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Abstract We use mean field techniques to compute the dis-
tribution of excitatory and inhibitory firing rates in large
networks of randomly connected spiking quadratic inte-
grate and fire neurons. These techniques are based on the
assumption that activity is asynchronous and Poisson. For
most parameter settings these assumptions are strongly vio-
lated; nevertheless, so long as the networks are not too
synchronous, we find good agreement between mean field
prediction and network simulations. Thus, much of the
intuition developed for randomly connected networks in
the asynchronous regime applies to mildly synchronous
networks.

Keywords Recurrent network · Synchronization ·
Quadratic integrate and fire neuron · Theta neuron ·
Random networks · Mean field theory

1 Introduction

A long term goal in computational neuroscience is to under-
stand the relationship between network parameters–espe-
cially connectivity–and network behavior. This relation-
ship has been studied extensively in randomly connected
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A. Grabska-Barwińska (�) · P. E. Latham
Gatsby Computational Neuroscience Unit,
University College London,
London, UK
e-mail: agnieszka@gatsby.ucl.ac.uk

P. E. Latham
e-mail: pel@gatsby.ucl.ac.uk

networks of excitatory and inhibitory neurons (Amit and
Brunel 1997a, b; van Vreeswijk and Sompolinsky 1998;
Brunel 2000; Latham et al. 2000a; Hansel and Mato 2001;
Lerchner et al 2006a, b; Renart et al. 2010; Hertz 2010),
for which the following picture has emerged: randomly con-
nected networks can operate in a relatively small variety of
regimes, with the regime characterized mainly by the degree
and type of synchrony (Brunel 2000; Hansel and Mato
2001). Of these, only the completely asynchronous regime
(in which the cross-correlograms are vanishingly small) is
well understood quantitatively. This regime, however, is
hard to access in realistic networks: parameters have to be
carefully adjusted to reduce synchrony among neurons, and
it is next to impossible to eliminate synchrony altogether.
Therefore, here we ask: how well does analysis designed to
work in the asynchronous regime apply to synchronous net-
works? The answer, not surprisingly, depends on the degree
of synchrony. Somewhat more surprisingly, even when net-
works are reasonably highly synchronous, the asynchronous
analysis makes accurate quantitative predictions of the mean
firing rates of the excitatory and inhibitory populations, and
makes good qualitative predictions of the distribution of fir-
ing rates. Thus, even in the relatively synchronous regime,
we can rely on these models to provide intuition about the
dynamics of randomly connected excitatory and inhibitory
networks.

Our analysis is based on the quadratic integrate and fire
neuron (Ermentrout and Kopell 1986; Ermentrout 1996;
Gutkin and Ermentrout 1998; Brunel and Latham 2003),
chosen because it provides a very good description of
the spiking dynamics of type I neurons at low firing rate
(Ermentrout and Kopell 1986), and because there is a rea-
sonably accurate analytic expression for the firing rate of
these neurons as a function of synaptic drive (Brunel and
Latham 2003). The analytic expression is available for
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essentially arbitrary synaptic time constant; we took advan-
tage of this to test a range of synaptic time constants, and so
broaden the validity of our conclusions. Although we focus
on the quadratic integrate and fire neuron, our approach
can be extended, at least in principle, to any single neu-
ron model. However, in most cases–especially those with
conductance based synapses–approximate schemes must be
used to characterize the relationship between synaptic drive
and firing rate (Shriki et al. 2003).

Consistent with our goal of testing the validity of the
asynchronous assumption, when carrying out our analysis
we assume that spike trains emitted by any two neurons are
uncorrelated. With this assumption, the network equilibria
are fully described by a set of algebraic equations that relate
the firing rate of each neuron to the firing rates of all other
neurons in the network. We solve them using a mean field
approach based on the self-consistent signal to noise anal-
ysis of Shiino and Fukai (1992, 1993), and compare this
solution to simulations in a regime in which our assumptions
are violated, and the neurons are not asynchronous.

2 Mean field analysis of a network of quadratic
integrate and fire neurons

Our goal is to compute the distribution of firing rates in a
recurrently connected network of excitatory and inhibitory
neurons. Our starting point is a set of equations describing
the time evolution of the membrane potential of each neuron
in the network. We then proceeded in two steps. First, we
reduce the time-dependent membrane potential equations to
a set of algebraic firing rate equations. Second, we solve
them using mean field techniques.

The first step depends critically on both the single neuron
model and the synaptic coupling. For the former we use the
quadratic integrate and fire neuron (Ermentrout and Kopell
1986; Ermentrout 1996; Gutkin and Ermentrout 1998). For
the latter we use current-based synapses, and assume that
each spike produces an instantaneous rise in membrane
potential followed by an exponential decay (Koch 1998). In
the limit that the network is large–the limit of interest here–
this input is reasonably well approximated by filtered white
noise. Thus, to compute the firing rate of our model neurons
we simply need to compute the firing rate of a quadratic
integrate and fire neuron receiving filtered white noise. For-
tunately, the firing rate of such a neuron (or at least an
approximation to it) has been computed as a function of
the mean and variance of the fluctuating input (Brunel and
Latham 2003).

The remainder of this section proceeds as follows: in
Section 2.1 we write down the equations describing the sin-
gle neuron dynamics, and provide an expression for the
firing rate; in Section 2.2 we write down the full network

equations; and in Section 2.3 we derive the mean field equa-
tions. Then, in Section 3, we compare the predictions of our
mean field model to numerical simulations of the network
equations.

2.1 Single neuron dynamics

Using V and h to denote the membrane potential of a neu-
ron and its synaptic drive, respectively, the single neuron
dynamics of a quadratic integrate and fire neuron receiving
fluctuating input can be written

τm

Vth − Vr

dV

dt
= (V − V )2

(Vth − Vr)2
+ μ+ h(t) (2.1a)

τs
dh

dt
= −h+ στ

1/2
m ξ(t). (2.1b)

Here τm and τs are the membrane and synaptic time con-
stants, respectively, Vr , Vth and μ are parameters that set
the neuron firing rate in the absence of the synaptic drive
(h(t) = 0), V is the voltage midway between the resting
membrane potential, Vr , and the threshold, Vth,

V ≡ Vr + Vth

2
, (2.2)

ξ(t) corresponds to Gaussian white noise,

ξ(t)ξ(t ′) = δ(t − t ′), (2.3)

and σ sets the overall level of the noise. Here and in what
follows, an overline indicates an average over time. Because
of the quadratic dependence on V, the voltage can reach+∞
in finite time; when that happens, a spike is emitted, and
the voltage is reset to −∞. (To handle the infinities in our
numerical simulations, we change to angular variables; see
Appendix B).

Poisson spikes at a sufficiently high firing rate pro-
duce synaptic drive that corresponds approximately to white
noise (Walsh 1981; Tuckwell 1988). Thus, a neuron embed-
ded in a network in which each neuron receives a large
number of inputs, as is the case in our networks, with spike
statistics that are approximately Poisson would receive
synaptic drive that looks like white noise (as in Eq. (2.1b)).
If we simply assume that neurons are Poisson, we can com-
pute both the mean drive, μ, and the fluctuations in the
drive, σ 2, to any particular post-synaptic neuron as a func-
tion of the firing rates of its pre-synaptic neurons. Then, if
we could compute the firing rate of the postsynaptic neuron
as a function of μ and σ 2, we could derive a set of algebraic
equations whose solution tells us the firing rate of every
neuron in the network. Unfortunately, it is not, as far as
we know, possible to compute the single neuron firing rate
exactly. However, an approximate expression for the firing
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rate exists (Brunel and Latham 2003). That approximate
rate, denoted νQIF(μ, σ

2), is given by

νQIF(μ, σ
2) = ν0S + (τs/τm)

2ν0Lρ2S/ρ2L

1 + (τs/τm)ρ2S + (τs/τm)2ρ2S/ρ2L

. (2.4)

The various quantities that appear in this expression
depend on μ and σ 2 (a dependence that is suppressed for
clarity) via

ν0S = 1

πτm

[∫ ∞

−∞
dξ

π1/2
exp

[
−μξ2 − σ 4ξ6/48

]]−1

(2.5a)

ρ2S = πσ 2 τmν0S

2

∫ ∞

−∞
dξ

π1/2
ξ2 exp

[
−μξ2 − σ 4ξ6/48

]
(2.5b)

ν0L = μ1/2

πτm
(2.5c)

ρ2L = σ 2

16μ2
. (2.5d)

With a small amount of algebra, Eq. (2.4) reduces exactly to
Eq. (5.2) of Brunel and Latham (2003).

To determine how well the approximate expression given
in Eq. (2.4) captures the true firing rate, we performed sim-
ulations with a range of μ and σ 2. The results are shown
in Fig. 1. Agreement is best when τs is small; deviations
were less than 1 Hz and, except at very low firing rates, rel-
ative deviations were a few percent. Agreement got worse
as τs increased, with deviations up to 5 Hz for τs = 100 ms.
However, as can be seen from the solid lines in Fig. 1, our
networks mainly operate where the approximation is good.
As a result, even the largest inaccuracies (τs = 100 ms) have
a minor effect on firing rate distributions. Thus, we do not

expect the fact that we have an approximate firing rate to
have much effect on the accuracy of our mean field theory.

2.2 Network equations

We now turn to a network of excitatory (E) and inhibitory
(I) neurons, which, in addition to recurrent interactions,
receives excitatory input from an external population (X);
see Fig. 2. The network equations are very similar to
Eq. (2.1a); the main difference (besides an explosion of sub-
scripts) is that the white noise term in Eq. (2.1b) is replaced
by synaptic drive and an offset,

τm

Vth − Vr

dVLi

dt
= (VLi − V )2

(Vth − Vr)2
+ μL + hLi(t) (2.6a)

τs
dhLi

dt
= −hLi + δμLi

+
∑

M=E,I,X

τm

K
1/2
M

NM∑
j=1

∑
l

J ij
LM
δ
(
t − t l

Mj

)
.

(2.6b)

Here J ij
LM is the connection strength from neuron j of type M

to neuron i of type L (note that J ij
LI is negative), NM is the

number of neurons of type M, KM is the average number of
connections from neurons of type M, t l

Mj is the time of the

lth spike emitted by neuron j of type M, and δ(·) is the Dirac
δ-function. The external neurons are taken to be Poisson
with constant firing rate νX. The factor K−1/2

M that appears
in Eq. (2.6b) ensures that for sufficiently large networks, the

a b

Fig. 1 Comparison of mean field predictions and simulated firing
rates for a quadratic integrate and fire neuron. a Firing rate versus μ

and σ for τm = 10 ms and τs = 1, 10 and 100 ms. The left panel
is from 10000 seconds of simulation of Eq. (2.1b); the right panel
from Eq. (2.4). b Absolute (left panel) and relative (right panel) error
between the simulations and analytic expression. The relative error
is thresholded at ±100 %, to prevent exposure of the least interest-
ing errors, which were due to division by nearly zero firing rates.

Superimposed on all images are thick horizontal lines indicating the
working range of our simulations–every line indicates the range of
inputs to an excitatory (red) or inhibitory (blue) population (hL±3	hL ,
see Eq. (2.13b)). The three pairs of lines correspond to the three
networks we tested: the disconnected network (Fig. 5), exhibiting
the lowest σ ; the “default” network (Fig. 6), exhibiting intermedi-
ate σ ; and the strongly connected network (Fig. 7), exhibiting the
highest σ
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Fig. 2 Network architecture. Red indicates excitatory connections,
blue indicates inhibitory connections. As in the main text, E, I
and X correspond to excitatory, inhibitory and external connections,
respectively

distribution of firing rates is independent of network size
(van Vreeswijk and Sompolinsky 1998).

We take the connectivity matrix to be random and sparse,

J ij
LM

=
{
JLM

(
1 +	ζ

ij
LM

)
with probability ε

0 with probability 1 − ε
(2.7)

where 	 is the standard deviation of the nonzero synaptic
weights, and the ζ

ij
LM are a set of uncorrelated, zero mean,

unit variance random variables, chosen so that the random-
ness does not cause the connection strength to change sign;
i.e., chosen so that 1 + 	ζ

ij
LM ≥ 0. Note that the con-

nection probability, ε, is independent of neuron type, so

KM = εNM . Finally, we let δμLi be a Gaussian random
variable with variance 	2

μL
,

δμLi ∼ N
(

0, 	2
μL

)
. (2.8)

A list of parameters for our default network is given in
Table 1. For some sets of simulations (Figs. 5, 6, 7 and 8),
we varied connections strengths; for others (Fig. 9), we
varied network size.

2.3 Mean field analysis

The first step in analyzing the network equations is to break
the synaptic drive in Eq. (2.6b) into time-independent and
temporally fluctuating pieces; the former contributes to the
mean synaptic drive (μ in Eq. (2.1a)), the latter to the fluc-
tuations in the synaptic drive (σ in Eq. (2.1b)). This gives us

hLi(t) = hLi + δhLi (t) (2.9)

where, recall, an overline represents a time average. Aver-
aging Eq. (2.6b) over time, and noting that dhLi/dt = 0, we
see that

hLi = δμLi +
∑

M=I,E,X

τm

K
1/2
M

∑
j,l

J ij
LM δ

(
t − t l

Mj

)
. (2.10)

Computing the time average of the δ-functions is straight-
forward,

δ
(
t − t l

Mj

)
= lim

T→∞
1

T

∫ T

0
dt

∑
l

δ
(
t − t l

Mj

)
= νMj

(2.11)

Table 1 Default parameters used in the mean field calculations and simulations

Parameter Value Description

τm 10 ms Membrane time constant

τs 1, 10 or 100 ms Synaptic time constant

μE, μI -0.25 Mean synaptic drive

	μE, 	μI 0.2 Standard deviation of synaptic drive

ε (=K/N) 0.1 Connection probability

	 0.2 Standard deviation of non-zero connection strengths

NE 16,000 Number of excitatory neurons

NI 4,000 Number of inhibitory neurons

NX 2,000 Number of external neurons

νX 15 Hz Mean firing rate of external neurons

JEE, JEI , JEX 0.25, -0.6, 1.2 Mean synaptic weights onto excitatory neurons

JIE, JII , JIX 0.35, -0.9, 1.5 Mean synaptic weights onto inhibitory neurons

Typical EPSPs for the default network range from 0.07 to 0.10 mV, and typical IPSPs from −0.35 to −0.52 mV. For our model, average PSP size
from a cell of type L to a cell of type M is approximately equal to (Vth − Vr )(τs/τm)

τm/(τm−τs )JLM/K
1/2; see Eq. (14) of (Latham et al. 2000a)

with Ej replaced by Vth, Wij replaced by JLM/K
1/2, and rj set to 1. For some sets of simulations, we changed the recurrent connections strengths

(Figs. 5, 6, 7 and 8) and the number of neurons (Fig. 9)
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where νMj is the firing rate of neuron j of type M. The sec-
ond equality follows from the fact that the integral over
time counts spikes, and by definition firing rate is the num-
ber of spikes divided by time. Inserting this expression into
Eq. (2.10) leads to

hLi = δμLi +
∑

M=E,I,X

τm

K
1/2
M

∑
j

J ij
LM νMj . (2.12)

The dependence on index appears nontrivial. To deal with
it analytically, we make one of our main mean field approxi-
mations, which is that the term

∑
j J

ij
LM νMj can be treated as

a Gaussian random variable with respect to index i. Accord-
ing to the central limit theorem, this approximation is valid
if the terms in the sum, J ij

LM νMj , are sufficiently weakly cor-
related. We assume that they are; the extent to which our
results are consistent with simulations is a partial measure
of the validity of this approximation (it is only a partial
measure because we make other approximations).

With the Gaussian approximation, Eq. (2.12) becomes

hLi = hL +	hLηLi (2.13a)

hL ≡
∑

M=I,E,X

K1/2
M

JLMτmνM (2.13b)

where νM is the average firing rate of population M (see
Eq. (2.15a) below) and the ηLi are zero mean, unit variance
Gaussian random variables with respect to index i. We show
in Appendix A that the total variance, 	2

hL
, can be expressed

in terms of network parameters as

	2
hL

= 	2
μL

+
∑

M=E,I,X

J 2
LM

(
1 +	2 − ε

)
τ 2
mν

2
M. (2.14)

The population averaged firing rate, νM, and the second
moment of the firing rate, ν2

M , have natural definitions,

νM ≡ N−1
M

∑
j

νMj (2.15a)

ν2
M ≡ N−1

M

∑
j

ν2
Mj . (2.15b)

We now turn to the second term in Eq. (2.9), δhLi (t).
Inserting Eq. (2.9) into (2.6b) and using Eq. (2.12) for hLi ,
we find that δhLi(t) evolves according to

τs
dδhLi

dt
+ δhLi =

∑
M=E,I,X

τm

K
1/2
M

∑
j

J ij
LM

×
(∑

l

δ
(
t − t l

Mj

)
− νMj

)
. (2.16)

To solve this equation, we need the temporal statistics
of the the right hand side. Consistent with our mean field
approximation, we assume that it is a Gaussian process, so
all we need is its covariance (by construction the time aver-
age is zero). To compute that, we make two approximations:

the neurons are independent, and they fire with Poisson
statistics. Neither of these are totally accurate; spike times
across different neurons are correlated, and quadratic inte-
grate and fire neurons (like all realistic neurons) exhibit a
refractory period. Fortunately, though, the refractory period
produces relatively small errors in firing rates–so long as the
rates aren’t too high, the error is on the order of 10 % (Deger
et al. 2012). And, because of almost complete cancellation
between excitatory and inhibitory synaptic drives, neurons
are only weakly correlated (Renart et al. 2010; Hertz 2010).
Thus, while our mean field analysis won’t perfectly describe
the network, it should not be far off. Note that the alterna-
tive, computing the covariance structure self-consistently, is
hard, and typically requires network simulations (Lerchner
et al. 2006a, b).

With the independent Poisson assumption, the terms on
the right hand side of Eq. (2.16) consist of sums of Poisson
processes, each of which is δ-correlated. Thus, the sums are
δ-correlated, and, after a small amount of algebra (carried
out in Appendix A), we find that δhLi evolves according to

τs
dδhLi

dt
= −δhLi + σLτ

1/2
m ξLi (t) (2.17)

where ξLi(t) is δ-correlated white noise (see Eq. (2.3)), and
σ 2

L
is given by

σ 2
L
=

∑
M=E,I,X

J 2
LM

(
1 +	2

)
τmνM (2.18)

(see Eq. (A.9)).
We can now rewrite Eq. (2.6b) as a stochastic differen-

tial equation. Using Eq. (2.9) for hLi , Eq. (2.13a) for hLi

and Eq. (2.17) for the time evolution of δhLi (t), Eq. (2.6b)
becomes

τm

Vth − Vr

dVLi

dt
= (VLi − V )2

(Vth − Vr)2

+ μL + hL +	hLηLi + δhLi(t) (2.19a)

τs
dδhLi

dt
= −δhLi + σLτ

1/2
m ξLi (t) . (2.19b)

These equations are identical in form to the single neuron
dynamics given in Eq. (2.1b). Thus, we can use Eq. (2.4) to
write down the firing rate of any particular neuron,

νLi = νQIF

(
μL + hL +	hLηLi , σ

2
L

)
. (2.20)

Equation (2.20) gives us a set of equations for the firing
rates of the neurons. As such, it can give us the distribution
of firing rates, but it cannot tell us which neuron has which
rate. However, for a randomly connected network the distri-
bution is all we need, since there is nothing to distinguish
one neuron from another.

Our approach to finding the firing rate distribution is
illustrated schematically in Fig. 3. For a given network, the
mean synaptic drive to the population of neurons is modeled
as a Gaussian distribution (bottom panel), with mean μL+hL
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Fig. 3 Computing the distribution of firing rates from the distribu-
tion of neuronal inputs. Bottom: (Gaussian) probability distribution
of mean input in a network of neurons. Middle: Firing rate of our
quadratic integrate and fire neuron, νQIF(μ, σ

2) (Eq. (2.4)) as a func-
tion of input, μ, with σ 2 fixed at σ 2

L . Left: The probability distribution
over firing rate, p(ν), derived by mapping p(μ) through the nonlin-
earity ν = νQIF

(
μ, σ 2

L

)
. The resulting distribution of firing rates, here

binned at 1 Hz, is non-Gaussian, The parameters μL, hL, 	hL and σ 2
L

were set to the the mean field values for the excitatory neurons of the
default network; the resulting firing rate distribution is thus identical
to the top left plot in Fig. 6

and variance 	2
hL

. Assume for the moment that we knew hL

and 	2
hL

, as well as the variance associated with the tempo-

ral fluctuations, σ 2
L . We could, then, translate any particular

mean input to a firing rate via ν(μ) = νQIF

(
μ, σ 2

L

)
; more

importantly, we could translate the distribution of means
(bottom panel in Fig. 3) to the distribution of firing rates
(left panel).

We don’t, though, know hL, 	2
hL

and σ 2
L , as they depend

on the firing rate distribution. Fortunately, this dependence
is only via the first two moments: hL and σ 2

L
depend on the

first moments via Eqs. (2.13b) and (2.18), respectively, and
	2

hL
depends on the second moments via Eq. (2.14). Thus,

νE, νI, ν2
E
, and ν2

I
, which constitute our order parameters,

fully determine hL, 	2
hL

and σ 2
L

, and so they fully deter-
mine the distribution of firing rates. To determine the values
of νE, νI, ν2

E , and ν2
I , we simply average over index. Fortu-

nately, the only dependence on index in Eq. (2.20) is through
ηLi , which is a zero mean, unit variance Gaussian random
variable. In the large N limit, we may, therefore, replace
averages over indices by integrals over continuous Gaussian
variables; this leads to

νk
L
=

∫
dη

e−η2/2

√
2π

[
νQIF

(
μL + hL +	hLη, σ

2
L

)]k
(2.21)

where k is either 1 or 2; k = 1 captures the first moment and
k = 2 captures the second. Once we know the moments of
the firing rate distribution, the second step–computing the

entire distribution–amounts to computing (numerically) the
integral

p(νL) =
∫

dη
e−η2/2

√
2π

δ
(
νL − νQIF

(
μL + hL +	hLη, σ

2
L

))
.

(2.22)

Equation (2.21) constitutes our mean field equations for
the network; once solved, Eq. (2.22) gives us the distribu-
tion of firing rates. In the next section we compare the mean
field predictions of the the firing rate distributions with sim-
ulations. To help visualize the operating regime, we also
show nullclines in average firing rate space. These are con-
structed as follows. First we solve (numerically) Eq. (2.21)
with k = 2; that is, we solve for ν2

E
and ν2

I
in terms of

νE and νI. Once we do that we are left with mean field
equations for only the first moments, νE and νI. These cor-
respond to Eq. (2.21) with k = 1 and L set to either E
or I. Because we know how ν2

E and ν2
I depend on νE and

νI, we can express 	hL (the only term that depends on the
second moments of the firing rates) in terms of νE and νI.
The two resulting equations for νE and νI represent curves
in νE − νI space, those curves are the excitatory (L = E)
and inhibitory (L = I ) nullclines; see Wilson and Cowan
(1972) and Latham et al. (2000a) for details on how they
are constructed. For strongly coupled networks operating in
the balanced regime–presumably the regime of interest for
the brain–they should intersect where the slope of the exci-
tatory nullcline is positive (van Vreeswijk and Sompolinsky
1998).

3 Numerical results

When deriving our mean field equations, we assumed
uncorrelated and Poisson spikes, constant firing rates, and
white noise synaptic drive, and we used an approximate
expression for the firing rate. To determine the effect
of these assumptions and approximations, we performed
network simulations. For all simulations we integrated
Eq. (2.6a), with the added condition that a spike was emitted
when the voltage reached +∞, at which point it was reset to
−∞. To avoid numerical issues with the infinities, we made
the change of variables V = V + (Vth − Vr) tan(θ/2); see
Appendix B. In these variables, a spike is emitted when θ

passes through π . In addition, to speed up the simulations,
we replaced the external input (M = X in Eq. (2.6b)) with
white noise; see Appendix C.

We typically performed simulations with a set of three
“default” networks. These networks differed only in their
synaptic time constants, which were either 1, 10 or 100 ms;
in all cases the membrane time constant was 10 ms (see
Table 1). Figure 4 shows activity for the default network



J Comput Neurosci (2014) 36:469–481 475

Fig. 4 Activity of the default network. Top: Population averaged fir-
ing rate of excitatory (red) and inhibitory (blue) neurons. Note that
the network was not perfectly asynchronous (oscillations are visi-
ble). Middle: Spike rasters from sample neurons. There are four times
as many excitatory neurons as inhibitory ones, consistent with our
network architecture. Bottom: Membrane potential of a sample neuron

with τs = 1 ms. The top plot shows the time-dependent pop-
ulation averaged firing rate for the excitatory and inhibitory
neurons, with firing rate computed in 1 ms bins; the center
plot shows spike rasters from a subset of the neurons (with

blue for inhibitory neurons and red for excitatory ones); and
the bottom plot shows the membrane potential of a sample
neuron; it resembles spike trains recorded in vivo.

As an initial test of our mean field predictions, we consid-
ered networks of non-interacting neurons driven by external
input approximated by white noise (see Eq. C.1). These
simulations test the approximate expression for the firing
rate given in Eq. (2.4). The results are shown in Fig. 5,
where we plot the predicted and observed distributions of
firing rates for the excitatory (left column) and inhibitory
(center column) neurons for a range of synaptic time con-
stants. The predicted firing rate distributions (thick lines in
the left and center panels) are close to the simulated ones,
as are the predicted and simulated mean firing rates (verti-
cal lines). In the right column, we plot the excitatory and
inhibitory nullclines (the solutions to Eq. (2.21) with k = 1
and L = E and I, respectively) along with a 100 ms tra-
jectory of the population averaged excitatory and inhibitory
firing rates (binned at 1 ms). Consistent with the fact that
the populations are decoupled, the excitatory and inhibitory
nullclines are vertical and horizontal, respectively, and the
excitatory and inhibitory firing rates are uncorrelated. Over-
all, the close match between the predictions and simulations
indicates that the approximate firing rate (Fig. 1) will not
be a limiting factor in the accuracy of our mean field
models.

Next we tested mean field predictions in a coupled net-
work – the default network given in Table 1. The results
are shown in Fig. 6. Unlike in our uncoupled networks,
the excitatory and inhibitory populations now interact, and
the interactions are strong enough that the firing rates are

Fig. 5 Histograms of firing rates in two populations of neurons in
a disconnected network. Parameters are from the default network,
Table 1, except that JLM = 0. Firing rates derived from the simulation
are represented by the shaded region (population average ±1 standard
deviation, nE = 16000, nI = 4000); these were computed from 5 s
of simulations and binned at 1 Hz. The gray area indicates the count
error, n1/2

k /NL where nk is the number of neurons with firing rates

falling into the k-th bin. The solid lines are the histograms predicted by
the mean field theory. Vertical lines represent νE, νI; the dashed line is
estimated from the simulations and the solid line from mean field the-
ory. The right column shows the excitatory and inhibitory nullclines,
along with a 100 ms trajectory. Because the populations are uncou-
pled, the nullclines are vertical and horizontal and the firing rates are
independent
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Fig. 6 Histograms of firing rates in two populations of neurons in
a coupled network. Same as Fig. 5, except that the default network,
Table 1, is used with connections intact. Because the excitatory and
inhibitory populations are now coupled, the nullclines are no longer
vertical and horizontal, and, at least for τs = 1 ms and τs = 10 ms,

the excitatory and inhibitory firing rates are correlated. Not surpris-
ingly, the mean field predictions do not match the simulations as well
as in Fig. 5. For τs = 100 ms, however, excitatory and inhibitory rates
are uncorrelated; consequently, the mean field theory and simulations
match better. This is a general trend in our data (see Figs. 7 and 8)

correlated (right column). Nevertheless, the theoretical and
simulated firing rate histograms match reasonably well,
with the best matches at the shortest (τs = 1 ms, first row),
and the longest (τs = 100 ms, third row) synaptic time con-
stants. The largest mismatch between theory and simulation
happens at τs = 10 ms, and mainly for the inhibitory neu-
rons. The mismatch is not so surprising given the average
trajectory of firing rates (right column), which–in violation
of the asynchronous assumption–exhibit strong synchro-
nization. For all networks, the theoretical prediction for the
average firing rate is almost identical to the value we get
from simulations. This is true even for τs = 10 ms, where
the network exhibits strong synchronization. This is a hint
that, at least when it comes to mean firing rates, our mean
field theory is very robust.

How do our mean field equations hold up when the
neurons become synchronized? To address this question,
we increased the connection strengths, a manipulation that
tends to make the network more synchronous. In particular,
we doubled all recurrent connections; that is, we increased
JLE and JLI by a factor of two compared to what we used for
the default network. As can be see in Fig. 7, when τs = 1
and 10 ms, the networks became synchronized, as indi-
cated by the strong correlations in excitatory and inhibitory
firing rates (right panels). Not surprisingly, the theoretical
and simulated firing rate distributions are now very differ-
ent (about as different as they were for τs = 10 ms in
Fig. 6, which was also fairly synchronized). Note, though,
that again the predicted and simulated population averaged
firing rates are very similar. For the long time constant net-
work, τs = 100 ms, there was very little synchronization
(the excitatory and inhibitory rates were weakly correlated).

Consistent with this, there is a good match between theory
and simulations.

To quantify how synchronization affects the accuracy of
our mean field model, we randomly varied the strengths of
the recurrent connections and plotted the match between
theory and simulations versus degree of synchrony. Specif-
ically, we let JKL → JKL(1 + 0.2ηKL), where ηKL

is zero mean, unit variance Gaussian random variable.
Similar to Brunel and Hakim (1999), network synchrony,
denoted S, was defined to be the maximum cross-covariance
between the instantaneous population averaged excitatory
and inhibitory firing rates, normalized by the population
averaged firing rates,

S ≡ max
τ

∫ T

0

dt

T

(νE(t) − νE)(νI(t + τ)− νI)

νEνI

. (3.1)

Note that we have slightly abused notation: νE(t) and
νI(t) are the instantaneous population averaged excitatory
and inhibitory firing rates, whereas νE and νI are the popu-
lation averaged firing rates with an additional average over
time. We compute the above integral by discretizing time
into 1 ms bins.

In Fig. 8 we plot error versus synchrony (left column),
with colors corresponding to different synaptic time con-
stants (black for τs = 1 ms, red for τs = 10 ms, yellow for
τs = 100 ms). As predicted, the smaller the synchrony, the
better the match of theory to simulations. For large synaptic
time constants, all networks exhibited negligible synchrony,
and the theory worked very well. In the right column we
plot error versus firing rate. This plot shows two things: we
explored a relatively large range of firing rates, and firing
rate alone is not a good predictor of error.
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Fig. 7 Histograms of firing rates in a strongly coupled network. Same
as Fig. 6 except that the recurrent connections, JKE and JKI , are
increased by a factor of two. As a result, network activity becomes
even more synchronous, at least at τs = 1 ms and τs = 10 ms. Not
surprisingly, the match between the firing rate distribution computed
from our mean field theory and from the simulations is not as good as

it was in Figs. 5 and 6, although the population averaged firing rates
are not far off. Note, though, that the network is still desynchronized
for the longest time constants τs = 100 ms. Here the mean field model
does good job predicting the firing rate distribution, except at low fir-
ing rate, where the mismatch is explained by the inaccuracy of our
approximation of firing rate model (see Fig. 1)

Finally, we investigate the effect of changing the size of
the network. We varied network size from 500 to 60,000
neurons, keeping all other parameters fixed to those of the
default network (see Table 1). In Fig. 9 we plot, in the top
panel, the degree of synchrony, S (Eq. (3.1)), versus network
size. Up to networks of around 4,000 neurons, synchrony
dropped steadily and consistently for the three synaptic time

constants tested (1, 10 and 100 ms). However, above 4,000
neurons, synchrony rose for the intermediate synaptic time
constant, τs = 10 ms. The initial decrease in synchrony is
probably associated with the decrease in fluctuations that
comes with larger networks, as fluctuations tend to drive
oscillations around the fixed point. The subsequent rise for
larger networks is harder to explain. However, based on

ab
s(

ν−
Φ
)

ab
s(

ν−
Φ
)

Fig. 8 The match between mean field predictions and simula-
tion gets worse as synchrony increases. Mean field theory pre-
diction error for excitatory (dots) and inhibitory (squares) popu-
lations. Colors indicate different synaptic time constants, and the
pluses come from the default network (Fig. 6), with red cor-
responding to excitatory neurons, and blue to inhibitory ones.
The synchrony measure plotted on the x-axis is the peak covari-
ance between νE(t) and νI(t) (normalized by firing rates; see
Eq. (3.1)). Top left: absolute difference between the simulated and

predicted population averaged firing rates (νE and νI). Bottom left: sum
over bins of the absolute differences between the simulated and pre-
dicted firing rate probability distributions, theory vs experiment (L1
norm; maximum value = 2). Top right: absolute difference between
the simulated and predicted population averaged firing rates (νE and
νI), this time versus firing rate. Bottom right: L1 norm versus firing
rate. Note that the degree of synchrony does a good job predict-
ing the accuracy of the mean field model, while the firing rate by
itself does not
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Fig. 9 Effect of network size on the match between mean-field and
simulations. Default network, except that we varied the number of
neurons from 500 to 60,000 (with, as usual, a factor of four more
excitatory neurons than inhibitory ones). The default size (20,000)
is marked with a dashed line. Color conventions are the same as in
Fig. 8. Top: as network size increases, the degree of synchrony drops
for τs = 1 and 100 ms, but not for τs = 10 ms; see text for an
explanation. Middle: The quality of our prediction improves for larger
networks, unless their activity synchronizes (as for τs = 10 ms, see
above). Bottom: network sizes are pooled and the L1 norm of the firing
rate distribution (as in Fig. 8) is plotted versus synchrony. Not surpris-
ingly, the higher the synchrony, the worse the prediction. Pluses come
from the default network (Fig. 6)

previous work (Brunel and Hakim 1999; Rappel and Karma
1996), we suspect it’s because fluctuations are a two-edges
sword. On the one hand, they drive oscillations; on the other
hand, they act as a noise source which tends to decorre-
late neurons. At the intermediate synaptic time constant,
τs = 10 ms, the asymptotic network state is probably an
oscillatory one, and those oscillations were being masked
by the fluctuations associated with finite size effects. As the
size of the network, and thus the size of the fluctuations,
dropped, the oscillations were uncovered.

In the middle and bottom panels of Fig. 9 we plot the L1
norm of the firing rate distributions (described in the caption
of Fig. 8). For synaptic time constants, τs , of 1 and 100 ms,
the L1 norm decreases (implying our mean field predic-
tions are better) as the number of neurons increases (middle
panel). When τs = 10 ms, however, our mean field pre-
dictions get worse at larger network sizes; this is consistent
with the increase in synchrony seen in the top panel. When
the L1 norm is plotted versus synchrony (bottom panel), the
story is simpler: the larger the synchrony, the larger the L1
norm, and the worse our mean field predictions. This plot
suggest that the degree of synchrony has a larger effect on

our mean field predictions than the network size. Similar,
though slightly more noisy, results are achieved for the mean
population activity (not shown).

4 Discussion

Using what are by now relatively standard mean field
methods (Shiino and Fukai 1992, 1993; Amit and Brunel
1997a, b; van Vreeswijk and Sompolinsky 1998; Roudi and
Latham 2007), we computed the distribution of excitatory
and inhibitory firing rates in large networks of recurrently
connected spiking neurons. Our main result is that we
could assume that activity was asynchronous and Poisson
(assumptions that are clearly violated), and still get rela-
tively good agreement with network simulations–so long
as the network is not too synchronous; see Fig. 8. This
indicates that much of the intuition developed for these
kinds of networks–see in particular the seminal work of
van Vreeswijk and Sompolinsky (1998)–applies even in the
mildly synchronous regime. It should be noted, though, that
all our analysis was based on the quadratic integrate and
fire neuron with current based synapses. Whether our results
apply to other single neuron and synaptic models is an
open–and, we believe, interesting–question.

In our analysis we used current-based quadratic integrate
and fire neurons, chosen both because they are a good model
of type I neurons (Ermentrout and Kopell 1986) and because
there is a good approximate expression for their firing rate
given colored noise input (Brunel and Latham 2003), which
in turn is a reasonably good approximation to synaptic input
(Walsh 1981; Tuckwell 1988). While an equivalent analytic
treatment would be difficult for conductance-based models
and more realistic neurons, we do not expect any major sur-
prises: the nullclines, which ultimately govern the range of
network behavior, should be similar (Latham 2002), and, as
we have shown, even for relatively synchronous firing the
mean field model still provides a good description, at least
at the level of population averaged firing rates.

Although the random connectivity used here is a major
idealization, it is important for two reasons. First, it forms
the substrate upon which computations are built, and has
been shown to play a major role in determining exactly how
those computations are carried out (Latham et al. 2000a, b;
Salinas 2003; Latham and Nirenberg 2004; Roudi and
Latham 2007). Second, it leads naturally to the next ques-
tion: would mean field theory apply to networks with struc-
tured connectivity, which are just as prone to oscillations
as randomly connected ones? Mean field theory has been
applied to structured networks in a limited number of cases,
(Amit and Brunel 1997a, b; Latham and Nirenberg 2004;
Roudi and Latham 2007), but a thorough understanding of
such networks awaits development.
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Appendix A: Statistics of the synaptic drive

In the main text we approximated hLi as a Gaussian random
variable with respect to index, i, and the right hand side of
Eq. (2.16) as Gaussian white noise. With this approxima-
tion, all we need are the variance of hLi and the covariance
of the right hand side of Eq. (2.16). Here we compute those
quantities.

We start with the variance of hLi , Eq. (2.12). To isolate
the index-independent and index-dependent terms, we write

J ij
LM = εJLM + δJ ij

LM (A.1)

where εJLM is the population averaged value of J
ij

LM (see
Eq. (2.7)) and δJ

ij
LM ≡ J

ij
LM − εJLM represents the index-

dependent fluctuations around that average (sometimes
referred to as the quenched noise). Making this substitution,
using Eq. (2.15a) for the mean firing rate, and recalling that
ε = KM/NM, Eq. (2.12) becomes

hLi = hL + δμLi +
∑
M,j

τm

K
1/2
M

δJ ij
LM
νMj (A.2)

where hL is given in Eq. (2.13b) and the sum is over M = E,
I and X. The last term in this expression is the sum of a large
number of variables. The weights inside the sum are truly
random, so if the firing rates and the weights are sufficiently
weakly correlated, this sum is a Gaussian random variable
with respect to index, i. Here we assume they are, although
this is clearly an approximation: the firing rates, νMj , are
functions of the connection strengths, and so the variables
inside the sum are not quite independent. However, in prac-
tice this is a good approximation, especially if ε (which is a
measure of the sparseness of the connectivity; see Eq. (2.7))
is small, something that tends to reduce correlations. Given
this approximation, and the fact that, by construction, the
mean is zero, all we need is the variance. This variance (plus
the variance of δμLi , which, by construction, is 	2

μL
(see

Eq. (2.8)), is given by

	2
hL

= 	2
μL

+
∑

M,M′,j,j ′

τ 2
m

(KMKM′)1/2 νMj νM′j ′
1

NL

∑
i

δJ ij
LMδJ

ij ′
LM′

(A.3)

where, as in Eq. (2.13a), we use 	2
hL

for the total variance.
When j 	= j ′ or M 	= M ′, in the large K limit the sum is

approximately zero; when j = j ′ and M = M ′, the sum
over i is just the variance of J ij

LM . Thus, using Eq. (2.7) for
the variance of J ij

LM , Eq. (A.3) becomes, after a small amount
of algebra,

	2
hL

= 	2
μL

+
∑

M

J 2
LM

(
1 +	2 − ε

)
τ 2
mν

2
M (A.4)

where ν2
M

is the second moment of the firing rate
(Eq. (2.15b)).

We next compute the covariance of the right hand side of
Eq. (2.16). Using Cii ′

LL′ (τ ) to denote the covariance between
neuron i of type L and neuron i’ of type L’ at times separated
by τ , we have

Cii′
LL′(τ ) =

∑
M,M′,j,j ′

τ 2
m

(KMKM′ )1/2
J
ij
LMJ

i′j ′
L′M′

×
〈∑

l,l′

[
δ
(
t − t lj

)
− νMj

] [
δ
(
t + τ − t lj ′

)
− νM′j ′

]〉
.

(A.5)

The angle brackets represent an average over the dis-
tribution of spike times. Real neurons have a nontrivial
correlational structure; if nothing else, there is a refractory
period. However, we ignore that and make the approxima-
tion that the neurons are Poisson. In that case, as shown by
(Rice 1954), and as is relatively easy to derive, the average
over the distribution of spikes yields
〈∑

l,l′

[
δ
(
t − t lj

)
−νMj

] [
δ
(
t+τ − t l

′
j ′

)
−νM′j ′

]〉
= νMj δ(τ )δjj ′δMM′

(A.6)

where δij is the Kronecker delta (δij = 1 if i = j and 0
otherwise). Thus, Eq. (A.5) becomes

Cii ′
LL′ (τ ) = δ(τ )

∑
M,j

τ 2
m

KM

J ij
LMJ

i ′j
L′M νMj . (A.7)

Assuming, as usual, that the connections strengths are
approximately independent of the firing rates, we may aver-
age the connection strengths and firing rates separately.
Using Eq. (2.7) for the distribution of connection strengths,
we have

Cii′
LL′(τ ) = δ(τ )τ 2

m

∑
M

νM

KM

∑
j

J
ij
LMJ

i′j
L′M

= δ(τ )τ 2
m

∑
M

J 2
LM

[
ε(1 − δii′δLL′)+

(
1 +	2

)
δii′ δLL′

]
νM.

(A.8)

An important observation is that Cii ′
LL′ (τ ) is nonzero even

when i 	= i ′ and/or L 	= L′. Thus, the driving terms for
different neurons are correlated; this in turn implies that
spike times are correlated across neurons. This would seem
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to imply that our independence approximation is badly vio-
lated. However, as shown by (Renart et al. 2010; Hertz
2010), for balanced networks operating in the asynchronous
regime, correlations between excitatory and inhibitory neu-
rons largely cancel, leaving the mean correlation on the
order of 1/N . Thus, in large networks the independence
approximation tends to work relatively well. This means we
can focus on the autocorrelation, Cii

LL , which is somewhat
simpler than the full covariance,

Cii
LL(τ ) = δ(τ )τ 2

m

∑
M

J 2
LM

(
1 +	2

)
νM. (A.9)

This expression leads to Eqs. (2.17) and (2.18).

Appendix B: Transforming from the quadratic
integrate and fire neuron to the θ -neuron

For quadratic integrate and fire neurons, action potentials
are emitted when the voltage reaches +∞, at which point
the voltage is reset to −∞. Integrating to infinity, however,
poses a problem numerically. To get around this, we make
the change of variables

VLi = V + (Vth − Vr) tan(θLi/2). (B.1)

This moves the points at VLi = ±∞ to θLi = ±π , and
also removes the singularities at ±∞. Inserting this into
Eq. (2.6a) we see that θLi evolves according to

τm
dθLi

dt
= (1 − cos θLi)+ (1 + cos θLi )(μL + μLi + hLi).

(B.2)

A spike is emitted when θLi = π , at which point it is reset
to −π .

Appendix C: White noise approximation to external
input

To speed up the simulations, we use Gaussian white noise
instead of actual spike trains for the external input (the term
with M = X in Eq. (2.6b)). To do that, we make the
replacement

τm

K
1/2
X

∑
j,l

J
ij
LX δ

(
t − t lXj

)
→

JLXτmνX

(
K

1/2
X + (1 +	2 − ε)1/2ηLXi +

[
1 +	2

τmνX

]1/2

ξLXi (t)

)

(C.1)

where ηLXi is a zero mean, unit variance Gaussian random
variable with respect to index, i, ξLXi (t) is Gaussian white
noise, and we assumed that all the external neurons have the

same firing rate νX (which allowed us to replace
(
ν2

X

)1/2
with

νX); see Eqs. (2.13b), (2.14) and (2.18).
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