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Sensitivity to perturbations in vivo implies high noise
and suggests rate coding in cortex
Michael London1, Arnd Roth1, Lisa Beeren1, Michael Häusser1 & Peter E. Latham2

It is well known that neural activity exhibits variability, in the
sense that identical sensory stimuli produce different responses1–3,
but it has been difficult to determine what this variability means.
Is it noise, or does it carry important information—about, for
example, the internal state of the organism? Here we address this
issue from the bottom up, by asking whether small perturbations
to activity in cortical networks are amplified. Based on in vivo
whole-cell patch-clamp recordings in rat barrel cortex, we find
that a perturbation consisting of a single extra spike in one neuron
produces approximately 28 additional spikes in its postsynaptic
targets. We also show, using simultaneous intra- and extracellular
recordings, that a single spike in a neuron produces a detectable
increase in firing rate in the local network. Theoretical analysis
indicates that this amplification leads to intrinsic, stimulus-
independent variations in membrane potential of the order of
62.2–4.5 mV—variations that are pure noise, and so carry no
information at all. Therefore, for the brain to perform reliable
computations, it must either use a rate code, or generate very large,
fast depolarizing events, such as those proposed by the theory of
synfire chains4,5. However, in our in vivo recordings, we found that
such events were very rare. Our findings are thus consistent with
the idea that cortex is likely to use primarily a rate code.

The brain, like all physical devices, operates in the presence of
noise. Nevertheless, it performs complex computations with amazing
speed and accuracy, in some cases reaching fundamental physical
limits set by its sensors6. Clearly, the brain has devised computational
strategies, and a neural code, that are robust to noise. Understanding
the structure of that noise should shed light on both.

The traditional experimental approach to studying noise in cor-
tical sensory areas is to present the same stimulus repeatedly to an
organism while recording neuronal responses. Such recordings
always show substantial trial-to-trial variability1–3. However, inter-
preting that variability has been difficult, as there are two possible
sources for it. One is the variability associated with truly random
events, such as ion channel noise and stochastic synaptic release.
This is intrinsic noise: intrinsic because it cannot be eliminated,
and noise because it contributes to the neuronal variability but carries
no information whatsoever. The other source of variability is activity
from other brain areas. That activity might provide information
about, say, the degree of arousal or some other internal state, but it
would not be related to the stimulus. This variability is signal, even
though it would look like noise to an observer trying to relate the
neural activity to the stimulus.

Here we determine a lower bound on the level of intrinsic noise in
cortical networks. The lower bound we consider is the trial-to-trial
variability that would be observed in a deterministic network that
received identical input, down to the last spike, on multiple trials,
except for one very brief random event. If the dynamics of the network

is such that small differences in activity associated with the single
random event lead to very large differences in patterns of neuronal
activity, then trial-to-trial variability would, necessarily, be high. If, on
the other hand, small differences in activity lead to even smaller dif-
ferences in patterns of neuronal activity, then trial-to-trial variability
can be low.

In our analysis and experiments, the random event is a single extra
spike added to a randomly chosen excitatory neuron, as in Fig. 1a.
This one extra spike (magenta arrow at time t 5 0 in Fig. 1a) can
produce other extra spikes in its postsynaptic targets (magenta
arrows). If it produces more than one, on average, then perturbations
would be amplified, and noise would be high (see the steady-state
regime in Fig. 1a, b). If, on the other hand, one extra spike produces
less than one extra spike, on average, then perturbations would decay,
and noise could be small.

To determine the average number of extra postsynaptic spikes
produced by a single extra presynaptic spike, we note that it is the
product of two numbers: the average number of connections made
by each neuron, and the average probability that a unitary synaptic
event produces an extra spike.

The first number is known from anatomical studies7,8 to be
between 1,000 and 2,000 (a synaptic connection that gives rise to a
unitary excitatory postsynaptic potential (EPSP) can consist of mul-
tiple synaptic contacts; here we assume that a neuron makes five
synaptic contacts per connection9). Thus, one extra spike produces,
on average, 1,500 6 500 extra EPSPs in the network.

The second number, the probability that a unitary synaptic input
produces an extra spike, was determined experimentally. We made
whole-cell patch-clamp recordings from layer 5 pyramidal neurons in
the barrel cortex of anaesthetized rats while injecting current pulses to
generate postsynaptic currents (injected PSCs) of various amplitudes.
For each amplitude we constructed a post-stimulus time histogram
(PSTH) triggered on the time of the injected current pulses, and used
it to deduce the probability of an extra spike. A typical experiment is
illustrated in Fig. 2a. In a single trial it is very difficult to tell whether an
individual injected PSC has an effect on the probability of an extra
spike. The PSTHs, however, reveal a clear signal (Fig. 2b). Integrating
the PSTH over a time window of 5 ms, we find that a single input with
an amplitude of 125 pA causes the probability of observing a spike to
increase by 0.004 (top panel of Fig. 2b), and an input with an ampli-
tude of 225 pA causes the probability to decrease by 0.001 (bottom
panel).

Figure 3a shows, for a range of positive and negative injected PSCs,
the pooled data from the 40 cells in our data set. There are clear peaks
in the PSTHs for positive currents and clear valleys for negative
currents. Moreover, the cumulative probability of an extra spike
(the integral of the PSTH relative to the mean firing rate) shown
below the PSTHs does not return to baseline, indicating that the
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peaks are due to changes in net spike output, rather than shifted
spikes (all cumulative probabilities are significantly different from
zero at the P 5 0.05 level, except for the last two points of the 25-pA
histogram). In Fig. 3b we combine the data from the different current
amplitudes and plot probability versus the total charge in the injected
current pulses (we use charge rather than amplitude for reasons we
discuss shortly).

The results of these experiments provide us with a relation between
the size of injected PSCs and the probability of extra spikes in vivo.
However, what we need is the relation between physiological synaptic
inputs (which are generated by conductance changes, typically on
dendrites) and the probability of an extra spike. To determine this, we
constructed a detailed compartmental model of a pyramidal neuron
(see Supplementary Information, section 4), and used it to simulate
the effect of conductance changes on the probability of an extra spike.
Consistent with theoretical studies10,11, these simulations show that
the probability of an extra spike depends on the total charge arriving
at the soma, regardless of whether it is caused by a current injection or
a conductance change, and is relatively insensitive to the location of
the input (Fig. 3c).

Combining this result with the fact that there is an approximately
linear relation between charge and probability (Fig. 3b), we see that the
average probability that a unitary synaptic input causes an extra spike
is the product of the slope of the positive part of the regression line in
Fig. 3b and the average charge associated with a unitary synaptic input
in vivo. The former we have measured; it is 0.061 6 0.010, in units of
probability/pC (picocoulomb) (Fig. 3b). The latter we estimated from
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Figure 1 | The effect of an extra spike on a neuronal network. a, The
propagation of missed and extra spikes in a recurrent network. Each two-
column block represents a snapshot of the activity of a population of
excitatory and inhibitory neurons on two different trials. Filled neurons are
spiking. The trials are identical until time t 5 0, at which point an extra spike
is added to a neuron in trial 2 (point 1). The extra spike has no effect on most
of its postsynaptic targets (dashed arrows and 2, 3; omitted subsequently for
clarity), but it triggers an extra spike in a fraction of them (magenta arrows
and 4, 5). These extra spikes cause a cascade of extra and, as soon as
inhibitory neurons are recruited, missed spikes (6–8). Extra inhibitory
spikes (5) and missed excitatory spikes (6, 7) are indicated with cyan arrows.
The perturbation amplification rate decreases when collisions occur (9, 10),
and eventually missed and extra spikes occur at the same rate, resulting in a
steady state (rightmost column). b, Membrane potential of the bottom
neuron (*) on the two trials. The membrane potential is identical until an
extra presynaptic spike causes a slight divergence (3). As missed and extra
spikes accumulate, the difference grows (7), until it eventually reaches steady
state.
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Figure 2 | Small perturbations affect spiking probability in vivo. a, Positive
and negative current pulses (upper trace) were injected via a whole-cell
patch-clamp electrode into a pyramidal neuron in rat barrel cortex in vivo,
and the accompanying membrane potential was recorded (lower trace).
b, PSTHs triggered on the 125 pA (top) and 225 pA (bottom) current
pulses, binned at 1 ms; the green line shows the average firing rate. For this
neuron the probability of an extra spike within 5 ms of the current pulse is
0.004 for 125 pA and the probability of a missed spike within 5 ms is 0.001
for 225 pA.
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Figure 3 | Determining the sensitivity of neurons to small perturbations in
vivo. a, Top: injected PSCs (experiment as in Fig. 2). Centre: combined
PSTHs from 40 experiments, triggered on the current pulses (t 5 0) and
binned at 1 ms. Cyan, missed spikes; magenta, extra spikes; green lines, mean
firing rate. Bottom, cumulative probability of an extra spike; yellow, one
standard deviation. b, Probability of an extra spike within 5 ms of the current
pulse versus total injected charge. Magenta and cyan lines, least squares fit to
the data; dashed lines, 95% confidence intervals; error bars, standard error of
the mean. Positive charge, slope 5 0.061 6 0.010 probability/pC
(P 5 5 3 1029); negative charge, slope 5 20.018 6 0.0049 probability/pC
(P 5 4 3 1024). c, Same as b but from simulations of a layer 5 pyramidal
neuron (Supplementary Information, section 4, and Supplementary Fig. 3).
Black, current injected at the soma; green, current injected at the distal
dendrites, 403mm from the soma.
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published data on paired recordings9,12–14 (data that include synaptic
failures). Taking an average across these reports, we find that the
average charge associated with a unitary excitatory synaptic input is
0.31 6 0.07 pC, corresponding to an EPSP of approximately 1 mV
(see Supplementary Information, section 4). The product of the two
numbers, denoted �ppe, is given by

�ppe 5 (0.061 6 0.010 probability/pC) 3

(0.31 6 0.07 pC per unitary synaptic input)
5 0.019 6 0.0053 probability per unitary synaptic input

(see Supplementary Information, section 8, for a derivation of con-
fidence limits).

Multiplying �ppe (0.019 6 0.0053) by the average number of connec-
tions made by each neuron (1,500 6 500) yields 28 6 13 extra spikes
per spike. Thus one extra spike in an excitatory neuron causes, on
average, 28 of its postsynaptic neurons to emit an extra spike. This
implies very rapid amplification of perturbations, and should quickly
disrupt spike patterns across the network. In fact, if the perturbations
were to grow unchecked, in just five integration time steps there
would be about 17 million extra spikes in the network.

Perturbations do not, of course, grow unchecked. This is because
extra and missed excitatory and inhibitory spikes interact: if an extra
excitatory and extra inhibitory spike have the same postsynaptic
target, they will at least partly cancel each other, thus reducing the
probability of either a missed or extra postsynaptic spike (points 9
and 10 in Fig. 1a). As the number of missed and extra spikes grows,
cancellation becomes more likely, and eventually the network reaches
a steady state in which missed spikes are produced at the same rate,
on average, as extra ones (Fig. 1b and Supplementary Fig. 9).

These results suggest that a single extra spike should have a mea-
surable effect on network firing rate. That effect, though, should be
small: the approximately 2% increase in firing rate that we saw for
connected pairs of neurons (summarized by �ppe above) is reduced by
the low connectivity in somatosensory cortex (approximately 4%
(ref. 15)), and spread out by 10–20 ms due to axonal delays, dendritic
filtering and latency to spike. Taking these into account quantita-
tively (Supplementary Information, section 2), we find that a single
spike should lead to a local increase in firing rate of 0.04–0.08 Hz.

To test this prediction, we conducted a second series of in vivo
experiments in which we triggered single spikes in a presynaptic
neuron by a whole-cell patch-clamp recording, and simultaneously
recorded spikes from a population of neurons in the local network
using a 16-channel extracellular electrode array placed in the soma-
tosensory cortex (Fig. 4a, b). We then constructed a PSTH of extra-
cellular spikes triggered on the stimulus (Fig. 4c). As predicted, we
observed an increase in firing rate on the extracellular electrodes
following the single spike in the stimulated neuron. The increase,
as assessed by the cumulative increase in the probability of an extra
spike, is statistically significant at the P 5 0.01 level for greater than
100 ms (Fig. 4d; n 5 10 experiments). Moreover, in the first 10–20 ms,
the increase was 0.03–0.065 Hz (Fig. 4c, inset), very close to the
increase of 0.04–0.08 Hz predicted above. Thus, not only does a single
extra spike introduced into somatosensory cortex produce a mea-
surable effect on the network that lasts for more than 50 ms, it pro-
duces an effect whose size is predicted by our single-neuron current
injection experiments.

So far we have focused on the effect of a single spike. Now we turn
to the steady state, where the perturbations have stopped growing (so
that missed and extra spikes occur at the same rate). How big are the
trial-to-trial voltage fluctuations associated with the ongoing missed
and extra spikes? This is a critical question, because it is, ultimately,
these voltage fluctuations that limit spike timing precision. To
answer it, we assume that in steady state there are m missed and extra
spikes in a time window that corresponds to a typical neuron’s mean
integration time, we compute m self-consistently (by demanding that
the presynaptic and postsynaptic probabilities of a spike are the

same), and then relate it to the size of the voltage fluctuations. The
presynaptic probability, denoted ppre, is equal to m/K where K is
the average number of presynaptic connections. The postsynaptic
probability, denoted ppost, is approximately

ffiffiffiffi

m
p

times larger than
�ppe, the probability associated with one presynaptic spike (assuming
that missed and extra spikes are reasonably uncorrelated, invoking
central-limit-type arguments and using the linearity of probability
versus charge in Fig. 3b). Consequently, ppost!

ffiffiffiffi

m
p

�ppe. Self-consistency
tells us that ppre 5 ppost, so we arrive at

ffiffiffiffi

m
p

!K�ppe ð1Þ
Again assuming that the m missed and extra spikes received by a
neuron are reasonably uncorrelated, the amplitude of intrinsic voltage
fluctuations associated with missed and extra spikes, denoted sV, is

proportional to
ffiffiffiffi

m
p

�VVPSP where �VVPSP is the average PSP size. Com-
bining this observation with equation (1), we have

sV!K�ppe
�VVPSP ð2Þ

The key point to extract from equation (2) is that the voltage fluctua-
tions are proportional to the growth rate of the perturbations, K�ppe.
Because K�ppe < 28, we expect the intrinsic voltage fluctuations asso-
ciated with the growth of perturbations to be large. And, indeed, they
are: in Supplementary Information, section 6, we perform a more
extensive analysis that takes into account correlations among excitatory
and inhibitory neurons as well as saturation of the number of missed
and extra spikes, and we verify the analysis with large-scale network
simulations. What we find is that the constant of proportionality in
equation (2) ranges in our data from 0.08 to 0.16, and so sV ranges from
about 2.2 to 4.5 mV (Supplementary Fig. 7).

These large trial-to-trial voltage fluctuations indicate that there is a
high level of intrinsic noise in the cortex. Therefore rapid depolariz-
ing events, like those postulated for synfire chains4 or polychroniza-
tion5, would be required to produce very precisely timed spikes.
Quantitatively, for a given value of the voltage fluctuations, sV, a
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Figure 4 | The effect of one extra spike on network activity in vivo. a, The
recording configuration. The extracellular silicon probe (red) contained 16
recording sites spaced 50 mm apart. The patch electrode (blue) was used to
trigger spikes by brief depolarizing current pulses. b, Extracellular spikes
(top) and intracellular membrane potential (bottom). c, PSTH triggered on
the stimulus and binned at 5 ms; it includes all extracellular spikes on all
electrodes from ten experiments. Error bars are one standard deviation.
Inset: change in firing rate per neuron, assuming an average firing rate of
1 Hz (ref. 30). d, Cumulative probability of an extra spike, averaged over all
recorded neurons, again assuming an average firing rate of 1 Hz. Dashed
lines indicate one standard deviation, obtained using bootstrap sampling.
Left scale, probability (Pr) of an extra spike in a randomly chosen neuron.
Right scale, probability of an extra spike between connected pairs, found by
dividing the left side by 0.04, corresponding to the 4% connectivity observed
in somatosensory cortex15.
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spike will occur with a precision of dt ms if the membrane potential
changes by 2sV mV in dt ms (the factor of 2 is necessary to ensure
reliability: because sV is the standard deviation, the voltage can, with
reasonable probability, range from sV below the mean to sV above
it). To determine how often there are voltage excursions that would
allow spike timing of precision dt, we examined experimentally
recorded voltage traces (Fig. 5a), counted how often the membrane
potential changed by 2sV mV in dt ms, and averaged over our un-
certainty in sV. The results are shown in Fig. 5b, and indicate that
precisely timed events are very rare: events with a precision of
dt 5 1 ms occur, on average, once every 10,000 seconds per neuron
(about once every 3 h); events with a precision of 5 ms occur less than
once every 100 seconds per neuron; and events with a precision of
10–20 ms occur less than once every 40 seconds per neuron. In addi-
tion, not only are precisely timed events rare, but the rates shown in
Fig. 5b constitute an upper bound, because precisely timed events
occur by chance at non-zero rates.

Taken together, our results indicate that there is a large amount of
intrinsic noise in cortex, and that this noise puts severe constraints on
spike timing codes. One potential caveat is that our results were
obtained under anaesthesia. The effect of anaesthesia on our estimate
of the number of extra spikes per spike is likely to be small, because
responsiveness of barrel cortex neurons under the awake and anaes-
thetized states is similar16,17. The frequency of large voltage excur-
sions, on the other hand, may be more sensitive to anaesthesia; in
particular, it is possible that the rate of large, fast depolarizing events
(Fig. 5b) is simply higher in awake than anaesthetized animals. A
second caveat is that our analysis assumed linear synaptic integration.
Recent studies show that precisely timed input to dendritic branches
can yield precisely timed output spikes in the axon without large
somatic sub-threshold voltage excursions18–21. These mechanisms,
though, have only been demonstrated in vitro, and only when input
to the dendrites was carefully regulated in both space and time; it
remains unclear to what extent these conditions are satisfied in vivo
(but see ref. 22).

Our study is in line with previous theoretical work that suggests
neuronal networks are chaotic23–26. However, it is, to our knowledge,
the first experimental demonstration of the sensitivity of an intact
network to perturbations in vivo. We are also the first to explore the
consequences of these results for the level of noise in the cortex and its
likely effect on the precision of spike timing.

What do our results imply for neural coding? Superficially, it seems
natural to conclude that if every spike has a large effect on network

activity, then every spike should count, and the brain must be using a
very sophisticated neural code in which the time and identity of every
spike carries meaningful information. In fact, our results imply just
the opposite. This is because network activity is bounded, so growth
of perturbations in some dimensions (for example, as measured by
trial-to-trial difference in membrane potential) necessarily implies
contraction in others27. It is this contraction that causes networks to
rapidly forget their past. Thus, although an extra spike can radically
modify patterns of activity, patterns of activity cannot encode which
extra spike caused the modification. The implication, then, is not that
rat barrel cortex (and, we suspect, other areas of cortex and other
species) must be using a very sophisticated spike timing code, but
that it is likely to be using a code that is robust to perturbations, such
as a rate code in which it is the average firing rate over large popula-
tions of neurons that carries information.

Finally, the fact that studies have found millisecond timing both in
anaesthetized and awake animals in the rat barrel cortex28 as well as in
other cortical regions3,29 is not inconsistent with our results. The
precise timing in those studies is associated with a feedforward sweep
of activity caused by a rapidly time-varying stimulus. Our results, on
the other hand, apply to slowly varying stimuli and higher-order
computations, and suggest that in those cases the cortex does not
rely on precise spike timing.

METHODS SUMMARY

Sprague-Dawley rats (postnatal day 18–25, average 45.6 g) were anaesthetized

with urethane (Sigma; 1.5 g kg21, intraperitoneally), and in vivo whole-cell

patch-clamp recordings were made using blind patch techniques. Recordings

were made at a depth of 1180 6 165mm, and neurons were identified as layer 5

pyramidal cells by input resistance, firing properties and in five cases by cell

morphology (n 5 5/5). For the single-cell experiments, excitatory postsynaptic

current (EPSC) waveforms separated by either 100 or 200 ms were injected into

the recorded neuron. The rise and decay times of the EPSC waveforms were 0.3

and 1.7 ms, respectively, and the amplitudes alternated between four values,

either 150, 225, 125, 250 pA or 1100, 250, 150, 2100 pA. In some cases, we

performed continuous whisker stimulation; the stimulus had no measurable

effect on the probability of an extra spike (paired t-test, P . 0.9), so we pooled

all data. For the combined intracellular–extracellular recording experiments, we

used in addition a silicon extracellular multi-site probe (probe type A-1-16-3mm-

50-177, Neuronexus Technologies) which was lowered to 1200mm from

the brain surface at an angle of 60u. Neurons were then patched in layer 2/3,

100–300mm from the probe. Brief current pulses (2.5–10 ms, 1–3 nA) were

injected via the patch pipette at 200–400 ms intervals to trigger spikes, and both

the intracellular and extracellular signals were recorded. A total of 13,000 stimuli

were injected into ten neurons. When the same spike appeared on more than one

extracellular recording site, only one spike from one site was selected for analysis.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Animals and surgery. The care and experimental manipulation of the animals

was performed in accordance with institutional and national guidelines. For all

experiments, Sprague-Dawley rats (postnatal day 18–25, average 45.6 g) were

anaesthetized with urethane (Sigma; 1.5 g kg21, intraperitoneally). A small

craniotomy (1 mm2) in a region overlying S1 (centred 5.5 mm lateral and

2.5 mm caudal of the bregma) was made and a small opening (,0.1 mm2) was

made in the dura. Supplemental urethane (10% of original dose, intraperitoneally)

was given whenever limb withdrawal responses were present or whisker move-

ments were observed. Body temperature was maintained at 37 uC with a feedback-
controlled heating blanket.

In vivo patch-clamp recording. For the current injection experiments (summar-

ized in Fig. 3, main text), whole-cell patch-clamp recordings were made using blind

patch techniques31. Standard borosilicate glass patch pipettes (5.5 MV) were filled

with internal solution containing the following (in mM): K-methanesulphonate

110, KCl 15, HEPES 10, Mg-ATP 4, Na2GTP 0.3, Na-phosphocreatine 10, and 0.3%

biocytin; pH 7.2, 285 mOsm. Access resistance was typically 20–40 MV at the start

of the recording and degraded with time. When access resistance rose above

100 MV, the recordings were not included in the analysis. Recordings were made

at a depth of 1,180 6 165mm, and neurons were identified as layer 5 pyramidal cells

by input resistance, firing properties and in five cases by cell morphology (n 5 5/5).

Data were filtered at 3–10 kHz and acquired at 50 kHz using Axograph software

(Axon Instruments) and an ITC-18 interface (Instrutech). Input resistance was

calculated by fitting a linear function to the steady-state current–voltage curve

(obtained from voltage deflections during 400-ms current steps from 2300 pA to

1500 pA in 100-pA steps). EPSC waveforms were generated by a double exponen-

tial current injection with trise 5 0.3 ms and tdecay 5 1.7 ms (ref. 32). The experi-

mental protocol consisted of a train of 50 EPSC waveforms separated by 200 ms
with alternating amplitudes of either 150, 225, 125, 250 pA or 1100, 250, 150,

2100 pA. In six of the experiments, diffuse whisker stimulation was delivered by a

custom-made motor rotating at 1 Hz driving a 1-cm diameter disk covered with

grade 0 sandpaper. The sandpaper touched the primary whisker and the two adja-

cent whiskers on the same row (all other whiskers were trimmed). The primary

whisker was identified before recording by monitoring the local field potential with

a low resistance (1 MV) electrode filled with artificial cerebrospinal fluid. Stimuli

with and without whisker stimulation were interleaved. The stimulus had no mea-

surable effect on the probability of an extra spike (paired t-test, P . 0.9), so we

pooled all data.

In vivo simultaneous patch-clamp and extracellular recording. For the simul-

taneous patch-clamp and extracellular recordings, a silicon extracellular 16-site

linear probe (type A-1-16-3mm-50-177, Neuronexus Technologies) was

lowered 1,200mm from the brain surface at an angle of 60u. After identification

of clear spiking units, a patch pipette was inserted and lowered to 250mm from

the brain surface, at a perpendicular distance of 100–300mm from the probe

(calculated based on the distance and the angle between the two electrodes using

a custom made system by Luigs & Neumann). We then searched for cells in 2-mm
steps. After establishing a whole-cell recording, brief current pulses (2.5–10 ms,

1–3 nA) were injected via the patch pipette into the recorded neuron at 200–

400 ms intervals, and both the intracellular and extracellular signals were

recorded using an RX5 Pentusa system (Tucker Davis). Ideally, we would have

liked to have chosen the amplitude and duration of the current pulses so that

each stimulus produced exactly one spike. However, because of up and down

states, this was not possible: a stimulus strong enough to always trigger a spike in

the down state would be strong enough to regularly produce more than one spike

in the up state. Thus we adjusted the strength of the stimulus so that it rarely

produced more than one spike. We were largely successful: out of the 13,000

stimuli we delivered (in ten experiments), only 498 (3.8%) produced two spikes.

Given the linearity between presynaptic and postsynaptic spikes (Fig. 3b), the

small fraction of stimuli that elicited two spikes should have virtually no effect on

our results.

Because spikes were far less likely to occur in the down state than the up state,

the number of spikes in the intracellularly recorded neuron was correlated with

ongoing activity, and thus correlated with spikes on the extracellular electrodes.

Thus, to ensure a flat baseline, we constructed PSTHs triggered on stimulus

onset, not on intracellular spike times. As can be seen in Fig. 4c, this strategy

was successful, as the PSTH was indeed flat before stimulus onset.

The peak in the PSTH after stimulus onset (Fig. 4c) was small, but the fact that

16 consecutive 5-ms bins were more than one standard deviation above the mean

suggests that it is significant. To test this, we constructed a cumulative PSTH by

subtracting the baseline (the mean firing rate between 2100 and 0 ms) from the

PSTH and integrating the difference (starting from t 5 0 and integrating in both

directions). To compute error bars, we used a bootstrap method in which we

constructed surrogate PSTHs by randomly sampling 200-ms epochs from the

extracellular spike trains. We constructed 10,000 surrogate PSTHs, which we

turned into cumulative PSTHs as described above. This gave us a null distri-

bution of cumulative PSTHs at each time point; we used those to construct the

error bars shown in Fig. 4d.

Spike detection. The extracellular signal was separated online into a local field

potential component (0–0.3 kHz) sampled at 3 kHz, and a high frequency com-

ponent (0.3–5 kHz) sampled at 25 kHz. Spike detection was done offline using

the high frequency component of the extracellular signal, as described in

Supplementary Information, section 1.

Biophysical models and network simulations. Simulations using a detailed

model of a layer 5 pyramidal neuron were based on a published model33 with

slight modifications, and were performed in the NEURON simulation environ-

ment34 (see Supplementary Information, section 4). The network simulations

were also based on a previously published model35, but with modifications to

allow the addition and detection of extra spikes (see Supplementary Informa-

tion, section 7).
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