibrium along the
n# I axis, transforming the excitatory nullcline from two distinct
curves into one continuous one. This transformation allows a
robust, globally stable, low firing rate equilibrium at the inter-
section between the excitatory and inhibitory nullclines
(marked S in Fig. 4E). The corresponding set of nullclines in
the high connectivity regime is shown in Fig. 4F.

The existence of a robust, stable low firing rate equilibrium
when endogenously active cells are present, and the absence of
such an equilibrium when they are not, leads to the following
prediction: an isolated network that fires steadily at low rate for
an infinitely long time must contain endogenously active cells.
This does not mean that such cells are absolutely essential for
finite-lifetime, low firing rate states; long-lived metastable
states can exist in networks where all cells have their resting
membrane potential below threshold. However, the parameter
regime for this is narrow, and, as we will see below, it vanishes
altogether when spike-frequency adaptation is taken into ac-
count.

These conclusions apply whether endogenous activity arises
through an intrinsic membrane property (e.g., a persistent
inward current), noise-driven voltage fluctuations, or any other
mechanism. They also apply to networks that receive external
input. For example, consider a network that has no endog-
enously active cells, but instead receives sufficient external
input that some cells fire without input from neurons within the
network. The existence of these pseudoendogenously active
cells place the network inregime 3,which allows a robust low
firing rate equilibrium to exist. If, on the other hand, the same
network receives external input that is too weak to cause any
neurons to fire, then a robust low firing rate equilibrium is not
possible.

EFFECT OF ADAPTATION ON FIRING PATTERNS. So far we have
assumed that the gain curves, and thus the nullclines, are static.
In fact, this is not the case for real neurons. Because of
spike-frequency and/or synaptic adaptation, nullclines are dy-
namic objects that depend on the history of activity, not just the
activity at a single point in time. To incorporate this history
into our analysis, we assume that neurons adapt slowly com-
pared with the time it takes a network to reach equilibrium.
Consequently, at any instant in time the equilibrium firing rates
occur at the intersection of the excitatory and inhibitory
nullclines, just as they did above. However, the equilibria are
not fixed: adaptation causes slow changes in the nullclines, and
thus in the equilibrium firing rates.

This process, slow changes in the level of adaptation accom-
panied by rapid relaxation to a local firing rate equilibrium, can
have two distinct outcomes. One is that the firing patterns
change very little: the firing rates may simply shift slightly, or,
perhaps, oscillate slowly as adaptation affects the equilibrium
and vice versa. The other is that adaptation-induced shifts in
firing rate may be large enough that firing rate equilibria are
created and destroyed. This much more dramatic effect occurs
as follows. Consider a network that starts in a state character-
ized by the nullclines given in Fig. 5A. The black dot at the
intersection of the excitatory and inhibitory nullclines corre-
sponds to a firing rate equilibrium at a fixed level of adaptation.
As the level of adaptation increases, the nullclines shift. Small
shifts lead to a bistable state (Fig. 5B) but produce only a small
change in firing rate. With larger shifts, however, the nullclines
pull apart (Fig. 5C), and bistability gives way to a single stable
state at zero firing rate. When this happens the network firing
rate crashes to zero, at which point the level of adaptation starts
to decrease. When the adaptation has dropped enough that the
equilibrium at zero firing rate disappears (Fig. 5A via Fig. 5B),
firing resumes and a new cycle starts.

The second behavior, which results in bursting, is very
different from the first, which is characterized by a shift in
firing rate and/or slow oscillations. Because it is the endog-
enously active cells that prohibit an equilibrium at zero firing
rate, bursting requires the effective elimination of these cells.
Because such elimination cannot happen if the adaptation is
purely synaptic, synaptic adaptation alone cannot cause the
periodic crashes to zero firing rate that are characteristic of
bursting: even with total elimination of synaptic coupling,
firing rates remain finite because of the existence of endog-
enously active cells (but see O’Donovan et al. 1998 for an
alternate view in the context of a reduced firing rate model).
Periodic transitions between low firing rates (involving only
the endogenously active cells) and high rates (involving most
of the cells in the network) may be driven by synaptic adap-
tation, but this kind of bursting is not, to our knowledge,
typically observed.

FIG. 5. Excitatory and inhibitory nullclines at fixed levels of adaptation in
a regime where adaptation causes bursting. For clarity, only the parts of the
nullclines at low firing rate are shown. Because the level of adaptation changes
slowly, we refer to the intersections of the excitatory and inhibitory nullclines
as equilibria. These “equilibria,” which in fact change with time, are marked
by black dots.A: the level of adaptation is minimum, and there is only 1 firing
rate equilibrium; the equilibrium near zero has just disappeared via a saddle-
node bifurcation.B: the level of adaptation has increased, leading to a bistable
state. Barring large fluctuations, the network will stay near the higher firing
rate state.C: the level of adaptation is large enough that the equilibrium at
higher firing rate is eliminated, again via a saddle-node bifurcation. The
resulting crash to zero causes the level of adaptation to begin to decrease. With
time, this results in a shift to the low firing rate equilibrium inB. With a further
decrease in adaptation, the low firing rate equilibrium disappears (A), and the
firing rate jumps to a higher value. At this point the cycle repeats.
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In contrast to synaptic adaptation, spike-frequency adapta-
tion (adaptation that results in a decrease in a neuron’s firing
rate during repetitive firing; seeMETHODS) can introduce a
hyperpolarizing current sufficient to temporarily eliminate en-
dogenously actove cells, ultimately leading to bursting. Thus,
in the remainder of this paper, the only form of adaptation we
consider is spike-frequency adaptation.

The probability of spike-frequency adaptation eliminating
endogenously active cells is highest if there are few such cells
to begin with. Consequently, we expect a transition from
steady firing to bursting as the fraction of endogenously active
cells decreases. In addition, spike-frequency adaptation should
eliminate long-lived metastable states. This is because those
states rely on the existence of neurons close to threshold, but
neurons that exhibit spike-frequency adaptation experience a
drop in their resting membrane potential during repetitive
firing, and thus are pushed well below threshold. These two
observations lead to the following prediction: at a fixed, but
nonzero, level of spike-frequency adaptation, a network fires
steadily when there are many endogenously active cells, makes
a sudden transition to bursting when the number of endog-

enously active cells falls below a threshold, and makes a
second sudden transition to silence when all endogenously
active cells disappear.

To test this prediction in a simplified setting, we investigated
a firing rate model based on the Wilson and Cowan equations
but augmented by spike-frequency adaptation,Eq. 15of METH-
ODS. In this model we regulate neuronal excitability with a
single variable,umax, which can be thought of as the amount of
constant depolarizing current that is injected into each neuron.
As long asumax . 0, the fraction of endogenously active cells
increases monotonically withumax, whenumax 5 0 the fraction
of endogenously active cells vanishes, and asumax becomes
negative, neurons are pushed below the threshold for the emis-
sion of an action potential. The behavior of the model is shown
in Fig. 6. Figure 6A confirms thatumax, and thus the fraction of
endogenously active cells, controls firing patterns: the network
fires steadily whenumax is large (many endogenously active
cells are present), makes a transition to bursting whenumax
falls below a threshold, and becomes silent whenumax drops
below zero and endogenously active cells vanish from the
network. Figure 6B summarizes the behavior of the model in

FIG. 6. Particular realization of the Wilson and Cowan equations,Eq. 15of METHODS, showing transitions from steady firing to
bursting to silence.A: equilibrium firing rate of the excitatory population as a function ofumax, which regulates network excitability:
umax . 0 corresponds to the existence of endogenously active cells,umax , 0 corresponds to their absence (see text andMETHODS).
Whenumax . 0.51 there is a steady, low firing rate equilibrium, indicated by the single solid line to the right of the gray region.
As umax decreases, there is a transition to bursting. In the bursting regime (0, umax , 0.51) the firing rate periodically jumps
between 0 Hz and the solid black line (the mean firing rate averaged over a burst) above the gray region. Whenumax , 0,
corresponding to the absence of endogenously active cells, the network crashes to zero firing rate and stays there.B: mean excitatory
firing rate (n#E, black line) and mean level of excitatory spike-frequency adaptation (GE, gray line) vs. time in the bursting regime,
umax 5 0.25. Note that the level of spike-frequency adaption,GE, increases when the network is active and decreases when it is
silent. C–E: approximate 2-dimensional bifurcation diagrams (seeMETHODS). Black solid curves in each plot denote the stable
branches of the excitatory firing rate equilibrium; black dashed curve that connects them denotes the unstable one. Thick gray line
is the spike-frequency adaptation nullcline associated withEq. 15c.Thin dashed gray line is the trajectory.C: umax 5 0, so there
is a steady-state equilibrium at zero firing rate. A trajectory is shown that starts nearn#E 5 6, GE 5 0, traverses the bifurcation
diagram, and ends at the point marked “S” (for stable) atn#E 5 GE 5 0. D: umax 5 0.25, placing the network in the bursting regime.
The trajectory in this regime, which cycles indefinitely, reveals a relaxation oscillator; we refer to the resulting dynamics as bursting
because individual neurons fire repetitively during the active phase.E: umax5 0.52, placing the network just inside the steady firing
rate regime. A trajectory is shown that starts nearn#E 5 0, GE . 0, traverses the bifurcation diagram, and ends at the point marked
“S.” The transition between bursting and steady firing occurs at the point predicted by the bifurcation diagram: the spike-frequency
adaptation nullcline (the heavy gray line) passes onto the stable branch of the excitatory firing rate equilibrium atumax ' 0.52.
Parameters (seeEq. 15): tE 5 tI 5 10 ms,tSFA 5 2,000 ms,A 5 20, CEE 5 0.9,CEI 5 1.0,CIE 5 1.0,CII 5 1.4,G 5 0.2, and
nmax 5 ` (chosen large because the firing rate is far from saturation). Plots were made using XPP, developed by G. B. Ermentrout.
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the bursting regime: the mean excitatory firing rate,n#E, peri-
odically makes sudden jumps in firing rate, whereas the mean
level of spike-frequency adaptation for the excitatory popula-
tion, denotedGE, increases slowly when the network is active
and decreases slowly when the network is silent. Bifurcation
diagrams showing the equilibrium firing rate as a function of
the level of spike-frequency adaptation (the heavy black curve)
and theGE nullclines (the heavy gray line) are given in Fig. 6,
C–E for three regimes: silence (C), bursting (D), and steady
firing (E). The thin, gray dashed path in the bifurcation dia-
grams indicates the trajectory in firing rate/spike-frequency
adaptation space. It is the sudden jumps in this trajectory, at the
“knees” of the heavy black curve, that produce bursting.

STABILITY OF LOW FIRING RATE EQUILIBRIA. Although endog-
enously active cells are necessary for the existence of a stable,
low firing rate equilibrium, such cells do not guarantee either
of these properties. As parameters change, a low firing rate
equilibrium can become unstable via a Hopf bifurcation (Mars-
den and McCracken 1976), or it can be driven to high firing
rate. In this section we investigate stability, then discuss con-
ditions under which a network is both stable and fires at low
rate.

The stability of a firing rate equilibrium can be determined
by linearizing around a fixed point ofEq. 16and solving the
resulting eigenvalue equation (Rinzel and Ermentrout 1998).
Consider first the case without adaptation. In that case, the two
eigenvalues of the linearized firing rate equation, denotedl6,
are

l6 5
T 6 ÎT2 2 4D

2

whereT andD are the trace and determinant, respectively, of
the matrix

DF ; S tE
21~FE,E 2 1! tE

21FE,I

tI
21FI ,E tI

21~FI ,I 2 1! D
FL,M [ ­FL/­n#M, L, M 5 E, I, and the partial derivatives are
evaluated at the equilibrium. This last quantity,FL,M, is pro-
portional to coupling from neurons of typeM to neurons of
type L; e.g., FI,E is proportional to excitatory to inhibitory
coupling.

For an equilibrium to be stable bothl1 and l2 must be
negative. This requires that the determinant of the above ma-
trix, D, be positive and the trace,T, negative. After minor
manipulations of the determinant, we find that to satisfy the
first condition,D . 0, we must have

~FE,E 2 1!~1 2 FI ,I! , ~FI ,E!~2FE,I! (18)

(The above form was adopted because bothFI,I andFE,I are
negative.) It is not hard to show thatEq. 18is satisfied as long
as the slope of the excitatory nullcline is less than the slope of
the inhibitory one. As can be seen in Fig. 4E, an equilibrium
with this property is guaranteed to exist in networks with
endogenously active cells.

The second condition for stability,T , 0, may be written

1 2 FI ,I

tI

.
FE,E 2 1

tE

(19)

This condition implies that excitatory-excitatory (E-E) cou-
pling is destabilizing. It also tells us that inhibitory-inhibitory

(I-I) coupling is stabilizing. The latter result is somewhat
counterintuitive: why shouldI-I coupling, which reduces the
level of inhibition, have a stabilizing effect? The reason is that
I-I coupling is the only coupling that provides a restoring force
near an equilibrium:E-E coupling is locally repelling, whereas
E-I and I-E coupling produce only rotation around the equi-
librium. Consequently,I-I coupling must be strong enough to
drive the network back to equilibrium. When it becomes too
weak, the trace,T, becomes positive and the previously stable
fixed point turns into a stable limit cycle via a Hopf bifurcation.
Such a limit cycle is shown in Fig. 11 of Wilson and Cowan
(1972).

How does spike-frequency adaptation modify this picture?
Although it would be straightforward to formally incorporate
such adaptation into the above stability analysis, the resulting
eigenvalue equation is not especially informative. However,
the qualitative effects of spike-frequency adaptation are rela-
tively straightforward to understand. This kind of adaptation
results in negative feedback: increasing firing rates raises the
level of spike-frequency adaptation, which leads to a reduction
in firing rates; decreasing firing rates lowers the level of spike-
frequency adaptation, which leads to an increase in firing rates.
Because the negative feedback enters with a delay, spike-
frequency adaptation makes a network more likely to oscillate.
Its primary effect, then, is to change the threshold for oscilla-
tions; qualitatively, the strict inequality that guarantees stabil-
ity, Eq. 19,should be replaced by an inequality of the form
(1 2 FI,I)/tI 2 (FE,E 2 1)/tE . e, wheree depends primarily
on the level of spike-frequency adaptation.

Coupling affects overall firing rate as well as stability. We
can determine the relation between coupling and firing rate by
first categorizing its effect on the nullclines and then examining
how shifts in the nullclines affect firing rate. This is a straight-
forward application of previous analysis [e.g., increasingI-I
coupling lowers the inhibitory nullcline in the (n#E, n# I) plane,
which in turn increases the excitatory firing rate]. The results,
however, depend on the location of the equilibrium; i.e.,
whether it occurs on the unstable (positively sloped) branch of
the excitatory nullcline, as in Fig. 4E, or on the stable (nega-
tively sloped) branch, as would occur if the inhibitory nullcline
in Fig. 4E were raised slightly. InAPPENDIX B we show that the
excitatory nullcline has its minimum at a very small value of
the excitatory firing rate. The precise value depends on single
neuron and network properties, but for high connectivity net-
works typical of the mammalian cortex, we estimate inAPPEN-
DIX B that the minimum occurs below;0.1 Hz. This implies
that if excitatory firing rates above;0.1 Hz are observed in a
network firing at low rates, then the equilibriummustbe on the
unstable branch of the excitatory nullcline. In fact, networks
exhibiting purely inhibitory activity are unusual: whole cell
recordings in vivo (Calabresi et al. 1990; Metherate and Ashe
1993; Volgushev et al. 1992) and in our cultures (Latham et al.
2000) show a preponderance of EPSPs. In addition, there is
recent experimental evidence indicating that the equilibrium in
cortex occurs on the unstable branch (Tsodyks et al. 1997).
Thus here and in the remainder of this paper we assume that all
low firing rate equilibria occur on the unstable branch of the
excitatory nullcline, as in Fig. 4E.

With the location of the equilibrium set, it is straightforward
to show the effect of coupling on firing rate. That effect can be
summarized as follows: increasing same-type coupling (E-E or

818 LATHAM, RICHMOND, NELSON, AND NIRENBERG



I-I) raises firing rates, increasing opposite-type coupling (E-I or
E-I) lowers firing rates. Combining these effects with the above
results on stability, we see that the existence of a low firing rate
equilibrium that does not oscillate requires lowE-E coupling,
high opposite-type coupling, andI-I coupling in an intermedi-
ate range: not so high that it drives up firing rates, but not so
low that it causes oscillations.

SUMMARY OF THEORETICAL ANALYSIS. The tool we used to
analyze network behavior was a simplified firing rate model, in
which the dynamics of networks containing greater than 104

neurons was reduced to a small number of equations describing
average quantities. Rather than using a particular firing rate
model, we used geometrical arguments to derive generic net-
work behavior. Our primary assumptions were that, on aver-
age, excitatory input to a neuron increases its firing rate,
inhibitory input decreases it, and neurons exhibit spike-fre-
quency adaptation. With these assumptions, we were able to
show that1) endogenous activity is necessary for low firing
rates,2) decreasing the fraction of endogenously active cells
causes a network to burst, and3) firing patterns, especially
transitions between steady firing and oscillations, are depen-
dent on network connectivity. A specific realization of a sim-
plified firing rate model corroborated these predictions.

Simulations

To test the predictions made in the previous section, we
performed simulations with large networks of spiking model
neurons, as described inMETHODS. We examined1) the effect of
the distribution of applied depolarizing currents,Ia, on firing
patterns and2) how relative connection strengths among exci-
tatory and inhibitory populations affect network behavior.

We used two networks, denotedA and B. These networks
differed primarily in their connectivity and the sizes of the
PSPs of their constituent neurons.Network Awas designed to
simulate cortical networks. It contained 8,000 excitatory and
2,000 inhibitory neurons, and each neuron connected, on av-
erage, to 1,000 others. Connectivity was infinite range (mean-
ing the probability of 2 neurons connecting did not depend on
the distance between them; seeMETHODS), and PSPs were on
the order of 1 mV.Network Bwas chosen to be consistent with
our experiments (Latham et al. 2000) and to test whether the
predictions made for infinite range connectivity apply also to
local connectivity, for which the connection probability de-
pends on distance between neurons. It had fewer connections
per neuron thanNetwork A(200 instead of 1,000), local rather
than infinite range connectivity, larger PSPs (on the order of 5
mV rather than 1 mV), and a higher fraction of inhibitory
neurons (30% instead of 20%). A complete list of the param-
eters for each network is given in Tables 1 and 2 ofMETHODS.

Networks AandB behaved similarly, so in the bulk of this
section we concentrate onNetwork A.At the end of the section
we summarize the results ofNetwork B.

ENDOGENOUS ACTIVITY. For networks without spike-fre-
quency adaptation, the theoretical analysis presented above led
to the following predictions. If endogenously active cells are
present, then a stable, low firing rate equilibrium is possible. If
endogenously active cells are absent, a low firing rate equilib-
rium is still possible. However, it is metastable; the network
will eventually decay to a zero firing rate state. In this case

there is a further distinction between networks in which some
cells have their resting membrane potential within one EPSP of
threshold and networks in which none do. This distinction has
primarily qualitative bearing on firing patterns. In networks
containing cells that are one EPSP from threshold, a single
action potential can ignite activity in a silent network, so finite
firing rate states tend to be long lived. In networks with no cells
within one EPSP of threshold, finite firing rate states tend to
have shorter lifetimes.

Networks with spike-frequency adaptation differ from those
without it in two ways. First, as discussed in detail in the
previous section, networks with spike-frequency adaptation
exhibit a transition from steady firing to bursting as the fraction
of endogenously active cells decreases. Second, in networks
containing cells that are one EPSP from threshold but no
endogenously active ones, the lifetime of the metastable state is
extremely short—on the order of the spike-frequency adapta-
tion timescale, which is the inverse of the mean network firing
rate.

To test this set of predictions, and especially to examine how
networks with and without spike-frequency adaptation dif-
fered, we performed simulations in which we varied the dis-
tribution of applied current,Ia, both with and without spike-
frequency adaptation. We used a boxcar distribution in which
Ia was restricted to values between 0 andÎmax. This distribu-
tion, which is completely determined byÎmax, may be divided
into three regimes. These correspond to the three regimes just
discussed and to the ones listed inTheory.

1) Îmax , ÎE1, where ÎE1 is the normalized applied current
above which the resting membrane potential is within one
EPSP of threshold. None of the cells have their resting mem-
brane potential within one EPSP of threshold for the generation
of an action potential, which implies that none are endog-
enously active.

2) ÎE1 , Îmax , Îthresh, where Îthresh is the threshold for
endogenous activity. Some cells have their resting potential
within one EPSP of threshold, but none are endogenously
active.

3) Îthresh, Îmax. Endogenously active cells are present.
For values ofÎmax ranging from belowÎE1 to aboveÎthreshwe

ran simulations for 100 s and determined the excitatory and
inhibitory firing rates as follows. For networks that fired for the
full 100 s of the simulations, firing rates were simply averaged
over neurons and time. For networks that burst, the averages
were again over neurons, but only over the active phase of the
burst. For networks that crashed to zero firing rate, we extrap-
olated to infinite time and assigned a value of zero to the firing
rate.

Figure 7A shows a plot of firing rate versusÎmaxfor networks
whose neurons do not exhibit spike-frequency adaptation. As
predicted, the networks fired steadily for the full 100 s of the
simulations whenÎmax exceededÎthresh(which placed the net-
works in regime 3, endogenously active cells present). In
addition, long lived (.100 s) metastable states were observed
both in regime 2,where some cells are within one EPSP of
threshold, andregime 1,where no cells are within one EPSP of
threshold. Also as predicted, the parameter regime that sup-
ported these long-lived metastable states was small; it corre-
sponded to a range in maximum applied current of 0.07/Rcell,
or 2.3 pA for a 30 MV cell. This is only 2% (0.07/Îthresh) of the
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rheobase current for a model cell whose resting membrane
potential is 15 mV below threshold.

With spike-frequency adaptation present (Fig. 7B), network
behavior differed in two respects. First, the distinction between
regimes 1and 2 became irrelevant; in both regimes the life-

times of the metastable states dropped considerably, to,5 s
(data not shown). This was much shorter than the metastable
lifetimes observed in Fig. 7A, which were.100 s. Second, for
Îmax aboveÎthreshthe network burst. Bursting occurred because
there is an intermediate, bistable state (e.g., the nullclines
illustrated in Fig. 5B) that supports both steady firing and
silence. Transitions between steady firing and silence occur
when the bistability gives way to a single stable state, as
indicated by the nullclines in Fig. 5,A andC. The theoretical
prediction is that these transitions should be network-wide; this
is confirmed in Fig. 8, which shows spike rasters for 200
neurons along with a single-neuron trace of membrane voltage.

Comparing Fig. 7B with 6A, we see that the network simu-
lations and the reduced firing rate model,Eq. 15, produced
similar results. There was, however, a difference in behavior at
the transition from bursting to steady firing: in the network
simulations the firing rate varied smoothly at this transition,
whereas in the reduced model the firing rate exhibited a down-
ward jump. Thus, although the particular realization of the
simplified firing rate model captured the main qualitative result
(that there is a transition from steady firing to bursting to
silence as the fraction of endogenously active cells decreases),
it did not capture all the quantitative details. This is not
surprising, because we made no attempt to tune the parameters
of the reduced model to match the network simulations.

The boxcar distribution of applied current used in the above
network simulations is convenient because it produces a sharp
transition between networks with and without a sufficient num-
ber of endogenously active cells to ignite network activity.
However, it raises the possibility that the agreement we saw
between the predictions of the Wilson and Cowan model and
the network simulations was an artifact of a current distribution
with a sharp cutoff. To test this we performed two additional
sets of simulations. In one we used a smoother distribution of
applied currents than the boxcar used to produce the results
summarized in Fig. 7: the distribution was flat for 0# Îmax #
3.5 and had a Gaussian tail forÎmax. 3.5. In the other, we used
a boxcar distribution but introduced noise-driven fluctuations
in the membrane voltage capable of generating endogenous
activity. Both simulations produced identical results, and those
results were largely in agreement with the sharp cutoff/no noise
simulations. When there was no spike-frequency adaptation, as
the width of the Gaussian tail or the noise increased we saw a
transition from networks in which essentially only the endog-
enously active cells fired to networks in which most of the
neurons were active. When spike-frequency adaptation was
present, we observed transitions from silence to bursting to
steady firing with increasing tail width or noise. The only new
phenomenon was a narrow regime in which the network dis-
played irregular bursts. These bursts were associated with the
small number of endogenously active cells, either in the tail of
the distribution or produced by a relatively low level of noise.
Those cells caused random transitions between the equilibria
labeled “S” and “M” in Fig. 4B.

CONNECTIVITY. The theoretical predictions concerning the ef-
fect of coupling on stability and firing rate were1) decreasing
I-I and increasingE-E coupling both lead to oscillations in
firing rate and2) increasing same-type coupling (E-E or I-I)
causes mean firing rates to go up, whereas increasing opposite-
type coupling (E-I or I-E) causes mean firing rates to go down.

FIG. 7. Mean excitatory firing rate (■) vs. Îmax for Network A.(The inhibitory
rate, which is not shown, is;2.5 times higher for all data points.) The gray region
in B indicates bursting networks; for such networks, the top and bottom squares
show the firing rates in the active and silent phases of the burst, respectively.
Squares at zero that are not in the gray region indicate networks that crashed to
zero and remained there. Each firing pattern has associated with it a set of
nullclines with a particular underlying structure (see Fig. 4). Firing patterns are
matched to generic examples of their associated nullclines with arrows. Bursting
networks alternate between a set of nullclines with a stable, low firing rate
equilibrium, and a set of nullclines in which the only equilibrium is at zero firing
rate. As discussed in the main text (see especially Fig. 5B), between these 2
extremes is a bistable state supporting both steady firing and silence.A: no
spike-frequency adaptation. The networks either fire steadily for 100 s, the length
of the simulations, or crash to zero firing rate. Some equilibria withÎmax , Îthresh

(no endogenously active cells) are metastable but relatively long-lived.B: the cells
exhibit spike-frequency adaptation. This abolishes the long-lived metastable states
and allows bursting. For bothA andB the parameters were taken fromNetwork A
of Table 2 withBE 5 1.4 andBI 5 1.1; the difference between the 2 networks lies
in the amount,dĝK2Ca, the normalized potassium conductance increased on each
spike. InA, dĝK2Ca 5 0; in B, dĝK2Ca 5 0.01. For these network parameters,
ÎE1 ' 3.715 (determined numerically) andÎthresh5 3.75 (determined analytically;
see the sectionDISTRIBUTION OF APPLIED CURRENTSin METHODS). To convertÎmax,
ÎE1, andÎthreshfrom their normalized units, mV, to nA, divide by the cell membrane
resistance in MV.
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To test these predictions we performed simulations in which
we varied the relative number of connections among the exci-
tatory and inhibitory populations. This was done by adjusting
the bias parameters,BE andBI (seeMETHODS), defined byBE [
PIE

` /PEE
` and BI [ PII

`/PEI
` , where PLM

` is the probability of
making a connection from a neuron of typeM to a neuron of
type L. IncreasingBE increasesE-I (excitatory to inhibitory)
coupling and decreasesE-E coupling; increasingBI increases
I-I coupling and decreasesI-E coupling. Both occur without
changing the mean number of connections per neuron.

In terms of the bias parameters, the above predictions imply
that1) increasingBI and decreasingBE cause firing rates to go
up and2) decreasing bothBE and BI lead to oscillations. In
addition, because spike-frequency adaptation is most pro-
nounced at high firing rates, we should see a transition to
bursting when the firing rate is high enough.

Mean excitatory and inhibitory firing rates are plotted in Fig.
9 versus time for a range of bias parameters. These plots
confirm the above predictions: increasingBI and decreasingBE
both produced higher firing rates, networks with smallBI

FIG. 8. Firing patterns in the bursting regime.Top: raster
plots of 200 randomly chosen neurons in the burst regime.
The 1st 40 (1–40) are inhibitory and the last 160 are
excitatory.Bottom: voltage trace forneuron 40.During the
burst, voltage fluctuations are PSP driven; between bursts,
the whole network is silent so the voltage decays to the
resting membrane potential,250 mV. Because there is no
noise in these simulations, between bursts the voltage is
constant. Parameters are taken from Fig. 7 withÎmax5 3.82.

FIG. 9. Mean firing rate vs. time for ex-
citatory (—) and inhibitory (– – –) popula-
tions at different value of the bias parame-
ters, BE and BI. A and D: because theI-I
coupling is low (smallBI), these networks
oscillate. B, C, and E: with increasingI-I
coupling (increasingBI), oscillations are
eliminated and average firing rates rise. The
small fluctuations in these plots are due to
the finite size of the network.F: larger I-I
coupling further raises average firing rates
and produces bursting. The gray line on this
plot is the normalized slow potassium con-
ductance averaged over excitatory neurons
(seeEq. 5c). This quantity corresponds to the
mean level of spike-frequency adaptation, so
it increases when the neurons are firing and
decreases when they are silent. (To clearly
show the bursting, the time scale in this
panel is different from the other ones and the
inhibitory firing rate, which was;30%
lower, is not shown.) The difference between
oscillations (A andD) and bursting (F) is that
in the former the rise and fall of the firing
rate is slow compared with the period,
whereas in the latter it is fast. Parameters for
all panels were taken fromNetwork A of
Table 2 withÎmax 5 5.0 anddĝK2Ca 5 0.01.
Firing rates were computed by convolving
the spike trains with a Gaussian of width 10
ms.
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oscillated, and high firing rates were accompanied by bursting.
Bursting, however, was not guaranteed: we increasedBI to 2.4
with BE fixed at 1.0 without observing bursting, even though
the excitatory firing rate at these parameters approached 40 Hz.

For the bursting network, Fig. 9F, we plotted in gray the
slow potassium conductance averaged over excitatory neu-
rons. This quantity, which we denoteg#K2Ca,E, corresponds
to the mean level of excitatory spike-frequency adaptation
(g#K2Ca,E [ NE

21 ¥i[E ĝK2Ca,i, where the sum is over excitatory
neurons; seeEq. 5c); g#K2Ca,E is analogous toGE in the reduced
firing rate model (Eq. 15c). Like GE in Fig. 6B, g#K2Ca,E

increases when the network is active and decreases when the
network is silent.

The transition from oscillations to steady firing was gradual
and never quite complete; even at high values ofBI, where the
fixed points should be attracting, there was an oscillatory
component to the firing rates. However, the amplitude of the
oscillations decreased when the number of neurons increased:
in Fig. 9,B, C, E,andF, the variance in the firing rate (for Fig.
9F the variance only during bursts) dropped by a factor of;2
when we doubled the number of neurons (data not shown).
This indicates that the oscillations at largeBI result from the
finite size of the network, which allows fluctuations that are
converted to oscillations by the dynamics. In contrast, doubling
the number of neurons had virtually no effect on the variance
in the firing rate when the inhibitory-inhibitory coupling was
low enough to produce oscillations, as in Fig. 9,A andD.

Finally, to ensure that the oscillations in Fig. 9A were not
caused by spike-frequency adaptation, we performed simula-
tions with the same parameters except that spike-frequency
adaptation was eliminated (dĝK2Ca was set to zero; seeMETH-
ODS). We found a decrease in the oscillation period, from 180
to 120 ms, but no other change in the firing pattern.

LOCAL CONNECTIVITY. The above simulations were repeated
with parameters corresponding toNetwork B, in which the
connectivity is local rather than infinite range (meaning neu-
rons that are close together are more likely to connect than
those that are far apart), the number of connections per neuron
is smaller than inNetwork A,and the PSPs are larger (see
Tables 1 and 2). The results are summarized in Figs. 10 and 11.

Figure 10 shows network firing rate versus the distribution
of applied currents, which, as in Fig. 7, is parameterized by
Îmax. The results were substantially the same as for the network
with infinite range connectivity: with no spike-frequency ad-
aptation (Fig. 10A), the network fired for the full 100 s of the
simulation for a range ofÎmax extending somewhat belowÎE1.
With spike-frequency adaptation present (Fig. 10B), the net-
work burst forÎmax close to, but slightly above,Îthresh, and the
lifetimes of the metastable state dropped considerably: for
Îmax , Îthresh, the lifetimes were,14 s (data not shown).

Mean excitatory and inhibitory firing rates are plotted in Fig.
11 versus time for a range of bias parameters. For the networks
that burst (Fig. 11,B, C, andF), we plotted in gray the mean
level of spike-frequency adaptation averaged over excitatory
neurons,g#K2Ca,E. Again the results were substantially the same
as for the network with infinite range connectivity. There were,
however, differences in the details. For example, we did not
see regular oscillations for any of the examples shown: for all
plots the variance in the firing rate dropped by a factor of;2
when we doubled the number of neurons, indicating that the

observed fluctuations were caused by the finite size of the
network. Oscillations did occur when we reducedI-I coupling,
but not until BI was below;0.6. In addition, the local con-
nectivity network burst more easily than the infinite range one
and the bursting was more irregular. Bursting was observed for
BE 5 1.0 andBI $ 1.0, whereas in Fig. 9 bursting was not
observed at all forBE 5 1.0.

These plots indicate that, in spite of the differences between
Networks Aand B, the two networks generated strikingly
similar results. This indicates that our model is robust to
changes in connectivity (especially infinite range vs. local) as
well as the number of connections per neuron and PSP size.

SUMMARY OF SIMULATION RESULTS. We performed simula-
tions with two very different networks: an infinite range, high
connectivity network with small PSPs, and a local, low con-
nectivity network with large PSPs. We also examined a broad
range of parameters, including the distribution of applied cur-
rents, spike-frequency adaptation, and network connectivity.
The results of all simulations were as predicted: for networks

FIG. 10. Mean excitatory firing rate (■) vs. Îmax for Network B. (The
inhibitory rate, which is not shown, is a factor of;2.5 higher for all data
points.) See Fig. 7 caption for details. For bothA andB the parameters were
taken fromNetwork Bof Table 2 withBE 5 1.4 andBI 5 1.0; the difference
between the 2 networks is that inA, dĝK2Ca 5 0, whereas inB, dĝK2Ca 5 0.08.
For these network parameters,ÎE1 ' 3.230 (determined numerically) and
Îthresh5 3.75 (determined analytically).
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without spike-frequency adaptation, we observed transitions
from silence to steady firing as the fraction of endogenously
active cell increased. For networks with spike-frequency ad-
aptation, there was an intermediate regime in which the net-
works burst. Finally, when theI-I coupling was strengthened,
we observed transitions from oscillations to steady firing to
bursting and an increase in firing rate.

D I S C U S S I O N

We have investigated, both theoretically and through simu-
lations with spiking model neurons, the intrinsic dynamics in
large networks of neurons. The goal of this work was twofold:
1) to understand how dynamic interactions between excitatory
and inhibitory neurons lead to stable, low firing rates, such as
those widely observed in the mammalian central nervous sys-
tem, and2) to determine the conditions under which networks
switch from steady firing to bursting.

An understanding of the mechanism for generating stable,
low firing rates in large, isolated neuronal networks has been
elusive (Abeles 1991; Amit and Treves 1989; Buhmann 1989;
Treves and Amit 1989). The elusiveness stems from the diffi-
culty in controlling the powerful recurrent excitation that exists
in such networks. To compensate for this recurrent excitation,
inhibitory feedback is required. To stabilize low firing rates,
that feedback must be strong enough that the inhibitory firing
rate is more sensitive to input from excitatory cells than the
excitatory firing rate. Or, in the language of dynamics, the
inhibitory nullcline in average firing rate space must be steeper
than the excitatory one at the equilibrium (e.g., Fig. 4E). We
found that for isolated networks, the above condition occurs
robustly at low firing rateonly when endogenously active cells
are present; without such cells networks are either silent or fire

at high rate. This led to the following prediction: if low firing
rates are observed in an isolated network, then that network
must contain endogenously active cells. This prediction was
confirmed by large-scale network simulations, which included
the exploration of a broad range of parameters to ensure that
the simulations were robust (APPENDIX A). It was also corrobo-
rated by experiments in cultured neuronal networks, as de-
scribed in the accompanying paper (Latham et al. 2000).

Although endogenously active cells are necessary for the
existence of a low firing rate equilibrium, they do not guarantee
its stability. In particular, we found that a high level of spike-
frequency adaptation leads to bursting: repetitive firing can
introduce a hyperpolarizing current sufficient to temporarily
eliminate endogenously active cells, resulting in a crash to zero
firing rate; after the cells stop firing, the hyperpolarizing cur-
rent decays and firing resumes. (Interestingly, our analysis
implies that synaptic adaptation, because it does not affect the
fraction of endogenously active cells, cannot produce burst-
ing.) The probability of bursting is highest if there are few
endogenously active cells to begin with, and for that reason the
fraction of such cells plays a key role in determining firing
patterns. Specifically, networks with no endogenously active
cells are typically silent; at some finite fraction of endog-
enously active cells there is a transition to bursting; and at an
even higher fraction there is a second transition to steady firing
at low rate. This scenario was also confirmed by network
simulations, and it was corroborated by experiments in neuro-
nal cell culture (Latham et al. 2000).

Although the fraction of endogenously active cells plays the
dominant role in determining the primary firing patterns (si-
lence, bursting, or steady firing), another parameter, network
connectivity, influences secondary features of the firing pat-

FIG. 11. Mean firing rate vs. time for ex-
citatory (—) and inhibitory (– – –) popula-
tions at different value of the bias parame-
ters,BE andBI. In contrast toNetwork A,Fig.
9, this network (Network B) did not oscillate
at any of the parameters shown, although
oscillations were observed at lower values of
the I-I coupling (smallerBI). A, D, and E:
steady firing.B, C, and F: bursting. As in
Fig. 9F, the gray line is the mean value of the
normalized slow potassium conductance av-
eraged over excitatory neurons. Note the dif-
ferent time scales than inA, D, and E, and
that the inhibitory firing rate is not shown.
The parameters for all panels were taken
from Network Bof Table 2 (local connectiv-
ity) with Îmax 5 5.0 anddĝK2Ca 5 0.08. The
firing rates were computed by convolving the
spike trains with a Gaussian of width 10 ms.
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terns. Specifically, when inhibitory-inhibitory coupling be-
comes too weak or excitatory-excitatory coupling becomes too
weak or excitatory-excitatory coupling becomes too strong, a
low firing rate equilibrium can be destabilized via a Hopf
bifurcation. This leads to oscillations in firing rate that can
occur in both the “steady” firing and the bursting regimes. In
the latter case, the oscillations occur during the active phase of
the burst.

These theoretical findings were based on the analysis of
isolated networks with random, infinite-range connectivity.
However, theoretical considerations indicate that they apply to
networks that receive external input, and simulations indicate
that they are valid for networks with local connectivity, in
which the connection probability is a decreasing function of
distance between neurons. The validity of the model for local
connectivity suggests that these findings will hold for the more
structured architecture that exists in the cortex.

Implications

Two firing patterns that are ubiquitous in the mammalian
CNS are steady firing at low rates and rhythmic bursting. We
have shown that, in isolated networks, both firing patterns are
controlled largely by a single parameter, the fraction of endo-
genously active cells. As long as the fraction of such cells is
above a threshold, steady firing is possible; below that thresh-
old the network bursts. The threshold depends on the degree of
spike-frequency adaptation, a property of neurons that has been
shown to be modulatable [e.g., by neuromodulators (Burke and
Hablitz 1996; Cole and Nicoll 1984; McCormick et al. 1993;
Pedarzani and Storm 1993; Spain, 1994)]. Thus the model
described here both accounts for the low firing rates observed
in networks throughout the mammalian CNS and provides a
natural mechanism for switching between steady firing and
bursting. A switch between these two patterns is necessary for
behavior that is activated episodically, such as locomotion,
scratching, and swallowing (Berkinblit et al. 1978; Kudo and
Yamada 1987; Zoungrana et al. 1997).

Although endogenously active cells may account for the
observed firing patterns in mammalian neuronal networks, they
are notnecessarilyresponsible for those firing patterns. This is
because the brain is neither isolated nor comprised of a single
network. Instead, it receives sensory input and consists of
distinct areas that interact through long-range connections.
Because external input to a network can drive cells even when
they are not receiving input from within the network (making
those cells effectively endogenously active), it is possible that
the low firing rates observed in cortex are generated by sensory
input, or, as has been proposed by Amit and Brunel (1997), by
input from other brain areas. The source of the input does not
affect our model, however; the model applies whether the input
is external or endogenous.

The theory developed here provides a framework for under-
standing intrinsic firing patterns and their dynamics in large
networks of neurons. This does more than simply explain
observed firing patterns; it provides a link between basic prop-
erties of networks and a way to understand how firing patterns
could be modified by patterned external input. This link is
critical for developing models of how computations are per-
formed by real neuronal networks.

A P P E N D I X A : R O B U S T N E S S T O V A R I A T I O N I N

P A R A M E T E R S

To exhaustively check the robustness of our model would require a
complete exploration of the full parameter space, which is impractical
for the 26-dimensional space that describes our model. Instead, we
varied a selected subset of the parameters. Our starting point was a set
of parameters taken from two networks,Networks AandB. Recall that
most of the parameters of those networks are given in Tables 1 and 2;
the parameters whose values are not listed there were given the
following values:Îmax 5 5.0,BE 5 BI 5 1.0, anddĝK2Ca 5 0. This
set of parameters resulted in mean excitatory firing rates of 5.59 and
4.51 Hz forNetworks Aand B, respectively, and inhibitory rates of
5.59 and 4.46 Hz. The firing patterns were steady; i.e., no bursting or
oscillations. Starting with this initial set of parameters, the ones we
varied to explore the robustness of our model were as follows:1) the
amplitude of the excitatory and inhibitory postsynaptic potentials,
VEPSP and VIPSP, 2) the fraction of inhibitory cells,3) the voltage
threshold,Vt, 4) the cell time constant,tcell, 5) the mean number of
connections per neurons,K, 6) the number of neurons,N, 7) the
distribution of applied current, and8) for Network B(the one with
local connectivity), the axonal spreads of the excitatory and inhibitory
populations,sE andsI.

The first four items in this list had the strongest effect on firing rate: for
both networks, a 50% increase in EPSP amplitude, a 50% decrease in
IPSP amplitude, and a 25% decrease in the fraction of inhibitory cells all
caused an increase in firing rate of;50%; increasing the distance
between the nominal resting membrane potential and threshold,Vt 2 Vr,
from 15 to 25 mV while keeping the fraction of endogenously active cells
fixed resulted in a drop in firing rate of;50%, and doubling the time
constant resulted in a drop in firing rate of;40%.

Increasing the mean number of connections per neuron,K, also had a
moderately strong effect on firing rate: a 20% increase inK resulted in a
decrease in firing rate of 12% forNetwork Aand 14% forNetwork B.
Somewhat surprisingly, increasing the amplitudes of both EPSPs and
IPSPs did not have the same effect as increasing the number of connec-
tions: a 20% increase inVEPSPandVIPSPled to a 7% decrease in firing
rate forNetwork Aand a 4%increasein firing rate forNetwork B.The
reason for the difference is as follows. Although increasing PSP ampli-
tude and connectivity have approximately the same effect onmean
synaptic drive, the former has a larger effect on variance. Because larger
input variance leads to higher firing rate, increasing PSP amplitude is
more effective in causing a cell to fire than increasing connectivity. This
is why firing rates were higher with a 20% increase in PSP amplitude than
they were with a 20% increase in the number of connections.

Increasing the number of neurons had almost no effect on firing rate
(,7% change when the number of neurons doubled). However, there
was a substantial reduction in fluctuations: doubling the number of
neurons inNetwork Acaused the variance in the firing rate to drop by
a factor of 2.3, and doubling the number inNetwork Breduced the
variance by a factor of 1.93. Both of these are close to the factor of 2
suggested by 1/N scaling.

The analysis in the main text was based on gain curves constructed
from a unimodal distribution of applied depolarizing currents,Ia. Such
a distribution implies that the neurons in the network have a contin-
uous range of resting membrane potentials, and, if there are endog-
enously active cells, the active neurons have a continuous range of
firing rates. Different distributions, especially multimodal ones, can
lead to different nullclines and thus different network behavior (Wil-
son and Cowan 1972). We thus considered a bimodal distribution in
which the normalized applied current,Îa, at each neuron was either 0
mV (resting membrane potential 15 mV below threshold) or 5 mV
(endogenously active). For the two bimodal distributions we looked
at, 30 and 50% of the cells endogenously active, the firing rates
changed by,5%. Thus, at least for these parameters, changing the
distribution of applied currents had little effect on firing rate.

The effect of changing the axonal spread depended on whether we
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changed the spread for the inhibitory or the excitatory neurons. Increasing
the normalized radius of the inhibitory axonal spread,sI, from 0.12 to
0.25 and then to 0.50 increased the firing rate by 50 and 132%, respec-
tively. (Recall that the normalized radius of the network is 1.) These
results are consistent with the view that inhibition is acting to control
local hot spots of excitatory activity, so overly diffuse inhibition is not so
effective. Increasing the excitatory axonal spread,sE, on the other hand,
led to a decrease in firing rate that was fairly small: increasingsE from
0.12 to 0.25 and 0.50 dropped the firing rate by 4 and 13%, respectively.
Our interpretation here is that longer range excitation allows the recruit-
ment of additional inhibitory neurons, thus lowering firing rates.

In all cases, the above parameter changes produce changes in firing
rate consistent with our model. This is indicative that the model is
relatively robust. This should not be surprising, in view of Fig. 4E,
which guarantees an equilibrium at reasonably low firing rate.

We end with a simulation closer to cortical parameters than we
have been using:Network Awith IPSP and EPSP amplitudes of21
and 0.2 mV, respectively, 20,000 neurons of which 15% were inhib-
itory, a threshold voltage of240 mV, corresponding to a nominal gap
between resting and threshold of 25 mV, and a maximum for the
boxcar distribution,Îmax, equal to 10 mV. The network with these
parameters fired steadily with a mean rate of 0.9 Hz.

A P P E N D I X B : E S T I M A T E O F T H E M I N I M U M O F

T H E E X C I T A T O R Y N U L L C L I N E

In this appendix we estimate the size ofn#*E, the average excitatory
firing rate at the minimum of the excitatory nullcline. To do this we
derive a differential equation forFE(n#E, n# I) valid whenn#E is small,
solve it to determine the shape of the excitatory gain function, and
then find the tangential intersection with the lineFE(n#E, n# I) 5 n#E. We
start with the relation

­FE~n# E, n# I!

­n# E

5
­FE~n# E, n# I!

­I syn,E

­I syn,E

­n# E

(B1)

whereIsyn,E is the average excitatory synaptic drive to the neurons in
the network. BecauseIsyn,E is equal to the rate of incoming EPSPs
times the charge transfered to the postsynaptic neuron per EPSP, and
the rate of incoming EPSPs is the firing rate times the average number
of connections, we have

­I syn,E

­n# E

< QEPSP3 KEE (B2)

whereQEPSPis the average charge per EPSP andKEE has the same
definition as in the Fig. 2, the mean number of excitatory connections
made by an excitatory neuron. The charge,QEPSP, is computed by
integrating the voltage transient induced by the arrival of an EPSP and
then dividing by the postsynaptic cell’s membrane resistance

QEPSP5 E dt
DV~t!

Rcell

;
VEPSPDt

Rcell

(B3)

whereDV(t) is the change in membrane potential caused by the arrival
of an EPSP,Rcell is the cell membrane resistance,VEPSP is the
amplitude of a typical EPSP, andDt is the characteristic width of an
EPSP. This last quantity,Dt, is defined by the second equality in
Eq. B3.

When the response to an EPSP is linear, it is not hard to show that
Dt $ tcell. We will assume that EPSPs are small enough that the linear
approximation holds, in which caseEq. B2 can be replaced with the
inequality

­I syn,E

­n# E

* tcell

VEPSPKEE

Rcell

(B4)

The other term inEq. B1, ­FE/­Isyn,E, is the rate of change of the
average firing rate of a network of neurons with respect to the synaptic
drive. This can be estimated as follows. For a single cell, the slope of
the frequency-current (F-I) curve is small below some threshold
current and approximately linear above it. [For the type I neurons used
here, spike initiation occurs via a saddle-node bifurcation, which leads
to a square-rootF-I curve with respect toconstantinjected current
(Rinzel and Ermentrout 1998). However, the square-root singularity is
considerably flattened both by synaptic variability and by the heter-
ogeneity of the network. This results in an approximately threshold-
linear F-I curve, as indicated by the approximately threshold-linear
excitatory gain curves illustrated in Fig. B1A.] For a network of cells,
the value of­FE/­Isyn,E is the slope above threshold, denotedF9,
times the fraction of cells above threshold, denotedr. We thus have

­FE~n# E, n# E!

­I syn,E

< F9r

Inserting this expression intoEq. B1, we arrive at

FIG. B1. Gain curves and an excitatory nullcline from the network simula-
tions.A: excitatory gain curves forNetwork Aof Table 2 withÎmax 5 5.0,BE 5
1.4, BI 5 1.0, anddĝK2Ca 5 0 (no adaptation). To construct these curves we
expanded the recurrent network into a 2-layer, feed-forward network, with the
feed-forward connections from the input to the output layer identical to the
recurrent connections in the original network. We then computed the mean output
firing rate of the excitatory neurons (the gain functions) vs. the input firing rates,
assuming Poisson statistics. The horizontal axis corresponds to the excitatory input
firing rate; the numbers on each line correspond to the inhibitory input firing rates
in Hz.B: the excitatory nullcline for the same parameters as inA.To construct this
curve we allowed the excitatory and inhibitory neurons to have different values of
the maximum applied depolarizing current,Îmax: we fixed Îmax at 5 for the
excitatory neurons, then variedÎmax for the inhibitory neurons to sweep out the
curve. Values of the excitatory and inhibitory firing rates at the minimum aren#*E 5
0.014 Hz andn#*I 5 0.436 Hz.
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­FE~n# E, n# I!

­n# E

< br (B5)

where

b ;
­I syn,E

­n# E

F9 (B6)

To solve forFE(n#E, n#I) as a function ofn#E, we need to know howr
depends on the firing rates,n#I andn#E. We can estimate this dependence
as follows. LetDIsyn,E be the minimum current that will make almost all
cells in the network fire. Then, the excitatory firing rate that will make
almost every cell fire isDIsyn,E/(­Isyn,E/­n#E). Defining

Dn ;
DI syn,E

­I syn,E/­n# E

(B7)

we see that asn#E increases from 0 toDn, the fraction of active cells
increases from its value atn#E 5 0 Hz, which we denoter0(n# I), to 1.
For clarity, in the remainder of this analysis we will drop the depen-
dence ofr0 on n# I. Assuming that the fraction of active cells increases
linearly forn#E , Dn, we can writer 5 r0 1 (1 2 r0)n#E/Dn. Then,Eq.
B5 becomes, for small values ofn#E

­FE~n# E, n# I!

­n# E

5 b@r0 1 ~1 2 r0!n# E/Dn# (B8)

Solving Eq. B8 yields

FE~n# E, n# I! 5 FE~0, n# I! 1 br0n# E 1 b~1 2 r0!
n# E

2

2Dn
(B9)

The minimum of the excitatory nullcline occurs where the curve given
in Eq. B9 intersects tangentially with the lineFE 5 n#E. It is straight-
forward to show that the value of the average excitatory firing rate at
that tangential intersection,n#*E, is given by

n# *E 5
Dn~1 2 br0!

b~1 2 r0!
(B10)

Finally, whenb . 1, the right hand side ofEq.B10 is maximum when
r0 5 0. Consequently, we can boundn#*E by

n# *E #
Dn

b
(B11)

Recall thatDn depends onDIsyn,E, the minimum current needed to
make all the cells in the network fire (Eq. B7). The minimum current
consists of two parts: the minimum rheobase current plus the total
inhibitory synaptic current delivered to a cell. The latter quantity is
n# I­Isyn,I/­n# I. Denoting the minimum rheobase current asIrh and using
the same argument as above to express­Isyn,I/­n# I in terms of physi-
ological quantities, we arrive at

DI syn,E 5 I rh 1
n# I­I syn,I

­n# I

* I rh 1 n# Itcell

VIPSPKEI

Rcell

(B12)

whereKEI is the mean number of excitatory connections made by an
inhibitory neuron. CombiningEqs.B4, B7, and B12 we arrive at the
expression forDn

Dn &
I rhRcell

tcellVEPSPKEE

1 n# I

VIPSPKEI

VEPSPKEE

Thus the condition on the minimum of the equilibrium,Eq. B11,
becomes

n# *E #
nrh 1 jn# I

b
(B13)

where we have defined

nrh ;
I rhRcell

tcellVEPSPKEE

(B14a)

j ;
VIPSPKEI

VEPSPKEE

(B14b)

To evaluate numericallyn#*E, we need to know the sizes ofb, nrh,
andj. A bound on the first of these,b, is found by combiningEq.B4
with the definition ofb in Eq. B6, yielding

b $ tcellF9
VEPSPKEE

Rcell

(B15)

For a 30 MV cell with a time constant of 10 ms,tcellVEPSP/Rcell 5
3.3 3 1024 nA/Hz 3 VEPSP (mV). BecauseKEEVEPSP (mV) is
typically at least 103, the first three terms on the right hand side ofEq.
B15 should be larger than;0.33 nA/Hz. The remaining term inEq.
B15, the slope of a cell’sF-I curve, is typically on the order of 250
Hz/nA (McCormick et al. 1985). (This is consistent with our model
neurons: for cells with a membrane resistance of 30 MV, the slope of
the F-I curve was;150 Hz/nA; simulations not shown.) Using 250
Hz/nA for theF-I curve, we arrive atb $ 83.

The quantitynrh given in Eq. B14a has almost the same factors
as b; the only difference is thatF9 is replaced by 1/Irh and the
expression is inverted. For typical cells,Irh is at most 0.2 nA
(McCormick et al. 1985). Combining this value with the above
estimate fortcellVEPSPKEE/Rcell, we find thatnrh ; 0.6 Hz.

Finally if excitatory and inhibitory neurons have similar PSP sizes
and connectivities,j ; 1. ThusEq. B13 can be written

n# *E , 0.01 Hz1
n# *I
83

(B16)

where we have replaced the inhibitory firing rate that appeared in
previous expressions with its value at the minimum of the excitatory
nullcline, denotedn#*I. Unlessn#*I is very large,n#*E will be small, almost
certainly below 0.1 Hz.

Testing the validity of the above analysis requires that we construct
the excitatory nullcline. This can be done in our simulations by slowly
increasing the value ofÎmax for the inhibitory neurons only, which
shifts the inhibitory nullcline up without affecting the excitatory one.
By recording the equilibrium firing rates as we shift the inhibitory
nullcline, we can sweep out the excitatory nullcline. An excitatory
nullcline constructed in this manner is shown in Fig. 12B. Consistent
with the bound given inEq. B16, the minimum of the inhibitory
nullcline occurs at an excitatory firing rate of 0.014 Hz.
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BRAITENBERG, V. AND SCHÜZ, A. Anatomy of the Cortex.Berlin: Spring-
Verlag, 1991.

826 LATHAM, RICHMOND, NELSON, AND NIRENBERG



BUHMANN, J. Oscillations and low firing rates in associative memory neural
networks.Physical Review A40: 4145–4148, 1989.

BURKE, J. P.AND HABLITZ , J. J. G-protein activation by metabotropic glutamate
receptors reduces spike frequency adaptation in neocortical neurons.Neu-
roscience75: 123–131, 1996.

CALABRESI, P., MERCURI, N. B., STEFANI, A., AND BERNARDI, G. Synaptic and
intrinsic control of membrane excitability of neostriatal neurons. I. An in
vivo analysis.J. Neurophysiol.63: 651–662, 1990.

CARANDINI , M. AND HEEGER, D. J. Summation and division by neurons in
primate visual cortex.Science264: 1333–1336, 1994.

CARANDINI , M., HEEGER, D. J.,AND MOVSHON, J. A. Linearity and normaliza-
tion in simple cells of the macaque primary visual cortex.J. Neurosci.17:
8621–8644, 1997.

COLE, A. E. AND NICOLL, R. A. Characterization of a slow cholinergic post-
synaptic potential recorded in vitro from rat hippocampal pyramidal cells.
J. Physiol. (Lond.)352: 173–188, 1984.

COLLINS, J. G. A descriptive study of spinal dorsal horn neurons in the
physiologically intact, awake, drug-free cat.Brain Res.416: 34–42, 1987.

ERMENTROUT, B. Type I membranes, phase resetting curves, and synchrony.
Neural Comput.8: 979–1001, 1996.

ERMENTROUT, B. AND KOPELL, N. Parabolic bursting in an excitable system
coupled with a slow oscillation.SIAM J. Appl. Math.46: 233–253, 1986.

FELDMAN, J. AND CLELAND, C. Possible roles of pacemaker neurons in mam-
malian respiratory rhythmogenesis. In:Cellular Pacemakers,edited by D.
Carpenter. New York: Wiley, 1982, vol. 2, p. 101–119.

GILBERT, C. D. Laminar differences in receptive field properties of cells in cat
primary visual cortex.J. Physiol. (Lond.)268: 391–421, 1977.

HEEGER, D. J. Normalization of cell responses in cat striate cortex.Vis.
Neurosci.9: 181–197, 1992.

HERRERO, J. F. AND HEADLEY, P. M. Cutaneous responsiveness of lumbar
spinal neurons in awake and halothane-anesthetized sheep.J. Neurophysiol.
74: 1549–1562, 1997.

HODGKIN, A. L. The local electric changes associated with repetitive action in
a non-medullated axon.J. Physiol. (Lond.)107: 165–181, 1948.

KOMATSU, Y., NAKAJIMA , S., TOYAMA , K., AND FETZ, E. E. Intracortical
connectivity revealed by spike-triggered averaging in slice preparations of
cat visual cortex.Brain Res.442: 359–362, 1988.

KUDO, N. AND YAMADA , T. N-methyl-D,L-aspartate–induced locomotor activity
in a spinal cord–hindlimb muscles preparation of the newborn rat studied in
vitro. Neurosci. Lett.75: 43–48, 1987.

LAMOUR, Y., DUTAR, P.,AND JOBERT, A. Cerebral neorcortical neurons in the aged
rat: spontaneous activity, properties of pyramidal tract neurons and effect of
acetylcholine and cholinergic drugs.Neuroscience16: 835–844, 1985.

LATHAM , P. E., RICHMOND, B. J., NIRENBERG, S. N., AND NELSON, P. G.
Intrinsic dynamics in neuronal networks. II. Experiment.J. Neurophysiol.
83: 828–835, 2000.

LEVENTHAL, A. G. AND HIRSCH, H. V. Receptive-field properties of neurons in
different laminae of visual cortex of the cat.J. Neurophysiol.41: 948–962,
1978.

MARDER, E. AND CALABRESE, R. L. Principles of rhythmic motor pattern
generation.Physiol. Rev.76: 687–717, 1996.

MARSDEN, J.AND MCCRACKEN, M. The Hopf Bifurcation and Its Applications.
Lecture Notes in Applied Mathematical Sciences.New York: Springer-
Verlag, 1976, vol. 18.

MATSUMURA, M., CHEN, D., SAWAGUCHI, T., KUBOTA, K., AND FETZ, E. E.
Synaptic interactions between primate precentral cortex neurons revealed by
spike-triggered averaging of intracellular membrane potentials in-vivo.
J. Neurosci.16: 7757–7767, 1996.

MCCORMICK, D. A., CONNORS, B. W., LIGHTHALL , J. W., AND PRINCE, D. A.
Comparitive electrophysiology of pyramidal and sparsely spiny stellate
neurons of the neocortex.J. Neurophysiol.54: 782–806, 1985.

MCCORMICK, D. A., WANG, Z., AND HUGUENARD, J. Neurotransmitter control of
neocortical neuronal activity and excitability.Cereb. Cortex3: 387–398, 1993.

MEDNIKOVA, Y. S.AND KOPYTOVA, F. V. Some physiological characteristics of
motor cortex neurons of aged rabbits.Neuroscience63: 611–615, 1994.

METHERATE, R. AND ASHE, J. H. Ionic flux contributions to neocortical slow
waves and nucleus basalis–mediated activation: whole-cell recordings in
vivo. J. Neurosci.13: 5312–5323, 1993.

NEALE, E. A., MACDONALD, R. L., AND NELSON, P. G. Intracellular horseradish
peroxidase injection for correlation of light and electron microscopic anat-
omy with synaptic physiology of cultured mouse spinal cord neurons.Brain
Res.152: 265–282, 1978.

NELSON, M. E. A mechanism for neuronal gain control by descending path-
ways.Neural Comput.6: 242–254, 1994.

NELSON, P. G., MARSHALL, K. C., PUN, R. Y., CHRISTIAN, C. N., SHERIFF,
W. H., JR., MACDONALD, R. L., AND NEALE, E. A. Synaptic interactions
between mammalian central neurons in cell culture. II. Quantal analysis of
EPSPs.J. Neurophysiol.49: 1442–1458, 1983.

NELSON, P. G., NEALE, E. A., AND MACDONALD, R. L. Electrophysiological and
structural studies of neurons in dissociated cell cultures of the central
nervous system. In:Excitable Cells in Tissue Culture,edited by P. G. Nelson
and M. Lieberman. New York: Plenum, 1981, p. 39–80.

OCHI, K. AND EGGERMONT, J. J. Effects of quinine on neural activity in cat
primary auditory cortex.Hear. Res.105: 105–118, 1997.

O’DONOVAN, M., WENNER, P., CHUB, N., TABAK , J., AND RINZEL, J. Mecha-
nisms of spontaneous activity in the developing spinal cord and their
relevance to locomotion.Ann. NY Acad. Sci.16: 130–141, 1998.

PEDARZANI, P. AND STORM, J. F. PKA mediates the effects of monoamine
transmitters on the K1 current underlying the slow spike frequency adap-
tation in hippocampal neurons.Neuron11: 1023–1035, 1993.

PERKEL, D. H. AND MULLONEY, B. Motor pattern production in reciprocally
inhibitory neurons exhibiting postinhibitory rebound.Science185: 181–183,
1974.

PUN, R. Y., NEALE, E. A., GUTHRIE, P. B.,AND NELSON, P. G. Active and inactive
central synapses in cell culture.J. Neurophysiol.56: 1242–1255, 1986.

REKLING, J. C. AND FELDMAN, J. L. PreB̈otzinger complex and pacemaker
neurons: hypothesized site and kernel for respiratory rhythm generation.
Annu. Rev. Physiol.60: 385–405, 1998.

RINZEL, J. A formal classification of bursting mechanisms in excitable systems.
In: Proceedings of the International Congress of Mathematicians (Berkeley,
1986),edited by A. M. Gleason. Providence, RI: American Mathematical
Society, 1987, p. 1578–1594.

RINZEL, J.AND ERMENTROUT, G. B. Analysis of neural excitability and oscillations.
In: Methods in Neuronal Modeling: From Ions to Networks(2nd ed.), edited by
C. Koch and I. Segev. Cambridge, MA: MIT Press, 1998, p. 251–291.

RYBAK , I. A., PATON, J. F.,AND SCHWABER, J. S. Modeling neural mechanisms
for genesis of respiratory rhythm and pattern. II. Network models of the
central respiratory pattern generator.J. Neurophysiol.77: 2007–2026, 1997.

SALIMI , I., WEBSTER, H. H., AND DYKES, R. W. Neuronal activity in normal and
deafferented forelimb somatosensory cortex of the awake cat.Brain Res.
656: 263–273, 1994.

SMITH, J. C. Integration of cellular and network mechanisms in mammalian
oscillatory motor circuits: insights from the respiratory oscillator. In:Neu-
rons, Networks, and Motor Behavior,edited by P.S.G. Stein, S. Grillner,
A. I. Selverston, and D. G. Stuart. Cambridge, MA: MIT Press, 1997, p.
97–104.

SPAIN, W. J. Serotonin has different effects on two classes of Betz cells from
the cat.J. Neurophysiol.72: 1925–1937, 1994.

SZENTE, M. B., BARANYI , A., AND WOODY, C. D. Intracellular injection of
apamin reduces a slow potassium current mediating afterhyperpolarizations
and IPSPs in neocortical neurons of cats.Brain Res.461: 64–74, 1988.
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