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SUMMARY

Inhibitory neurons, which play a critical role in deci-
sion-making models, are often simplified as a single
pool of non-selective neurons lacking connection
specificity. This assumption is supported by obser-
vations in the primary visual cortex: inhibitory neu-
rons are broadly tuned in vivo and show non-specific
connectivity in slice. The selectivity of excitatory and
inhibitory neurons within decision circuits and,
hence, the validity of decision-making models are
unknown. We simultaneously measured excitatory
and inhibitory neurons in the posterior parietal cortex
of mice judging multisensory stimuli. Surprisingly,
excitatory and inhibitory neurons were equally selec-
tive for the animal’s choice, both at the single-cell
and population level. Further, both cell types ex-
hibited similar changes in selectivity and temporal
dynamics during learning, paralleling behavioral im-
provements. These observations, combined with
modeling, argue against circuit architectures
assuming non-selective inhibitory neurons. Instead,
they argue for selective subnetworks of inhibitory
and excitatory neurons that are shaped by experi-
ence to support expert decision-making.

INTRODUCTION

In many decisions, noisy evidence is accumulated over time to

support a categorical choice. At the neural level, a number of

models can implement evidence accumulation (Wang, 2002;

Machens et al., 2005; Bogacz et al., 2006; Lo and Wang, 2006;

Wong and Wang, 2006; Beck et al., 2008; Lim and Goldman,

2013; Rustichini and Padoa-Schioppa, 2015; Mi et al., 2017).

Although these circuit models successfully reproduce key char-
acteristics of behavioral and neural data during perceptual deci-

sion-making, their empirical evaluation has been elusive, mainly

because of the challenge of identifying inhibitory neurons reliably

and in large numbers in behaving animals. Inhibition, which con-

stitutes an essential component of these models, is usually pro-

vided by a single pool of inhibitory neurons receiving broad input

from all excitatory neurons (non-selective inhibition; Deneve

et al., 1999; Wang, 2002; Mi et al., 2017).

The assumption of non-selective inhibition in theoretical

models was perhaps motivated by empirical studies examining

connectivity and tuning of inhibitory neurons. Many studies of

the primary visual cortex report that inhibitory neurons have,

on average, broader tuning curves than excitatory neurons for vi-

sual stimulus features such as orientation (Sohya et al., 2007;

Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010;

Bock et al., 2011; Hofer et al., 2011; Atallah et al., 2012; Chen

et al., 2013; Znamenskiy et al., 2018), spatial frequency (Niell

and Stryker, 2008; Kerlin et al., 2010; Znamenskiy et al., 2018),

and temporal frequency (Znamenskiy et al., 2018). Broad tuning

in inhibitory neurons has been mostly attributed to their dense

(Hofer et al., 2011; Packer and Yuste, 2011), functionally unbi-

ased inputs from surrounding excitatory neurons (Kerlin et al.,

2010; Bock et al., 2011; Hofer et al., 2011). Excitatory neurons,

in contrast, show relatively sharp selectivity to stimulus features

(Sohya et al., 2007; Niell and Stryker, 2008; Ch’ng and Reid,

2010; Kerlin et al., 2010; Hofer et al., 2011; Isaacson and Scan-

ziani, 2011; Lee et al., 2016), reflecting their specific, non-

random connectivity (Yoshimura et al., 2005; Ch’ng and Reid,

2010; Hofer et al., 2011; Ko et al., 2011; Cossell et al., 2015; Ring-

ach et al., 2016).

Based on relatively weak tuning of inhibition, one might as-

sume that inhibition in decision circuits is non-specific. However,

the overall picture from experimental observations is more

nuanced than the original studies suggest. First, some primary

visual cortex (V1) studies report tuning of inhibitory neurons

that is on par with excitatory neurons (Ma et al., 2010; Runyan

et al., 2010), likely supported by targeted connectivity with excit-

atory neurons (Yoshimura and Callaway, 2005). Strong tuning of
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inhibitory neurons has also been reported in the primary auditory

cortex (Moore and Wehr, 2013). Further, in the frontal and parie-

tal areas, interneurons can distinguish go versus no-go re-

sponses (Allen et al., 2017) and trial outcome (Pinto and Dan,

2015). Similarly, hippocampal interneurons have strong selec-

tivity for the stimulus (Lovett-Barron et al., 2014) and the animal’s

location (Maurer et al., 2006; Ego-Stengel and Wilson, 2007).

This selectivity of inhibitory neurons in a wealth of areas and

conditions argues that the assumption of non-selective interneu-

rons in decision-making models must be revisited. Here we

aimed to evaluate this directly. We compared the selectivity of

inhibitory and excitatory neurons in the posterior parietal cortex

(PPC) in mice during perceptual decisions. Surprisingly, we

found that excitatory and inhibitory neurons are equally choice

selective. Our modeling argued that these observations imply

selective subnetworks, a network architecture supporting

enhanced decoding in the presence of noise. Finally, during

learning, the selectivity of excitatory and inhibitory neurons

increased in parallel. These results constrain decision-making

models and argue that, in decision areas, subnetworks of selec-

tive inhibitory neurons emerge during learning and are engaged

during expert decisions.

RESULTS

To test how excitatory and inhibitory neurons coordinate during

decision-making, wemeasured neural activity in transgenicmice

trained to report decisions about the repetition rate of a

sequence of multisensory events by licking a left or right water-

spout (Figure 1A; Figure S1A). Trials consisted of simultaneous

clicks and flashes, generated randomly (via a Poisson process)

at rates of 5–27 Hz over 1,000 ms (Brunton et al., 2013; Odoe-

mene et al., 2018). Mice reported whether event rates were

high or low compared with a category boundary (16 Hz) learned

from experience. Decisions depended strongly on the stimulus

rate; performance was at chance when the stimulus rate was
Figure 1. Simultaneous Imaging of Inhibitory and Excitatory Populatio

(A) Behavioral apparatus. Multisensory stimuli are presented via a visual displa

decisions about stimulus rate, mice lick left/right spouts. Objective: a 2-photon m

(B) Psychometric function showing the fraction of trials in which themouse chose

model (glmfit.m), mean across mice; shaded area, SD of the fit across mice; das

(C) Average image (10,000 frames). Left: green channel, GCaMP6f. Center: red

expressing neurons identified as inhibitory.

(D) Example neurons identified by the constrained non-negative matrix factorizat

Center: de-noised traces. Right: inferred spiking activity. Imaging was not perfor

nated. Dashed lines, trial onset.

(E) Example session; 568 neurons. Rows, trial-averaged inferred spiking activity

peak activity. To ensure peaks were not driven by noisy fluctuations, we first c

identified the peak activity time for the trial-averaged response. Finally, these p

remaining 50% of trials. This cross-validated approach ensured that the tiling app

color plotting. Red ticks on the right, inhibitory neurons (n = 45); red vertical lines, tr

traces, traces were separately aligned to each trial event and then averaged ac

concatenated. Vertical blue lines, border between the concatenated traces.

(F) Trial-averaged inferred spiking activity of 4 excitatory (top) and 4 inhibitory (bo

SEM, �250 trials per session).

(G) Inferred spiking activity for excitatory (blue) and inhibitory (red) neurons. Exam

average over trials and neurons. Inferred spiking activity was downsampled by a

(H) Distribution of inferred spiking activity 0–97 ms before choice (averaged over

(I) Inferred spiking activity 0–97 ms before the choice (averaged over three frame
at the category boundary and better at rates further from the

category boundary (Figure 1B). Choice depended on current

stimulus strength, previous choice outcome (Hwang et al.,

2017), and time elapsed since the previous trial (Figure S1B).

We imaged excitatory and inhibitory neural activity by injecting

a viral vector containing the calcium indicator (GCaMP6f) to layer

2/3 of themouse PPC (Harvey et al., 2012; Funamizu et al., 2016;

Goard et al., 2016; Morcos and Harvey, 2016; Hwang et al.,

2017; Song et al., 2017). Mice expressed the red fluorescent pro-

tein tdTomato transgenically in all GABAergic inhibitory neurons

(STAR Methods). We used a two-channel, two-photon micro-

scope to record the activity of all neurons, a subset of which

were identified as inhibitory (Figure 1C). This allowed us to mea-

sure the activity of excitatory and inhibitory populations in the

same animal.

To detect neurons and extract calcium signals, we leveraged

an algorithm that simultaneously identifies neurons, de-noises

the fluorescence signal, and de-mixes signals from spatially

overlapping components (Pnevmatikakis et al., 2016; Giovan-

nucci et al., 2019; Figure 1D, center). The algorithm also esti-

mates spiking activity for each neuron, yielding, for each frame,

a number that is related to the spiking activity during that frame

(Figure 1D, right). We refer to this number as ‘‘inferred spiking ac-

tivity,’’ acknowledging that estimating spikes from calcium sig-

nals is challenging (Chen et al., 2013). Analyses were performed

on inferred spiking activity. To identify inhibitory neurons, we

developed a method to correct for bleed-through from the green

to the red channel (STAR Methods). We identified a subset of

GCaMP6f-expressing neurons as inhibitory based on signal in-

tensity (red channel) and spatial correlation between red and

green channels (Figure 1C, right, cyan circles). Inhibitory neurons

constituted 11% of the population, within the range of previous

reports (Beaulieu, 1993; Gabbott et al., 1997; Rudy et al., 2011;

Sahara et al., 2012) but on the lower side because of our desire

to be conservative in assigning neurons to the inhibitory pool

(STAR Methods).
ns during Decision-Making

y and a speaker. To initiate trials, mice lick the middle waterspout. To report

icroscope used to image neural activity through an implanted window.

‘‘high’’ as a function of stimulus rate. Dots, mean (10mice); line, logit regression

hed vertical line, category boundary (16 Hz).

channel, tdTomato. Right: merge of left and center. Cyan circles, GCaMP6f-

ion algorithm (STAR Methods). Arrow, inhibitory neuron. Left: raw DF/F traces.

med during inter-trial intervals; traces from 13 consecutive trials are concate-

of a neuron (frame resolution, 32.4 ms). Neurons are sorted based on timing of

omputed trial-averaged activity using 50% of trials for each neuron. We then

eak times determined the plotting order for the trial-averaged activity for the

earance of peak activities was not due to the combination of sorting and false-

ial events. Duration between events varied across trials. Tomake trial-averaged

ross trials. Next, averaged traces (each aligned to a different trial event) were

ttom) neurons for ipsilateral (black) and contralateral (green) choices (mean ±

ple mouse; mean ± SEM across days (n = 46). Each point corresponds to an

veraging over three adjacent frames (STAR Methods).

three frames) for all mice/sessions (41,723 excitatory and 5,142 inhibitory).

s) for individual mice (mean ± SEM across days).
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Figure 2. Single-Cell and Pairwise Analyses Argue for Non-random Connections between Excitatory and Inhibitory Neurons

(A) Distribution of AUC (area under the curve) values of an ROC analysis for distinguishing choice from the activity of single neurons in an example session. Data

correspond to the 97-ms window preceding choice (285 excitatory and 29 inhibitory neurons). Values larger than 0.5 indicate a preference for ipsilateral choice;

values smaller than 0.5 indicate a preference for contralateral choice. Shaded areas, significant AUC values (compared with a shuffle distribution). Distributions

were smoothed (moving average, span = 5). 5 inhibitory and 24 excitatory neurons (17% and 8%, respectively) were significantly choice selective.

(B) ROC analysis on 97-ms non-overlapping time windows. Vertical axis, fraction of excitatory or inhibitory neurons with significant choice selectivity; example

mouse; mean ± SEM across days (n = 45 days).

(C) Fraction of excitatory and inhibitory neurons that are significantly choice selective (0–97 ms before the choice) summarized for each mouse; mean ± SEM

across days (n = 45, 48, 7, and 35 sessions per mouse). t test, *p < 0.05; see also Figure S3D. Fraction-selective neurons at 0–97ms before choice (median across

mice): excitatory, 13%; inhibitory, 16% (�6 inhibitory and 43 excitatory neurons with significant choice selectivity per session).

(D) ROC analysis for 97-ms non-overlapping time windows; time course of normalized choice selectivity (defined as twice the absolute deviation of the AUC from

chance, given explicitly by 2*jAUC-0.5j) for excitatory and inhibitory neurons in an example mouse; mean ± SEM across days, n = 45 sessions.

(E) Average of normalized choice selectivity for excitatory and inhibitory neurons (0–97ms before choice) summarized for eachmouse; mean ± SEM across days.

‘‘Shuffled’’ denotes that the AUC was computed using shuffled trial labels.

Blue and red indicate excitatory and inhibitory neurons, respectively.
Confirming previous reports (Funamizu et al., 2016; Morcos

and Harvey, 2016; Runyan et al., 2017), we observed that the ac-

tivity of individual neurons peaked at time points spanning the

trial (Figures 1E and 1F). Diverse temporal dynamics were

evident in both cell types (Figures 1E and 1F) and did not appre-

ciably differ between the two (Figure S2). The magnitude of in-

ferred spiking activity was significantly different for inhibitory

versus excitatory neurons throughout the trial (Figure 1G; t

test, p < 0.001). Just before the choice (97 ms, average of 3

frames), this difference was clear (Figure 1H) and significant for

all mice (Figure 1I; t test; p < 0.001). Differences in GCaMP

expression levels and calcium buffering between excitatory

and inhibitory neurons, as well as how spiking activity is inferred

(STAR Methods), make direct estimates of the underlying firing

rates challenging (Kwan and Dan, 2012). Nevertheless, the sig-

nificant difference in the inferred spiking activity between excit-

atory and inhibitory neurons provides additional evidence that

we successfully identified two separate neural populations.

Individual Excitatory and Inhibitory Neurons Are
Similarly Choice Selective
To assess the selectivity of individual excitatory and inhibitory

neurons for decision outcome, we performed a receiver oper-

ating characteristic (ROC) analysis (Green and Swets, 1966) on

single-neuron responses. A neuron was identified as ‘‘choice se-

lective’’ when the area under the ROC curve (AUC) differed

significantly (p < 0.05) from a shuffled distribution (Figure S3A;

STARMethods), indicating that the neural activity differed signif-

icantly for ipsi- versus contralateral choices (Figure 2A).

The fraction of choice-selective neurons (Figure 2B) and the

magnitude of choice selectivity (Figure 2D) gradually increased

over the trial, peaking just after the animal reported its choice.

Importantly, excitatory and inhibitory neurons were similar in
168 Neuron 105, 165–179, January 8, 2020
terms of the fraction of choice-selective neurons (Figures 2B

and 2C; Figures S3B and S3C) as well as the magnitude and

time course (Figures 2D and 2E) of choice selectivity. When we

restricted the analysis to excitatory and inhibitory neurons with

similar spiking activity, the cell types remained equally selective

for the animal’s choice (Figure S3D).

To assess whether neurons reflected the animal’s choice or

the sensory stimulus, we compared choice selectivity on correct

versus error trials. For most neurons, choice selectivity on cor-

rect trials was similar to that on error trials, resulting in a positive

correlation of the two quantities across neurons (Figure S3E).

Positive correlations indicate that most neurons reflect the im-

pending choice more so than the sensory stimulus that informed

it (STAR Methods). Variability across mice in the strength of this

correlation may indicate that the balance of sensory versus

choice signals within individual neurons varied across subjects

(perhaps because of imaged subregions within the window; Fig-

ure S3E, right). Importantly, however, within each subject, this

correlation was very similar for excitatory versus inhibitory neu-

rons (Figure S3E), suggesting that the tendency for neurons to

be modulated by the choice versus the stimulus was similar in

excitatory and inhibitory neurons.

The existence of task-modulated inhibitory neurons has been

reported elsewhere (Maurer et al., 2006; Ego-Stengel and Wil-

son, 2007; Lovett-Barron et al., 2014; Pinto and Dan, 2015; Allen

et al., 2017; Kamigaki and Dan, 2017), but, importantly, here

choice selectivity was similarly strong in excitatory and inhibitory

neurons, both in fraction and magnitude. This was at odds with

the commonly accepted assumption of non-specific inhibition

in theoretical studies (Deneve et al., 1999; Wang, 2002; Mi

et al., 2017) and surprising given the numerous empirical findings

suggesting broad tuning and weakly specific connectivity in

inhibitory neurons (Sohya et al., 2007; Niell and Stryker, 2008;



Liu et al., 2009; Kerlin et al., 2010; Bock et al., 2011; Hofer et al.,

2011; Isaacson and Scanziani, 2011; Packer and Yuste, 2011;

Atallah et al., 2012; Chen et al., 2013). This observation was a

first hint that specific functional subnetworks, preferring either

ipsi- or contralateral choices, exist within the inhibitory popula-

tion, just like in the excitatory population (Yoshimura and Call-

away, 2005; Znamenskiy et al., 2018).

Choice Is Decoded with Equal Accuracy from Both
Excitatory and Inhibitory Populations
Although individual inhibitory neurons could distinguish the ani-

mal’s choice as well as excitatory ones, overall choice selectivity

in single neurons was small (Figure 2E). To further evaluate the

neurons’ discriminability, we trained linear classifiers (support

vector machine [SVM]; Hofmann et al., 2008) to predict the

mouse’s choice from the single-trial population activity (cross-

validated, L2 penalty; STAR Methods).

We first tested all neurons imaged simultaneously in a single

session (Figure 3A, left), training the classifier separately at

each time point (97 ms bins). Classification accuracy gradually

grew after stimulus onset and peaked at the time of the choice

(Figure 3B, black). The ability of the entire population of PPC neu-

rons to predict the choice confirms previous observations (Funa-

mizu et al., 2016; Goard et al., 2016; Morcos and Harvey, 2016;

Driscoll et al., 2017). Our overall classification accuracy was in

the same range as these studies and, as in those studies, was

high, although many individual neurons in the population were

only weakly selective (Figure 2A).

We then examined classifier accuracy for excitatory and

inhibitory populations, subsampling the excitatory population

so that the total number of neurons was matched (Figure 3A,

center). The overall classification accuracy was reduced

because of the smaller population size, but performance was

still well above chance (Figure 3B, blue trace). Finally, we

included all inhibitory neurons (Figure 3A, right). The classifica-

tion accuracy of inhibitory neurons was well above chance

and very similar to that of excitatory neurons (Figure 3B, red

and blue traces overlap; see Figure S4 for additional example

sessions). A similar classification accuracy for excitatory and

inhibitory populations was observed in all subjects (Figure 3C).

Excitatory and inhibitory populations were equally choice selec-

tive even when the analysis was performed on raw calcium

traces (Figure S5).

Our analysis may have obscured a difference between excit-

atory and inhibitory neurons because we evaluated their perfor-

mance separately rather than considering how these neurons are

leveraged collectively in a classifier with both cell types. To test

this, we examined a classifier that was trained on all neurons

(Figures 3A, left, and 3B, black), and compared classifier weights

assigned to excitatory versus inhibitory neurons. The weight

magnitudes of excitatory and inhibitory neurons were matched

for the entire trial (Figure 3D), and the distribution of weights

was very similar (Figures 3E and 3F). The comparable classifier

weights for excitatory and inhibitory neurons argues that these

cell types are similarly informative for choice.

We next tested whether excitatory and inhibitory populations

can be decoded more accurately from a mixed population.

This can occur, for example, when the excitatory-inhibitory cor-
relations are weak relative to excitatory-excitatory and inhibi-

tory-inhibitory correlations (Panzeri et al., 1999; Averbeck

et al., 2006; Moreno-Bote et al., 2014). To assess this, we trained

the classifier on a population with half excitatory and half inhibi-

tory neurons (Figure 3G, bottom) and compared its accuracy

with a classifier trained on a population of the same size that con-

sisted only of excitatory neurons (Figure 3G, top). The classifica-

tion accuracy was similar for both decoders (Figures 3H and 3I),

arguing that a mixed population offers no major advantage for

decoding.

We next trained new classifiers to evaluate whether popula-

tion activity reflected additional task features. First, the popula-

tion activity was somewhat informative regarding previous trial

choice (Figure S6A), in agreement with previous studies (Morcos

and Harvey, 2016; Hwang et al., 2017; Akrami et al., 2018; but

see also Zhong et al., 2019). Excitatory and inhibitory popula-

tions were similarly selective for previous choice (Figure S6A).

The population activity was also somewhat informative

regarding whether the stimulus was above or below the cate-

gory boundary (Figure S6B). Again, excitatory and inhibitory

populations were similarly selective (Figure S6B). Finally, the

population activity was strongly selective for trial outcome

(reward versus lack of reward; Figure S6C). Excitatory and inhib-

itory neurons showed a small but consistent difference in

classifier accuracy after reward delivery (Figure S6C). This

indicates that, when the reward is delivered, the network enters

a new regime, perhaps because of distinct reward-related in-

puts to excitatory and inhibitory neurons (Pinto and Dan, 2015;

Allen et al., 2017). This possibility is in keeping with previous

studies suggesting that neural populations explore different di-

mensions over the course of a trial (Raposo et al., 2014; Elsayed

et al., 2016).

Finally, we studied the temporal dynamics of the choice signal.

If excitatory and inhibitory neurons form connected subnetworks

with frequent cross-talk, then the two populations should not

only predict the animal’s choice with similar accuracy, as shown

above, but the weights assigned by the classifier should exhibit

similar temporal dynamics. To assess this, we quantified each

population’s stability: the extent to which a classifier trained on

choice at one time could successfully classify choice at other

times. If population activity patterns are similar over time (e.g.,

all neurons gradually increase their firing rates), then classifiers

trained at one moment will accurately classify neural activity at

different moments. Excitatory and inhibitory populations might

differ in this regard, with one population more stable than

the other.

As the gap between testing and training time increased, a

gradual drop occurred in classifier accuracy (Figures 4A and

4B). This drop in accuracy occurred at a similar rate for excitatory

and inhibitory populations (Figure 4B). To quantify this, we deter-

mined the time window over which classifier accuracy remained

within 2 SDs of the accuracy at the training time (Figure 4C). This

was indistinguishable for excitatory and inhibitory neurons (Fig-

ure 4D; Figure S7A). An alternate method for assessing stability,

computing the angle between the weights of pairs of classifiers

trained at different time windows, likewise suggested that excit-

atory and inhibitory populations are similarly stable (STAR

Methods; Figure S7C).
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Figure 4. Classifiers, Whether Trained on Excitatory or Inhibitory Neurons, Show Comparable Stability during Decision Formation

Shown is cross-temporal generalization of choice decoders.

(A) Classification accuracy of decoders for each pair of training/testing time points, for all neurons (left), subsampled excitatory neurons (center), or inhibitory

neurons (right). Diagonal, same training and testing time as in Figure 3. Example mouse, mean across 45 sessions.

(B) Example classification accuracy traces showing how classifiers trained at 0–97 ms before choice generalize across time. Same mouse as in (A), mean ± SEM

across days.

(C) Decoders are stable in a short window outside of their training time. Red indicates that classification accuracy of a decoder tested at the time on the horizontal

axis is 2 SDs or less of the decoder tested at the training time. Example mouse, mean across days.

(D) Summary of stability duration for decoders trained from 0–97ms before choice using inhibitory neurons (red) or subsampled excitatory neurons (blue). Mean ±

SEM across days per mouse.
Modeling Rules Out Decision Circuits with Non-
selective Inhibition
These results seem to rule out circuitry from traditional decision-

making models in which inhibitory neurons are non-selective.

This is because, in non-selective circuits, the average input to

inhibitory neurons is the same whether the evidence favors

choice 1 or choice 2 (Figure 5A, top). However, care must be

taken when drawing this conclusion. Although the average input

is the same, there are fluctuations in connection strength; those

fluctuations will lead to some selectivity in inhibitory neurons. For
Figure 3. Linear Classifiers Can Predict the Animal’s Choice with Equa

(A) Schematic of decoding choice from all neurons (left), only excitatory neuro

inhibitory neurons (right). A linear SVM assigns weights of different magnitude (in

(B) Top: classification accuracy of decoders trained on all neurons (black), subsa

decoders trained on every 97-ms time bin; example session; mean ± SEM acros

dotted line). Unsaturated lines, performance on shuffled trials. Bottom: distributi

session above.

(C) Classification accuracy (0–97 ms before the choice, mean ± SEM across day

(D) Absolute value of weights for excitatory and inhibitory neurons in decoders tr

(E) Distribution of classifier weights (decoder training time, 0–97 ms before the ch

(42,019 excitatory and 5,172 inhibitory neurons). Shading, SE.

(F) Absolute value of weights in the classifier (0–97 ms before choice) for excitato

(G) Schematic of decoding choice from a population of subsampled excitatory ne

(bottom).

(H) Classifier accuracy of populations including only excitatory (blue) or half inhibito

each moment in the trial. Traces show mean ± SEM (50 cross-validated samples

(I) Summary of each mouse (mean ± SEM across days) for the decoders (0–97 m
instance, because of the inherent randomness in neural circuits,

an inhibitory neuron could receive more connections from the

excitatory neurons in population E1 versus E2. If so, then the firing

rate of that inhibitory neuron would be slightly higher when evi-

dence in favor of choice 1 is present. This could be exploited

by a classifier to predict the choice. Hence, even a decision cir-

cuit with non-selective inhibition (Figure 5A, top) can lead to

similar decoding accuracy in inhibitory and excitatory neurons,

questioning whether our experimental findings (Figures 2 and

3) can be leveraged to constrain decision-making models.
l Accuracy from the Activity of Excitatory or Inhibitory Populations

ns (center) subsampled to the same number as inhibitory neurons, and only

dicated by lines of different thickness) to each neuron in the population.

mpled excitatory neurons (blue), and inhibitory neurons (red) (cross-validated;

s 50 cross-validated samples). Data are aligned to the animal’s choice (black

on of stimulus onset, offset, go tone, and reward occurrence for the example

s) for real (saturated) and shuffled (unsaturated) data.

ained on all neurons; mean ± SEM across days.

oice) for excitatory and inhibitory neurons. Neurons from all mice were pooled

ry versus inhibitory neurons. Mean ± SEM across days. *p < 0.05, t test.

urons (top) versus a population with half inhibitory and half excitatory neurons

ry and half excitatory neurons (magenta); example session; classifier trained at

).

s before the choice).
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Figure 5. Modeling Decision Circuits with Different Architectures

(A) Top: non-selective decision-making model. E1 and E2, pools of excitatory neurons, each favoring a different choice, that excite a single pool of non-selective

inhibitory neurons (I). Bottom: classification accuracy of excitatory (blue) and inhibitory (red) neurons as a function of the relative strength of excitatory-to-

inhibitory versus inhibitory-to-excitatory connections. Arrows in this and subsequent panels: parameter value in line with experimental data.

(B) Top: signal-selective model. I1 and I2, pools of inhibitory neurons connected more strongly to E1 and E2, respectively, than to E2 and E1; cross-pool con-

nections are weaker than within-pool connections. Bottom: decoding accuracy of inhibitory and excitatory neurons match at the biologically plausible regime

(arrow). Cross-pool connectivity was 25% smaller than within-pool connectivity.

(C) Top: SNR-selective model. Inhibitory neurons connect more strongly to excitatory neurons with high SNRs. Bottom: decoding accuracy of inhibitory and

excitatory neurons match near the biologically plausible regime (arrow). All plots reflect 50 excitatory and 50 inhibitory neurons of a population containing 4,000

excitatory/1,000 inhibitory neurons.
To test this quantitatively, we modeled a non-selective circuit

to evaluate the selectivity of inhibitory neurons (STAR Methods).

Classification accuracy depended on the connection strengths

between excitatory and inhibitory neurons (horizontal axis in Fig-

ure 5A, bottom) because those connection strengths affect over-

all activity in the network. The most biologically plausible regime

is near 0, corresponding to equal strengths for excitatory-to-

inhibitory and inhibitory-to-excitatory connections (Thomson

and Lamy, 2007; Jouhanneau et al., 2015, 2018; Znamenskiy

et al., 2018; Figure 5A, bottom, arrow). For this value (and indeed

for all other values), inhibitory neurons had a lower classification

accuracy than excitatory neurons (Figure 5A, bottom; Figure S8,

left), inconsistent with our experimental results (Figures 3B and

3C). Therefore, in the non-selective circuit, although some inhib-

itory neurons are selective because of random biased inputs

from the excitatory pools, the classification accuracy of inhibi-

tory neurons will still be lower than that of excitatory neurons,

regardless of the model parameters. This is because even

modest amounts of noise in the system are sufficient to over-

come any informative randomness in excitatory-to-inhibitory

connections.

Next, we modeled a signal-selective circuit in which inhibitory

neurons were connected preferentially to one excitatory pool

(Figure 5B, top). In this circuit architecture, inhibitory and excit-

atory neurons had matched classification accuracy when the
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connection strength from excitatory to inhibitory neurons was

about the same as the strength from inhibitory to excitatory

ones (Figure 5B, bottom; Figure S8, center).

Interestingly, a third circuit configuration likewise gave rise to

excitatory and inhibitory neurons with matched classification ac-

curacy near the biologically plausible regime (Figure 5C, bottom;

Figure S8, right). Here, inhibitory neurons were connected to

excitatory neurons with a high signal-to-noise ratio (SNR) (Fig-

ure 5C, top).

Our modeling results raise two questions. First, how can the

inhibitory population have a higher classification accuracy than

the excitatory population (Figures 5B and 5C, bottom; for part

of the plot, red is above blue), given that all information regarding

the choice flows through the excitatory neurons? Second, why is

the relative strength of the excitatory-to-inhibitory versus inhibi-

tory-to-excitatory connections the critical parameter (Figure 5,

bottom, x axis)? The answers are related. Increasing the strength

of the excitatory-to-inhibitory connections increases the signal in

the inhibitory neurons, effectively decreasing the noise added to

the inhibitory population (see STAR Methods for details). This

decrease in noise leads to improved decoding accuracy of

both populations because they are connected. However, the

decrease in the noise added to the inhibitory neurons has a

bigger effect on the inhibitory than the excitatory population

because the noise directly affects the inhibitory neurons but
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Figure 6. Pairwise Noise Correlations Are Stronger between Neurons with the Same Choice Selectivity

(A) Left: noise correlations (Pearson’s coefficient) for pairs of excitatory-inhibitory neurons with the same (dark green) or opposite (light green) choice selectivity.

Center and right: same as left, but for excitatory-excitatory and inhibitory-inhibitory pairs, respectively. ‘‘Shuffled’’ denotes that quantities were computed using

shuffled trial labels. Mean ± SEM across days; 0–97 ms before the choice. Same versus opposite is significant in all cases, except for mouse 3 in excitatory-

excitatory (EE) and inhibitory-inhibitory (II) pairs (t test, p < 0.05).

(B) Examplemouse. Distribution of noise correlations (Pearson’s correlation coefficients, 0–97ms before the choice) for excitatory (blue, n = 11,867) and inhibitory

(red, n = 15,83) neurons. Shaded areas, significance compared with a shuffled control in which trial orders were shuffled for each neuron to remove noise

correlations.

(C) Summary of noise correlation coefficients; mean ± SEM across days.
affects the excitatory neurons only indirectly through the inhibi-

tory-to-excitatory connections. Thus, in all panels of Figure 5,

classification accuracy increases faster for inhibitory neurons

than excitatory ones as the excitatory-to-inhibitory connection

strength increases. Interestingly, the classification accuracy of

both populations was overall higher for the signal-selective and

SNR-selective models because the selective targeting in those

models mitigates the noise that limits classification accuracy.

This advantage was most pronounced for the signal-selective

model; the model has a significantly higher classification accu-

racy compared with other models at all values of connectivity

strength and noise (Figure S9). This may indicate that the

signal-selective network configuration is especially advanta-

geous for accurate decoding in the presence of noise.

Overall, the modeling rules out decision circuits with non-se-

lective inhibition (Figure 5A) and instead demonstrates that

excitatory and inhibitory neurons in decision circuits must be

selectively connected, either based on the signal preference

(Figure 5B) or the informativeness (Figure 5C) of excitatory

neurons.

Correlations Are Stronger between Similarly Tuned
Neurons
If choice selectivity in inhibitory neurons emerges because of tar-

geted input from excitatory neurons, then one prediction is that

correlations will be stronger between excitatory and inhibitory

neurons with the same choice selectivity compared with those

with the opposite choice selectivity (Cossell et al., 2015; Francis

et al., 2018). To test this hypothesis, we compared pairwise noise

correlations in the activity of neurons with same versus opposite

choice selectivity (STAR Methods). Indeed, neurons with the

same choice selectivity had stronger correlations (Figure 6A), in

keeping with previous observations in mouse V1 during passive

viewing (Hofer et al., 2011; Ko et al., 2011; Cossell et al., 2015;

Znamenskiy et al., 2018), as well as the prefrontal cortex in

behaving monkeys (Constantinidis and Goldman-Rakic, 2002).
The higher noise correlations among similarly tuned excit-

atory-inhibitory neuron pairs is also consistent with the observa-

tion that, in V1, excitatory and inhibitory neurons that belong to

the same subnetwork are reciprocally connected (Yoshimura

and Callaway, 2005). An alternative explanation, that neurons

with similar tuning share common inputs, is also possible. If

that is the case, however, then the common input is not exclu-

sively stimulus driven because we observed the same correla-

tion effects in the pre-trial period, in which there is no stimulus

(Figure S10A).

We next compared the strength of pairwise noise correlations

within excitatory and inhibitory populations. Inhibitory pairs had

significantly higher noise correlations compared with excitatory

pairs (Figures 6B and 6C, noise correlations; Figure S10C,

spontaneous correlations). This was true even when we

restricted the analysis to inhibitory and excitatory neurons

with the same inferred spiking activity (Figures S10D and

S10E). Finally, similar to previous reports (Hofer et al., 2011;

Khan et al., 2018), we found intermediate correlations for pairs

consisting of one inhibitory neuron and one excitatory neuron

(Figures S10B and S10C). Our findings align with previous

studies in sensory areas reporting stronger correlations among

inhibitory neurons (Hofer et al., 2011; Khan et al., 2018). The

correlations are likely driven at least in part by local connec-

tions, as evidenced by the dense connectivity of interneurons

with each other (Galarreta and Hestrin, 1999; Packer and Yuste,

2011; Kwan and Dan, 2012). The difference we observed be-

tween excitatory and inhibitory neurons argues that this feature

of early sensory circuits is shared by decision-making areas.

Further, this clear difference between excitatory and inhibitory

neurons, like the difference in inferred spiking (Figures 1G–1I)

and outcome selectivity (Figure S6C), confirms that we suc-

cessfully measured two distinct populations. Overall, noise cor-

relation analyses suggest that selective connectivity between

excitatory and inhibitory neurons depends on their functional

properties.
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Figure 7. Noise Correlations Reduce Classification Accuracy

(A) Classification accuracy for an example session (0–97ms before the choice)

on neural ensembles of increasingly larger size. Mean ± SEM (50 cross-vali-

dated samples). Gray, classification accuracy for pseudo-populations; black,

real populations. Both cell types were included (‘‘All neurons’’).

(B) Summary for each mouse; points show mean ± SEM across days. Values

were computed for the largest neuronal ensemble (the maximum value on the

horizontal axis in A).
Noise Correlations Limit Decoding Accuracy
Our results thus far demonstrate that neural activity in both excit-

atory and inhibitory populations reflect an animal’s impending

choice (Figures 3B and 3C) and that there are significant noise

correlations among neurons in PPC (Figure 6). However, the an-

alyses so far do not demonstrate how this noise affects the ability

to decode neural activity. Examining the effect of noise is essen-

tial because correlations affect classifier performance (Panzeri

et al., 1999; Averbeck et al., 2006), even when correlations are

weak (Averbeck et al., 2006; Moreno-Bote et al., 2014). Fortu-

nately, our dataset with simultaneous activity from hundreds of

neurons is especially well suited to assess noise correlations.

To examine how noise correlations affect classification accu-

racy, we sorted neurons based on individual choice selectivity,

adding them one by one to the population (from highest to lowest

choice selectivity, defined as jAUC-0.5j). Classification accuracy

improved initially as more neurons were included in the decoder

but saturated quickly (Figure 7A, black).

To assess the effect of noise correlations onclassification accu-

racy, we created ‘‘pseudopopulations’’ in which each neuron in

the population was taken from a different trial (Figure 7A, gray).

This removed noise correlations because those are shared across

neurons within a single trial. A higher classification accuracy in

pseudopopulations compared with real populations indicates

the presence of noise that overlaps with signal, limiting informa-

tion (Panzeri et al., 1999; Averbeck et al., 2006; Averbeck and

Lee, 2006; Moreno-Bote et al., 2014). This is what we observed

(Figure 7A, gray trace above black trace). In all mice, removing

noise correlations resulted in a consistent increase in classifica-

tion accuracy (Figure 7B; filled versus open circles), establishing

that noise correlations limit population accuracy in the PPC.

Selectivity Increases in Parallel in Inhibitory and
Excitatory Populations during Learning
Our observations so far argue that excitatory and inhibitory neu-

rons form selective subnetworks. To assess whether the emer-
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gence of these subnetworks is experience dependent and

whether it varies between inhibitory and excitatory populations,

we measured neural activity as animals transitioned from novice

to expert decision-makers (3 mice, 35–48 sessions; Figure S11).

We trained a linear classifier for each training session and for

each moment in the trial.

The classification accuracy of the choice decoder increased

consistently as animals became experts in decision-making (Fig-

ure 8A, left; Figure 8D, black), leading to a strong correlation be-

tween classifier accuracy and mouse performance over training

(Figure 8B, left). The choice signal also became more prompt,

emerging progressively earlier in the trial as mice became ex-

perts. Initially, classification accuracy was high only after the

choice (Figure 8A, black arrow). As the animals gained experi-

ence, high classification accuracy occurred progressively earlier

in the trial, eventually long before the choice (Figure 8A, gray ar-

row). This resulted in a negative correlation between mouse per-

formance and the onset of super-threshold decoding accuracy

(Figures 8C, left, and 8E, black).

Importantly, the choice signal emerged at the same time in

both populations, and its magnitude and timing were matched

for the two cell types throughout learning (Figures 8A–8C, center

and right, and 8D and 8E, blue and red). This was not due to the

presence of more correct trials in later sessions; an improvement

in classification accuracy was clear even when the number of

correct trials wasmatched for each session (Figure S13C). These

findings indicate that learning induces the simultaneous emer-

gence of choice-specific subpopulations in excitatory and inhib-

itory cells in the PPC.

Notably, the animal’s licking or running behavior could not

explain the learning-induced changes in the magnitude of clas-

sification accuracy (Figure S12). The center-spout licks preced-

ing left versus right choices were similar during the course of

learning (Figure S12A) and did not differ on early versus late

training days (Figure S12B). The similarity in lick movements

for early versus late sessions contrasts the changes in classifi-

cation accuracy for early versus late sessions (Figure 8). We

also assessed running behavior during learning (Figures S12C

and S12D). In some sessions, the running distance differed pre-

ceding left versus right choices (Figure S12C). Nonetheless,

when we restricted our analysis to days on which the running

distance was indistinguishable for the two choices (0–97 ms

before the choice, t test, p > 0.05), classifiers could still accu-

rately predict the choice (Figure S12D). These observations pro-

vide reassurance that population activity does not entirely

reflect preparation of licking and running movements and argue

instead that population activity reflects the animal’s stimulus-

informed choice.

Finally, we studied how correlations changed over training.

Pairwise correlations in neural activity were higher early in

training, whenmice were novices, compared with late in training,

when mice approached expert behavior (Figure 8F, unsaturated

colors above saturated colors). This was observed for all combi-

nations of neural pairs (Figure 8F). These findings agree with

previous reports suggesting that learning results in reduced

noise correlations (Gu et al., 2011; Jeanne et al., 2013; Khan

et al., 2018; Ni et al., 2018), enhancing information in neural

populations. To test whether the learning-induced increase in
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Figure 8. Learning Leads to Improved Choice Decoding, an Increased Fraction of Choice-Selective Neurons, and Reduced Noise Correla-

tions in Both Populations

(A) Decoder accuracy for each training session for all neurons (left), subsampled excitatory neurons (center), and inhibitory neurons (right). White vertical line,

choice; rows, average across cross-validated samples, example mouse. The color bar applies to both plots.

(B) Scatterplot of classifier accuracy (0–97 ms before choice) versus behavioral performance (fraction correct on easy trials) for all training days. r, Pearson

correlation coefficient (p < 0.001 in all plots); same examplemouse as in (A). Correlations for behavior versus classification accuracy for all neurons, excitatory and

inhibitory: 0.55, 0.35, and 0.32 in mouse 2; 0.57, 0.63, and 0.32 in mouse 3. Correlations for behavior versus choice-signal onset for all neurons, excitatory and

inhibitory: �0.60, �0.34, and �0.38 in mouse 2; �0.60, �0.27, and �0.28 in mouse 3. All values, p < 0.05.

(C) Same as (B) but showing the onset of choice signal (the first moment in the trial that classifier accuracy was above chance, relative to choice onset) versus

behavioral performance.

(D) Summary of classification accuracy averaged across early (dim colors) versus late (dark colors) training days.

(E) Same as (D) but showing choice signal onset (milliseconds).

(F) Same as (D) but showing pairwise noise correlation coefficients. EI, excitatory-inhibitory.

(G) The fraction of choice-selective neurons increases over training; average across early (dim colors) and late (dark colors) training days (0–97 ms before the

choice). Early days, first few training days onwhich the animal’s performance was lower than the 20th percentile of performance across all days; late days, training

days on which performance was above the 80th percentile of performance across all days.
classification accuracy (Figures 8A, 8B, and 8D) was entirely a

consequence of the reduction in noise correlations (Figure 8F),

we studied how the classification accuracy of pseudopopula-

tions, which lack noise correlations, changed with training. Inter-

estingly, a significant increase in the classification accuracy of

pseudopopulations was present (Figures S13A and S13B).

Therefore, the reduction in noise correlations cannot alone ac-

count for the improved classification accuracy during learning,

suggesting that increased choice selectivity of individual neu-

rons also contributes. Indeed, the fraction of choice-selective
neurons increased 3-fold during training in both excitatory and

inhibitory neurons (Figure 8G).

DISCUSSION

Despite a wealth of studies assessing the selectivity of inhibitory

neurons for sensory features, little is known about the selectivity

of inhibitory neurons in decision-making. This is a critical gap and

has left untested key features of decision-making models relying

on inhibitory neurons. To close this gap, we simultaneously
Neuron 105, 165–179, January 8, 2020 175



measured excitatory and inhibitory populations during percep-

tual decisions about multisensory stimuli.

We found that excitatory and inhibitory neurons predict the an-

imal’s impending choice with equal fidelity (Figures 2 and 3). This

result, along with our modeling (Figure 5), constrains circuit

models of decision-making, ruling out models in which inhibitory

neurons receive completely nonspecific input from excitatory

populations (Figure 5A). Instead, our findings suggest that spe-

cific functional subnetworks exist within inhibitory populations,

just like in excitatory populations (Figure 5B). This implies tar-

geted connectivity between excitatory and inhibitory neurons

(Yoshimura and Callaway, 2005; Znamenskiy et al., 2018) and

supports circuit architectures with functionally specific, recipro-

cally connected subnetworks.

A documented advantage of signal-selective architectures is

that they can offer improved stability (Znamenskiy et al., 2018)

and robustness to perturbations (Lim and Goldman, 2013). How-

ever, in our circuit, selectivity did not improve stability but instead

improved performance; the classification accuracy for the

signal-selective model was the highest of the three we tested

(Figure 5B, bottom row; Figure S9). These observations raise

the possibility that, among possible circuit architectures that

could have been leveraged by the brain to support decision-

making, the highest-performing one was chosen.

The equal selectivity for choice we observed in excitatory and

inhibitory populations is perhaps, at first, surprising, given the

broad stimulus tuning curves observed inmost V1 inhibitory neu-

rons (Sohya et al., 2007; Niell and Stryker, 2008; Kerlin et al.,

2010; Bock et al., 2011; Hofer et al., 2011; Znamenskiy et al.,

2018; but see Runyan et al., 2010) and the dense connectivity

for inhibitory neurons (Hofer et al., 2011; Packer and Yuste,

2011; Znamenskiy et al., 2018). Two differences between our

study and previous ones may explain why we saw equal selec-

tivity in excitatory and inhibitory populations.

First, we measured neural activity in the PPC where the pro-

portion of interneuron subtypes differs from V1; V1 is enriched

for parvalbumin (PV) interneurons relative to somatostatin

(SOM) and vasoactive intestinal polypeptide (VIP) neurons,

whereas the opposite is true in association areas (Kim et al.,

2017; Wang and Yang, 2018). Moreover, interneuron subtypes

vary in their specificity of connections (Pfeffer et al., 2013); for

instance, PV interneurons have broader tuning than SOM and

VIP cells (Wang et al., 2004; Ma et al., 2010). Therefore, the

strong selectivity we found in all GABAergic interneurons in the

PPCmay not contradict the broad selectivity observed in studies

largely performed on PV interneurons in V1. Future studies that

measure the selectivity of distinct interneuron populations during

decision-making in V1 versus the PPC will be helpful. Here we

measured all GABAergic interneurons instead of individual inter-

neuron subtypes because of the technical challenge of reliably

identifying more than two cell types in a single mouse and

because of the importance of simultaneously measuring the ac-

tivity of excitatory and inhibitory neurons within the same sub-

ject. Had we lacked within-mouse measurements, our ability to

compare excitatory versus inhibitory neurons would have been

compromised by mouse-to-mouse variability (note the matched

selectivity of excitatory and inhibitory neurons within mice in Fig-

ure 3C despite overall variability across mice).
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Second, analyzing neural activity in the context of decision-

making naturally led us to make different comparisons than

those carried out previously. For example, we measured selec-

tivity for a binary choice, whereas sensory tuning curves are

measured in response to continuously varying stimuli (e.g.,

orientation). Further, we measured activity in response to ab-

stract stimuli, the meaning of which was learned gradually by

the animal. This may recruit circuits that differ from those sup-

porting sensory processing in passively viewing mice. Finally,

we used stochastically fluctuating multisensory stimuli, which

have not been evaluated in mouse V1. Future studies that

examine the tuning of V1 neurons to the sensory stimulus used

here will determine whether V1 inhibitory neurons will be as

sharply tuned as excitatory neurons to the stimulus. This is a

possibility; the tuning strength of interneurons can vary substan-

tially for different stimulus features. For instance, PV neurons in

V1 have particularly poor tuning to orientation, but their tempo-

ral-frequency tuning is considerably stronger (Znamenskiy

et al., 2018).

We not only studied expert animals but also evaluated how

acquiring expertise modulates activity. We observed that

learning increased the number of choice-selective neurons

and decreased noise correlations, indicating plasticity and

reorganization of connections. Population responses preced-

ing the two choices thus became progressively more distinct

with training. Importantly, these changes occur in parallel in

excitatory and inhibitory cells. Our findings are partially in

agreement with those in V1, in which learning improves tuning

to sensory stimuli in excitatory (Schoups et al., 2001; Poort

et al., 2015; Khan et al., 2018) and some inhibitory (Khan

et al., 2018) neurons. However, V1 excitatory neurons have

stronger tuning to sensory stimuli early in training (Khan et al.,

2018); in contrast, in our study, the magnitude of choice selec-

tivity in the PPC was the same for both cell types throughout

training (Figure 8). Primate studies have likewise observed

that perceptual learning changes the selectivity of neurons

(Freedman and Assad, 2006; Law and Gold, 2008; Viswanathan

and Nieder, 2015) and reduces noise correlations (Gu et al.,

2011; Ni et al., 2018).

Finally, we demonstrated that learning-induced changes in

selectivity were closely associated with changes in animal per-

formance, in keeping with primate studies of decision-making

(Law and Gold, 2008). This, together with our finding that

changes in population activity do not purely reflect movements

(Figure S12), corroborates the suggested role of the PPC inmap-

ping sensation to action (Law and Gold, 2008; Raposo et al.,

2014; Pho et al., 2018). Future experiments using causal manip-

ulations will reveal whether the increased choice selectivity we

observed in the PPC originates there or is inherited from else-

where in the brain.

By measuring cell-type-specific activity in the parietal cortex

during decision-making, we observed that excitatory and inhib-

itory populations are equally choice selective and that these

ensembles emerge in parallel as mice become skilled decision-

makers. These results argue against models with non-specific

connectivity between excitatory and inhibitory neurons, at least

in decision circuits. Future modeling efforts can incorporate sub-

networks and evaluate their effect on keymodel outputs, such as



reaction time distributions and firing rates. Such studies will shed

light on how microcircuits of inhibitory and excitatory neurons

vary across areas in their selectivity and specificity of connec-

tions and will reveal the circuit architectures that allow equally

selective inhibitory and excitatory neurons.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Anne K. Churchland

(churchland@cshl.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Gad2-IRES-CRE (Taniguchi et al., 2011) micewere crossedwith Rosa-CAG-LSL-tdTomato-WPRE (aka Ai14;Madisen et al., 2010) to

create mice in which all GABAergic inhibitory neurons were labeled. Adult mice (�2-month old; female and male) were used in the

experiments.

METHOD DETAILS

Surgical procedure
Meloxicam (analgesic), dexamethasone (anti-inflammatory) and Baytril (enrofloxacin; anti-biotic) were injected 30min before surgery.

Using a biopsy punch, a circular craniotomy (diameter: 3mm) was made over the left PPC (stereotaxic coordinates: 2 mm posterior,

1.7 mm lateral of bregma (Harvey et al., 2012) under isoflurane (�5%) anesthesia. Pipettes (10-20 um in diameter, cut at an angle to

provide a beveled tip) were front-filled with AAV9-Synapsin-GCaMP6f (U Penn, Vector Core Facility) diluted 2X in PBS (Phosphae-

buffered saline). The pipette was slowly advanced into the brain (Narishige MO-8 hydraulic micro-manipulator) to make�3 injections

of 50nL, slowly over an interval of�5-10 min, by applying air pressure using a syringe. Injections were made near the center of crani-

otomy at a depth of 250-350 mm below the dura. A glass plug consisting of a 5mm coverslip attached to a 3mm coverslip (using

IR-curable optical bond, Norland) was used to cover the craniotomy window. Vetbond, followed by metabond, was used to seal

the window. All surgical and behavioral procedures conformed to the guidelines established by the National Institutes of Health

and were approved by the Institutional Animal Care and Use Committee of Cold Spring Harbor Laboratory.

Imaging
We used a 2-photon Moveable Objective Microscope with resonant scanning at approximately 30 frames per second (Sutter Instru-

ments, San Francisco, CA). A 16X, 0.8 NA Nikon objective lens was used to focus light on fields of view of size 512x512 pixels

(�575 mm x �575 mm). A Ti:sapphire laser (Coherent) delivered excitation light at 930nm (average power: 20-70 mW). Red

(ET670/50 m) and green (ET 525/50 m) filters (Chroma Technologies) were used to collect red and green emission light. The micro-

scope was controlled by Mscan (Sutter). In mice in which chronic imaging was performed during learning, the same plane was iden-

tified on consecutive days using both coarse alignment, based on superficial blood vessels, as well as fine alignment, using reference

images of the red channel (tdTomato expression channel) at multiple magnification levels. For each trial, imaging was started 500ms

before the trial-initiation tone, and continued 500ms after reward or time-out. We aimed to image in the center of the window for all

mice, but in one animal (Mouse 4), some tissue regrowth obscured the signal in this region and so imaging was performed slightly

further back.

Decision-making behavior
Mice were gradually water restricted over the course of a week, and were weighed daily. Mice harvested at least 1 mL of water per

behavioral/imaging session, and completed 100-500 trials per session. After approximately oneweek of habituation to the behavioral
e1 Neuron 105, 165–179.e1–e8, January 8, 2020
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setup, 15-30 training days were required to achieve 75% correct choice. Animal training took place in a sound isolation chamber. The

stimulus in all trials wasmultisensory, consisting of a series of simultaneous auditory clicks and visual flashes, occurring with Poisson

statistics (Brunton et al., 2013; Odoemene et al., 2018). Multisensory stimuli were selected because they increased the learning rate

of the mice, a critical consideration since GCaMP6f expression can be unreliable over a long period of time. Stimulus duration was

1000 ms. Each pulse was 5 ms; minimum interval between pulses was 32 ms, and maximum interval was 250 ms. The pulse rate

ranged from 5 to 27Hz. The category boundary formarking high-rate and low-rate stimuli was 16Hz, at which animals were rewarded

randomly on either side. The highest stimulus rates used here are known to elicit reliable, steady state flicker responses in retinal ERG

in mice (Krishna et al., 2002; Tanimoto et al., 2015).

Mice were on top of a cylindrical wheel and a rotary encoder was used to measure their running speed. Trials started with a 50 ms

initiation tone (Figure S1A). Mice had 5 s to initiate a trial by licking the center waterspout (Marbach and Zador, 2017), after which the

multisensory stimulus was played for 1 s. If mice again licked the center waterspout, they received 0.5 mL water on the center spout,

and a 50ms go cue was immediately played. Animals had to report a choice by licking to the left or right waterspout within 2 s. Mice

were required to confirm their choice by licking the same waterspout one more time within 300 ms after the initial lick (Marbach and

Zador, 2017). The ‘‘confirmation lick’’ helped dissociate the choice time (i.e., the time of first lick to the side waterspout), from the

reward time (i.e., the time of second lick to the side waterspout); it also helped with reducing impulsive choices. If the choice was

correct, mice received 2-4 mL water on the corresponding waterspout. An incorrect choice was punished with a 2 s time-out. The

experimenter-imposed inter-trial intervals (ITIs) were drawn from a truncated exponential distribution, with minimum, maximum,

and lambda equal to 1 s, 5 s, and 0.3 s, respectively. However, the actual ITIs could be much longer depending on when the animal

initiates the next trial. Bcontrol (Raposo et al., 2014) with a MATLAB interface was used to deliver trial events (stimulus, reward, etc)

and collect data.

Logistic regression model of behavior
A modified version of a logistic regression model in (Busse et al., 2011) was used to assess the extent to which the animal’s choice

depends on the strength of sensory evidence (how far the stimulus rate is from the category boundary at 16Hz), the previous choice

outcome (success or failure) and ITI, (the time interval between the previous choice and the current stimulus onset) (Figure S1B). The

model has the form

p =
1

1+ e�z
eq. 1
z = b0 + ðbr1R1 + br2R2 + br3R3 + br4R4 + br5R5 + br6R6Þ+ ðbs1S1 + bs2S2Þ+ ðbf1F1 + bf2F2Þ
where p is the probability of choosing left. Stimulus strength (R) was divided into 6 bins (R1 to R6). Previous success (S) was divided

into 2 bins (S1 toS2), withS1 referring to success after a long ITI (> 7sec) andS2 to success after a short ITI (< 7sec). Previous failure (F)

was divided into 2 bins (F1 to F2), with F1 referring to failure after a long ITI and F2 to failure after a short ITI. For example, if a trial had

stimulus strength 3 Hz, and was preceded by a success choice with ITI 5 s, then R2 and S1 would be set to 1 and all other R, S and F

parameters to 0 (Figure S1B).

For each session the scalar coefficients b0, br1 to br6, bs1, bs2, bf1, and bf2were fit usingMATLAB glmfit.m. Figure S1B left shows br1
to br6. Figure S1B middle shows bs1 and bs2, and Figure S1B right shows bf1 and bf2.

ROI (region of interest) extraction and deconvolution
The recorded movies from all trials were concatenated and corrected for motion artifacts by cross-correlation using Discrete Fourier

Transform (DFT) registration (Guizar-Sicairos et al., 2008). Subsequently, active ROIs (sources) were extracted using the Constrained

Nonnegative Matrix Factorization (CNMF) algorithm (Pnevmatikakis et al., 2016) as implemented in the CaImAn package (Giovan-

nucci et al., 2019) in MATLAB. The traces of the identified neurons were DF/F normalized and then deconvolved by adapting the

FOOPSI deconvolution algorithm (Vogelstein et al., 2010; Pnevmatikakis et al., 2016) to a multi-trial setup. This was necessary

because simply concatenating individual trials would lead to discontinuities in the traces, which could distort estimates of the

time constants. Each value of Foopsi deconvolution represents spiking activity at each frame for a given neuron. We have referred

to the deconvolved values as ‘‘inferred spiking activity’’ throughout the paper. The deconvolved values do not represent absolute

firing rates, so they cannot be compared across neurons. However, for a particular neuron, higher inferred spiking activity means

higher firing rate. We elected to base our analyses on inferred spiking activity rather than fluorescence activity because peak ampli-

tudes and time constants of the fluorescence responses vary across neurons, affecting subsequent analyses (Machado et al., 2015;

Helmchen and Tank, 2019).

We adapted the FOOPSI for multi-trial setup as follows. For each component, the activity trace over all the trials was used to deter-

mine the time constants of the calcium indicator dynamics as in (Pnevmatikakis et al., 2016). Then the neural activity during each trial

was deconvolved separately using the estimated time constant and a zero baseline (since the traces were DF/F normalized). A dif-

ference of exponentials was used to simulate the rise and decay of the indicator.
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Neuropil Contamination removal
The CNMF algorithm demixes the activity of overlapping neurons. It takes into account background neuropil activity bymodeling it as

a low rank spatiotemporal matrix (Pnevmatikakis et al., 2016). In this study a rank twomatrix was used to capture the neuropil activity.

To evaluate its efficacy, we compared the traces obtained from CNMF to the traces from a ‘‘manual’’ method similar to (Chen et al.,

2013; Figure S14): the set of spatial footprints (shapes) extracted fromCNMFwere binarized by thresholding each component at 20%

of its maximum. The binary masks were then used to average the raw data and obtain an activity trace that also included neuropil

effects. To estimate the background signal, an annulus around the binary mask was constructed with minimum distance 3 pixels

from the binary mask and width 7 pixels (Figure S14A). The average of the raw data over the annulus defined the background trace,

which was subtracted from the activity trace. The resulting trace was then comparedwith the CNMF estimated temporal trace for this

activity. The comparison showed a very high degree of similarity between the two traces (Figure S14; example component; r = 0.96),

with the differences between the components being attributed to noise and not neuropil related events. Note that this ‘‘manual’’

approach is only applicable in the case when the annulus does not overlap with any other detected sources. These results demon-

strate the ability of the CNMF framework to properly capture neuropil contamination and remove it from the calcium traces.

ROI inclusion criteria
We excluded poor-quality ROIs identified by the CNMF algorithm based on a combination of criteria: 1) size of the spatial component,

2) decay time constant, 3) correlation of the spatial component with the raw ROI image built by averaging spiking frames, 4) corre-

lation of the temporal component with the raw activity trace, and 5) the probability of fluorescence tracesmaintaining values above an

estimated signal-to-noise level for the expected duration of a calcium transient(Giovannucci et al., 2019) (GCaMP6f, frame rate:

30Hz). A final manual inspection was performed on the selected ROIs to validate their shape and trace quality.

Identification of inhibitory neurons
We used a two-stepmethod to identify inhibitory neurons. First, we corrected for bleed-through from green to red channel by consid-

ering the following regression model,

r iðtÞ = bi1p + sgiðtÞ+ e (Equation 2)

where, r iðtÞ and giðtÞare vectors, indicating pixel intensity in red and green channel, respectively, with each component of the vector

corresponding to one pixel in the ROI, i labels ROI (presumably each ROI is a neuron), bi is the offset, 1p is a vector whose components

are all 1, and s is the parameter that tells us how much of the green channel bleeds through to the red one.

It is the parameter s that we are interested in. To find s, we define a cost function, C,

C =

Z
dt
X
i

��r iðtÞ � bi1p + sgiðtÞ
�� 2 (Equation 3)

and minimize it with respect to s and all the bi. The value of s at the minimum reflects the fraction of bleed-through from the green to

the red channel. That value, denoted s*, is then used to compute the bleedthrough-corrected image of the red-channel, denoted I via

the expression

I = R� s�G (Equation 4)

where R and G are the time-averaged images of the red and green channels, respectively.

Once the bleedthrough-corrected image, I, was computed, we used it to identify inhibitory neurons using two measures,

1) A measure of local contrast, by computing, on the red channel (I, Equation 4), the average pixel intensity inside each ROI

mask relative to its immediate surrounding mask (width = 3 pixels). Given the distribution of contrast levels, we used two

threshold levels, TE and TI, defined, respectively, as the 80th and 90th percentiles of the local contrast measures of all ROIs.

ROIs whose contrast measure fell above TI were identified as inhibitory neurons. ROIs whose contrast measure fell below

TEwere identified as excitatory neurons, and ROIs with the contrast measure in between TE and TI were not classified as either

group (‘‘unsure’’ class).

2) In addition to a measure of local contrast, we computed for each ROI the correlation between the spatial component (ROI im-

age on the green channel) and the corresponding area on the red channel. High correlation values indicate that the ROI on the

green channel has a high signal on the red channel too; hence the ROI is an inhibitory neuron.We used this correlationmeasure

to further refine the neuron classes computed from the local contrast measure (i.e., measure 1 above). ROIs that were identified

as inhibitory based on their local contrast (measure 1) but had low red-green channel correlation (measure 2), were reset as

‘‘unsure’’ neurons. Similarly, ROIs that were classified as excitatory (based on their local contrast) but had high red-green chan-

nel correlation were reclassified as unsure. Unsure ROIs were included in the analysis of all-neuron populations (Figure 3A left);

but were excluded from the analysis of excitatory only or inhibitory only populations (Figure 3Amiddle, right). Finally, wemanu-

ally inspected the ROIs identified as inhibitory to confirm their validity. This method resulted in 11% inhibitory neurons, which is

within the range of previous studies (10%–20%: Rudy et al., 2011); (15%: Beaulieu, 1993); (16%: Gabbott et al., 1997); (< 5%:

de Lima and Voigt, 1997); (10%–25%: de Lima et al., 2009).
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ROC analysis
The area under the ROC curve (AUC) was used tomeasure the choice preference of single neurons. Choice selectivity was defined as

the absolute deviation of AUC from chance level: choice selectivity = 2*jAUC-0.5j. To identify significantly choice-selective neurons,

for each neuron we performed ROC on shuffled trial labels (i.e., left and right choices were randomly assigned to each trial). This pro-

cedure was repeated 50 times to create a distribution of shuffled AUC values for each neuron (Figure S3A, ‘‘shuffled’’). A neuron’s

choice selectivity was considered to be significant if the probability of the actual AUC (Figure S3A, ‘‘real’’) being drawn from the shuf-

fled AUC distribution was less than 0.05. Time points from 0–97 ms before the decision were used to compute the fraction of choice-

selective neurons (Figures 2B and 8G).

Decoding population activity
A linear SVM (Python sklearn package) was trained on each bin of the population activity in each session (non-overlapping 97ms time

bins). To break any dependencies on the sequence of trials, we shuffled the order of trials for the entire population. To avoid bias in

favor of one choice over the other, wematched the number of left- and right-choice trials used for classifier training. L2 regularization

was used to avoid over-fitting. 10-fold cross validation was performed by leaving out a random 10% subset of trials to test the

classifier performance, and using the remaining trials for training the classifier. This procedure was repeated 50 times. A range of

regularization values was tested, and the one that gave the smallest error on the validation dataset was chosen as the optimal reg-

ularization parameter. Classifier accuracy was computed as the percentage of testing trials in which the animal’s choice was accu-

rately predicted by the classifier, and summarized as the average across the 50 repetitions of trial subsampling. A minimum of 10

correct trials per choice was required in order to run the SVM on a session. Inferred spiking activity of each neuron was z-scored

before running the SVM.

When comparing classification accuracy for excitatory versus inhibitory neurons, the excitatory population was randomly sub-

sampled to match the population size of inhibitory neurons to enable a fair comparison (Figure 3, blue versus red). To compare

the distribution of weights in the all-neuron classifier (Figure 3 black), the weight vector for each session was normalized to unity

length (Figures 3D–3F).

When decoding the stimulus category (Figure S6B), we used stimulus-aligned trials, and avoided any contamination by the choice

signal by sub-selecting equal number of left and right choice trials for each stimulus category. When decoding trial outcome (Fig-

ure S6C), we used outcome-aligned trials, and avoided contamination by the choice or stimulus signal by subselecting equal number

of trials from left and right choice trials for each trial outcome.

Stability
To test the stability of the population code, decoders were trained and tested at different time bins (Kimmel et al., 2016; Figure 4). To

avoid the potential effects of auto-correlation, we performed cross validation not only across time bins, but also across trials. In other

words, even though the procedure was cross validated by testing the classifier at a time different from the training time, we added

another level of cross-validation by testing on a subset of trials that were not used for training. This strict method allowed ourmeasure

of stability duration to be free of auto-correlation effects.

As an alternative measure of stability, the angle between pairs of classifiers that were trained at different moments in the trial was

computed (Figure S7C). Small angles indicate alignment, hence stability, of the classifiers. Large angles indicate misalignment, i.e.,

instability of the classifiers.

Noise correlations
To estimate noise correlations, the order of trials was shuffled for each neuron independently. Shuffling was done within the trials of

each choice, hence retaining the choice signal, while de-correlating the population activity to remove noise correlations. Then we

classified population activity in advance of left versus right choice (at time bin 0–97 ms before the choice) using the de-correlated

population activity. This procedure was performed on neural ensembles of increasingly larger size, with the most selective neurons

(the ones with the largest value of jAUC-0.5j) added first (Figure 7A). To summarize how noise correlations affected classification

accuracy in the population (Figure 7B), we computed, for the largest neural ensemble (Figure 7A, max value on the horizontal

axis), the change in classifier accuracy in the de-correlated data (‘‘pseudo populations’’) versus the original data. This analysis

was only performed for the entire population; the small number of inhibitory neurons in each session prevented a meaningful com-

parison of classification accuracy on real versus pseudo populations.

To measure pairwise noise correlations, we subtracted the trial-averaged response to a particular choice from the response of

single trials of that choice. This allowed removing the effect of choice on neural responses. The remaining variability in trial-by-trial

responses can be attributed to noise correlations, measured as the Pearson correlation coefficient for neuron pairs. We also

measured noise correlations using the spontaneous activity defined as the neural responses in 0-97 ms preceding the trial initiation

tone (Figures S10A and S10C). We computed the pairwise correlation coefficient (Pearson) for a given neuron with each other neuron

within an ensemble (e.g., excitatory neurons). The resulting coefficients were then averaged to generate a single correlation value for

that neuron. This was repeated for all neurons within the ensemble (Figure 6).

To compute pairwise correlations on excitatory and inhibitory neurons with the same inferred spiking activity (Figures S10D and

S10E), we computed the median inferred spiking activity across trials for individual excitatory and inhibitory neurons in a session.
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The medians were then divided into 50 bins. The firing-rate bin that included the maximum number of inhibitory neurons was iden-

tified (‘‘max bin’’); inhibitory and excitatory neurons whose firing rate was within this ‘‘max bin’’ were used for the analysis. The firing

rates were matched for these neurons because their median firing rate was within the same small bin of firing rates. Pairwise corre-

lations were then computed as above.

Learning analysis
In 3 of themice, the same field of viewwas imaged each session during learning. This was achieved in twoways. First, the vasculature

allowed a coarse alignment of the imaging location from day to day. Second, the image from the red channel was used for a finer

alignment. Overall, most neurons were stably present across sessions (Figure S11). This suggests that we likely measured activity

from a very similar population each day. Importantly, however, our conclusions do not rely on this assumption: our measures and

findings focus on learning-related changes in the PPC population overall, as opposed to tracking changes in single neurons. To

assess how population activity changed over learning, we evaluated classification accuracy each day, training a new decoder for

each session. This approach allowed us to compute the best decoding accuracy for each session.

‘‘Early days’’ (Figure 8; Figures S12 and S13) included the initial training days in which the animal’s performance, defined as the

fraction of correct choices on easy trials, was lower than the 20th percentile of performance across all days. ‘‘Late days’’ (Figure 8;

Figures S12 and S13) included the last training days in which the animal’s behavioral performance was above the 80th percentile of

performance across all days.

To measure the timing of decision-related activity (Figures 8C and 8E), we identified all sessions in which classifier accuracy was

significantly different than the shuffle (t test, p < 0.05) over a window of significance that was at least 500 ms long. We defined the

‘‘choice signal onset’’ (Figures 8C and 8E) as the trial time corresponding to the first moment of that window. Sessions in which the

500 ms window of significance was present are included in Figure 8C. The number of points (and hence the relationship between

session number and color in Figure 8C) differs slightly across the three groups. This is because on some sessions, the window of

significance was present in one group but not another. For example, in a session the population including all neurons might have

a 500 ms window of significance, hence it will contribute a point to Figure 7C left, while the population with only inhibitory neurons

might be only transiently significant for < 500ms, hence it will be absent from Figure 8C right.

Modeling decision circuits
We considered a linearized rate network of the form

dnE

dt
= � nE +WEE,nE �WEI,nI +hs + xE

dnI

dt
= � nI +WIE,nE �WII,nI + xI

where E and I refer to the excitatory and inhibitory populations, respectively, nE and nI are vectors of firing rates (nE = nE1; nE2;., and

similarly for nI),WEE ,WEI,WIE andWII are the connectivity matrices (WEI indicates connection from inhibitory to excitatory neuron), hs

is the input, with s either 1 or 2 (corresponding to left and right licks), and x is trial to trial noise, taken to be zero mean and Gaussian,

with covariance matrices

hxExEi=SEE

hxIxIi=SII:

For the input we’ll assume that about half the elements of hs are h0 for the rightward choice and � h0for the leftward choice, and the

rest are �h0 for the rightward choice and h0 for the leftward choice. We used h0 = 0:1. The noise covariance is diagonal but non-

identity, with diagonal elements distributed as

ffiffiffiffiffiffiffiffiffiffi
SEE;ii

p � Unif

�
s� d

2
; s+

d

2

�
ffiffiffiffiffiffiffiffi
SII;ii

p � Unif

�
s� d

2
;s+

d

2

�
:

The goal is to determine the value of s (that is, determine whether h1 or h2 was present) given the activity of a subset of the neurons

from either the excitatory or inhibitory populations. We’ll work in steady state, for which

nE =WEE,nE �WEI,nI +hs + xE
nI =WIE,nE �WII,nI + xI:

Solving for nE and nI yields

nE = JE,
�
hs + xE � ~WEI,xI

�
nI = JI,

�
xI + ~WIEðhs + xEÞ
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where

JEh
�
I�WEE + ~WEI,WIE

��1

JIh
�
I+WII + ~WIE,WEI

��1

~WEIhWEIðI+WIIÞ�1

~WIEhWIEðI�WEEÞ�1
;

and I is the identity matrix. We are interested in the decoding accuracy of a sub-population of neurons. For that we’ll use a matrix Dn

that picks out n components of whatever it’s operating on. So, for instance,Dn,nE is an n-dimensional vector with components equal

to n of the components of nE .

For a linear and Gaussian model such as ours, in which the covariance is independent of s, we need two quantities to compute the

performance of an optimal decoder: the difference in the means of the subsampled populations when h1 versus h2 are present, and

covariance matrix of the subsampled populations. The difference in means are given by

DhDn,nEi=Dn,JE,Dh
DhDn,nIi=Dn,JI, ~WIE,Dh

where Dh is the difference between the two inputs,

Dhhh1 � h2:

The covariances are given by

Cov½Dn,nE �=Dn,JE,
h
SEE + ~WEI,SII, ~W

T

EI

i
,JT

E,D
T
n

Cov½Dn,nI�=Dn,JI,
h
SII + ~WIE,SEE, ~W

T

IE

i
,JT

I ,D
T
n

where T denotes transpose. Combining the mean and covariance gives us the signal to noise ratio,

ðS=NÞE =Dh,JT
E,D

T
n,
�
Dn,JE,

h
SEE + ~WEI,SII, ~W

T

EI

i
,JT

E,D
T
n

��1

,Dn,JE,Dh

ðS=NÞI =Dh, ~W
T

IE,J
T
I ,D

T
n,
�
Dn,JI,

h
SII + ~WIE,SEE, ~W

T

IE

i
,JT

I ,D
T
n

��1

,Dn,JI, ~WIE,Dh :

The performance of an optimal decoder is then given by

fraction correct = F

 ffiffiffiffiffiffiffiffiffi
S=N

p
ffiffiffi
2

p
!

whereF is the cumulative normal function. All of our analysis is based on this expression. Differences in fraction correct depend only

on differences in the connectivity matrices, which we describe next.

Connectivity matrices
We consider three connectivity structures: completely non-selective, signal-selective, and signal-to-noise selective (corresponding

to Figures 5A–5C, respectively). In all cases the connectivity is sparse (the connection probability between any two neurons is 0.1).

What differs is the connection strength when neurons are connected. We describe below how the connection strength is chosen for

our three connectivity structures.

Non-selective

The connectivity matrices have the especially simple form

Wab;ij =

8><
>:

wabffiffiffiffiffiffiffi
cN

p with probability c

0 otherwise

where a; b˛fE; Ig, NðhNE +NIÞ is the total number of neurons, and wab are parameters.

Signal-selective

We divide the neurons into two sets of excitatory and inhibitory sub-populations, as in Figure 5B. The connection strengths are still

given by the above expression, but now a and b acquire subscripts that specify which population they are in: a; b˛fE1;E2;I1;I2g, with

E1 and I1 referring to population 1 and E2 and I2 to population 2. The within-population connection strengths are the same as for the

non-selective population ðwaibi = wab; i = 1;2Þ, but the across-population connection strengths are smaller by a factor of r,

wai ;bj

wai ;bi

= r
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for i = 1 and j = 2 or vice-versa. The value of r determines how selective the sub-populations are: r= 0 corresponds to completely

selective sub-populations while r= 1 corresponds to the completely non-selective case.

SNR- selective

We choose the connectivity as in the non-selective case, and then change synaptic strength so that the inhibitory neurons receive

stronger connections from the excitatory neurons with high signal to noise ratios. To do that, we first rank excitatory units in order of

ascending signal to noise ratio (by using D1 in the expression for ðS=NÞE in the previous section).

WIE;ij/WIE;ij

�
rj
NE

�4

where rj is the rank of excitatory j in the order of ascending signal to noise ratio and, recall,NE is the number of excitatory neurons. This

downweights projections from low signal to noise ratio excitatory neurons and upweights connections from high signal to noise ratio

neurons. Finally, all elements are scaled to ensure that the average connection strength from the excitatory to the inhibitory network is

the same as before the substitution.

Simulation details
d Noise level ðsÞ = 1.25

d Breadth of noise level distribution ðdÞ = 0.75

d Excitatory / excitatory coupling ðwEEÞ = 0.25

d Inhibitory / inhibitory coupling ðwIIÞ = �2

d Excitatory / inhibitory coupling (reference) ðwð0Þ
IE Þ = 0.87

d Inhibitory / excitatory coupling (reference) ðwð0Þ
EI Þ = �0.87

d Connection probability ðcÞ = 0.1

d Number of excitatory neurons ðNEÞ = 4000

d Number of inhibitory neurons ðNIÞ = 1000

d Number of readout neurons ðnÞ = 50

d Input strength ðh0Þ = 0.1

d Selectivity index ðrÞ = 0.75

The simulation parameters are indicated above. In addition, there are a number of relevant details, the most important of which is

related to the input, hs. Asmentioned in the previous section, about half the elements of hs are h0 for the rightward choice and� h0 for

the leftward choice, and the rest are h0 for the leftward choice�h0 for the rightward choice. This is strictly true for the completely non-

selective and signal to noise selective connectivity; for the signal selective connectivity, we use hs;i = h0 for the rightward choice and�
h0 for the leftward choice when excitatory neuron i is in population 1, and hs;i = h0 for the leftward choice and �h0 for the rightward

choice when excitatory neuron i is in population 2. In either case, however, this introduces a stochastic element: for the completely

non-selective and signal to noise selective connectivities, there is randomness in both the input and the circuit; for the signal selective

connectivity, there is randomness in the circuit. In the former case, we can eliminate the randomness in the connectivity by averaging

over the input, as follows.

Because the components of Dh are independent, we have�
Dhs;iDhs;j

	
= dij

D
Dh2

s;i

E
where dij is the Kronecker delta (dij = 1 if i = j and zero otherwise). Because Dhs;i is either + h0 or � h0, we have

hDhDhi = 4h2
0I

where I is the identity matrix. Thus, when we average the signal to noise ratios over Dh, the expressions simplify slightly,�ðS=NÞE	
4h2

0

= trace


�
Dn,JE,

h
SEE + ~WEI,SII, ~W

T

EI

i
,JT

E,D
T
n

��1

,Dn,JE,J
T
E,D

T
n

�
�ðS=NÞI	

4h2
0

= trace


�
Dn,JI,

h
SII + ~WIE,SEE, ~W

T

IE

i
,JT

I ,D
T
n

��1

,Dn,JI, ~WIE, ~W
T

IE,J
T
I ,D

T
n

�
:

To avoid having to numerically average over input, we used these expressions when computing decoding accuracy for the

completely non-selective and signal to noise selective connectivity. That left us with some randomness associated with the networks

(as connectivity is chosen randomly), but that turned out to produce only small fluctuations, so each data point in Figures 5A and 5C

was from a single network. For the signal selective connectivity (Figure 5B), the network realization turned out to matter, so we aver-

aged over 25 networks, and for each of them we did a further averaging over 100 random picks of the 50 neurons from which we

decoded.
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In Figure 5, the x axis is the ratio of the average connection strength from excitatory to inhibitory neurons to the average connection

strength from inhibitory to excitatory neurons. This was chosen because it turned out to be the connectivity parameter with the largest

effect on decoding accuracy. That in turn is because it turns out to be equivalent to the input noise to the inhibitory population. To see

why, make the substitution

WIE/gWIE

WEI/g�1WEI:

By letting nI/gnI, we see that this is formally equivalent to letting xI/g�1xI, which in turn corresponds to lettingSII/g�2SII. Thus the

x axis in Figure 5 can be thought of as the axis of decreasing input noise to the inhibitory neurons.

We produced a range of values for g by changing the coupling strengths between excitatory and inhibitory populations, while keep-

ing their product constant at a reference value

wIEwIE = w
ð0Þ
IE w

ð0Þ
EI

Immunofluorescence staining for TdTomato and GABA
To determine the fraction of inhibitory neurons that were labeled in our experiments, we performed double Immunofluorescence (IF)

staining using antibodies against tdTomato (anti-RFP(tdTomato) Rockland 600-401-379) and GABA (anti-GAD67(GABA) MAB5406,

EMDMillipore). Also, we usedDAPI to stain the nuclei (Figure S15; GABA: green; tdTomato: red; DAPI: blue). 5 coronal sectionswhich

included the area PPC (Allen Brain Atlas) were used to quantify the fraction of overlap betweenGABA and tdTomato.We foundGABA

and tdTomato highly colocalized (Figures S15B–S15D; red and green are co-expressed in the vast majority of cells): 98.2% of

tdTomato neurons expressed GABA, and all of the GABAergic neurons expressed tdTomato. These results indicate a very high level

of selectivity and specificity for the labeling of inhibitory neurons in GAD-Cre;Ai14 mice, confirming original reports for these trans-

genic lines (Taniguchi et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Our simultaneous imaging and decision-making dataset includes 135 sessions from 4 mice (45, 48, 7, and 35 sessions per mouse).

Median number of trials per session is 213, 253, 264, and 222, for each mouse. On average, 480 neurons were imaged per session,

out of which �40 neurons were inhibitory and �330 were excitatory. Approximately 100 neurons per session were not classified as

either excitatory or inhibitory since they did not meet our strict cell-type classification criteria (see below). In 3 of the mice, the same

group of neurons was imaged throughout learning (35-48 training days).

All analyses were performed on inferred spiking activity. Traces were down-sampled, so each bin was the non-overlappingmoving

average of 3 frames (97.1ms, whichwe refer to as 97ms). Inferred spiking activity for each neuronwas normalized so themax spiking

activity for each neuron equaled 1. The trace of each trial was aligned to the time of the choice (i.e., the time of the 1st lick to either of

the side waterspouts after the go tone). Two-tailed t test was performed for testing statistical significance. Summary figures including

all mice were performed on the time bin preceding the choice, i.e., 0-97 ms before choice onset. All reported correlations are Pear-

son’s coefficients. Analyses were performed in Python and MATLAB.

DATA AND CODE AVAILABILITY

All the data used in the paper are publicly available on CSHL repository: http://repository.cshl.edu/36980/. Further, all the data is

converted into the NWB format (Neurodata Without Boarders; Teeters et al., 2015; R€ubel et al., 2019), and is available on CSHL re-

pository: http://repository.cshl.edu/id/eprint/37693

Code for data processing and analysis is publicly available on github: https://github.com/farznaj/imaging_decisionMaking_exc_inh

Code for converting data to NWB format is also available on github: https://github.com/vathes/najafi-2018-nwb
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