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The subject of neural coding has generated much debate. A key
issue is whether the nervous system uses coarse or fine coding.
Each has different strengths and weaknesses and, therefore, dif-
ferent implications for how the brain computes. For example, the
strength of coarse coding is that it is robust to fluctuations in spike
arrival times; downstream neurons do not have to keep track of the
details of the spike train. The weakness, though, is that individual
cells cannot carry much information, so downstream neurons have
to pool signals across cells and/or time to obtain enough informa-
tion to represent the sensory world and guide behavior. In con-
trast, with fine coding, individual cells can carry much more
information, but downstream neurons have to resolve spike train
structure to obtain it. Here, we set up a strategy to determine which
codes are viable, and we apply it to the retina as a model system. We
recorded from all the retinal output cells an animal uses to solve a
task, evaluated the cells’ spike trains for as long as the animal
evaluates them, and used optimal, i.e., Bayesian, decoding. This
approach makes it possible to obtain an upper bound on the perfor-
mance of codes and thus eliminate those that are insufficient, that is,
those that cannot account for behavioral performance. Our results
show that standard coarse coding (spike count coding) is insufficient;
finer, more information-rich codes are necessary.

Bayesian � ganglion cells � ideal observer � neural coding �
population coding

One of the most pressing problems we face in neuroscience
is determining what the neural code is. We know that

neural signals come in the form of trains of action potentials, but
we do not know what the unit of information is. Is it the number
of spikes produced over some behaviorally relevant time interval
(e.g., the length of a saccade), or is it the individual spike or some
pattern of spikes? Several variations of the latter have been
proposed, including patterns across spike trains and within them.
(For a discussion of proposed codes and their relative merits, see
refs. 1–10.) Getting a clear answer as to what the unit of
information is affects essentially all work in systems neuro-
science. For experimental work, it tells us what resolution we
should use for analyzing data, and for theoretical work, it tells us
what quantity we need for performing neural computations.

At first glance, it might seem that determining what the unit
of information is—at least for a given brain area—is a straight-
forward problem, one that could be addressed as follows: Give
an animal a task to perform and measure its performance; then
take the spike trains the animal uses to perform the task and
decode them several times, each time making a different as-
sumption about what the unit of information is. For example,
first assume it is the number of spikes in a relatively long time
interval, such as the time of a stimulus presentation or a saccade,
then assume it is the number of spikes in a shorter time interval,
etc. Then, with each assumption, measure how well the task was
performed and compare it to the performance of the animal.

Although this approach is straightforward in principle, it is not
so straightforward in practice. To get a definitive answer, several
conditions have to be met. First, the number and distribution of
cells used for the decoding has to be the same as the number and
distribution of cells the animal uses. To give a simple example for

why this matters—the underlying idea behind coarse coding is
that individual cells by themselves do not carry much informa-
tion, but, together, as a population, they do and could be
sufficient. Unless one records from all the cells the animal uses
to solve a task, one cannot reject this notion and assert with any
certainty that a finer code (i.e., one that carries more informa-
tion per cell) is needed. Second, the length of time over which
the spike trains are evaluated has to be the same as the length
of time the animal uses. When an animal examines a stimulus,
it typically looks multiple times. Unless one accumulates data
from multiple looks and multiple cells, again, one cannot rule
codes out. Finally, the last condition is that the decoding
algorithm used to test codes has to be at least as good as the one
the animal uses. Because no one knows the algorithm the animal
uses, the only option is to use optimal (i.e., Bayesian) decod-
ing—a strategy that extracts as much information from the spike
trains as can be extracted (ref. 11; see also refs. 12–15).

If these conditions are met, one gets an upper bound on the
performance of a code. One is basically giving the code its best
chance—assessing it using the same number and distribution of
cells the animal uses, accumulating data for as long as the animal
does, and using a decoding strategy that’s as good or better than
the one the animal uses. If an upper bound on a code’s
performance is obtained, and that upper bound falls short of the
animal’s performance, then that code can be ruled out.

Our aim here was to set up a scenario where these conditions
could be met. One of the few places this can be done is the retina.
Here’s the reasoning: First, the retinal output cells, the ganglion
cells, form a bottleneck in the nervous system—they are the sole
source of visual information to the brain. This means that all of
the cells needed for the recording are confined to a small,
well-defined location. Second, the transfer of signals from the
retina to the brain is feedforward. Because there is no feedback,
the retina can be removed from the animal and recorded from
in vitro. This offers a significant advantage, because it allows
multielectrode arrays to be used, making it possible to obtain a
dataset large enough to match the number and distribution of
cells the animal uses (16–18). Third, the number of cells needed
can be controlled by regulating the size of the stimulus. A
stimulus subtends a certain number of degrees of visual angle,
which corresponds to a known area on the retina and, therefore,
a known number of ganglion cells (19). Finally, the length of time
over which data needs to be collected can be controlled by
regulating the duration of the stimulus and the number of times
it is presented.

We thus set out to measure the performance of a set of widely
proposed codes using a combined in vivo and in vitro experi-
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ment. We started in vivo: We first measured the performance of
an animal on a visual task (Fig. 1). The animal was the mouse,
and the task was a 2-alternative, forced choice visual discrimi-
nation task developed for rodents (20). On each trial, the animal
was presented with 2 stimuli, a uniform gray field and a
sinusoidal grating, with the spatial frequency of the grating
chosen from a discrete set of uniformly spaced frequencies. The
animal’s assignment was to determine which of the 2 was the
grating. Fig. 1 A shows a schematic of the task, and Fig. 1B shows
the behavioral performance for a set of 8 animals. As shown in
the figure, performance was high when the spatial frequency of
the grating was low and dropped to chance when the spatial
frequency was high [�0.5 cycles per degree (cpd)].

We then presented the same task to the retina in vitro,
matching, of course, all stimulus conditions (image size, dura-
tion, intensities, spatial frequencies, phases and contrasts; see
Methods) and decoded the ganglion cell spike trains. We de-
coded them several times, each time making a different assump-
tion about what the unit of information is—that is, each time
parameterizing the spike trains in a different way. We started by
parameterizing the spike trains with just a single number, the
number of spikes in a stimulus presentation. This is a simple
coarse code, a spike count code. We then parameterized the
spike trains finely, such that the unit of information was the
individual spike. We referred to this as a spike timing code (also
commonly called an instantaneous rate code). For this, the
underlying assumption is 2-fold—that the unit of information is
the single spike, and that the occurrence of a spike does not
depend on the occurrence of other spikes. Last, we took into
account temporal correlations and referred to this as a temporal
correlation code. For this, the underlying assumption is also that
the unit of information is the individual spike, but this time the
occurrence of a spike does depend on the occurrence of other
spikes—in this case, we assumed a dependence on the time of the
previous spike (See Methods for a mathematical description of
each code). In sum, then, we decoded ganglion cell spike trains
using 3 widely proposed codes, ones that follow a natural

progression from simple to more complex, and measured each
one’s performance against the performance of the animal.

The results are shown in Fig. 2. The spike count code (blue
trace) performed much worse than the animal (black trace)
(P �� 0.0001, psignifit test (21), see Methods). Although the
animal performed the task well (�70% correct up to 0.4 cpd),
the spike count code maintained this level only up to �0.1 cpd.
This argues that the animal cannot be using this code. The
argument is strong because, as mentioned above, the code was
given its best chance, that is, it was assessed using the same
number and distribution of cells the animal uses (pooling the
cells optimally), taking data for as long as the animal does (again,
pooling optimally) and, finally, using optimal decoding (optimal
for that code). This means that for the animal to reach its
observed behavioral performance level, it has to be using a more
information-rich code. This latter assertion follows because
there is no other way for the animal to get the information: (i)
as mentioned above, the retinal output cells are the sole source
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Fig. 1. Performance of the animal on a 2-alternative, forced choice visual discrimination task. (A) Schematic of the task. The animal is dropped into a pool, where
the only escape is a hidden platform. The clue to the location of the platform comes from 2 computer monitors. One shows a grating, the other a uniform gray
field, and the location of the platform is associated with the grating. If the animal can distinguish the grating from the gray image, it can find the platform and
escape. Each image subtended 10 � 15° of visual angle at the choice line (see figure), was presented 8 times, and each presentation lasted for 300 ms. A barrier
was set up so that the animal could see only 1 image at a time. (B) Mean performance for 8 animals, plotted as the fraction of times the animal chose the grating
as a function of spatial frequency. Error bars were computed using binomial statistics. The standard deviation was [P(1-P)/n]1/2, where P is the probability of
choosing the grating and n is the number of trials (n ranged from 10–115 trials/spatial frequency). (C) Performance of each animal shown separately.
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Fig. 2. The spike count code and spike timing (instantaneous rate) code
performed worse than the animal, whereas the temporal correlation code
(within spike train temporal correlations) did not (spike count code: P ��
0.0001; spike timing code: P � 0.02; temporal correlation code: P � 0.3). As in
Fig. 1, error bars were computed using binomial statistics. The standard
deviation was [P(1 � P)/n]1/2, where P is the probability of choosing the grating
and n is the number of trials (for the codes, n � 98 trials/spatial frequency; for
the animals, n ranged from 10–115 trials/spatial frequency).
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of visual input to the brain, and (ii) the brain can not create
information de novo. As indicated by the data processing
inequality, a well-known theorem in signal processing (22),
information cannot be generated after the fact by postprocess-
ing; a system can manipulate the information it receives, perform
computations on it, etc., but it can not create new information.

The second result is that the spike timing (or instantaneous
rate) code (green trace) also performed worse than the animal
(P � 0.02, psignifit test). Note, though, that this code carries
much more information than the spike count code (�70%
correct at 0.3 cpd versus 0.4 cpd for the animal). Put in practical
terms, if one were to build a retinal prosthetic with a spike count
code, it would fall substantially short, but if one were to build a
prosthetic with a spike timing code, it would put the animal
within striking distance of normal acuity.

Finally, the last result is that the temporal correlation code (red
trace) did perform the task as well as the animal (P � 0.3, psignifit
test). As mentioned above, this is a simple within-spike train
temporal correlation code, essentially a spike timing code with a
soft refractory period. Although this result does not prove that this
is the code the animal uses, it does show that it carries sufficient
information and constitutes a viable candidate code. (See SI
Appendix, Fig. S5 for a complete set of rasters for several cells; the
figure shows, at the raw data level, how different codes perform.)

How robust are these results? The answer depends on how well
they stand up to potential errors in the estimates of the critical
parameters, specifically, the estimates of cell number, cell dis-
tribution, priors on the stimulus, and shapes of the response
distributions. The first source of potential error is in the estimate
of the number of ganglion cells the animal uses. The stimulus
covers 0.144 mm2 of retina. Two recent electron microscopic
estimates of ganglion cell number (23, 24) indicate a range of 300
to 360 cells for this area (see SI Appendix, section D. We
measured the performance of each code using both numbers,
and there was essentially no difference (Fig. 3A) (the spike count

and spike timing codes still performed worse than the animal,
P �� 0.0001 and P � 0.02, respectively; the temporal correlation
code did not (P � 0.3). The figure shows performance as a
function of cell number; as indicated in the figure, performance
growth slows down at numbers much lower than these.

The second source of potential error is in the estimation of the
ganglion cell distribution. Physiological studies in mouse show
that the distribution is skewed toward ON-type ganglion cells
(16–18). Anatomical studies in mouse, though, suggest a more
even representation (particularly, equal numbers of ON and
OFF cells (25), with deviations reflecting differences in cover-
age, i.e., cell types with larger dendritic trees occur proportion-
ally less often than those with smaller ones. We measured the
performance of each code, building the distribution of cell types
both ways (Fig. 3B) (see SI Appendix, section D for the distri-
butions). Although the choice of distribution shifted the perfor-
mance slightly, the conclusions remained the same: The spike
count and spike timing codes still performed worse than the
animal (spike count, P �� 0.0001; spike timing code, P � 0.02);
the temporal correlation code did not (P � 0.3). (For decoding
results with other distributions and performance curves for all
individual cells in the dataset, sorted by cell class, see SI
Appendix, section D.)

The third issue is the estimation of stimulus priors. We
measured performance using both uniform priors (P(gray) �
1/2; P(k) is a constant, where k is spatial frequency) and natural
priors (P(gray) � 1/2; P(k) �1/k2), the latter following from ref.
26. As shown in Fig. 3C, column 3, there was essentially no effect:
The spike count and timing codes still performed worse than the
animal (spike count, P �� 0.0001, spike timing, P � 0.02); temporal
correlation code did not (P � 0.3). (This is not surprising because
the priors become relevant only if very little data are used to decode
the spike trains, which was not the case here.)

Finally, the last issue concerns the estimation of the response
distributions. Because a Bayesian (probabilistic) decoding
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Fig. 3. The failure of the spike count code and the spike timing (instantaneous rate) code was robust to potential errors in the estimation of the critical
parameters: cell number, cell distribution, priors on the stimulus, and shapes of the response distributions. (A) Performance of spike count and spike timing codes
remained worse than the animal with cell numbers up to 360 (the upper bound estimate on cell number) (spike count: P �� 0.0001; spike timing: P � 0.02); whereas
performance of the temporal correlation code reached that of the animal, i.e., was not significantly different (P � 0.3). For spike count, the traces indicate 1,
2, 4, 8, 16, 32, 64, 128, 256, 300, and 360 cells. For the spike timing and temporal correlation codes, the traces indicate 1, 64, 128, 256, 300, and 360 cells. Note
that for all 3 codes, performance became very slowing growing at numbers well below 360. Error bars were computed as in Fig. 2. (B) Performance for all codes
shifted slightly when the distribution of cell classes was drawn from anatomical versus physiological estimations (see SI Appendix, section D for the distributions),
but the conclusions remained the same: The spike count and spike timing codes still performed worse than the animal; the temporal correlation code did not.
(C) Performance of the codes remained essentially the same whether uniform or natural priors were used; again, all conclusions remained the same. (D)
Conclusions were not changed when the number of trials used to build the response distribution was systematically varied; error bars here indicate the standard
deviation for 3 cross validations).
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method is being used, the response distribution for each stimulus
must be estimated, and the quality of the estimate depends on the
number of responses. An insufficient number could lead to a
mis-estimate of code performance; both an underestimate and
an overestimate are possible (see SI Appendix, section E for
discussion). To address this, we ran the analysis such that the
response distributions were built with different numbers of
stimulus repeats (Fig. 3D). The results show that for the spike
count and spike timing codes there was no significant trend as the
number of repeats was increased, that is, the performance of
these 2 codes did not significantly change, and both remained
below the performance curve of the animal. For the temporal
code, there was also no significant trend as the number of repeats
increased, but, here, nearly all points in the performance curves
came into contact with the animals’ behavior curve. This sup-
ports the notion that this code cannot be ruled out and stands as
a viable candidate code. Note that as an additional check we
performed this analysis with multiple cross validations; this is
represented by the error bars in panel d. This further demon-
strates the robustness of the results: Even when the variance that
occurs with different cross validations in taken into account, the
differences in the performances of the codes is clear: The spike
count code performs considerably worse than the animal, the
spike timing code performs slightly worse, and the temporal
correlation code reaches the animals’ performance.

Discussion
A critical problem in systems neuroscience is determining what
the neural code is. Many codes have been proposed—coarse,
fine, temporal correlation codes, synchronous firing codes,
among others. The space of candidates has grown as more and
more studies have shown that different aspects of spike trains can
carry information (see refs. 1–10) Our aim here was to shrink the
space of possibilities, to set up a rigorous strategy for eliminating
codes so we can close in on those that are truly viable. The
strategy was to obtain an upper bound on the performance of
each code and compare it to the performance of the animal. The
upper bound was obtained by measuring code performance
using the same number and distribution of cells the animal uses,
the same amount of data the animal uses, and a decoding
strategy that is as good or better than the one the animal uses.
If the upper bound performance falls short of the animal’s
performance, the code can be eliminated, because this indicates
very strongly that the animal cannot be using it.

We tested 3 widely proposed codes, referred to as a spike
count code, a spike timing code, and a temporal correlation
code. They followed a natural progression, summarized as
follows. For the spike count code, the relevant quantity in the
spike train was assumed to be spike number. For the spike timing
code, also referred to as an instantaneous rate code, the relevant
quantity was assumed to be the timing of the spikes, and the
occurrence of a spike did not depend on the occurrence of other
spikes. Last, for the temporal correlation code, the relevant
quantity was assumed to be the timing of the spikes, but, here,
the occurrence of a spike was assumed to depend on the
occurrence of other spikes; the specific dependence was on the
time of the previous spike.

Our results showed that 2 of the codes, the spike count and
spike timing codes, did, in fact, fall short. The performance of the
spike count code fell substantially short, as shown in Figs. 2 and
3. This result also held when spikes were counted in windows
smaller than the length of the stimulus presentation, indicating
that the failure of this code was not being exaggerated by
counting spikes in the full 300-ms window. Even when spikes
were counted only in 100 ms and 50 windows, the spike count
code performed substantially worse than the animal (see SI
Appendix, section I). The second result was that the spike timing
code also fell short. Note, though, that the failure of this code

was much less than that of the spike count code (see Figs. 2 and
3). Finally, the last result was that the temporal correlation code
did perform as well as the animal. Although this does not
demonstrate that this is the code the animal uses, it does show
that it carries sufficient information and constitutes a viable
candidate code.

These findings have significant implications for how down-
stream neurons must perform their computations—they argue
that simple coarse coding algorithms built around spike count-
ing, pooling, etc, are not realistic, at least at the retina/brain
interface, and new models—those that take into account addi-
tional features of the spike train—need to take their place,
because these additional features carry essential meaning (i.e.,
the codes that do not have them do not pass).

The findings also raise the intriguing issue of generalization.
The problem of finding the neural code has often been likened
to the problem of finding the genetic code, but although there is
one genetic code (the relevant quantity or ‘‘unit of information’’
is always 3 nucleotides � 1 codon), it is not clear that there will
be 1 neural code. The results here apply to the transfer of
information from the periphery to the brain, a transfer that may
require a particularly information-rich code. There is the in-
triguing possibility that the brain switches coding strategies when
faced with problems with different constraints (e.g., high level
visual processing, perception).

We conclude with 2 caveats. First, because we use electro-
physiological recording, which has inherent limitations, we can-
not completely eliminate the possibility that the animal has
access to a high performing cell class that we can not detect.
However, the dataset was large, it contained all of the known cell
classes reported for mouse (16–18) and even extreme perturba-
tions to the distributions of the cell classes, perturbations that
exaggerated the performance of the highest performing classes
(see SI Appendix) did not overturn the conclusions, providing
strong evidence that this possibility is small.

Second, although we followed a progression from simple to
complex codes—from spike count to spike timing to spike timing
with temporal correlation—we were not able to test all possible
codes in between, because the scope is too large; therefore, we
indicate that other spike pattern permutations (e.g., a coarse
code with temporal correlations, a code with multicell noise
correlation that cannot be accounted for by pairwise noise
correlations, etc.) remain candidates for testing. Our aim was to
present a generalizable framework for testing neural codes and
to test those most widely proposed. Our results showed that 2 of
these codes failed—that is, they failed to account for behavioral
performance—but a third code succeeded and stands as a viable
candidate code.

Methods
Matching Stimulus Parameters in Vitro to Those in the Behavioral Task. Stimulus
size. In the mouse, 1° of visual angle corresponds to 31 �m on the retina (19);
thus, each stimulus was 310 �m � 465 �m � 0.144 mm2 on retina both in vitro
and in vivo.
Stimulus presentation. Stimuli were presented in flashes, both in vitro and in the
behavioral task (flashed on for 300 ms, then off for 1,200 ms, for 8 repeats). The
stimuli were presented in flashes to circumvent the problem of producing
saccadic eye movements in the in vitro condition. Briefly, when an animal
views a stimulus for more than a few hundred ms, it makes saccades (saccade
frequency ranges from �3 times per second in primates (27, 28) to about once
every 2–3 s in rodents (29, 30). By presenting the stimuli in flashes both in the
behavioral task and in vitro—flashes that are shorter than the time between
saccades—we equalize the 2 conditions, that is, we force both the retina in the
dish and the retina in the animal to perform the task using short stimulus
snapshots. Note that finer eye movements, such as microsaccades, have been
found not to exist in nonfoveate retinas, including mouse and rabbit (31–33).
Stimulus intensity. Mean stimulus intensity in vivo was 3.76 lumens/mm2 at the
retina; intensity when the stimulus was off was 7.52 � 10�3 lumens/mm2.
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Mean stimulus intensity in vitro was 6.85 lumens/mm2 at the retina; intensity
when the stimulus was off was 1.37 � 10�2 lumens/mm2. For the calculations
used to match the intensity in vitro to that in vivo, and for a measure of the
robustness of the conclusions of this article to the accuracy of this matching
(see SI Appendix, section F).
Light adaptation conditions. To control light adaptation conditions, the pool in
the behavioral task was covered with dark, 1-way-visible drapes. If the ani-
mal’s eyes shifted away from the stimulus to the walls or water and then back
again, it was shifting from a dark to a light condition, similar to the condition
produced by the stimulus, which oscillated from dark to light. The conditions
in vitro were matched to this by placing the retina in a chamber surrounded
by a dark curtain.
Spatial frequencies, contrast and phase. In the behavioral task, the spatial
frequencies ranged from 0.035 cpd to 0.5 cpd. The same range was used in
vitro, but with fewer intervals (n � 6 spatial frequencies in vitro versus n � 10
in vivo). Grating contrast, both in the behavioral task and in vitro, measured
as Lmax � Lmin/Lmax � Lmin, where Lmax and Lmin were the maximum and
minimum intensities, was 99.6%. With respect to phase: in the behavioral task,
each spatial frequency was presented at one phase; however, because eye
movements likely occur between stimulus flashes (29, 30) �1 phase was likely
received. To accommodate this in vitro, each spatial frequency was presented
at multiple (3) phases (e.g., see SI Appendix, Fig. S5). All procedures were in
accordance with National Institutes of Health guidelines.

Decoding Ganglion Cell Spike Trains. As mentioned in the main text, we decode
ganglion cell spike trains using a Bayesian approach because it allows us to
extract as much from the spike trains as can be extracted (i.e., it maximizes the
fraction of correct predictions one can extract from the spike trains) (11). It is
a direct approach, with no intervening steps, such as stimulus reconstruction,
etc., that can lead to a loss of information. We begin by estimating the
probability that a particular stimulus was presented, given that a particular set
of ganglion cell responses occurred. This probability is denoted P(s�r), where s
is the stimulus and r is the set of ganglion cell responses. We find P(s�r) by
presenting each stimulus repeatedly, recording the resulting ganglion cell
responses, and estimating the conditional response distribution, P(r�s). We
then use Bayes theorem, P(s�r) � P(r�s)P(s)/P(r), to determine P(s�r) from P(r�s).

Given P(s�r), we then use it to perform the task. In the task, 2 stimuli, a grating
and a gray screen, are presented. Each produces a set of responses. The question
we ask in the task is, Which of the 2 sets of responses corresponds to the grating?
Letting r1 and r2 betheresponses tothe2stimuli, s1 and s2 respectively,weanswer
this by comparing P(s1 � grating�r1) to P(s2 � grating�r2). If the first quantity is
larger, we say r1 corresponds to the grating; otherwise, we say r2 does. (As is
standard,weusehalf theresponses, chosenat random, togenerateP(r�s), andthe
other half to perform the task.)

With the Bayes’ formalism, we have a natural way to test different codes,
because different codes correspond to different treatments of r. To test the spike
count code, we treat r as spike count; to test the spike timing code, we treat r as
a set of spike arrival times and assume that the occurrence of a spike is indepen-
dentof theoccurrencesofother spikes;andtotest thetemporal correlationcode,
we also treat r as a set of spike arrival times, but, this time, assume that the
occurrence of a spike is not independent of the occurrences of other spikes; the
specific dependence we assumed was a dependence on the time of the previous
spike on the same spike train. (Note that in all cases, the same length of response
is used; the difference is in the treatment of the responses.)

Formally, we construct the response distribution, P(r�s), for each code as
follows: For the spike count code, r � n � {the number of spikes in a stimulus
presentation}. Because each trial of the task involves multiple cells and mul-
tiple stimulus presentations (i.e., multiple looks), we use nil to denote spike
count from cell i on look l, and write

pspike count code	r �s
 � �p	nil�s
 [1]

For the spike timing code (also referred to as an instantaneous rate code), r �
{a list of spike times at resolution dt}, denoted tijl, where tijl is the jth spike on
the lth look of neuron i. In this case,

pspike timing code	r �s
 �

�
l
� �

ij

v i	 t ijl�s
dt� exp� ��
i

�
0

T

dtvi	 t �s
� [2]

where �i(t�s) is the firing rate of cell i at time t, given that stimulus s was
presented, and the upper and lower limits (0 and T) correspond to the start and
end of each trial. �i(t�s) is found using a cubic spline parameterization follow-

ing (34, 35) as this captures firing rate accurately using a small number of
parameters; see SI Appendix, section A, this also includes a description of the
terms in Eq. 2.

For the temporal correlation code, again r � {a list of spike times at
resolution dt}, denoted tijl, but this time the firing rate has an additional
dependence on the time of the previous spike on the same spike train,

ptemporal correlation code	r �s
 �

�
l
� �

ij

v i	 t ijl,�	 t ijl
 �s
� exp� ��
i

�
0

T

dtvi	 t ,�	 t
 �s
� [3]

where �(t) is the time interval between t and the spike that preceded t on the
same neuron. �i(t,�(tijl�s) is found using cubic splines (34, 35); see SI Appendix,
section A.

Note that although we compute the likelihood from the marginals as
indicated in the equations, when we decode, we only decode true joint
responses, that is, we only decode joint responses that actually occur, as
illustrated in Fig. 4. This approach has been tried and tested: Several studies
have shown that decoding true joint responses using a decoder constructed
this way (where the likelihood was computed from the marginals) has little or
no effect on the estimation of the stimulus; see refs. 10, 36–39 and SI Appen-
dix, section C.

Note also that Eqs. 1–3 do not imply that spatial relations are disrupted.
(The subscripts on the equations indicate this.) Within each retina, each cell
retains its spatial position relative to the stimulus and relative to the other cells
(again, see Fig. 4).

Comparing Behavior and Decoder Performance. To compare behavior and
decoder performance we used the standard Wichmann and Hill maximum-
likelihood method (21) (see SI Appendix, section B).

Electrophysiological Recording. Recordings were made from isolated mouse
retinas using a multielectrode array as described in ref. 10. Each recording
contained 20–30 cells.
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Fig. 4. Decoding ganglion cell responses, an illustration. The grating indi-
cates a stimulus, and the circles indicate the receptive field positions of an
array of cells relative to it. The traces below show the responses of several of
the cells to one presentation of the stimulus. When we decode, we decode the
joint response for the population—that is, we decode a vector, whose com-
ponents are the responses of the cells on that stimulus presentation. When we
assume the spike count code, the components are single numbers, spike
counts. When we assume the spike timing or temporal correlation codes, the
components are sets of spike arrival times. For the formal description of each
code, see Methods.
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