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The two basic processes underlying perceptual decisions—how neural responses encode stimuli, and how
they inform behavioral choices—have mainly been studied separately. Thus, although many spatiotemporal
features of neural population activity, or ‘‘neural codes,’’ have been shown to carry sensory information, it is
often unknownwhether the brain uses these features for perception. To address this issue, we propose a new
framework centered on redefining the neural code as the neural features that carry sensory information used
by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory
and choice information. We show how this framework leads to a new statistical analysis of neural activity
recorded during behavior that can identify such neural codes, and we discuss how to combine intersec-
tion-based analysis of neural recordings with intervention on neural activity to determine definitively whether
specific neural activity features are involved in a task.
Introduction
To survive, organisms must both accurately represent stimuli in

the outside world and use that representation to generate bene-

ficial behavioral actions. Historically, these two processes—the

mapping from stimuli to neural responses and the mapping

from neural activity to behavior—havemainly been treated sepa-

rately. Of the two, the former has received the most attention.

Often referred to as the ‘‘neural coding problem,’’ its goal is to

determine what features of neural activity carry information

about external stimuli. This approach has led to many empirical

and theoretical proposals about the spatial and temporal fea-

tures of neural population activity, or ‘‘neural codes,’’ that repre-

sent sensory information (Buonomano andMaass, 2009; Harvey

et al., 2012, 2013; Kayser et al., 2009; Luczak et al., 2015; Pan-

zeri et al., 2010; Shamir, 2014). However, there is still no

consensus about the neural code for most sensory stimuli in

most areas of the nervous system.

The lack of consensus arises in part because, while it is estab-

lished that certain features of neural population responses

carry information about specific stimuli, it is unclear whether

the brain uses the information in these features to perform sen-

sory perception (Engineer et al., 2008; Jacobs et al., 2009;

Luna et al., 2005; Victor and Nirenberg, 2008). In principle, the

link between sensory information that is present and sensory in-

formation that is read out to inform choices can be probed using

the animal’s behavioral report of sensory stimuli. In addition, im-

provements in techniques to perturb activity of neural popula-

tions during behavior (Boyden et al., 2005; Deisseroth and

Schnitzer, 2013; Emiliani et al., 2015; Tehovnik et al., 2006)

now make it possible to test causally hypotheses about the neu-

ral code, by ‘‘writing’’ on the neural tissue putative information
and then measuring the behavior elicited by this manipulation.

However, progress in cracking the neural code has been limited

by the lack of a conceptual framework that fully integrates the

advantages offered by behavioral, neurophysiological, statisti-

cal, and interventional techniques.

Here we elaborate such a conceptual framework, which at its

core is based on a change in how a neural code should be

defined. We propose that a neural code should be defined as

the set of neural response features carrying sensory information

that, crucially, is used by the animal to drive appropriate

behavior; that is, the set of neural response features that have

an intersection between sensory and choice information. In the

following, we discuss this framework and its implications for

designing and interpreting experiments aimed at cracking the

neural code, as well as some theoretical and experimental chal-

lenges that arise from it.

What It Takes to Crack the Neural Code Underlying a
Sensory Percept
To illustrate our new framework, we consider a perceptual

discrimination task in which an animal has to extract information

present in the sensory environment and, based on that informa-

tion, choose an appropriate action. For definiteness, we assume

(Figure 1A) a two-alternative forced-choice discrimination task:

the animal has to extract color information from a visual stimulus

(that is decide whether a green [s = 1] or a blue [s = 2] stimulus

was presented) and choose accordingly to move left (choice

c = 1) or right (c = 2), with the correct choice resulting in a reward

(we numbered choices so that c = 1 is the correct rewarded

choice for s = 1 and c = 2 is the correct choice for s = 2). We

suppose that an experimenter is recording the activity of a
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Figure 1. Intersection Information Helps Combining Statistics,
Neural Recordings, Behavior, and Intervention to Crack the Neural
Code for Sensory Perception
(A) Schematic showing two crucial stages in the information processing chain
for sensory perception: sensory coding and information readout. In this
example, an animal must discriminate between two stimuli of different color
(s = 1, green; and s = 2, blue) and make an appropriate choice (c = 1, pink; and
c = 2, red). Sensory coding expresses how different stimuli are encoded by
different neural activity patterns. Information readout is the process by which
information is extracted from single-trial neural population activity to inform
behavioral choice. The intersection between sensory coding and information
readout is defined as the features of neuronal activity that carry sensory in-
formation that is read out to inform a behavioral choice. Note that, as explained
in the main text, a neural feature may show both sensory information and
choice information but have no intersection information; this is visualized here
by plotting the intersection information domain in the space of neural features
as smaller than the overlap between the sensory coding and information
readout domains.
(B) Only information at the intersection between sensory coding and readout
contributes to task performance. Neural population response features that
belong to this intersection can be identified by statistical analysis of neural
recordings during behavior. Interventional (e.g., optogenetics) manipulations
of neural activity informed by statistical analysis of sensory information coding
can then be used to causally probe the contribution of neural features to task
performance at this intersection.
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population of sensory neurons (visual neurons in this example)

while the animal performs the task. We would like to determine

whether the activity of these neurons contributes causally to

the animal’s perception and behavioral choice.

The neural code in tasks such as this one involves two crucial

stages in the information processing chain (Figure 1A). The first

stage is sensory coding: the mapping, on each trial, of the sen-

sory stimulus to neural population activity. The second stage is
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information readout: the mapping from neural population activity

to behavioral choice.

An important observation is that sensory coding and informa-

tion readout can be based on distinct features: some features

of neural activity used to encode sensory information may be

ignoredwhen information is readout, andvice versa. For example,

suppose that, as is often found (Panzeri et al., 2010; Shriki et al.,

2012; Shusterman et al., 2011; Victor, 2000; Zuo et al., 2015),

theprecise timing of spikesand the spike rate areboth informative

about the stimulus. Although there is information in spike timing,

the downstream neural circuit may be sensitive only to the rate,

and thus unable to use information contained in spike timing. Or,

the downstream circuit may be sensitive to spike timing, but if ex-

tracting spike timing information requires an independent knowl-

edge of the stimulus presentation time to which the downstream

circuit does not have access, the readout will not be able to use

spike timing information. Ina lessextremecase, the same features

of neural activity may be used for both sensory coding and infor-

mation readout, but they may be weighted differently by different

sets of neurons. For example, the timing of spikesmay carrymore

information about the stimulus than the number of spikes, but the

spike rate, defined as the spike count per unit time, may weigh

more than spike timing in reaching a behavioral choice.

Although characterizing separately the features of neural ac-

tivity used for sensory coding and for information readout can

provide insight into neural information transmission, we argue

that to crack the neural code it is essential to consider the

intersection between sensory coding and information readout

(Figure 1A), defined as the set of neural features carrying sensory

information that is read out to inform a behavioral choice. The

only information that matters for task performance is the infor-

mation at this intersection. In fact, only features that lie at this

intersection can be used to convert sensory perception into

appropriate behavioral actions and can help the animal perform

a perceptual discrimination task. We therefore define the neural

code that allows the animal to do the task to be the ‘‘intersec-

tion’’ features of neural activity carrying sensory information

that is read out for behavioral choice.

In the following, we propose a framework for identifying the in-

formation at the intersection of sensory coding and information

readout. We propose a combination of statistical approaches,

behavior, and interventional manipulations (Figure 1B). Statisti-

cal approaches can be used on single trials to identify the neural

activity features that covary with the sensory stimuli and behav-

ioral choices; they are, therefore, critical for forming hypotheses

about the features of the neural activity that both contain sensory

information and are used by the information readout. These hy-

potheses can be tested using experiments in which sensory

stimuli are replaced with (or accompanied by) direct manipula-

tion of neural population activity (Figure 1B). The manipulation

of the specific features of neural population activity that take

part in sensory coding and the examination of how these manip-

ulations affect the animal’s behavioral choices probe causally

the intersection between sensory information and readout.

Examples of Candidate Neural Codes
Before detailing the concepts behind this proposed framework,

we first provide examples to illustrate the types of neural codes
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Figure 2. Schematic of Possible Pairs of
Neural Population Features Involved in
Sensory Perception
(A) Features r1 and r2 are the pooled firing rates of
two neuronal populations (yellow and cyan) that
encode two different visual stimuli (s = 1, green;
and s = 2, blue). Values of single-trial responses of
each population can be represented as dots in the
two-dimensional plot of spike count variables in
the r1,r2 space (rightmost panel in A).
(B) Features r1 and r2 are low-dimensional pro-
jections of large-population activity (computed for
example with PCA as weighted sum of the activity
of the neurons).
(C) Features r1 and r2 are spike timing and spike
count of a neuron.
(D) Features r1 and r2 are the temporal regularity of
the spike train of a neuron and spike count.
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and questions that could be addressed. In all these examples,

we suppose that we record (either from the same brain location

or frommultiple locations) neural population activity. That activity

consists of n neural features, denoted r1,.., rn. We would like to

determine which of these features, either individually or jointly,

carry sensory information that is essential for performing the

perceptual discrimination task. For simplicity, hereafter we focus

on two features, r1 and r2, but our framework is general enough to

deal with an arbitrary number of features (see Supplemental In-

formation).

A common example of studies of population coding

(Figure 2A) considers as candidate neural codes two features,

r1 and r2, defined respectively as the total spike count of two

populations of neurons. This has been the focus of many recent

studies designed to test whether activity in specific neural pop-

ulations is essential for accurate performance in sensory

discrimination tasks (Chen et al., 2011; Guo et al., 2014; Hernán-

dez et al., 2010; Peng et al., 2015). Those spike counts could be

from spatially separated populations in two different brain re-

gions, as shown in Figure 2A, or they could be from different

genetically or functionally defined cell classes in the same brain

region (Baden et al., 2016; Chen et al., 2013; Li et al., 2015; Wil-

son et al., 2012). More sophisticated examples of features of

neural population activity may involve low-dimensional projec-

tions of the activity of large neuronal populations (Cunningham

and Yu, 2014). These could be, for example, the first two prin-

cipal components of neural population activity andwould consist

of weighted sums of spike counts of the recorded population

(Figure 2B). Major open questions that follow from these studies

are (Otchy et al., 2015): which populations are instructive for the

task (provide sensory information used for perceptual discrimi-

nation), which populations are permissive for the task (modulate

task performance without directly contributing any specific sen-
sory information), and which populations

have no causal role in the sensory

discrimination task despite having sen-

sory information? The neural code is

expected to be present in instructive pop-

ulations. In contrast, permissive areas

could provide task-relevant modulation
that is not related to the sensory stimuli, such as attention or sa-

liency signals. Populations with no causal role may still contain

task-related information if it is inherited from instructive regions.

Other questions relevant for population coding regard which

neurons are required for sensory information coding and percep-

tion (Houweling and Brecht, 2008; Huber et al., 2008; Reich et al.,

2001). For example, often only a relatively small fraction of neu-

rons in a population have sharp tuning profiles to the stimuli,

whereas the majority of neurons have weak and/or mixed tuning

to many different variables (Meister et al., 2013; Rigotti et al.,

2013). Information about stimuli can be decoded fromboth types

of neurons, but it remains a major open question whether only

the sharply tuned neurons or other neurons as well can

contribute to behavioral discrimination (Morcos and Harvey,

2016). A related question is: how many neurons are required

for sensory perception? This question can be investigated by

determining the smallest subpopulation of neurons that carries

all information used for perception.

Another set of questions considers the role of spike timing in

sensory coding and perception (Figures 2C and 2D). Spike timing

could be measured with respect to the stimulus presentation

time, an internal brain rhythm (Kayser et al., 2009; O’Keefe and

Recce, 1993), or a rhythmic active sampling process such as

sniffing (Shusterman et al., 2011). In many cases both spike

timing and spike count carry sensory information (in the example

of Figure 2C stimulus s = 1 elicits responses with fewer and

earlier spikes than does s = 2). Although it is accepted that spike

timing carries sensory information, whether or not timing is used

for behavior has been vigorously debated (Engineer et al., 2008;

Harvey et al., 2013; Jacobs et al., 2009; Luna et al., 2005; Zuo

et al., 2015). For example, it is still debated whether the sensory

information carried by millisecond-scale spike timing is redun-

dant with that provided by the total spike count in a longer
Neuron 93, February 8, 2017 493



Neuron

Perspective
response window of hundreds of milliseconds, whether the infor-

mation in spike timing measured with respect to stimulus onset

can be accessed by a downstream neural decoder, and whether

recurrent circuits in higher cortical areas can extract millisecond-

scale information.

Also of interest is whether the complex aspects of the tempo-

ral structure of spike trains could be part of the neural code. One

possibility is that the regularity of spike timing of single neurons

or the coordination of spike timing across cells carries informa-

tion about the stimulus (as in the example of Figure 2D, where

stimulus 1 elicits more regular spike trains than stimulus 2).

The regularity or temporal coordination across cells may also

have a large effect on the readout (Doron et al., 2014; Jia et al.,

2013; Nikoli�c et al., 2013): for example, spikes closer in time

may elicit a larger post-synaptic response and so may have a

crucial impact on task performance. However, some studies

have suggested that temporal coordination does not have a

behavioral effect, but instead all spikes are weighted the same

by the readout (Histed and Maunsell, 2014).

In what follows, we will consider, for simplicity, two features,

and we will generically refer to these features as r1 and r2. These

features could refer to spike timing and spike counts, the mean

firing rate in two different brain regions, the activity of two

different cell types, and so on.

Determining the Single-Trial Intersection between
Sensory Information Coding and Information Readout
Using Statistical Analysis of Neural Recordings
We now consider how to identify, using statistical measures

applied to recordings of neural activity during behavior experi-

ments, three conceptually important domains of interest in the

neural information space (Figure 1A): the ‘‘sensory information’’

domain (the features of neural population activity that carry stim-

ulus information), the ‘‘readout’’ domain (the features that influ-

ence the computation of choice), and the ‘‘intersection’’ between

the two domains (the features that carry sensory information

used to compute choice).

Throughout this Perspective, to illustrate neural coding and

stimulus and choice domains, we use scatterplots of simulated

responses characterized by two features; each dot in the two-

dimensional feature plane (r1,r2) represents a single-trial

response color coded for that trial’s stimulus (s = 1: green;

s = 2, blue) (see also Figure 2A, right panel for a schematization

of this representation). Each dot therefore shows the simulated

neural response of feature r1 and r2 on each individual trial.

A simple way to visualize how neural response features encode

sensory stimuli is to compute a sensory decoding boundary

(Quian Quiroga and Panzeri, 2009)—shortened to ‘‘sensory

boundary’’ hereafter—that best separates trials by stimulus (i.e.,

that best separates the blue and green dots in the plots in

Figure 3). This boundary (black dashed line in the r1,r2plane in Fig-

ures 3A1, 3B1, and 3C1) can be used as a rule to decide which

stimulus most likely caused a given single-trial neural response.

Similarly, we can visualize how neural response features are

used to produce a choice with a ‘‘decision boundary’’ (Haefner

et al., 2013), visualized as a red dashed line in Figures 3A1, 3B1,

and 3C1. This decision boundary is the line that best separates tri-

als by choice, and in the specific simulated examples in Figure 3 it
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coincides with the actual boundary used to produce choice. Re-

sponses that lead to correct choices are shown as filled dots;

those leading to incorrect choice are shown as open circles.

The orientation of the boundaries determines the relative impor-

tance of each feature in sensory coding or choice: a diagonal

boundary gives weight to both features, whereas a horizontal or

vertical line gives weight only to r2 or only to r1, respectively.

To quantify how well each feature or set of features carries in-

formation about stimulus or choice, we use the fraction correct.

In terms of the illustrations of Figure 3, the fraction of correctly

decoded stimuli is the fraction of green or blue dots that fall on

the correct side of the sensory boundary (below or above the

sensory boundary for the green, s = 1, and blue, s = 2, stimulus,

respectively). Other measures, such as those based on signal

detection theory (Britten et al., 1996; Shadlen et al., 1996) or in-

formation theory (Quian Quiroga and Panzeri, 2009) can be used

instead and are discussed in Supplemental Information. We use

fraction correct primarily because it is simple and intuitive, but

we could use any of the other measures without changing the

basic framework. To emphasize the generality of our reasoning,

hereafter we often refer to fraction correct as ‘‘information.’’ If the

fraction correct refers to the decoded stimulus, we call it ‘‘sen-

sory information’’ or ‘‘stimulus information’’; if it refers to de-

coded choice we call it ‘‘choice information.’’

We say that a neural response feature, ri, carries sensory or

choice information if the value of the presented stimulus or the

animal’s choice can be predicted from the single-trial values of

this feature. Stimulus information and sensory boundaries are

typically computed by presenting two or more different stimuli,

and quantifying how well the stimulus-specific distributions of

neural response features are separated by sensory boundaries

(Quian Quiroga and Panzeri, 2009). Choice information has

been typically computed separately from stimulus information

(Britten et al., 1996), by evaluating decision boundaries from dis-

tributions of responses with no sensory signal or at fixed sensory

stimulus (to eliminate spurious choice variations of neural

response arising from their stimulus-related variations).

To understand the neural code associated with a particular

task, it is relatively obvious that we need to consider both stim-

ulus and choice information. If a response feature carries stim-

ulus but not choice information, then the sensory information it

carries isn’t used for the task. If a response feature carries choice

but not stimulus information, then although it may contribute to

choice, or relay or execute the result of the decision making, it

still cannot be used per se to increase task performance because

it does not carry information about the sensory variable to be

discriminated (Koulakov et al., 2005). However, a fact that has

been underappreciated so far is that a neural feature can carry

both sensory and choice information but still not contribute to

task performance. This could happen, for example, when fea-

tures carry both stimulus and choice information, but the rule

used to encode sensory information is incompatible with the

rule used to read them out.

We illustrate this in Figure 3A. Suppose that in this figure, r1 and

r2 are the times of the first spike of two different neurons. These

features are signal correlated (Averbeck et al., 2006); that is,

both neurons spike earlier (corresponding to smaller values of

both r1 and r2 in the scatterplot in Figure 3A) to the green stimulus
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Figure 3. Impact of Response Features on
Sensory Coding, Readout, and Intersection
Information
In the left panels (A1), (B1), and (C1), we illustrate
stimulus and choice dependences of two hypo-
thetical neural features, r1 and r2, with scatterplots
of simulated neural responses to two stimuli, s = 1
or s = 2. The dots are color coded: green if s = 1
and blue if s = 2. Dashed black and red lines
represent the sensory and decision boundaries,
respectively. The region below the sensory
boundary corresponds to responses that are de-
coded correctly from features r1,r2 if the green
stimulus is shown; the region above the sensory
boundary corresponds to responses that are
decoded correctly if the blue stimulus is shown.
Filled circles correspond to correct behavioral
choices; open circles to wrong choices. Panels
(A2), (B2), and (C2) plot only the trials that
contribute to the calculation of intersection infor-
mation. Those are the behaviorally correct trials
(filled circles) in the two regions of the r1, r2 plane
regions in which the decoded stimulus bs and the
behavioral choice are both correct. Each region is
color coded with the color of the stimulus that
contributes to it. White regions indicate the portion
of the r1,r2 plane that cannot contribute to the
intersection because for these responses either
the decoded stimulus or choice is incorrect. The
larger the colored areas and the number of dots
included in panels (A2), (B2), and (C2), the larger the
intersection information. Panels (A3), (B3), and (C3)
plot a possible neural circuit diagram that could
lead to the considered result. In these panels s
indicates the sensory stimulus, ri indicate the
neural features and c the readout neural system,
and arrows indicate directed information transfer:
(A1–A3) no intersection information (the sensory
and decision boundary are orthogonal); (B1–B3)
intermediate intersection information (the sensory
and decision boundary are partly aligned); (C1–C3)
large intersection (the sensory and decision
boundary are fully aligned).
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(s = 1) and later (corresponding to larger values of r1 and r2 in the

scatterplot) to the blue stimulus (s = 2), with no ‘‘noise’’ correla-

tions (Averbeck et al., 2006) between the activity of these neurons

at fixed stimulus. For this encoding scheme, higher values of r1+r2
indicate that the blue stimulus is more likely, and so the sensory

boundary is anti-diagonal: it is the line r1+r2 = constant. Suppose,

though, that the readout does not have access to the stimulus

time. In such a case, the only information the readout can use is

the relative time of firing between the two neurons. This is the dif-

ference, r1-r2, and so the decision boundary is r1-r2 = constant. In

this case, the responses carry information about both stimulus

and the choice, but the responses cannot be used to perform

the task – the orthogonal sensory and decision boundaries

mean the animal’s choice is unrelated to the stimulus.

The case illustrated in Figure 3A could happen also in studying

neural population coding rather than spike timing. For example,

r1 and r2 could be weighted sums of activity of neurons within a

large population (as in Figure 2B), with stimulus encoded by the

sum of the two neural features and choice by the most active of

the two features (which feature is most active is revealed by the

sign of r1-r2). Also in this ‘‘population’’ interpretation of Figure 3A,

none of the stimulus information in population activity could be

used to perform the task.
Investigating whether neural stimulus information is usefully

read out for task performance requires quantifying whether neu-

ral discrimination predicts behavioral discrimination. This has

traditionally been addressed by evaluating the similarity between

neurometric functions (quantifying the trial-averaged perfor-

mance in discriminating various pairs of stimuli using one or

more neural response features) and psychometric functions

(quantifying the animal’s trial-averaged performance in discrim-

inating the same set of pairs of stimuli). If a set of response fea-

tures contributes to task performance, psychometric and neuro-

metric functions should be similar (stimulus pairs discriminations

that are easier for the animal should also be easier for the consid-

ered response features, and so on). This approach has provided

numerous insights in sensory coding across several modalities

(Engineer et al., 2008; Newsome et al., 1989; Romo and Salinas,

2003). For example, it was used to study the role of spike counts

and spike times of somatosensory neurons for tactile perception

of low-frequency (8–16 Hz) skin vibrations (Romo and Salinas,

2003). Althoughmost such neurons encoded vibration frequency

by spike count, some neurons encoded it by spike times fired in

phase with skin deflections. However, the neurometric perfor-

mance of spike counts correlated better to the psychometric

one than that of spike times, suggesting that spike rates produce
Neuron 93, February 8, 2017 495
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this sensation (Romo and Salinas, 2003). A similar approach

applied to high-frequency vibrations (>100 Hz) suggested that

discriminating high-frequency vibrations relies on both spike

times and counts (Harvey et al., 2013).

A potential problem with comparing neurometric and psycho-

metric functions is that these functions may be similar even

when the sensory and choice information do not intersect at all.

The reason why this may happen is that it is based on comparing

trial-averagedquantities, rather thancomparing sensory informa-

tion and animal’s choice in single trials. To understand the

possible problems of only comparing neurometric and psycho-

metric functions, consider a new scenario (Figure S1A). The sce-

nario is in part similar to that of Figure 3A: r1, r2 are again the first

spike times of two different neurons, and they are tuned to the

stimuli and contribute to choice; and, as in Figure 3A, in this

new example of Figure S1A both neurons spike earlier to the

green stimulus (s = 1) and later to the blue one (s = 2), leading to

an anti-diagonal sensory boundary (line r1+r2 = constant), and

the readout uses the relative time of firing r1-r2 between the two

neurons (the decision boundary projected on the r1,r2 plane is

r1-r2 = constant). However, suppose that in the example of

Figure S1A the actual choice (unlike in Figure 3A) depends also

on a third neural feature, r3, which we’ll take to be the sum of

the spike count of the two neurons. Assume also that, crucially,

the stimulus dependence of the spike count r3 is similar to that

of both r1 and r2, so that stimulus s = 1 elicits both earlier spike

and lower counts than stimulus s = 2 does. Suppose finally that

the experimenter now tunes the task difficulty by varying some

‘‘stimulus signal intensity’’ parameterwhoseeffectonneural firing

is to change the separation between thecloudsof the s= 1 (green)

and s = 2 (blue) stimulus-specific responses (Figure S1A2). As

the task becomes more difficult, the animal’s psychometric

performance decreases, as does the decoding neurometric per-

formance (because the blue andgreen stimulus-specific distribu-

tions of points get closer). We can plot neurometric and psycho-

metric performance as a function of signal intensity, and they will

have similar shape: bothwill be near chancewhen signal intensity

is small and the stimulus-specific distributions of r1,r2 largely

overlap (FigureS1A3), andwill benearlyperfectwhensignal inten-

sity is high and the stimulus-specific distributions of r1,r2 are far

apart (Figure S1A5). Thus, in this example (Figure S1A), statistical

analysis will show that spike timing features r1,r2 have sensory in-

formation (because r1+r2 is stimulus dependent), have choice in-

formation (even at fixed stimulus, reflecting that r1-r2 impacts on

choice), and the neurometric function of r1,r2 is similar to the psy-

chometric function (because the stimulus dependence of both r1
and r2 is similar to that of the firing rate r3,which is theonly contrib-

utor to task performance). Yet r1,r2 do not contribute to task per-

formance because none of the sensory information they carry is

read due to the orthogonality of the sensory and decision bound-

aries. That r1,r2 do not contribute to task performance can only be

discovered by observing that the trial-to-trial fluctuations of the

accuracy of sensory information in r1,r2, encoded only by r1+r2,

does not influence at all behavior, as the decision depends on

r1-r2. For example, in trials when r1+r2 indicates the presence of

a stimulus different from that presented, behavior is not less (or

more) likely to be correct because of this stimulus coding error

(Figures S1A3–S1A5).
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These examples illustrate a general fact: it is not possible to

determine whether sensory information is transmitted to the

readout using the trial-averaged stimulus and choice informa-

tion, either separately or in combination. It is, instead, necessary

to investigate the effect of sensory coding on information

readout within a single trial. We therefore propose the use of a

measure we call intersection information, denoted II. Conceptu-

ally, intersection information is large only if the neural features

carry a large amount of information about the stimulus and that

information is used to inform choice—so that, based on these

features, the animal is correct most of the time.

A quantitative description of IIwas derived in Zuo et al. (2015).

The authors reasoned that, if feature ri contributes to task perfor-

mance, there should be an association on each trial between the

accuracy of sensory information provided through that feature

and behavioral choice. In other words, on trials in which ri pro-

vides accurate sensory evidence (stimulus is decoded correctly

from ri), then the likelihood of correct choice should increase.

Thus, the simplest operational definition of the intersection infor-

mation, II, for a particular feature is the probability that on a single

trial the stimulus is decoded correctly from ri and the animal

makes the correct choice (see Supplemental Information for

additional details, in particular Eq. S7).

Intersection information can be used to rank features accord-

ing to their potential importance for task performance. Impor-

tantly, it is high if there is a large amount of stimulus information

and readout is near optimal. It is low, on the other hand, if a neural

response feature has only sensory information but very little

choice information, or vice versa, or if the rule used for sensory

coding is incompatible with the rule used by the readout.

We illustrate intersection information using three examples

(Figures 3A1, 3B1, and 3C1), with null (chance-level), intermedi-

ate, and high values of intersection information, respectively. In

these plots, we divide the r1,r2 feature space into four possible

areas based on the sensory and decision boundaries: bs = 1,

c = 1; bs = 1, c = 2; bs = 2, c = 1; bs = 2, c = 2 (bs is the decoded stim-

ulus, which can be different from the stimulus, s, presented to the

animal). The intersection information is the fraction of trials that

are decoded correctly and result in a correct behavioral choice;

these trials correspond to the filled dots, indicating a trial with

correct choice, shown in the regions in Figures 3A2, 3B2, and

3C2 colored with the decoded stimulus color code. The larger

are the colored areas, the larger is the intersection information.

Chance level for the intersection measure is when there is no

relationship between the stimulus decoded by neural activity

and the choice taken by the animal at fixed stimulus (the chance

level of intersection equals the product of the probability of a cor-

rect behavioral choice and the probability of correctly decoding

the stimulus; see Supplemental Information for details). This

is the case in Figure 3A, where the sensory and decision

boundaries are orthogonal. Because trials that provide faithful

stimulus information are just as likely to result in correct as

incorrect choices, there is chance-level intersection information

(see Figure S1D for the intersection information values in these

examples).

Intersection information is intermediate when only some of the

features of neural activity carrying sensory information are read

out while the information of others is lost before the readout
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stage. This is the case in Figure 3B, where both r1 and r2 carry

sensory information but only r2 is read out. This may correspond,

for example, to a case when both spike count r1 and spike timing

r2 of a neuron carry information, but only count r1 is used for

behavior (similarly to the case of O’Connor et al., 2013), for

example, because the readout mechanism is not sensitive

enough to precise spike timing.

Intersection information is largest when the optimal sensory

boundary and the decision boundary coincide, as in Figure 3C,

so that all sensory information is optimally used to perform the

task. This is the case when all measured features of neural

activity that carry sensory information directly contribute to the

animal’s choice. In this example (Figure 3C), trials that lead to

correct stimulus decoding from the joint features, r1 and r2 (those

below the diagonal for the green stimulus, s = 1, and those above

the diagonal for the blue stimulus, s = 2), always lead to correct

behavioral choices. Trials leading to incorrect stimulus decoding

from r1 and r2 (above the diagonal for s = 1 and below it for s = 2)

always lead to incorrect behavioral choices. This situation

is reminiscent of texture encoding by somatosensory cortical

neurons (Zuo et al., 2015), in which both spike rate and timing

seem to carry sensory information that is used for behavioral

discrimination.

The above simple reasoning can be extended to provide more

refinedmeasurements of the relationship between sensory infor-

mation in neural activity and behavioral choice. For example, one

could also measure (Zuo et al., 2015) what we call the fraction of

intersection information fII, defined as the fraction of trials with

correct stimulus decoding that have correct behavior. Unlike II,

fII is not sensitive to the amount of sensory information (the

fraction of trials the stimulus is decoded correctly from neural

feature r), but only to the proportion of these correctly decoded

trials that lead to correct behavior. Thus, fII is an indicator of

the optimality of the readout—in the linear case, the alignment

between the sensory and decision boundaries—rather than the

total impact of the code on task performance. Measuring

both II and fII could be useful to determine whether a moderate

amount of intersection information, II, is because the feature

has a moderate amount of information but is efficiently read

or because the feature has high information but not read out

very efficiently. Moreover, given that if a feature ri contributes

to task performance, then, in trials when ri provides inaccurate

evidence (stimulus is decoded incorrectly), the likelihood of cor-

rect choice should decrease, an additional separate quantifica-

tion of the agreement of stimulus information and behavioral

choice in incorrect trials would complement intersection mea-

sures (see Zuo et al., 2015 and Supplemental Information).

The purely statistical approach to measure intersection

information is most straightforward if all response features are

statistically independent, because in that case the intersection

information approach applied to a set of features would unam-

biguously identify the contribution of those features to task

performance. However, often features are not independent.

For example, if the features are the activity of neurons in different

brain regions, these features might be partly correlated if there

are connections between the two regions. Alternatively, if the

features are spike timing and spike count, both involve the

same spikes and so may be dependent. The presence of depen-
dencies among features complicates the interpretation of inter-

section information. In particular, it raises two critical questions.

First, does a set of features with intersection information

contribute to task performance, or instead reflect only a correla-

tion with other features that truly contributes to task perfor-

mance? Second, does each neural response feature provide

unique intersection information that is not provided by other

features?

To illustrate the complications induced by correlations among

features, we consider the intersection information from one

feature rather than two. We return to Figure 3, for which re-

sponses are signal correlated in all panels (that is, responses

to s = 1 are on average lower than those to s = 2 for both features

[Averbeck et al., 2006]). We first consider a case (as in Figure 3B)

for which both features carry information about the stimulus and

are partly correlated (because of signal correlations) but only

feature r1 is read out. Suppose that we apply our statistical anal-

ysis to feature r2; that is, we decode the stimulus using only r2,

which can be done optimally by decoding responses in the lower

and upper half of the r1,r2 space as bs = 1 and bs = 2, respectively.

Wewill find higher-than-chance intersection and choice informa-

tion (as shown by the fact that lower values of r2 are found in trials

with choice c = 1 than in trials with c = 2, see Figure S1B) even

though r2 is not read out. That’s only because r2 is correlated

with r1, which is the feature that is truly read out.

If we record from both features, we can differentiate, just from

statistical analyses of neural recordings, between the case when

only one feature is read out (Figure 3B) and the case when both

are read out (Figure 3C). If, as in Figure 3C, r1 and r2 carry com-

plementary sensory information (the diagonal sensory boundary

implies that both features should be used for optimal decoding)

and if the readout uses both features (the decision boundary

is also diagonal), then intersection information obtained when

decoding the stimulus using two features will be larger than

the intersection information obtained when decoding the

stimulus with either feature alone. This is because decoding

the stimulus with only one feature will lose the complementary

task information present in the other feature and so the task per-

formance will suffer (Figures S1C and S1D). Thus, a statistical

signature that task performance benefits from both features

is that using both feature increases the intersection information

(Figure S1D). However, if we cannot record both features (and,

more generally, all features that carry intersection information),

the only way to fully prove which features contribute to task

performance is to use interventional methods. That’s the subject

of the next section.

Causal Interventional Testing of the Neural Code
Why Do We Need Intervention?

The statistical methods described above for determining

sensory, choice, and intersection information are useful for iden-

tifying potential neural coding mechanisms, and for forming hy-

potheses about information coding and transmission. However,

as just discussed, because response features are often corre-

lated and because we do not usually have experimental access

to all of them, whether a neural feature carries information in the

intersection between sensory coding and readout can ultimately

only be proved with intervention. Before discussing how to
Neuron 93, February 8, 2017 497
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Figure 4. Causal Manipulations to Study the Permissive and
Instructive Roles in Coding and Information Flow
(A–D) Interventional approaches can be used to disambiguate among different
conditions. (A) The neural features r1 and r2 carry significant information about
the stimulus, s, and provide essential stimulus information to the decision
readout, c. (B) r1 does not send information to c, but only receives a copy of
the information via r2, which does send stimulus information to c. (C) r1 pro-
vides instructive information about s to r2 and r2 informs c instructively; (D) r1
influences c but does not directly carry information about s.
(E and F) Interventional approaches can be used to reveal cases in which r1
informs c but does not send stimulus information that contributes to task
performance (black arrow in E) from cases in which r1 sends stimulus infor-
mation used for decisions (colored arrow in F).
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design interventional experiments that test intersection informa-

tion, it is useful to consider why interventional manipulations

of neural activity are so crucial to prove hypotheses. (In the

following, we refer to ‘‘statistical’’ information measures as

shorthand for measures of information obtained from recorded

natural unperturbed neural activity, and ‘‘interventional’’ informa-

tion measures to indicate information estimates from neural

activity imposed by intervention.)

Suppose that statistical measures like those described in the

previous section found that a neural feature, r1, carries stimulus,

choice, and intersection information. An interpretation of this

result is that r1 provides essential stimulus information to the de-

cision readout (this is indicated in Figure 4A by the arrow from r1
to the choice, c). However, another interpretation (sketched in

Figure 4B), one that is still compatible with these statistical mea-

sures, is that r1 does not transmit information to c (not even indi-

rectly). Instead, it only receives a copy of the information that

other neural features (such as r2 in Figure 4B) do transmit to

the choice. In this case, the sensory information in r1 is not caus-
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ally involved in the decision (as indicated by the lack of arrow

from r1 to c in Figure 4B), but r1 correlates with the decision

because it correlates with r2, the decision’s cause.

Intervention can disambiguate these two scenarios by

imposing a chosen value on r1, one that is decided by the exper-

imenter and so is independent of r2. By doing that, we break any

possible effect of r2, or of any other possible variable, on r1
(Figure 4E). In this case, any observed relationship between r1
and choice must be due to the causal effect of r1 on choice

(Pearl, 2009).

In the following we discuss how to design a causal intervention

experiment that tests whether neural features carry intersection

information. We are interested in an intervention design that can

tell whether r1 transmits stimulus information used for decision

(as in Figure 4F, indicated by the arrow between r1 and choice

c being colored like a stimulus) or r1 informs c but does not trans-

mit stimulus information contributing to task performance (as in

Figure 4E, indicated by the arrow between r1 and c not being

colored).

Intervention on Neural Activity and Intersection
between Sensory Information and Readout
Here we examine cases in which we can both record andmanip-

ulate (in the same animal, but not necessarily at the same time)

neural features r1 and r2 during a perceptual discrimination task.

Let us first consider a causal intervention on the neural fea-

tures. Suppose that we impose a number of different values of

r1, r2 in a series of intervention trials (‘‘lightning bolt’’ symbols in

Figure 5, colored by the behavioral choice they elicit) and we

measure the choice taken by the animal. In our examples, choice

is determined by the red dashed decision boundary in the r1, r2
space. Observing the correspondence between the value

imposed on r1, r2 and the animal’s choice would easily determine

the orientation of the decision boundary (Figures 5A–5C). From

this interventionally determined decision boundary, choice infor-

mation can be obtained exactly as in the statistical case.

Applying the same reasoning used for the statistical case, an

interventional measure of intersection information is the fraction

of trials on which the animal’s choice reports the stimulus that

would be decoded (using the sensory boundary acquired with

statistical analysis of neural responses) from the imposed neural

activity pattern (as above, this can be assessed against chance

level). Application of this interventional measure of intersection

information to our examples in Figure 5 shows that interventional

intersection information captures the alignment of the sensory

and decision boundary. It is high when, as in Figure 5C, the

animal’s choice (c = 1, pink; c = 2, dark red) always corresponds

to the stimulus decoded from neural activity (in Figure 5C, the

case of maximal intersection, all patterns in the bs = 1 ‘‘green’’ de-

coding region lead to c = 1, and the same applies to the bs = 2,

c = 2 region); it is null (chance-level) when sensory and decision

boundaries are mismatched (as in Figure 5A, where half of

imposed patterns in either stimulus decoding region lead to

choice c = 1 and half to c = 2).

A critical observation is that the intersection information

computed via intervention may be different from that computed

using purely statistical analysis. That can happen, as discussed

above, if the neural features are correlated with variables that did
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Figure 5. Schematic of an Experimental Design to Probe Intersection Information with Intervention
Three examples of neural responses (quantified by features r1,r2) to two stimuli, with conventions as in Figure 3. We assume that some patterns of neural activity
are evoked by interventional manipulation in some other trials. The ‘‘lightning bolts’’ indicate activity patterns in r1,r2 space evoked by intervention: they are color
coded with the choice that they elicited (as determined by the decision boundary—the dashed red line). Choice c = 1 is color coded as pink, and c = 2 as dark red.
The choices evoked by the intervention can be used to determine, in a causal manner, the position of the decision boundary (as the line separating different
choices). The correspondence between the stimulus that would be decoded from the neural responses to the intervention-induced choice can be used to
compute interventional intersection information.
(A) A case with no interventional intersection information (the sensory and decision boundary are orthogonal).
(B) A case with intermediate intersection (the sensory and decision boundary are partly aligned).
(C) A case with large intersection (the sensory and decision boundary are fully aligned).
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carry intersection information, but did not themselves provide

any information about choice. For example, if a statistically

determined non null choice or intersection information in one

feature just reflects a top-down choice signal and not a causal

contribution of the feature to choice, this feature will show null

(chance-level) intersection information with intervention. Thus,

of particular interest are cases in which the decision boundary

is orthogonal to the sensory boundary under intervention, but

not in trials without an intervention (O’Connor et al., 2013).

When that’s the case, the neural features under investigation

carry no intersection information and the intersection or choice

information determined statistically mean that the considered

features only correlate with the true factors that are instructive

for task performance.

The values of the interventionally evoked neural features in

an experiment are arbitrarily determined by the experimenter.

The chosen evoked neural features may be designed to drive

behavior robustly but may occur very rarely during perception

in natural conditions. This may lead to an over-estimation of their

importance for task performance. To correct for this problem,

when computing interventional intersection information, we

should weigh intervention results with the probability distribution

over stimuli and responses that occur under natural conditions

(see Supplemental Information). Thus, evaluating the causal

impact of a neural code with intervention experiments ultimately

demands a statistical analysis of the probability of naturally

occurring patterns during the presentation of each stimulus while

performing the task.

By analogy to what we proposed for the statistical measures,

we can design intervention experiments that address whether

two neural response features, r1, r2, that are correlated during

measures of natural neural activity both contribute causally to

choice and to task performance. Suppose that (as in Figures
5B and 5C) we recorded two correlated features in unperturbed

(i.e., no intervention) conditions and that we would like to deter-

mine interventionally whether the readout uses both such sour-

ces of sensory information to perform the task. Designing such

an experiment requires manipulating both features at the same

time, and then comparing interventional intersection information

of the joint features and of the individual ones. If the experimenter

designs a set of intervention patterns that generate uncorrelated

feature values, then only the features that carry sensory informa-

tion and are read out will show higher-than-chance intersection

information. If the experimental design cannot fully decorrelate

the features evoked by intervention, then a complementary

contribution to task performance of the two features will still

be revealed interventionally when finding that adding a feature

increases the interventional intersection information, exactly as

in the statistical analysis case.

Above we argued that statistical analysis is not sufficient to

determine whether there is intersection information in a set of

neural features. In the following, we argue that causal manipula-

tions of neural activity alone are also not sufficient to determine

whether there is intersection information in a set of neural fea-

tures. Experiments are frequently designed such that an animal

is trained to discriminate neural activity patterns that are created

artificially using interventional approaches, such as microstimu-

lation or optogenetics, without direct regard to how these pat-

terns may encode sensory stimuli. This approach is extremely

powerful for testing the capabilities of the readout. For example,

this approach has been used to test the sensitivity of the readout

to precisely timed neural activity (Doron et al., 2014; Yang et al.,

2008; Yang and Zador, 2012) and also to test the minimal num-

ber of neurons or spikes to which a readout could be sensitive

(Houweling and Brecht, 2008; Huber et al., 2008). Thus, this

approach can be used to infer intersection information indirectly
Neuron 93, February 8, 2017 499
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(by comparing the features that carry sensory information with

those that can be detected by the readout). However, this

approach is insufficient to determine directly whether a given

neural feature is used for performing specific sensory discrimina-

tion tasks, and to evaluate how much this feature contributes to

sensory discrimination.

Because both statistical and interventional approaches by

themselves are not sufficient to test neural codes, we propose

a scheme in which statistical analyses must be used to generate

hypotheses about neural codes, and interventional experiments

must be used to test them.

Neurophysiological Examples of the Potential
Advantages of Application of the Statistical and
Interventional Concept of Intersection
The foundations underlying intersection between sensory infor-

mation and readout can be traced back to the work of Newsome

and colleagues on visual motion perception in primates (Britten

et al., 1996; Newsome et al., 1989). These studies showed that

visual area MT encoded visual motion information in its firing

rate: higher firing rates indicate motion along the neuron’s

preferred direction. They established a statistical relationship

between the animal’s choice in a visual motion discrimination

task and the firing rate of MT neurons in the same trial (Britten

et al., 1996). The causal role of the firing rate of MT neurons in

motion perception was interventionally demonstrated showing

that microstimulation of this region biases perception of motion

direction (Newsome et al., 1989). Such studies continue today,

taking also advantage of modern genetic, optogenetic, and

recording techniques. One example is the study of the neural

coding of sweet and bitter taste in mice. The authors first estab-

lished that anatomically separate populations of neurons re-

sponded to sweet and bitter taste, and thus carried stimulus

information (Chen et al., 2011). An optogenetic intervention

was then used to activate the spatially separated ‘‘sweet’’ and

‘‘bitter’’ populations (Peng et al., 2015). These intervention

experiments elicited behavioral responses as expected for a

mouse’s response to sweet and bitter tastes. These studies

therefore reveal intersection information in neural codes as

spatially segregated response patterns using a combination of

stimulus information, statistical analysis, and intervention.

These studies investigated simple properties of an individual

neural feature (firing rate of classes of neurons) and followed

implicitly part of the logic of the framework proposed here,

although they did not measure a single-trial statistical intersec-

tion that we propose. Measuring the intersection information be-

comes, however, crucial in more complex scenarios in which

(unlike the cases considered above) either a clear hypothesis

about the neural code does not exist a priori (as may happen

when analyzing coding of complex natural stimuli, rather than

simpler laboratory stimuli) or when there are multiple, perhaps

partly correlated, candidate features for the neural code that all

seem, statistically, to contribute to choice or stimulus. In these

cases, it is necessary to evaluate quantitatively the contribution

of each feature to behavior. Below we discuss how the full or

partial application of the ideas of our intersection framework in

these more complex scenarios could provide further insight

into the neural code.
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The statistical intersection information framework has been

applied to investigate whether millisecond-scale spike timing

of somatosensory cortical neurons provides information that is

used for performing a whisker-based texture discrimination

task (Figures 6A and 6B), above that already carried by spike

counts over timescales of tens of milliseconds (Zuo et al.,

2015). The authors computed a spike-timing feature by projec-

ting the single-trial spike train onto a timing template (con-

structed for optimal sensory discrimination) whose shape indi-

cated the weight assigned to each spike depending on its

timing (Figure 6C). Computed spike counts corresponded to

weighting the spikes with a flat template, which assigns the

same weight to spikes independent of their time. This provided

timing and count features that had negligible correlation (the

temporal distribution of spikes was largely independent from

their total number). Both timing and count carried significant sen-

sory (Figure 6D), choice (Figure 6E), and intersection (Figure 6F)

information, with timing carrying more information than count for

all these types of information. The joint information was, for all

types of information, larger than the one carried by either feature

alone. These results indicate that in this task sensory information

was complementarily multiplexed in spike counts and timing and

was also complementarily combined to perform the task. Of the

two features, however, timing carried both more sensory infor-

mation and had a greater influence on the animal’s choice.

Thus, the statistical intersection framework helped form a very

precise hypothesis that multiplexing spike timing and spike

count information is the key neural code used to solve the

task. A further application of the interventional intersection

framework, not yet applied to this experiment, would strongly

prove or disprove thismultiplexing hypothesis for texture coding.

This example illustrates that the statistical analysis of informa-

tion intersection may be critical to correctly interpret the re-

sults of an interventional experiment and to refine its design. In

this case, profound texture-dependent spike timing differences

were found even across nearby neurons (Zuo et al., 2015). The

cellular-level andmillisecond-scale temporal resolution of this in-

formation coding revealed by the statistical analysis strongly

constrains the interventional experimental design, as it indicates

that finely spatially patterned and temporally precise intervention

must be used to test whether spike timing is part of the neural

code. Also, this example shows how statistical intersection

results are essential to interpret successes and failures of inter-

ventions. For example, in the presence of such profound neuron-

to-neuron differences in spike timing responses to textures, a

causal effect of spike timing on behavior would not have been

detected using a wide-field optogenetic intervention that acti-

vated all neurons simultaneously (see also section Consider-

ations of Interventional Experimental Design). Statistical analysis

would be essential to reveal that this failure would not have been

because spike timing was not part of the neural code used

to perform the task, but because the optogenetically induced

activity did not preserve the natural texture-dependent timing

differences across neurons.

A study (O’Connor et al., 2013) that implemented an approach

close in spirit to the intersection information framework both at

the statistical-analysis and interventional level is a recent inves-

tigation of the role of spike timing and spike rate coding in
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Figure 6. Examples of Statistical Intersection Measures in a Texture Discrimination Task
This figure shows how spike timing and spike count in primary somatosensory cortex encode textures of objects, and how this information contributes to whisker-
based texture discrimination.
(A and B) Schematic of the texture discrimination task. (A) On each trial, the rat perched on the edge of the platform and extended to touch the texture with its
whiskers. (B) Once the animal identified the texture, it turned to the left or the right drinking spout, where it collected the water reward.
(C) Schematic of the computation of spike count and spike timing signals in single trials.
(D–F) The mean ± SEM (over n = 459 units recorded in rat primary somatosensory cortex) of texture information (D), choice information (E), and fraction of
intersection information fII (F). Modified with permission from Zuo et al. (2015).
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whisker-based detection task of object location (Figure 7A).

The authors found, based on statistical measures, that both

timing and rate carried both stimulus and choice information

(Figure 7B). The authors then probed the role of timing and rate

by replacing the somatosensory object with optogenetic manip-

ulation of layer 4 somatosensory neurons (Figures 7C and 7D).

The authors found that using optogenetics to induce neural ac-

tivity with information in rate caused the animal to report the

sensation of a ‘‘virtual pole’’ (Figure 7C), whereas adding to

this optogenetic manipulation information in spike timing relative

to whisking did not elicit additional behavioral performance in

virtual sensation (Figure 7D). When interpreted within our frame-

work, these results suggest that spike times do not carry any

intersection information that is additional to that carried by rates.

An additional application of the statistical intersection framework

to these neurophysiological recordings—not performed in that

study—would allow a more precise evaluation of the impact of

timing and rate codes on task performance (see previous sec-

tion) and could provide an important independent confirmation

of this hypothesis based on naturally evoked neural activity only.

Considerations of Interventional Experimental Design
Interventional approachesmay involve use of one ormore exper-

imental techniques such as optogenetic (Lerner et al., 2016) and

chemogenetic (Sternson and Roth, 2014) manipulations, intra-

parenchymal electrical stimulation (Tehovnik et al., 2006), trans-

cranial direct current stimulation, and transcranial magnetic

stimulation (Woods et al., 2016), to name a few. Given its unique
combination of high cell-type specificity and temporal resolution,

below we focus mostly on optogenetics.

There are at least two dimensions over which experimental

designmaybevaried.One ishow intervention iscoupledwithsen-

sory stimuli; the other is how intervention is performed. In the

following, we consider how these possible experimental varia-

tions along thesedimensions relate to the intersection framework.

Virtual Sensation Interventional Experiments versus
Experiments Overriding or Biasing Natural Sensory
Signals
Our framework assumes that we test sensory encoding and in-

formation readout using a perceptual discrimination task. An

important experimental design question is how to incorporate in-

terventional approaches. Our focus is on understanding the co-

des that arise from natural sensory cues, and so we mainly

consider cases in which interventional trials are interleaved

with non-interventional ones.

One practical question for experimental design is whether on

intervention trials the sensory stimulus should also be presented,

or if the intervention manipulation should be applied in isolation.

One possibility is a ‘‘virtual sensation’’ experiment (Figure 8A), in

which patterns of neural activity are imposed by intervention in

the absence of the sensory stimulus and the animal is asked to

report the perception of one of the two sensory stimuli. A classic

example is the work of Romo and colleagues (Romo et al., 1998;

Romo and Salinas, 2003) demonstrating that cortical micro-

stimulation can entirely substitute for tactile stimulation in a
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Figure 7. Examples of Statistical and
Interventional Intersection Measures with
Sensory and Illusory Touches
This figure shows results of the statistical and
interventional test of the role of cortical spike
timing and spike count in the neural code for
whisker-based object location. The test involved
closed-loop optogenetic stimulation causing illu-
sory perception of object location.
(A) Schematic of the task: four trial types during a
closed-loop optogenetic stimulation behavior ses-
sion depending on pole location and optogenetic
stimulation (cyan lightning bolts). A ‘‘virtual pole’’
(magenta) was located within the whisking range
(gray area). Mice reported object location by licking
or not licking.
(B) Decoding object location and behavioral choice
from electrophysiologically recorded spikes in layer
4 of somatosensory cortex. Each dot corresponds
to the decoding performance (fraction correct) of
one neuron.
(C) Optogenetically imposed spike rates evoked
virtual pole sensation. Left: optogenetic stimulation
(blue circles) coupled to whisker movement (gray,
whisking angle q) during object location discrimi-
nation. Asterisk, answer lick. Middle: responses in
the four trial types across one behavioral session.
Green, yes responses; gold, no responses. Right:
optogenetic stimulation in NO trials (red), but not
in YES trials (blue), in barrel cortex increases the
fraction of yes responses. Lightning bolt and ‘‘no
stim’’ labels indicate the presence and absence of
optogenetic stimulation, respectively. Error bars,
SEM. Each line represents an individual animal.
(D) Adding timing information in the optogenetically
evoked activity did not improve virtual pole
perception. Top: delayed optogenetic stimulation
was triggered by whisker crossing with variable

delays, Dt. Middle: whisker movements with whisker crossing (red circles) and corresponding optogenetic stimuli (cyan circles) for Dt = 50 ms. Bottom: fooling
index (fraction of trials reporting sensing of a virtual pole) as function of Dt. Modified with permission from O’Connor et al. (2013).
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frequency discrimination task. Another example of virtual sensa-

tion is the induction of an illusory sensation of pole touching dur-

ing whisking using optogenetic stimulation of cortical primary

somatosensory neurons, as discussed above (see Figure 7 and

O’Connor et al., 2013). The virtual sensation paradigm is very

appealing because it can demonstrate the sufficiency of the

considered neural code for creating sensation and for its direct

relevance for the development of neural prosthetics.

Another possibility is to impose patterns in the presence of a

sensory stimulus. This approach tests whether the imposed

pattern can ‘‘override’’ or ‘‘bias’’ (Figure 8B) the signal from the

sensory stimulus. A classic example of this approach can be

found in the work of Newsome and colleagues (Salzman et al.,

1990) showing that MT microstimulation in a visual motion

discrimination task can bias the animal’s perception toward

themotion direction preferred by the neurons that were activated

by microstimulation. A more recent example can be found in the

study (also described above) examining the codes for sweet and

bitter/salt taste sensation (Peng et al., 2015), where the authors

showed that optogenetic activation of the sweet cortical field

triggered fictive sweet sensation even in the presence of a salt

stimulus. From the point of view of the formalism presented

here, successfully overriding the signal from an opposite external

stimulus is an appealing proof that the considered neural code

provides information that is so crucial to the task that it can
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even win over other contrasting sources of information, such

as those that may come from different or parallel pathways

conveying information from the sensory periphery that contra-

dicts the one injected through intervention of neural activity.

Considerations on How to Perform Intervention on
Neural Activity, and the Advantages of Patterned
Optogenetics
Imposing a pattern can be done in two conceptually distinct

ways. In one, the experimenter mainly tries to ‘‘bias’’ (Guo

et al., 2014; Li et al., 2015; O’Connor et al., 2013) the neural ac-

tivity (Figure 8B). This consists of shifting the endogenous activ-

ity in a certain direction (for example, lowering the firing rates of a

neural population by imposing a slight hyperpolarization or by

exciting a set of inhibitory neurons). This can be done, for

example, using wide-field, single-photon optogenetic stimula-

tion of a network of a number of opsin-expressing neurons

(this is illustrated in Figure 8C, note that the number of neurons

in that sketch is limited to seven for presentation purposes

only). A problemwith this approach is that it does not completely

remove correlations of the patterns evoked by intervention with

other brain variables that are present in the endogenous compo-

nent of the activity (because the evoked activity adds to the

endogenous one). This means that this intervention may not

entirely break the correlations among features or between
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Figure 8. Experimental Configurations for
Interventional Optogenetic Approaches
(A) In a virtual sensation experiment, the animal
behavior is tested by applying the optogenetic
intervention in the absence of the external sensory
stimulus.
(B) Alternatively, optogenetic intervention can be
paired with sensory stimulation with the aim of
overriding or biasing neural activity evoked by the
sensory stimulus.
(C) In the wide-field configuration for optogenetic
manipulation, light is delivered with no spatial
specificity within the illuminated area, resulting in
the activation (red cells) of most opsin-positive
neurons. Stimulation in this regime may lead to
over-synchronous neural responses (right). The
orange lightning bolts in the right panel indicate
the time at which successive stimuli are applied.
The neurons displayed in (C) and (D) are meant to
represent a population of N neurons expressing
the opsins; their number is here limited to 7 for
presentation purposes only.
(D) Patterned illumination permits the delivery of
photons precisely in space. When multiple and
diverse light patterns are consecutively delivered
(orange lightning bolts), optical activation of neural
networks with complex spatial and temporal pat-
terns becomes possible (right).
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features and non-observed endogenous brain activity that the

causal manipulations aim to remove. This is a concern particu-

larly when investigating whether intersection information is

complementarily carried by more than one feature, as an inter-

ventional bias may affect all features in a correlated way. For

example, a general hyperpolarization of the population may

both lower the spike rate and delay the latency of neural activity.

Given the highly synchronous generation of photocurrents

in opsin-expressing cells, wide-field optogenetics may even

induce artificial correlations (Figure 8C).

The second interventional approach is to try to impose, or

‘‘write down’’ (Peron and Svoboda, 2011), a target neural activity

pattern on a neural population (Figure 8D). This approach is, in

principle, ideally suited to test hypotheses about the neural

code, because it explicitly aims to overwrite endogenous activ-

ity, and so break down all sources of correlation. To crack a neu-

ral code, though, it needs to achieve high spatial and temporal

precision. Recent optical developments (Bovetti and Fellin,

2015; Emiliani et al., 2015; Grosenick et al., 2015), termed

patterned illumination, can deliver light to precise spatial loca-

tions (Figure 8D, see also Supplemental Information). When

combined with light-sensitive optogenetic actuators, patterned

illumination can perturb electrical activity with near cellular reso-

lution (Baker et al., 2016; Carrillo-Reid et al., 2016; Packer et al.,

2015; Papagiakoumou et al., 2010; Rickgauer et al., 2014).

Taking full advantage of the intersection framework will

depend crucially on further development of improved optoge-

netics methods to ‘‘write’’ neural activity patterns. Current tech-

nologies target simultaneously a few dozen cells with a temporal

resolution of few milliseconds (Emiliani et al., 2015). Major areas

of future developments include scaling up of the number

of stimulated neurons while maintaining single-cell resolution,

improving temporal resolution, performing large-scale 3D stimu-

lation, and precisely quantifying tissue photodamage during

intervention. In addition, it will, ultimately, be important to imple-
ment these technologies with a closed-loop system (Grosenick

et al., 2015), so that intervention can be tied to behavior. This

will be useful, among other things, to predict and discount resid-

ual effects of endogenous activity (Ahmadian et al., 2011). In fact,

both the number of responsive neurons and their functional re-

sponses to the sensory stimulus and to the intervention may

vary as a function of behavioral variables such as arousal, atten-

tion, or locomotion that are reflected in brain states and ongoing

neural activity (see also next section Potential Confounds).

Coupling functional imaging with optogenetic intervention allows

tracking these changes and adapting patterned photostimula-

tion to brain dynamics. Moreover, because patterned illumina-

tion requires knowing where the cells to stimulate are, and

what pattern to stimulate them with, it will be necessary to

combine imagingwith patterned photostimulation. Finally, taking

full advantage of the intersection approach will require multi-

modal recording techniques. While electrophysiological record-

ings have millisecond time resolution, they currently lack the

ability to determine accurately where the recorded cells are.

Ideally, the best approach is to perform statistical analysis using

both electrophysiology and functional imaging in the same area;

that way, both high temporal and high spatial resolution could be

achieved.

It is important to note that the framework of interventional

intersectional information requires knowing precisely which

values of the neural response features ri are elicited by interven-

tion in each trial. This in turn requires measurement of the neural

response (ri) on individual intervention trials. When this is not

possible, confounds may arise. For example, in the absence of

suchmeasures it would be problematic to rule out a residual cor-

relation between the interventionally elicited neural response

and other uncontrolled endogenous brain activity variables that

would invalidate the rigor of the causal conclusions, or the eli-

cited activity may be so un-natural (e.g., too synchronized with

respect to natural activity patterns) that they may affect in an
Neuron 93, February 8, 2017 503
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un-natural way downstream neural processes. When it is not

possible to measure in each trial the elicited neural response,

the study should be however accompanied by a rigorous

quantification in separate trials or experiments of the precision

of manipulated response under various conditions, that is

adequate to allow extrapolation to individual trials during the

behavioral task and that also characterizes the difference be-

tween manipulated and non-manipulated activity.

Potential Confounds: When the Framework May Fail
The result of the intersection framework (and of any experimental

approach combining neural recordings and interventional tech-

niques) are potentially confounded by many limitations and fac-

tors that must be considered carefully to avoid reaching the

wrong conclusions. We have already discussed some of those

confounds; in the following we discuss additional ones.

A key requirement for the intersection framework to succeed is

that the animal uses the identified stimulus tomake choices. This

requirement can fail in two important ways. First, in some behav-

iors, there may be other sensory stimuli that co-vary with the

stimuli of interest. In this case, it would be difficult to know which

stimulus feature is being used by the animal to drive behavior, a

problem exacerbated by the possibility that the stimulus features

used by the animal might vary from trial to trial. Second, the an-

imal might have fluctuations in attention, motivation, or arousal,

or use non-stimulus features such as reward history, to drive

choices. These factors may be present in the two-alternative

forced-choice tasks that we discussed in this article, but are

likely to be stronger in other task designs, such as go/no go

tasks, where our framework could be in principle applied. In all

these cases, factors other than the stimulus feature of interest

would be involved in driving the animal’s choice; that would

compromise the proposed framework, since it assumes that

the stimulus of interest drives behavior. Such factors can be

conceptually formalized by assuming that both the sensory cod-

ing and the decision mechanisms may vary across trials, and/or

that non-recorded or non-manipulated neurons,may vary across

intervention and non-intervention trials (such as r2 depicted in

Figures 4E and 4F when only intervening on feature r1).

For these reasons, it is important to evaluate whether the vari-

ables describing behavior and the non-observed and non-

manipulated endogenous variables are in a comparable state

during intervention and non-intervention trials. In the presence

of variations, a simple strategy could be to down-sample inter-

vention and sensory-evoked trials so that only compatible brain

or behavioral states are analyzed. A better solution, however, is

to consider tasks in which it is known, based on high behavioral

performance and good psychometric curves, that the stimulus

feature of interest drives the animal’s choice with high reliability.

Similarly, the stimulus should be designed so that co-varying

stimulus features are avoided. This will probably be easier with

simple stimulus sets than with natural stimuli.

Variation of behavior and brain state variables across the

experiment, on the other hand, offer an important opportunity

to evaluate whether such variables have a ‘‘permissive’’ role on

task performance. For example, in the virtual-pole sensation

experiment of (O’Connor et al., 2013), the fact that virtual pole

perception worked only when the animal whisked suggests a
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permissive role of whisker movements for active sensation. A

strategy that could take advantage of these variations in state

and behavior could be to include (using e.g., simple modeling

techniques such as Generalized Linear Models [Park et al.,

2014]) behavioral factors such as slow variation across blocks

of trials of motivation or reward history or brain states explicitly

into the experimenter’s sensory coding and decision boundary

models. This could potentially lead to explaining the dynamic

role of these factors in sensory coding.

Another significant confound can arise for interventional

approaches when investigating partly parallel pathways. For

example, suppose a behavior is generated by two brain areas

that operate in a partly parallel or complementary way, as for

example in an ‘‘OR’’ function (Li et al., 2016). In such a case,

when inactivating only one area with intervention, one may find

little causal effect on behavior. However, interpreting this result

as evidence that the inactivated region does not causally

contribute much to behavior could be misleading. One way to

alleviate these confounds would be to compute both statistical

and interventional information intersection. One may use these

measures to disambiguate the case in which the two areas

contribute complementarily to behavior and so offer comple-

mentary intersection information from the case when the two

areas operate entirely redundantly and so intersection informa-

tion from both areas equals intersection information from one

area alone. However, accurate interpretation of these measures

would require knowledge of the functional anatomy, which,

for example, informs the experimenter about the presence or

absence of parallel and potentially redundant pathways. More-

over, completeness of activity monitoring and perturbation of

the regions involved is also paramount, as this would be, for

instance, useful to rule out that a failure to affect behavior by in-

activating a region is due to incomplete control of all relevant

neurons. We thus anticipate that as approaches move toward

understanding larger and larger populations of neurons (Keller

and Ahrens, 2015; Sofroniew et al., 2016) and the interconnec-

tions between neurons (Lichtman and Denk, 2011), these joint

statistical and interventional approaches will become easier to

interpret.

Determining the Instructive versus Permissive Role of
Neural Codes and Neural Circuit: From Circuit
Dissection to Circuit Information Flow
The intersection information framework (both statistical and in-

terventional) has direct application for the dissection of neural

circuits underlying behavior. Much work in systems neurosci-

ence has used neurophysiology to identify neural correlates,

and, due to recent optogenetics approaches, a wave of new

studies has sought to identify which brain regions, cell types,

axonal projection pathways, and circuits are required for accu-

rate performance of behavioral tasks (Guo et al., 2014; O’Connor

et al., 2013; Peng et al., 2015). It is essential to emphasize that

simply measuring the effect of an intervention on choice without

regard to stimulus coding precludes understanding a neural cir-

cuit’s role in task performance. Here we propose that the use of

intersection information is crucial to determine whether a neural

circuit (or cell type or projection pathway) carries information

that is instructive (Otchy et al., 2015) for task performance
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(contributes essential information for the task performance that

is not provided elsewhere) or if the circuit is permissive for task

performance (is required for, or modulates, the behavior but

does not provide essential information).

Figures 4A–4D schematizes four cases of different neural cir-

cuit architectures in which two neural features, r1 and r2 (for

example, the activity of neurons in two different brain areas,

cell types, or projection pathways), may inform choice. In all

four cases, feature r2 contributes essential information to choice

and task performance (r2 is thus instructive), but the role of r1
varies. An interventional intersection framework would correctly

identify these four circuit architectures. The case of ‘‘parallel’’ in-

formation flow (Figure 4A), in which r1 and r2 both provide com-

plementary instructive information, could be revealed by finding

that the intersection information provided by r1 and r2 jointly is

larger than that provided by r1 alone (that is, r1 and r2 provide

complementary stimulus information to choice). The case of ‘‘se-

rial’’ information flow (Figure 4C), in which r1 provides instructive

information to r2 and r2 informs choice, could be discovered by

finding that the intersection information provided by r1 and r2
jointly equals that provided by r2 alone. The case in which r1 pro-

vides permissive—but not instructive—information (Figure 4D),

could be identified by finding that r1 carries interventional choice

information but not intersection information. Finally, the case

when r1 is not used for choice (Figure 4B) corresponds to the

absence of both choice and intersection information in r1.

It is important to note that the framework we discussed here is

general and can in principle be applied not only to determine how

sensory information carried by different codes is used to pro-

duce behavior, but it can also be used to study how stimulus in-

formation flows across neural populations. For example, the

same reasoning expressed above applies to considering a group

of brain regions r1,.,rn (whose activity we can record and

manipulate, not necessarily at the same time) and a downstream

area c (whose activity we assume we can record at the same

time when we manipulate or record r1,.,rn). In this case, the

meaning of intersection information would be that of the amount

of information about stimulus s carried by population r1,.,rn that

is transmitted downstream to area c. In essence, we have re-

placed choice by activity in area c. We could therefore identify

the neural response features that influence activity in down-

stream regions, leading to hypotheses about the mechanisms

of information flow in neural circuits.

Ideally, these statistical andcausalmeasuresof informationflow

should be integrated with information about anatomy, response

timing, and information dynamics. For example, in the presence

of a partly feedforward or hierarchical architecture, anatomy could

be used to identify the earliest areas where sensory, choice, and

intersection information are developed (Koulakov et al., 2005),

and thus better track the computations leading to task perfor-

mance. Similarly, the timing of stimulus and choice information in

neural activity could be used to infer whether, for example, choice

signals reflect a neuron’s causal effect on behavioral choice or

rather a top-down signal (Nienborg and Cumming, 2009).

Concluding Remarks
We presented a new framework to crack the neural code under-

lying sensory perception. The framework emphasizes neural
response features that both carry sensory information and

lead to appropriate actions, with the emphasis on ‘‘appropriate.’’

These are the neural response features with a large intersection

between sensory information and readout. Based on this frame-

work, we provided an initial attempt to formalize statistical ways

to identify these features from recordings of neural activity, and

to design interventional experiments that can causally test the

degree of intersection information. This approach can resolve

open debates about the nature of the neural code. Moreover,

the ideas we proposed in this framework can guide researchers

in the design of experiments, in the design of new statistical

tools, and in the development of the new technology, that will

lead us to crack the neural code.
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SUPPLEMENTAL METHODS 
 
 
Stimulus information, choice information, and their intersection 
 
In the following subsections, we review the measures that are used to quantify selectivity of 
neurons to stimulus, choice, and their intersection, and we comment on the strengths and 
weaknesses of the various measures. For simplicity, we assume that there are two possible 
stimuli and two possible choices; all of the measures except the one based on signal detection 
theory readily generalize to more. We will use an n-dimensional vector belonging to a set R,  

RÎr , to refer to a neural response quantified by a set of n response features, so
( )1,..., nr r=r . First we consider information about stimulus and choice separately, then we 

consider their intersection.  
 
Stimulus and choice information 
 
We start by describing various measures to quantify the relationship between response 
features and external variables. Because this treatment applies to both stimuli and behavioral 
choices, we use { }1,2x XÎ =  to refer to a generic external correlate; x refers either to 
stimulus, s  (belonging to a set { }1,2S = ), or choice, c  (belonging to a set { }1,2C = ). 
 
Fraction correct 
A simple quantification of sensory discriminability is the fraction correct – the fraction of 
times the stimulus decoded from a neural response feature on a single trial matches the actual 
stimulus on that trial (Quian Quiroga and Panzeri, 2009). Similarly, a simple quantification of 
choice discriminability is the fraction of choices decoded from a neural response that match 
the actual choice made by the animal. This measure depends on the choice we make for the 
decoding algorithm, of which there are many. Probably the most common one is a linear 
classifier (the decoding and decision boundaries drawn in Figs 3 and S1 are examples of it), 
which “draws” a linear boundary delimiting the parts of the response space that lead to 
decoding a particular value of the stimulus or choice. For two stimuli or responses, say x=1 or 
2, the boundary is specified by a direction, w, and a threshold, q, such that 
 

 
1 if 
2 if .

x
q
q

× >ì
= í × £î

w r
w r

     (S1) 

 
Other methods, such as Bayesian decoding(Gelman et al., 2014), build a decoding rule that 
associates each neural response, r, with the value of the stimulus or choice, x. Often the 
decoded value is the one that maximizes the posterior probability, 
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where P(r|x) is the probability of response r given x, P(x) is the prior probability of stimulus 
or choice, and P(r) is the prior probability of response r.  
 
Decoding performance computed as fraction correct has several advantages over other, more 
complex, measures such as information-theoretic ones (Quian Quiroga and Panzeri, 2009): it 
is easy to compute, it has a very intuitive interpretation, and it is does not require a large 
amount of data to estimate accurately. It also has at least two disadvantages relative to 
information theoretic measures: it does not capture all ways in which a neural response may 
carry information (the fraction correct may be at chance level – the level one would predict 
without observing neural activity – even when the neural activity does convey some 
information about the stimulus or the choice), and it depends on the specific decoding 
algorithm used for the analysis. 
 
 
 
Area under the Receiver Operating Characteristic curve 
A measure based on signal detection theory computes the probability that a random sample 
from the distribution of one stimulus (or choice) is larger than a random sample from the 
distribution of the other stimulus (or choice). This measure in general requires a one-
dimensional response (but see (Haker et al., 2005; Safaai et al., 2013) for attempts to extend 
it to two-dimensional responses), which we’ll take to be w×r (in most applications the weight, 
w, picks out one of the components of r, but this is not necessary). In neuroscience, this 
measure is known as the neural sensitivity and choice probability for stimulus and choice 
selectivity respectively; see (Britten et al., 1996; Shadlen et al., 1996). The signal detection 
theory measure of discriminability of the external variable, x, based on w×r, is quantified by 
the Area Under the Receiver Operating Characteristic curve (AUROC, see ref. (Dayan and 
Abbot, 2001)), which is defined as 
 

': '
( | 2) ( ' | 1).AUROC p x p x

× < ×

= × = × =å å
r r w r w r

w r w r                     (S3) 

 
where, as above, x can take on the values 1 or 2. The AUROC can be understood in terms of 
a trade-off between the false alarm rate (the probability of choosing x=2 when x=1) and the 
hit rate (the probability of choosing x=2 when x is in fact equal to 2). In mathematical terms, 
it corresponds to the integral of the hit rate as a function of the false alarm rate, for all 
possible decision threshold values. AUROC is 0.5 if the conditional distributions of w×r 
given x=1 and x=2 are identical, and increases up to 1 as the two distributions become more 
and more separated. This measure is closely related to fraction correct under a linear decoder, 
and so has similar advantages and disadvantages: its advantages are data robustness and ease 
of interpretability; its disadvantages are that it does not capture all ways in which a neural 
response may carry information. In addition, its interpretation as a single-trial measure is not 
as direct as it is for fraction correct or mutual information. That’s because AUROC is the 
probability that the response of a random trial from one stimulus (or choice) is larger than the 
response in another random trial from the other stimulus (or choice). Turning the AUROC 
into a single trial measure thus requires the conceptual introduction of an “anti-neuron”. Such 
a neuron responds as if the non-presented stimulus (or choice) had been presented. For 
instance, if x=1 the anti-neuron responds as if x=2 (i.e. 𝑝 𝐰 ∙ 𝐫 𝑥 = 1) = 	𝑝 𝐰 ∙ 𝐫 𝑥 = 2), 
where 𝐫 is the response of the anti-neuron), and if x=2 the anti-neuron responds as if x=1 
(𝑝 𝐰 ∙ 𝐫 𝑥 = 2) = 	𝑝 𝐰 ∙ 𝐫 𝑥 = 1)). The AUROC then gives the probability that, in any 
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given trial, 𝐰 ∙ 𝐫 > 𝐰 ∙ 𝐫  if x=1 or 𝐰 ∙ 𝐫 < 𝐰 ∙ 𝐫  if x=2 (see (Britten et al., 1996)). This 
concept of antineuron does not necessarily have an immediate biological plausibility. 
Nevertheless, the AUROC increases monotonically as decoding gets easier, making it a good 
and often used measure of dependency.  
 
Generalized linear models 
An increasingly popular approach is to fit neural responses with Generalized Linear Models. 
These are models that parametrize the neural response distribution as a function of a linear 
combination of behavioral and experimental variables – in our case, a linear combination of 
stimuli and choices. Once the models are fit to data, selectivity to stimuli and choice can be 
inferred from the weights linking those variables to the neural response (Park et al., 2014; 
Pillow et al., 2008). Large and statistically significant weights to a given variable imply a 
strong dependence on that variable. Statistically null weights to a variable imply that the 
neural response does not depend on it. The advantage of these models is that they have 
excellent convergence properties, and there are well-developed model regularization tools 
that allow fitting models to data even when there are a large number of external variables. 
The second advantage is an important one, as it means these model can be used to study the 
effect of large numbers of external variables on neural activity (Friedman et al., 2010). A 
disadvantage is that they make assumptions about the form of the response distribution; if 
those assumptions are wrong, the model may give misleading results. 
 
Information theoretic quantities  
Probably the most general measure of the relationship between the response and the stimulus 
or choice is the mutual information. Mutual information quantifies, in units of bits, the 
average reduction of uncertainty about which stimulus was presented (or which choice was 
taken) based on a single-trial observation of the neural response. Mutual information captures 
all possible relationships between a neural response and the stimulus or choice, including 
non-linear ones (Quian Quiroga and Panzeri, 2009; Shannon, 1948). Mutual information, 
I(X;R), between external variable x belonging to set X and neural response r belonging to set 
R  is defined as 
 

2
( | )( ; ) ( ) ( | ) log
( )x

P xI X P x P x
P r

=åå
r

rrR
  
               (S4) 

 
where P(x), P(r|x) and P(r) were defined above. The mutual information is zero only when 
the response is independent of x, as in that case no knowledge about x can be gained by 
observing the response. Unlike other simpler correlation measures, information captures all 
dependences between the response and the stimulus or the choice. Its main disadvantage is 
that it is extremely hard to compute from data (Panzeri et al., 2007). 
 
 
Intersection information 
 
Statistical intersection information 
The above measures focus on the stimulus and choice separately. However, as discussed in 
the main text, they don’t provide a direct measure of whether response features useful for 
decoding the stimulus are also used by the animal to make decisions. Here we follow (Zuo et 
al., 2015) to describe a recently developed measure for it, which we refer to as the 
Intersection Information, denoted II. Conceptually, we can think of it either as the amount of 
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sensory information that is read out in a single trial from a given neural response feature, or 
the effect on task performance of the sensory information carried by the feature.  
 
The proposal of (Zuo et al., 2015) to empirically quantify intersection information from data 
tries to capture the contribution of neural features to task performance based on the idea that 
intersection information should be high when the accuracy of the sensory information carried 
by the neural feature co-varies with the correctness of the behavioral choice. That is, high 
intersection information is found when neural response feature, r, carries information about 
both the stimulus and choice, and, importantly, the choice is likely to agree, trial by trial, with 
the information that the neural response r provides about the stimulus. Therefore, a measure 
of intersection should be based on the probability that a correct behavioral choice co-occurs 
on a trial-by-trial basis with a correct representation of the stimulus by the neural response. 
This measure can be computed, from the probability of the animal’s choice 𝑐  and the 
stimulus ˆ ( )ˆs s= r  decoded from neural activity r conditional to the presentation of stimulus s: 
 

																																𝑝 𝑠, 𝑐 𝑠 =
1

𝑝(𝑠) 𝑝(𝑠, 𝐫, 𝑠, 𝑐)
𝐫

=
1

𝑝(𝑠) 𝑝 𝑠 𝐫 𝑝 𝑠, 𝐫, 𝑐 .
𝐫

																		(S5)	 

 
   
Note that the two distributions ˆ( | )p s r  and ( , , )p s cr  have slightly different interpretations. 
The first, ˆ( | )p s r , depends on the decoding algorithm and so is up to the experimenter; it 
contains, therefore, assumptions about sensory coding. This probability could be a 
deterministic decoder, such as Eq. (S1), with x=s, or it could be probabilistic – either a close 
approximation to ( | )p s r  as measured from data, or a parametric fit to a model. The second, 
( , , )p s cr , must correspond to the true distribution – the one measured from data. The 

decomposition on the right hand side of Eq. (S5) holds because by construction 𝑠 is assumed 
to depend exclusively on the neural response 𝒓 and not on the stimulus s.  
  
To evaluate the statistical significance of intersection information, we have to compare
ˆ( , | )p s c s  to the “chance” distribution ˆ( , | )np s c s  – the distribution we would obtain under 

the null hypothesis that there is no relationship between the accuracy of the neural 
representation of the stimulus in a trial and the correctness of the choice made by the animal 
in that same trial. This corresponds to a null hypothesis distribution ˆ( , | )np s c s  with the same 
distribution of decoded stimuli as the data (that is, ˆ ˆ( | ) ( | )np s s p s s= ) and with the same 
behavioral performance for each stimulus as the data ( ( | ) ( | )np c s p c s=  ), but for which the 
decoded stimulus is independent of choice at fixed stimulus: 
 
                                                        ˆ ˆ, | ) ( | ( |( ) ).n s c s p s s p c sp =                                         (S6) 
 
 
The null-hypothesis expression in Eq. (S6) reflects the fact that when no stimulus information 
carried by r is used for the task, the probability of the animal making a correct choice does 
not depend on whether or not the stimulus was decoded correctly on that trial, but depends 
only on the conditional probability of each choice given the stimulus.  
 
Importantly, ˆ( , | )p s c s  in Eq. (S5) and its null-hypothesis version in Eq. (S6) are both 
properly normalized probability functions. Thus, we can use these probabilities to define an 
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intersection measure.  
 
Our simple definition of intersection information II is the probability that the stimulus is 
decoded correctly and the animal makes the correct choice (where, as mentioned above, the 
correct association between presented stimulus and choice is experimenter-defined, and 
learned by the animal). In other words, intersection information, II, is the probability that the 
stimulus is decoded correctly given neural features, r, and that the correct choice is made on 
the same trial. Thus, this quantity measures the impact of the neural features on task 
performance, and it has the following expression: 
 
                   

1,2

ˆ( ) ( , | )
i

II p s i p s i c i s i
=

= = = = =å                             (S7) 

where we assumed, without loss of generality, that the stimuli and choices are numbered so 
that the correct choice associated with stimulus s=i is choice c=i. 
 
 
The “chance” level for II is obtained by substituting 𝑝5 (Eq. S6) instead of 𝑝 in Eq. S7: 
 
 
      n

1,2 1,2

ˆ ˆ( ) ( , | ) ( ) ( | ) ( | )n

i i
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A value of II higher than chance means there are more instances of trials with both correct 
decoding and correct choice than could be expected by chance (thus, chance intersection is 
the amount of intersection achieved when correctness of choice in a trial does not depend on 
the correctness of sensory information carried by the features in that trial). Furthermore, II is 
bounded from above by the behavioral and decoding performance, measured respectively as 
fraction of correct-behavior trials and trials where the stimulus was correctly decoded from 
the neural feature r: 
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and 
                           

1,2 1,2 1,2

ˆ ˆ( ) ( , | ) ( ) ( | )
c i i

II p s i p s i c s i p s i p s i s i
= = =

£ = = = = = = =åå å       .    (S10) 

Thus, this intersection information is a reasonable quantification of the total impact on task 
performance of the neural response. A high value requires both high values of sensory 
information and near-optimal readout (the maximal value of II is reached when the sensory 
code is faultless and the readout uses all the sensory information). The values of II and its 
chance level for the three examples presented in Fig. 3 are shown in Fig. S1.  
 
Ref. (Zuo et al., 2015) elaborated that a neural code that affects behavior is also expected to 
lead the animal to make a behaviorally erroneous choice when the stimulus decoded by 
neural activity is the wrong one (In Ref. (Zuo et al., 2015) these trials were termed the trials 
carrying misleading sensory information). Thus one possible way to further extend the 
definition of II is to consider separately as an additional quantification (Zuo et al., 2015) not 
only the sum over trials with correct decoding and correct behavioral choice (i.e., trials with 
c=s= ŝ =i as in Eq (S7)) but also the sum over trials with incorrect decoding and incorrect 
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behavioral choice (i.e. trials with s=1, ŝ=c=2, and trials with s=2, ŝ=c=1). The intersection 
measure computed over the unfaithful trials is useful to further test the statistical association 
between sensory information in a neural feature and behavior. In cases when two neural 
features carry equal amounts of intersection information only on the correctly decoded and 
behaviorally correct trials, neural features with higher intersection information in incorrectly 
decoded and behaviorally incorrect trials make a stronger case for a candidate neural code, as 
these feature show a tighter association with behavioral choice over all trials.  
 
 
Another normalization for intersection information measures, which was also introduced in 
(Zuo et al., 2015), is a quantity that we here denote as the fraction of intersection information, 
shortened as fII. It is the fraction of correctly-decoded trials on which the decoded stimulus 
coincides with that reported by the animal. Unlike II, fII does not depend on the fraction of 
times the stimulus is decoded correctly from neural feature r; it is given by 
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The “chance” level of fII is obtained by replacing  𝑝 in Eq. (S11) with  𝑝5 of Eq. (S6) and, as 
demonstrated by the following equation, simply equals the average fraction of behaviorally 
correct trials: 
 

                                      

n n

1,2

n

n
1,2

1,2

1,2

ˆ( ) ( | , )

ˆ( , , )( )
ˆ( , )

ˆ( ) ( | ) ( | )( )
ˆ( ) ( | )

( ) ( | ) .

i

i

i

i

fII p s i p c i s i s i

p s i s i c ip s i
p s i s i

p s i p c i s i p s i s ip s i
p s i p s i s i

p s i p c i s i

=

=

=

=

= = = = =

= = =
= =

= =
= = = = =

= =
= = =

= = = =

å

å

å

å

          (S12) 

  
Two cases with the same alignment between decoding and decision boundary but different 
amounts of stimulus information would therefore have the same value of fII, but a different 
value of II (the case with larger stimulus information would give larger II). Thus, fII is more 
sensitive to the optimality of the readout – in the linear case, the alignment between the 
decoding and readout boundaries – than to the total impact of the neural feature r  on task 
performance.  
 
These intersection information measures can be used to rank features according to their 
potential importance for task performance. Importantly, the intersection information is low if 
a neural response feature has only sensory information and not choice information, or vice 
versa, or if the sensory information and choice information do not overlap. 
 
Understanding the relationship between the neuroscience question and the measure of 
intersection is an open area of research. Here we introduced the concept of intersection 
information from an empirical point of view, and we discussed its practical and conceptual 
importance for guiding future studies of the neural code. We expect the computational 
neuroscience community to evaluate this concept with rigor and in detail, and come up with 
optimal measures of it in the near future.  
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Interventional intersection information 
The intersection quantities defined in a statistical way in the previous sections were designed 
to be computed from naturally evoked responses. The generalization of these statistical 
quantities trivially extends to responses generated interventionally. Here we spell this out for 
the convenience of our readers.  
 
Let r be the neural features generated by intervention in one trial, and let c be the choice 
taken by the animal in response to this intervention. In brief, the interventional intersection 
quantities are obtained from the Eqs. (S7-S12) of the statistical intersection measures by 
replacing the statistical probability, ( | )p c r , of choice given neural feature obtained with 
natural responses with the analogous interventional probability of choice given neural feature 
r obtained under intervention. In the following, we discuss the meaning and implications of 
different ways of computing intersection information with intervention.  
 
The simplest interventional intersection measure that could be computed from intervention 
experiments is the interventional fraction of intersection information, fII, which (exactly as in 
the statistical case, Eq. (S11)) is defined simply as the fraction of intervention trials in which 
the behavioral choice reports the stimulus that would be decoded from the response, r, 
elicited by intervention. However, the interventional fII, like its analogous statistical measure, 
does not take into account whether the stimulus information (that is, fraction of correctly 
decoded trials) of the considered neural feature is small or large under naturally-evoked 
conditions. This is a problem if we want to be able to rank, after an interventional 
experiment, neural features in terms of their contribution to task performance (there could be 
two neural features that are similarly optimally read out according to fII, but one of the 
features may have higher sensory information and so have a larger impact on behavioral task 
performance). 
 
To measure an interventional analogue of II, we need to consider how likely it is that the 
evoked pattern, r, in natural conditions would appear for each stimulus. Thus, when 
calculating an interventional II, we need to use the distribution p(r|s) of neural features given 
the stimulus, s, measured under natural conditions. This can be achieved by summing over all 
tested elicited patterns r, and weighting the probabilities of ŝ  and c observed with each value 
of the interventionally evoked neural feature r with their natural probability p(r|s), as in Eqs. 
(S7-S12).  
 
This consideration emphasizes that computing the intervention intersection and evaluating 
the causal impact of a neural code demands a statistical analysis of the probability of 
naturally occurring patterns during the presentation of stimuli during the task. This is a key 
point of the framework we propose.  
 
 
 
Limitations of measuring separately sensory and readout information 
without measuring their single trial intersection 
 
To complement the material provided in the main text and in the above Supplemental 
Information sections, in this section we spell out more examples of the potential dangers of 
measuring separately sensory and readout information, without measuring their single trial 
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intersection. In particular, we consider examples of null (chance-level) intersection between 
sensory and information readout even when the neural features correlate with both choice and 
stimulus.  
 
One case in which a feature (or set of features) r may spuriously appear as both choice-
informative and stimulus-informative without truly contributing to the animal’s choice and 
performance is when the choice selectivity of r by itself does not affect choice, but inherits 
choice selectivity by being correlated with a variable that affects choice (Ince et al., 2012). 
One possibility is the case plotted in Figs. 3B and S1B. In this case, variable r2 does not 
affect choice (the decision boundary is vertical); however r2 correlates (because of signal 
correlations) with r1, which does affect choice. As a result, in this example r2 has spurious 
choice information (as shown in Fig S1B by the fact that the marginal probabilities of r2 are 
choice dependent). As detailed in the main text, this spurious choice selectivity can be 
revealed statistically and interventionally by studying the joint intersection information of the 
two variables and comparing it to the intersection information carried by each variable alone.  
Another case when this confound may arise is if the selectivity of r to choice appears because 
r depends on the stimulus even if it has no effect on choice, but the choice correlates with the 
stimulus. This may happen, for example, if the animal performs the task above chance level 
(implying that there is a correlation between the presented stimulus and the animal’s choice) 
without relying on the information in the considered features r. This confound of spurious 
choice selectivity cannot be ruled out by measuring separately the neural feature’s 
information about choice and stimulus, see (Ince et al., 2012). However, our measure of 
intersection information II (Eqs. S7,S11) could rule out this confound because the chance 
level intersection information (Eq S8) corresponds precisely to a “null hypothesis” case of 
correctness of choice not depending on correctness of a feature’s decoding (see Eq.S6 for the 
null hypothesis probability ˆ,( | )n sp c s ). Thus, within the intersection information framework 
this confounder may be ruled out simply by comparing II to its chance level. For traditional 
sensory and choice information measures, this confounder may be ruled out by conditioning 
the measure on the stimulus, as this removes the effect of any shared variability between 
neural features and choice that may be due only to separate covariation of choice and neural 
features with stimulus  (Ince et al., 2012). 
 
A popular method to measure whether sensory information is transmitted to the readout 
consists in measuring the correlation of the “psychometric” behavioral performance of the 
animal, for example the fraction of correct discriminations as a function of a stimulus 
parameter, with the “neurometric” stimulus discriminability obtained by decoding single-trial 
responses (Newsome et al., 1989; Romo and Salinas, 2003). This is extremely useful and it 
has led to important results, for example about the role of timing in neural coding (Engineer 
et al., 2008; Luna et al., 2005; Newsome et al., 1989; Romo and Salinas, 2003). However, 
given that the neurometric to psychometric performance correlation does not consider the 
within-the-same trial relationship between the sensory signal carried by the neural features 
and the animals’ choice (but rather compares them only across a whole set of trials), it 
potentially suffers from similar confounders (discussed in the main text) that affect separate 
measures of choice and stimulus. In Fig. S1A, we show a case with no intersection 
information where the stimulus discriminability based on the two neural features 1 2( , )r r  (i.e. 
the neurometric performance of features 1 2( , )r r ) closely correlates with the psychometric 
performance of the animal. In this example, features 1 2( , )r r  also have significant choice 
probability (Britten et al., 1996) in the sense that the choice co-varies with the neural features 
on a trial-by-trial basis at fixed (or uninformative) stimulus. This situation arises because the 
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behavioral performance is determined by a third neural feature 3r  that has similar stimulus 
tuning to 1r  and 2r , and fluctuations along the dimension of 1 2( , )r r  that influences behavior 
are statistically independent from those along the dimension which encodes the stimulus.  In 
this example, however, features r1,r2 have null (chance-level) intersection information 
because there are no noise correlations between all the features (so r3 is independent of r1 and 
r2 conditioned on the stimulus). This implies that the single trial fluctuations of the stimulus 
information in r1,r2 do not influence choice in the same trial. 
 
To illustrate this quantitatively, we build on the tasks we described in the main text. There are 
two stimuli that lead to different response distributions. However, we add another parameter, 
called stimulus signal intensity (shortened to signal intensity) and denoted r in the following 
equations, that controls task difficulty by spreading out or compressing the response 
distributions (Fig. S1A3-A5). In the green vs blue stimulus exemplified in our paper, signal 
intensity could be the contrast of the blue or green stimulus with respect to background, so 
that zero signal intensity means the stimulus is invisible from the background and 100% 
signal intensity means the stimulus is very well visible from the background. We’ll use the 
convention that the identity of the stimulus is encoded in the sign of r : say r <0 for the 
green stimulus, s=1, and r >0 for the blue stimulus, s=2, or 

( ) 1s J r= +  
where (·)J  is the Heaviside step-function. We consider three neural response features 1r , 2r  
and 3r  (Fig. S1A1), that may represent, for instance, the time of first spike of two neurons ( 1r  
and 2r ) and their total spike count ( 3r ). We assume, for concreteness, that the neural response 
to a stimulus s  (with intensity r ) is given by the Gaussian conditional probability 
distribution 
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are the mean and the covariance matrix of the distribution, respectively, and s + , s-  and 3s  
are arbitrary parameters controlling sensory encoding noise. This immediately implies that  
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So 1r , 2r  and 3r  all have similar stimulus tuning, and 1r  and 2r share noise correlations. If we 
define 
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we have that r+  and r- are conditionally independent given the stimulus, i.e.
| ) ( ), | ) ( |(p pr r rr pr r r+ - + -= , and  
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Now, we suppose that the binary behavioral choice of the animal is given by  
3( ) ( ) 1c r rJ -= + +r  

where c=1 represents “left choice” and c=2 represents “right choice”. The two neural features 
1 2( , )r r  have higher-than-chance choice information and choice probability, as fluctuations in 
r-  will bias the choice on a trial-by-trial basis at fixed stimulus or for an uninformative 
stimulus with 0r = .  
 
From the definitions above, and considering that 3( )r r- + ~ 2 2

3( , )N r s s- + , we can compute 
the probability of a possible choice (c=2) given the stimulus: 
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where (·)F is the cumulative Gaussian function. Assuming that 2c =  is the correct choice 
for 0r > , Eq. (S16) gives the probability that the animal performs correctly, i.e. the 
psychometric performance of the animal in the task (Fig. S1A2). 
 
Using the same approach, we can compute the neurometric performance of the 1 2( , )r r  neural 
features, defined as the probability of correct stimulus decoding using an ideal decoder. If we 
assume the green and blue stimuli to be equiprobable ( ( 0) ( 0) 1/ 2p pr r< = > = ), then by a 
symmetry argument the optimal decoder is that which operates along the sensory boundary 

0r+ =  indicated in Figure S1A3-5: ˆ ( ) 1s rJ += + . The probability of correct decoding can be 
then computed directly from Eq. (S15): 

                      ( ( 0 20 | 0) | 0)p r p r rr r
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By comparing Eqs. (S16) and (S17), it is apparent that if 
2

2
32

4
, ss s s s+

+ - -> = -  

then the neurometric curve for the 1 2( , )r r  code coincides with the psychometric curve of the 
experiment (Fig. S1A2), even though the intersection information of the neural features 
1 2( , )r r  is at chance level, as the faithfulness of the neural representation of the stimulus is 

conditionally independent of the choice given the stimulus (see Eqs. (S7) and (S8)). Indeed, 
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the faithfulness of stimulus encoding only depends on r+ , while the behavioral choice only 
depends on 3r r- + , and 3 3( , | ) ( | ) ( | )p r r r p r p r rr r r+ - + -+ = + . 
 
Patterned illumination to causally test hypothesis on the intersection 
between sensory information and readout 

To be informative about the neural code, ideally interventional approaches should achieve 
cellular resolution and high temporal precision in large subpopulations of cells several 
hundred microns into the brains of mammals (if complex behaviors are to be investigated, 
rodents or non-human primates models must be used). This is especially important for 
directly testing hypotheses about the relevance of a particular neural feature (e.g., spike 
timing or spike count) in particular subsets of neurons. In experimental animal models, 
optogenetics (Boyden et al., 2005; Lima and Miesenbock, 2005; Nagel et al., 2003; 
Zemelman et al., 2002; Zhang et al., 2007; Zhang et al., 2010) has become the technique of 
choice to perturb electrical activity in genetically-targeted cellular subpopulations. Most 
functional optogenetic studies in living animals have so far used the wide field approach as in 
Fig. 8C (Adamantidis et al., 2007; Beltramo et al., 2013; Gradinaru et al., 2009; Kravitz et al., 
2010; Tsai et al., 2009; Wimmer et al., 2015), which does not allow high spatial resolution 
within the illuminated region. However, recent optical developments now allow precise 
spatial targeting (Andrasfalvy et al., 2010; Baker et al., 2016; Papagiakoumou et al., 2010), 
an approach that is called patterned illumination; see Fig. 8D (Bovetti and Fellin, 2015). 
Patterned illumination is an umbrella term, and includes different approaches (see below) to 
deliver light to precise spatial locations. When combined with the light-sensitive optogenetic 
actuators, patterned illumination can reach near cellular resolution in perturbing electrical 
activity (Packer et al., 2015; Papagiakoumou et al., 2010; Rickgauer et al., 2014), thus 
promising to be a powerful tool for investigating the neural code driving behavior. 
Importantly, patterned illumination has recently been combined with laser scanning 
functional imaging in vivo, providing a unique all-optical tool for reading and perturbing 
neuronal circuits (Carrillo-Reid et al., 2016; Packer et al., 2015; Rickgauer et al., 2014; Szabo 
et al., 2014). We will briefly describe here the main technical advancements that have been 
developed to achieve patterned illumination in the mammalian brain, and discuss their main 
advantages and limitations. A more technical description of the techniques underlying 
patterned illumination and their combination with light-sensitive opsin actuators can be found 
in (Bovetti and Fellin, 2015; Emiliani et al., 2015; Grosenick et al., 2015).  
 
In general, patterned illumination can be performed in combination with both single- (Lutz et 
al., 2008; Szabo et al., 2014) and two-photon excitation (Andrasfalvy et al., 2010; Packer et 
al., 2012; Papagiakoumou et al., 2010; Papagiakoumou et al., 2013). Although single-photon 
patterned illumination might present some advantages for stimulation with fast refresh rates 
(> 1 kHz using, for example, digital micromirror devices), and is compatible with the 
excitation of most available opsins, it is unlikely to achieve single-cell resolution in deep 
regions of the mammalian brain. That’s because out-of-focus light activates cellular 
structures (cell bodies or processes) above and below the target neuron. In addition, scattering 
limits the applicability of single-photon patterned illumination in turbid mammalian brain 
tissues. In contrast, two-photon patterned illumination effectively restricts opsin activation in 
the axial direction (Helmchen and Denk, 2005), assuring cellular resolution hundreds of 
microns deep within the brain tissue. Patterned two-photon optogenetic illumination can be 
performed by scanning a diffraction limited spot over a given region of interest (Carrillo-Reid 
et al., 2016; Mohanty et al., 2008; Prakash et al., 2012; Rickgauer and Tank, 2009), by 
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providing simultaneous illumination on extended shapes in combination with temporal 
focusing (Andrasfalvy et al., 2010; Papagiakoumou et al., 2010), or by a combination of light 
patterning and scanning (Packer et al., 2012; Packer et al., 2015; Rickgauer et al., 2014).  
 
In the scanning approach, cells located within a large field of view (e.g., ~300 µm x 300 µm 
with a 40X objective or ~600 µm x 600 µm with a 20X objective), potentially containing 
hundreds of neurons, can be individually addressed. However, this approach does not allow 
the simultaneous illumination of different cells, and is limited in its time resolution because 
the sequential scanning mode takes time to address all the target cells. The use of acousto-
optic deflectors (Huang et al., 2016; Nadella et al., 2016) may decrease the time necessary to 
move from one location to the other, but efficient manipulation of the target neuron depends, 
among other things, on the photo-current rise-time, and therefore on the illumination dwell 
time. If long dwell times are needed to obtain efficient opsin activation, fast scanning 
methods might not represent the ultimate solution for stimulating many cells in short time 
windows. Regardless of these limitations, it has been suggested that using optimized spiral 
scanning approaches with small dimension galvanometric mirrors and activation of the 
excitatory opsin C1V1 (Yizhar et al., 2011), approximately 50 neurons can be sequentially 
addressed in 100 ms (Grosenick et al., 2015). 
 
Patterned illumination using extended two-photon shapes (for example, using liquid crystal 
spatial light modulators, LC-SLMs) (Dal Maschio et al., 2010; Nikolenko et al., 2008; 
Papagiakoumou et al., 2010) leads to the simultaneous illumination of larger sample areas. 
Compared to the scanning of diffraction limited spots, it might potentially be more effective 
in driving neural cells suprathreshold because it allows the simultaneous illumination of a 
larger portion of the target cell and thus it leads to the synchronous activation of a higher 
number of light-sensitive molecules. Moreover, in most configurations this method allows 
truly simultaneous illumination of multiple neurons. The main limitations include: the 
addressable area within the field of view is smaller than that of the scanning approach, the 
number of cells that can be simultaneously illuminated is limited by the total available laser 
power and tissue heating (Podgorski and Ranganathan, 2016). Moreover, when series of 
different patterns need to be projected, the refresh rate of current LC-SLMs is limited (in the 
order of 60-500 Hz). Although a direct demonstration of the applicability of this technology 
(using two-photon excitation) to stimulate cells in living mammals still awaits experimental 
validation, based on published work in brain slices (Begue et al., 2013; Papagiakoumou et al., 
2010) it is reasonable to hypothesize that about 10 neurons could be simultaneously 
stimulated in less than 40 ms when channlerhodopsin-2 is used. The use of other opsins (e.g., 
ReaChR) combined with low repetition rate laser sources may increase the number of 
addressable cells while minimizing the latency to action potential (AP) discharge and the AP 
jitter (Chaigneau et al., 2016). 
 
The combined scanning mirrors and LC-SLM patterned illumination approach might achieve 
activation of multiple neurons in large fields of views. For example the LC-SLM could be 
used to shape two-photon light into an extended area corresponding to the dimension of a cell 
body of a neuron, and galvanometric mirrors could be used to deflect this shape over multiple 
cells. In a similar way, an extended disk of two-photon excitation could be moved across 
different neurons (Rickgauer et al., 2014). Alternatively, an LC-SLM can be used to project 
small excitation spots centered on multiple cells and the galvanometric mirrors could be used 
to scan the spots on the extended area corresponding to the cell body (Packer et al., 2012; 
Packer et al., 2015). Using this approach, 10-20 neurons have been simultaneously stimulated 
in 11-34 ms (Packer et al., 2015). 
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To summarize, multiple approaches have been proposed to perform patterned two-photon 
illumination with near cellular resolution in living rodents. Current experimental approaches 
can manipulate in vivo a relatively small number (few tens) of cells with temporal resolution 
of few ms (Bovetti and Fellin, 2015; Emiliani et al., 2015; Grosenick et al., 2015). Much 
effort is currently devoted to combining patterned illumination with neurophysiological 
measurements in behavioral experiments, but the validity of this approach still awaits 
experimental demonstration. For example, it is still an open question whether stimulating a 
limited number of neurons will be sufficient to drive a behavioral response. Success in this 
task will most likely go through the optimization of stimulation protocols and the 
development of new technical solutions for efficiently manipulating the activity of hundreds 
to thousands of cells in three dimensions while maintaining high spatial and temporal 
resolution (see also main text). 
 
 
Details of the simulations implemented in this article 
 
The simulations in Figs 3 and 5 and in Fig. S1B were implemented by generating, for each of 
the two simulated stimuli s=1 and s=2, points in the r1, r2 space according to a Gaussian 
distribution ( , )µ ΣN with covariance matrix 

0.2 0.005
0.005 0.2

-æ ö
= ç ÷-è ø

Σ  

and mean vector µ  = (0.4, 0.4) for s=1 and µ= (0.6, 0.6) for s=2. The boxes in the two-
dimensional plots of the 1 2( , )R R  space in Figs. 3,4 and 6 have axes that span the range 
between 0 and 1 for each of the two neural features r1,r2. The simulations plotted n=100 trials 
per stimulus in the 1 2( , )R R  plane, but the marginal probabilities along the r1 and r2 axes of 
Fig. S1B were computed with n=106 simulated trials per stimulus.  
 
The simulations in Fig.S1A were generated according to the distribution for 1 2( , )r r  defined 
by Equations S13 and S14, with 0.18s+ = , 0.07s- = and 3 0.1s = , and s  set to either ±0.01 
(S1A3), ±0.06 (S1A4) and ±0.2 (S1A5). These parameters were chosen so that the neurometric 
and psychometric functions plotted in Fig. S1A2 did not completely overlap, for display 
purposes. The boxes in the two-dimensional plots of the 1 2( , )r r space in Figure S1A have axes 
that span the range between -0.5 and 0.5 for each of the two neural features r1 and r2.  As in 
Figure 3 and Figure S1B, 100 trials per stimulus were plotted. 
 
Matlab code for the generation of these figures is available through Zenodo and GitHub 
(https://doi.org/10.5281/zenodo.191810). 
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Supplemental Figure S1 
 

Supplemental Figure S1 (related to Figure 3): further illustrations of intersection 
information.   
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A) example of a two features 1 2( , )r r  with null (chance-level) intersection information that has 
significant choice probability and whose neurometric function correlates well with the 
experiment’s psychometric function. The signal intensity of the stimulus is varied 
parametrically. A1) Simple schematic illustrating the dependence between stimulus, neural 
response and behavioral choice. The stimulus is encoded in both 1r and 2r  as well as in a third 
feature 3r , and the behavioral readout is based on a combination of 1 2r r-  and 3r  (see text for 
details). The stimulus tuning (trial-averaged response) of 1r  and 2r  is identical, and similar to 
that of 3r . A2) Comparison of the neurometric curve of the two features 1 2( , )r r (black; defined 
as the probability of correct decoding by an ideal stimulus decoder as a function of signal 
intensity, using 1r  and 2r ; Eq. (S17) and the psychometric curve for the experiment (red; 
defined as the probability of correct behavioral choice as a function of signal intensity; Eq. 
(S16). A3-5) scatter plot of neural responses for different values of signal intensity, generated 
according to the distributions defined by Eqs. (S13) and (S14). Graphical conventions are as 
in Fig. 3A1, 3B1 and 3C1. Dashed black and red lines represent the sensory and decision 
boundaries, respectively. The region below the sensory boundary corresponds to responses 
that are decoded correctly from features 1 2( , )r r  if the green stimulus is shown; the region 
above the sensory boundary corresponds to responses that are decoded correctly if the blue 
stimulus is shown. Filled circles correspond to correct behavioral choices; open circles to 
wrong choices. As the stimulus signal intensity increases (from ±0.01, to ±0.06 and to ±0.02 
respectively in Figure S1A3, S1A4 and S1A5), responses to green and blue stimuli become 
further apart, and the number of error trials decreases. Notice, however, that there is no 
single-trial link between the neural representation of a stimulus and the behavioral choice, as 
the probability of behavioral error in a given trial is always unrelated to its position relative to 
the sensory boundary. B) This figure, which is identical to Fig. 3B1 with the addition of 
marginal probabilities of individual features, is a scatterplot of simulated neural responses to 
two stimuli, s=1,2 (corresponding to green and blue dots, respectively). The lines along the 
axes of the 2-D scatterplot represent the 1-D marginal projections of stimulus- and choice- 
fixed probabilities of r2 and r1, respectively. In this example (which is analogous to that in 
figure 3B1), the decision depends only on 1r , but 2r also possesses choice selectivity by virtue 
of its correlation with 1r , as can be seen from the marginal plots on the left. C) Sketch 
showing why, in the case of Fig. 3C, when feature 1r  and 2r  carry complementary stimulus 
information and the decoder is sensitive to both 1r  and 2r , the intersection information 
carried by the joint combination of features is larger than the intersection information carried 
by either alone. The right panel illustrates this by showing histograms of intersection 
information for individual features (left two) and their joint combination (right). The three 
panels on the left plot with solid colors (coded with the stimulus color) the regions of the 
1 2( , )r r  space that contribute to the intersection information if the sensory stimulus is decoded 

with 1r  only (left), with 2r  only (center), and jointly with 1 2( , )r r  (right). The larger the 
colored areas, the larger the intersection information. Decoding with both features maximizes 
the areas with congruent stimulus and choice information (no “white” areas that do not 
contribute to intersection). Decoding with either feature alone leads to areas of the 1 2( , )r r  
plane that cannot contribute to intersection because in these areas there is a mismatch 
between the decoded stimulus and the choice. The mismatch is indicated by regions (white 
areas in the feature plane) where the single-feature decoder wrongly decodes the stimulus, 
due to its failure to consider all the complementary stimulus information in the joint features.  
D) Intersection information values computed for the examples in Figure 3 using Eq. (S7), 
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compared with “chance” intersection information (Eq. (S8)) and “stimulus information”, 
quantified as the fraction of trials correctly decoded by the ideal linear stimulus decoder 
(sensory boundary). 
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