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I. Calculating I and Al

Our calculation of the mutual information, /, and the amount of information lost when
cells are treated as independent encoders, AI, follows very closely the “direct method”
developed by Strong et al.! (see also refs. 2-4). The direct method is now relatively standard

4 and can be used with only a minor extension to

for computing mutual information!~
compute the lost information, AI. Thus, our analysis follows published methods in all

respects, except one: we provide error bars for the ratio AT/I.

The direct method

While the direct method has been published'*, for convenience we outline the main
steps here. Neural responses are “constructed” by dividing spike trains into time bins and
counting the number of spikes in each bin. The possible spike counts can be thought of
as letters, and contiguous sets of letters as words. A response at time ¢ is taken to be the
word that starts at time ¢, and the stimulus that drives it is the visual input that occurs
before £. In our experiments the movie is periodic, so all words that occur a fixed time after
movie onset see the same stimulus. We can thus estimate the probability distribution of
word pairs given a stimulus, denoted Pr(r,79|s), by constructing a histogram of words from
cells 1 and 2 that occur at time sT after movie onset, where s, which labels stimulus, is an
integer. Specifically, Pr(ry,r2|s) is the number of times words 1 and 2, from cells 1 and 2,
occurred at time s7 relative to movie onset, divided by the number of movie presentations.
The subscript 7" denotes word length, so the number of letters in a word is 7" divided by bin
size.

Given Pr(ry,rs|s), one can calculate both the mutual information and the lost informa-
tion for words of length 7', denoted Iy and Alr, respectively. Because of temporal correla-
tions in the spike train, these calculations do not yield true values for either quantity; only
in the infinite word limit are the calculations correct. The idea behind the direct method
is to use linear regression to extrapolate to infinite word length. Specifically, one fits the
curves I7/T and Aly/T versus 1/T to a line; the intercept at 1/7 = 0 then corresponds to
the true values of I and AI, in bits/unit time. In what follows we show explicitly how we

calculate It and Al from our data.
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The mutual information at word length T, I, is given by the standard formula®

Z Pr(rqy,79)logy Pr(ry, ) + ZP Z Pr(rq,79|8) logy Pr(ri,72|s) (1)

71,72 T1,72

where Pr(ri,m2) = >, Pr(ri,m2|s)P(s) and P(s) is the probability of observing stimulus s.
The latter quantity is taken to be uniform; i.e., P(s) equals one over the number of stimuli,
independent of s. The lost information at word length 7', Al is written (see Eq. (2) of the

main text)

- Z PT(T'l,TQ) 10g2

T1,T2

AIT = ZP(S) Z PT(T'l,’I'2|8) 10g2

1,72

l Pr(ry,7y)s) ]

[ PT 7“1,7’2 ]
PT,IND(Tla 7“2\8)

PTIND 7“1;7“2
2

Where PT,IND(Tla 7'2|8) = PT(T‘1|S)PT(T‘2‘S) and PT,IND(TI, 7‘2) = ES PT,IND(Tla T2|S)P(S).
Before describing our method for computing I and Aly, it is useful to rewrite these two

quantities as

Ir = HT(Rl,RQ)—HT(Rl,R2|S)
Alp = Hrinp(Ri, Ro|S) — Hr(Ry, Re|S) — D(Pr(ry,7r2)||Prann(r1,72))

where Hr(R;, Ry) is the total entropy, Hr(Ry, R2|S) is the conditional entropy with respect
to the correlated distribution, Hr ;np(Ri, R2|S) is the conditional entropy with respect to the
uncorrelated distribution, and D(Pr(ry,72)||Prinp(ri, re)) is the Kullback-Leibler distance
between the correlated and uncorrelated total distributions; these four quantities are given

by
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Hr(Ri,Ry) = — ) Pr(ry,72)logy Pr(ri,ms) (3a)
r1,r2
Hr(Ri,Ry|S) = =3 P(s) Y. Pr(ri,rals)log, Pr(ri,ms|s) (3b)
S 71,72
Hpinp(Ri, R|S) = —ZP(S) ZPT,IND(T15T2|S)logQPT,IND(T1;T2|3) (3c)
S 71,72

Pr(ry,79) ] .

D(PT(H,TQ)HPT,IND(H;7"2)) = ZPT(T1,7’2)10g2 [P (7‘ 7')
TIND\T1,T2

T1,T2

To compute I and Alp, we use the naive estimator of entropy; that is, we replace
Pr(rq,79|s) by ng(ri, m2|s)/Ns in Egs. (1) and (2), where ny(r1,72|s) is the observed number
of times words 1 and 2 appear in response to stimulus s and Ny = Y, ., nr(r1,72|s) is
the number of times the movie is shown, and we replace Pr(ri,72) by >, ng(ry, ra|s)/N
where N = >, N; is the total number of words. For the independent distribution, we
do essentially the same thing: we replace Prnp(ri,72|s) by nrshiftea(r1,72|s)/Ns in Eq.
(3c), where nrghitted(71, 72|$) is the observed number of times words 1 and 2 appeared in
the shifted data. By “shifted”, we simply mean shifting the response of neuron 2 by one
movie repeat; see Methods in the main text. As with Pr(ry, ), we replace Prryp(r1,72) by
> s N shifted (71, T2|8) /N

We use nqghitted (71, 72| $) rather than np(ri|s)nr(re|s) because the naive estimate of en-
tropy is biased upward, with a bias that depends on the underlying probability distribution®.
Since Pr(ry,72|s) and Priyp(ri,72]s) should be reasonably similar, their conditional en-
tropies, Hr(R1, Ry|S) and Hynp(R1, Rz|S), should have similar bias, and their difference
should be nearly bias-free. Thus, the estimate of Al should be reasonably free of bias, while

the estimate of I should be biased slightly upward. Below we verified all these “should”s

using surrogate data.

Estimates of the error in Iy and Alr

To compute the error in I+ and Alr, we assume that the dominant contribution to the
error comes from the conditional entropies, Hr(R1, R3|S) and Hr inp(Ri, R2|S). We make
this assumption because the number of samples used to compute the conditional entropy for

each stimulus is on the order of 300 (the number of times the movie is shown). In contrast,
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the number of samples used to compute the total entropy and the Kullback-Leibler distance
is a factor of Tyevie/T larger, where Tiovie is the length of the movie. Since we show movies
for 7 seconds and use word lengths, T', ranging from 1 to 10 ms, the number of samples used
to compute the total entropy and the Kullback-Leibler distance ranges from about 210,000
to 2.1 million. Thus, we estimate the variance in Ir and Alr solely from the variances of
Hr(Ry, Ry|S) and Hrrnp(R1, R2|S).

The variance in the naive estimator of entropy can be estimated by assuming the un-
derlying probability distribution is known, writing down an expression for the variance in
terms of that distribution, and then Taylor expanding around the true distribution. Since
the resulting expression for the variance is general, we will simplify its derivation by denoting
the probability of sampling element j simply as p;, denoting the number of times element j
is sampled as n;, and assuming that elements are sampled N times. With this notation, the
naive estimate for the entropy is

Hnaive = Z h(n]/N)

J

where

h(p) = —plogy p.

The variance in Hp,ive, denoted § H2

naive’

is given by

0Hpsive = D_(h(ni/N)h(n;/N)) = (h(ni/N))(h(n;/N)) (4)

ij

where the average is with respect to the multinomial distribution,

@) =3 1w V] b )

see ref. 6). Expanding h(n;/N) in a power series around p; and keeping only terms up to
j j

second order, Eq. (4) becomes

0 Hpaive = D_ 1 (i)W (){(ni/N = pi)(nj /N — p;))

ij
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where a prime denotes a derivative. Using Eq. (5) to derive the relation ((n;/N —p;)(n;/N —

p;)) = (pidij — pipj) /N, Eq. (6) may be written

ij

1
Hiuive = [E pilt (pi)* = Zpipjh'(Pi)h'(Pj)] : (6)
7
Finally, performing the derivatives in Eq. (6), we arrive at
1 2
OHpuive = {Zpi log3 pi — [Zpi loggpi] ] : (7)
In our numerical calculations we use n;/N in place of p; in Eq. (7); that is, we use the

approximate relation

SHe = = lz(m/m g 01/ | S0/ oo/ ) ] . ®)

1

1

Equation (8) gives us an estimate for the variance of the total entropy. When estimating
the variance of the conditional entropy, we assume that each term in the sum on s (see Egs.
(3b) and (3c)) is independent. In addition, we include sampling error that arises because we
only show a finite number of stimuli. The resulting expression for the error in Hr(R;, Ry|S)

is given by

SH2(Ry, Ro|S) =

Nis S P(s) { [— S~ Py (r1, ra|s) logy Pr(r, als) — Hr (R, RQ|5)] (9)

T1,T2

2
+ Z Pr(r1,m2]s)logs Pr(ri, ra|s) — lz Pr(ry,72|s) log, PT(TI;TQ‘S)] }

T1,72 1,72

where we used P(s) = 1/N, and, in numerical calculations, Pr(ry,7s|s) is replaced by
nr(r1,72|s)/Ns. The first term in Eq. (9) corresponds to sampling error; the second fol-

lows from Eq. (8). The expression for HZ yp (R, Ro|S) is identical to the one given in
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Eq. (9) except that Pr(ry,re|s) is replaced by Prnp(ri1,72|s); this corresponds to replacing
nT(T1,7'2‘8) by nT,IND(TlaTQ‘S)-
As discussed above, we assume that the conditional entropy produces the dominant error

in the mutual information, Ir. Thus, the variance in I, denoted §%Ir, is given by

§%I; = SH2(R,, Rs|S) (10)

and the variance in Ay, §2Alr, is given by

Al = 6H2(R, Ry|S) + 6H2 1y p(Ri, Ro|S) - (11)

In deriving Eq. (11), we assumed that Hr(R;, R2|S) and Hrnp(R1, R2|S) are independent;
this probably provides a slight overestimate of the variance.

As discussed above, to compute I and AI we plot Ir/T and Alr/T versus 1/T and use
linear regression to find the intercepts at 1/7 = 0. The variances in Ir/T and Alr/T at
each value of 1/T are computed using Eqs. (10) and (11), and their inverses are used to
weight I;/T and AIyr/T at each value of word length, T, when fitting the regression lines.
The values of the intercepts, which correspond to information rates, are denoted I and Al.
While the error in the intercepts could be computed from the variance at each word length,

instead we use surrogate data, as described in the next two sections.

Are we correctly estimating AI/I?

The values of AI/I reported in Fig. 3 of the main text were generated using an estimator
— an algorithm whose input is experimental data and whose output is AI/I. To evaluate
the quality of this estimator, we need to answer two questions. First, is it biased? That is,
does it consistently under-estimate or over-estimate AI/I? Second, what is its variance?

We will attempt to answer these questions using surrogate data. Specifically, we will 1)
generate pairs of model spike trains with statistics that resemble as closely as possible the
statistics of the spike trains observed in our experiments (see next paragraph), 2) calculate

the true value of AI/I for those spike trains, either analytically or numerically (the latter by



Nirenberg et al., Retinal ganglion cells act largely as independent encoders 8

generating extremely large data sets), and 3) calculate AI/I using our estimator. We will
then compare the estimated value of AI/I to the true value, paying particular attention to
the bias and variance.

To make the surrogate data, we divided time into bins of 1 ms and generated spike
patterns probabilistically in each bin. We denoted the probability of a particular spike
pattern occurring in bin k as P(p1, p2|k), where p; and ps, the responses of neurons 1 and 2,
respectively, could take on the values 0 (no spike) or 1 (spike). (We use p; and p, to denote
1-bin responses.) Spike trains were generated in 7-s segments (referred to loosely as movies),
so k ranged from 1 to 7,000, and the movies were repeated multiple times.

The raw probabilities, denoted P,y (p1, p2|k), were taken directly from the data: a pair
of spike trains was binned at 1 ms, and in each bin P,y(p1, p2|k) was computed from the
300 repeats of the stimulus. Temporal correlations were then introduced by generating a

correlated noise source,
Ty = /\xk,1 + 0'(1 — )\2)1/27'}k

where the 7 are a set of independent Gaussian random variables with zero mean and unit

variance, and A < 1. The x;, exhibit correlations that decay exponentially,

(TpimTi) = o2eIml1oe(/) (12)
We combined the raw probabilities with the noise source to generate P(py, pa|k),

= (1 + %) Paw(1, 1]k) 13a

= (14 zk)Paw(1,0/k) 13b
= (14 xx)Paw(0,1]k) 13c

(13a)
(13b)
(13¢)
= Praw(0,0[k) = zk[Praw(1,1|k) + Praw(1,0/k) + Praw (0, 1/K)] . (13d)

The correlation time, 7, of spike trains derived from P(p;, p2|k) can be computed by

combining Eq. (12) with the 1 ms time step. This yields



Nirenberg et al., Retinal ganglion cells act largely as independent encoders 9

ot

= Tog(1/%) "y

T

with t = 1 ms.

Using the above method, we generated surrogate data based on the probabilities given
in Eq. (13), with underlying raw probabilities taken from the 15 most correlated cell pairs.
“Most correlated” was measured by the excess fraction of correlated spikes (ECF). The ECFs
ranged from 9.9% to 34%, and the loss in information, AI/I, ranged from 1% to 11%. For
each cell pair, and thus each underlying probability distribution P,y (p1, p2|k), we generated
10 different spike trains (using 10 different random number generator seeds).

We first generated spike trains with no temporal correlations (o = 0). This allowed us
to calculate AI/I directly from the probabilities Py (p1, p1]k), and thus to determine how
much data was necessary to obtain good estimates of the true value. The calculation of
AI/I from the raw probabilities proceeded as follows. The conditional entropies per unit

time — both correlated and independent — were calculated using the relations

1 N
H(RI:R2|S) = _WZ Z Praw(/)1,/)2|k)IOgQPraw(P1,P2V€)
k=1 p1,p2
1 N
Hinp(Ry, Ry|S) = “Not ZPraw(P1Vf)logzpraw(m\/f)
k=1L p1

+ Z Praw(p2|k) lOgQ Praw(p2|k)

p2

where Py (p1lk) = X ,, Praw(p1, p2|k) and Praw(p2|k) = X, Praw(p1, p2|k). The total entropy
and the Kullback-Leibler distance (Egs. (3a) and (3d)) are more difficult to calculate, since
they depend on word length. (The dependence on word length arises because the non-
uniform firing rate introduces temporal correlations: a high firing rate at the beginning of
a word increases the probability that there will be spikes at the end of the word.) These
two quantities thus have to be calculated numerically at each word length, and their true

values estimated by extrapolating to infinite word length. The numerical calculation at each
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word length, however, can be done exactly. To do this, we first constructed Pr(rq,rs), the

response probability distribution at word length 7', by averaging over words,

Pr(ri,r) = ZPT(H,W‘S)P(S)

where

Pr(ri,72]8) = [ Praw(p1, p2|k) - (15)
k

In Eq. (15), there are T'/§t terms in the product over k£ (as above, T' denotes word length,
so T/6t is the number of bins in a word). We then inserted Pp(ry,72) into Eq. (3a) to
compute the total entropy. An essentially identical calculation yielded Prryp(ri,rs2), which
was combined with Pr(r1,73) to compute the Kullback-Leibler distance, Eq. (3d).

The number of possible responses as a function of word size is 47/%, which increases
rapidly with word size. We thus computed Pr(r1,72) only out to 11 bins. This corresponded
to about 4 million terms for each stimulus; combined with over 600 stimuli, we were stretching
the limits of our computational capabilities. Fortunately, the relative loss in information,
AI/I, changed very little from 1-bin to 11-bin words: the mean change averaged over the
15 cell pairs was .04% =+ 0.15%. Thus, our calculation of AI/I is relatively accurate.

Given that we know the true value of AI/I, we can determine how much data our
estimator needs by increasing the number of repeats of the movie until the estimated value
of AI/I is close to the true value. Figure la shows the error between the estimated value
of AI/I and the true value versus the number of movie repeats. The error for n repeats,

denoted ¢,, is taken to be the standard deviation between the estimated and true value of

AIJI,

& = ([BT7T) = (AT D] )

where the bar represents an average over 10 different spike trains drawn from the same
underlying distribution, P, (p1, p2|k), and the angle brackets represent an average over 15

different underlying distributions. As can be seen from Fig. 1a, the error decreases rather
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Figure 1: Mean and standard deviation of the relative loss in information. a) Error,

[((BT7T)n — (AI/Diae])]'"”, versus number of movie repeats, n. b) Bias, (AI/T), —
(AI/I)rye), versus number of stimulus repeats, n.

slowly. We thus decided that “close” corresponded to an error less than 0.25%, which
occurred at 5000 repeats.

Figure 1b shows the bias in our estimator. The bias is slightly positive, even after 5000
repeats. It is small, however, only about 0.3%. We will thus ignore it, and take (T/I) 5000
to be the true value of AI/I. This is conservative, since it will underestimate the bias in
(AI/I)300 (300 was the number of repeats used in the experiment).

The histogram of (AI/I)sg — (AI/I)s000 is shown in Fig. 2a. Although there is a small
upward bias in (AI/1)se compared to (AI/I)s000 of 0.13%, it is not statistically significant,
(p > 0.2, Student’s t-test).
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Figure 2: Histograms of (AI/I)3p — (m)sooo, where (AI/I)sq0 is the relative loss in
information computed from 300 repeats of the stimulus and (AI/1I)s000 is the mean relative
loss computed from 5000 repeats. Each plot contained 150 data points: 15 data sets combined
with 10 realizations of spike trains from each set. a) 0 = 0 (no temporal correlations in the
spike train). b) c =1,7=1ms. ¢) c =1,7=10ms. d) 0 =1, 7 = 100 ms.
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We performed the same calculation for spike trains with temporal correlations. We used
o = 1, corresponding to full modulation of the underlying probability of observing a spike
(see Egs. (12) and (13)), and we considered correlation times, 7, of 1, 10 and 100 ms (see
Eq. (14)). The histograms of (AI/I)3p — (m)g,ooo are shown in Figs. 2b-d for 7 1, 10
and 100 ms, respectively. There was no statistically significant difference among the four
distributions shown in Fig. 2 (Kolmogorov-Smirnov test among the six pairs, p > 0.05 for
all pairs).

The results in Fig. 2 indicate that, when averaged over all cell pairs, our estimator
is biased slightly upward and its standard deviation is small, at worst about 1.3%. The
possibility remains, however, that the bias and error might depend on the observed value of
AI/I — for example, larger values of AI/I might have smaller, or even negative, biases. To
test this, we computed linear regression fits between the bias and (m)goo, and between
the error and (AI/I)sg, where (AI/I)sg is the loss in information for 300 repeats of the
movies averaged over the 10 realizations of the spike trains. For the bias (Fig. 3a), neither
the intercept nor the slope were statistically significantly different than zero (p > 0.4 and
p > 0.7, respectively). For the error (Fig. 3b), we found that the slope was statistically
significant (p < 10™*), while the mean was not (p > 0.2). To be conservative, though, when
computing the error for a particular observation, we included both the slope and intercept,

and estimated the standard deviation as

a
5
[ )
— e
S
8
01 & :‘..' ..oo .
L)
-2
0 10
(A1), (percent) (Al 1),y (percent)

Figure 3: Bias (a) and error (b) versus (AI/1I)sq for the 15 data sets. Black circles: 0 =0
(no temporal correlations in the spike train). Red: 0 =1, 7 =1 ms. Green: 0 =1, 7 =10
ms. Blue: ¢ = 1, 7 = 100 ms. The lines in each panel are the linear regression fits to the
data.
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€= a+b(AI/I)300 (16)

where a = .079%, b = 0.086 (the values from the regression line in Fig. 3b), and € and
(AI/I)3pp are in units of percent.

The absence of a statistically significant bias in our estimator is a key result: barring
anomalously large fluctuations, the true maximum loss in information, AI/I, for our data

set should be close to the observed 11% (Fig. 3 of the main text).

Computing the error in each measurement

The raw error in each measurement of AI/I is given in Eq. (16). However, AI is con-
strained to be positive (it can be expressed as a relative conditional entropy; see Methods in
the main text). Thus, assuming that AI/I is distributed according to a truncated Gaussian,

its mean and variance are given by

mean(AI/I) = %/Ooo dx z exp l_(%ﬁ] (17a)
var(AI/I) = %/Ooo dz [z — mean(AI/I)]? exp l_(%_zu)j (17b)

where p = AI/I with AT and I computed by extrapolating to infinite word length (see
the discussion following Eq. (11)), € is given in terms of AI/I in Eq. (16), and Z is the
normalization; Z = [;° dz exp[—(z—u)?/2¢*]. The values of the mean and variance computed

in Eq. (17) were the ones reported in Fig. 3 of the main text.
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II. Measuring correlation widths

The width of each cross-correlogram was computed by fitting the difference between the
raw and shifted cross-correlograms to a Gaussian distribution’. Fits were only performed on
correlograms in which the two distributions were different (p < 0.005, Kolmogorov-Smirnov
test, treating the raw and shifted histograms as distributions). In addition, to avoid fitting
the Gaussian to noise, only contiguous bins that were statistically significant (p < 0.05;

binomial statistics) were included in each fit.

IT1. Performing reconstructions with correlated and independent responses

For each pair of cells, we generated two responses, correlated and independent, as follows:
We presented the stimulus, which consisted of a movie repeated multiple times. To generate
correlated responses, we simply paired the spike trains of the two cells when they saw the
movie at the same time. To generate independent responses, we shifted the spike train of
one cell relative to the other by one movie length, and then paired the two spike trains; these
responses correspond to spike trains that saw the same movie, but at different times.

We then applied a linear reconstruction method® to each pair of responses. With this
method, an estimate of the stimulus is derived by convolving the spike trains with a linear
filter. The filters — one for each spike train — were chosen to minimize the root mean square
(RMS) error between the stimulus and the estimate. The filters are, literally, decoders that
convert the spike trains into a stimulus estimate.

We generated optimal filters for the two pairs of spike trains, correlated and independent.
This gave us two decoders, one for the correlated responses and one for the independent ones.
We then applied both decoders to the same pair of spike trains, the correlated spike trains.
If correlations are important, then the reconstruction using the independent decoder should
be much worse than the reconstruction using the correlated decoder; if correlations are not
important, the reconstructions should be about the same. The quality of the reconstructions
was measured using RMS error.

The spike trains were binned at 3 ms, and the filters for the reconstruction were 384 ms
long. The bin size was chosen to be small enough to capture information about correlations,

but large enough to keep the numerical calculation of the filters computationally tractable.
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IV. Rod- and cone-equivalent photon flux

Rod- or cone-equivalent photon flux is the photon flux produced by a light source con-
volved with the spectral sensitivity function associated with the rod or cone of interest. It

is written
Fruiy = / AAP(N) (he/A) 1S (Amax/A)

where Fequiv is the equivalent photon flux in units of equivalent photons/area/time, P(\) is
the power spectrum of the light source in units of power/area/wavelength, S(Ayax/A) is the
spectral sensitivity function, A is Planck’s constant, and c is the speed of light. The term
(hc/A)~! converts energy to photons.

We evaluated rod- and cone-equivalent photon flux for the two light sources used in the
experiments: the monitor that produced the movies and the dim red illuminator on the
dissecting microscope. For each light source, we calculated the power incident on the retina.
The total power was measured using a broad-band photometer and the spectrum using a
spectrometer. The resulting power spectra are shown in Figs. 4a and b (red lines). For the
spectral sensitivity function for mouse rods and cones we followed Lamb?, who showed that
S(Amax/A) could be written in the form

1

S()‘maX/)‘) = exp a(A _ )\max/)\) + exp b(B — )\max//\) + exp C(C - )‘maX/)‘) +D

where @ = 70, b = 28.5, ¢ = —14.1, A = 0.880, B = 0.924, C' = 1.104, and D = 0.655.
The spectral sensitivity function peaks at A = Anax. For mouse rods, Amax = 500 nm,
and for the longer wavelength cones (also called the medium wavelength cones or M-cones),
Amax = 511 nm (Clint Makino, personal communication; see also ref. 10). The spectral
sensitivity functions are shown in Fig. 4 (rods, solid black line; cones, dashed black line).
Equivalent photon fluxes were computed by convolving each light source with each spec-
tral sensitivity function. For the movies, we used the temporally averaged photon flux. The

results are:
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Rod-equivalent photon flux for the movies: 1050 pm 2571,
Cone-equivalent photon flux for the movies: 1200 pm 2s™.
Rod-equivalent photon flux for the dissecting microscope: 250 pym 2571
Cone-equivalent photon flux for the dissecting microscope: 720 pum=2s71.

Since the visual stimulation typically lasted ~90 min (two movies at 45 min each) and the
dissections took less than 4 min, the total photon dose during dissection was small compared
to that during stimulation: (4/90)x(250/1050) = 1.1% for the rods and (4/90)x(720/1200)
= 2.7% for the M-cones.
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Figure 4: Light source spectra and spectral sensitivity curves. In both (a) and (b) the solid
black line corresponds to the rod spectral sensitivity curve and the dashed black line to the
M-cone spectral sensitivity curve. a) Temporally averaged spectrum of movies (red line).
b) Spectrum of red light source on dissecting microscope (red line). The power is larger for
the light source on the dissecting scope than for the movies (note units on y-axis), but the
spectrum is shifted far into the red and well away from the region where the rods and cones
are light sensitive.
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