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Most models of decision-making suggest that confidence, the

‘feeling of knowing’ that accompanies our choices, is

constructed as the decision unfolds. However, more recent

studies have noted that processes occurring after we commit

to a particular choice also affect this subjective belief. This

leads to the following question: when are we better judges of

ourselves? If, after a decision, evidence continues to

accumulate in an unbiased manner, then our confidence

judgements should improve. Conversely, if post-decisional

information processing is biased, our sense of confidence

could be distorted, and so our confidence judgements should

degrade with time. We briefly discuss recently proposed

models of post-decisional evidence accumulation, and explore

whether, and how, biases in confidence could arise.
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Introduction
Humans and other animals integrate noisy sensory input

to infer the state of the world, and guide action and choice

[1]. Action selection is accompanied by a ‘sense of confi-

dence’, a subjective feeling about the validity of the

choice [2]. Much of the psychology and neuroscience

of decision making has focused on understanding the

computations that underlie this subjective belief. Several

different models for computing confidence have been

proposed (signal detection theory [3,4�], sequential sam-

pling [5–7], Bayesian inference [8��,9��], heuristics [10],

etc.) and they have been compared with explicit reports in

humans [4�,5,6,8��,9��] and with implicit estimates of

confidence in non-human animals [3,7]. Until recently,

most of these models assumed that confidence is a deci-

sional process, that is, that it is computed by the same

circuitry that drives choice or, at the very least, that it is
www.sciencedirect.com 
constructed during the decision. This assumption rests on

a vast corpus of neurophysiological evidence in rodents

[3] and monkeys [7] showing that changes in stimulus

reliability (e.g., the coherence of moving dots) modulate

the firing of neurons that predict both choice accuracy and

confidence [11].

In sharp contrast to this perspective, several more recent

experiments have concluded that our sense of confidence

is also determined by processes that occur well after we

commit to a choice [12,13�,14–16,17�,18,19�]. This ob-

servation leads to several questions: What are the con-

sequences of such post-decisional processing of

confidence? How does it affect the accuracy of this

subjective belief? For example, should we trust our

immediate (gut) feeling of confidence, or is it better to

take our time and ‘gain perspective’? Here, we review

state-of-the-art  models of confidence and explore possi-

ble answers to these questions. In particular, we focus on

how post-decisional processes affect our ‘metacognitive

accuracy’, namely, the extent to which our confidence is

consistent with our probability of being correct [20]. Far

from being idle curiosity, knowing when we are better

judges of ourselves could benefit us in several ways: it

could help us cooperate effectively [21,22��] and reduce

aversive counterfactual thinking [23] that otherwise

leads to negative emotions such as regret [24]. In addi-

tion, knowing the right time to gauge the validity of our

choices is essential for minimising distortions of confi-

dence [25] wherein confidence is no longer predictive of

objective accuracy (Box 1). These include overconfi-

dence [26] and confirmation bias [27]; both are system-

atically observed in human choices, and both contribute

to poor judgement and bad decisions [28].

Biases in post-decisional processing
The most straightforward experimental evidence that

subjects continue processing information after making

a decision is that they often express a desire to reverse

their initial choice [12,14]. These ‘changes of mind’ were

observed both in simple perceptual decisions [12], and in

a recognition memory task [14], and cannot be explained

by models that disregard post-decisional processing. Giv-

en that evidence continues to accumulate after a decision,

it would not be surprising if confidence changed as well.

And indeed, confidence sometimes depends on the

length of the inter-judgement interval, that is, the amount

of time between making a decision and giving a confi-

dence rating on that decision [16]. In line with these

observations, recent studies have suggested that post-

decisional neural signals correlate with [18] and causally

drive [19�] confidence judgements.
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Box 1 Distortions of confidence

From a normative viewpoint, an appealing property for a system that

reflects the validity of its choices is to be ‘well-calibrated’, that is, to

express high confidence only when it is likely to be correct and low

confidence otherwise. Because confidence ratings are metacogni-

tive judgements (i.e., decisions about decisions) this property is also

known as having high ‘metacognitive accuracy’ [52]. Many experi-

ments in real-life settings have shown, however, that humans are

very often miscalibrated. For example, we might ignore evidence

contradicting the option that we chose (‘confirmation bias’ [27]),

increase our confidence in predicted outcomes that seem to have a

consistent pattern (the ‘illusion of validity’ [10]), underestimate our

probability of being correct in hard scenarios, and overestimate it in

easier situations (the ‘hard-easy effect’ [26]). Among this rich

repertoire of cognitive illusions, the most widespread is ‘over-

confidence’ [28]. This bias is particularly harmful when it is present

among experts, such as forecasters [53] and policy makers [54], and

a deeper understanding of its cognitive origin may help us guard

against it.
There have been several proposals to account for post-

decisional evidence accumulation and for changes in

confidence [13�,15,16,17�]. In our view, the most promis-

ing proposal involves a two-stage dynamic signal detec-

tion theory [15]. This is mainly due to its simplicity and

applicability to a wide range of different scenarios, in-

cluding perceptual choices [29], general knowledge ques-

tions [17�], and value-based decisions [30]. In the first

stage, a decision variable is accumulated, and choice is

typically guided by the sign of that variable; the first stage

ends at the time of the decision. In the second, post-

decisional, stage, the decision variable continues evolv-

ing, and its absolute value determines confidence
Figure 1
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(Figure 1a). Post-decisional processing changes our con-

fidence in the selected option, and might either confirm or

reject the first choice. Different two-stage models differ

primarily in how the agent accumulates evidence after

choice [17�]. Critically, the different hypotheses make

different predictions for how post-decisional processing

changes metacognitive accuracy.

For example, the decision-maker could continue accu-

mulating evidence after choice in an unbiased manner. In

that case, after making a correct decision, more evidence

should provide further support for the choice and boost

confidence. Conversely, if an error was made (e.g., due to

noise in the process of evidence accumulation), post-

decisional evidence will typically oppose the chosen

option and, as a consequence, confidence in the decision

will decrease. In either case, as more and more post-

decisional evidence is accumulated, eventually the dif-

ference in confidence between correct and incorrect trials

becomes large. Thus, longer inter-judgement intervals

will both improve accuracy and confidence.

In general, accumulating post-decisional evidence is a

good strategy to refine estimates of confidence, especially

in rapidly changing environments where later samples

carry more information than earlier samples. This is

assuming that evidence is integrated without bias. How-

ever, several studies have shown that post-decisional

processing could be biased, and so could distort confi-

dence judgments [17�,26,31,32,33��,34]. For example,

evidence for the chosen option could be overweighed
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(i.e., accumulated at a larger rate than the unchosen

options as in [31]) leading to an increase in confidence

that is not based on objective evidence; this is known as

‘confirmation bias’ [26]. Because this boost in confidence

is not accompanied by an underlying increase in objective

accuracy, confirmation bias results in overconfidence.

Another type of post-decisional process is simple decay.

In contrast to confirmation bias, post-decisional decay

reduces confidence (also regardless of the validity of

the choice) and leads to underconfidence.

Other sources of bias include serial dependencies, that is,

conditions in which choices made in the recent past

influence upcoming decisions [32,33��,34]. Such bias

has been seen in a low level task, orientation judgement,

in which participants’ choices were significantly biased

towards orientations reported in the previous trials even

though the stimuli changed randomly trial-by-trial [33��].
It has also been seen in a high-level task, face-perception

[34]. In both cases, the effects of post-decisional proces-

sing extended to the next trial and modulated subsequent

decisions. Serial dependencies can be modelled as an

initial bias (e.g., prior) in evidence accumulation that is

contingent on the previous choice (Figure 1b).

Confidence in continuous variables
The models depicted in Figure 1 deal with two-alterna-

tive choices, and can be extended to categorical decisions

with a larger number of options [35]. A very different

problem occurs when participants need to estimate a

continuous variable such as orientation [33��] or probabil-

ity [8��]. Implementing a Bayesian perspective

[8��,9��,36], subjective beliefs can be modelled as a
Figure 2
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probability distribution that evolves over time throughout

the course of the decision. To determine this distribution,

the decision-maker needs to track, at the very least, its

mean and variance [37].

Figure 2a sketches this process in the absence of biases.

As more evidence is accumulated, the estimated mean

converges to the true value while variance decreases.

Confidence, in this scenario, should reflect the uncertain-

ty encoded by the probability distribution; namely, its

inverse variance or precision [8��,38]. A recent study has

shown that human subjects do indeed learn to estimate

probability (a continuous quantity) similarly to an ideal

Bayesian observer, and report their internal precision as

confidence [8��].

To the best of our knowledge, there are no studies that

manipulate the length of the inter-judgement interval in

these types of tasks. But, assuming that evidence con-

tinues to be accumulated after choice (as in categorical

choices [13�,15,17�]), then unbiased processing would

predict both more accurate and more confident estimates.

Biased processing, on the other hand, could lead to either

a reduction in variance (corresponding to confirmation

bias; red trace in Figure 2b) or an increase in variance

(corresponding to underconfidence; blue trace in

Figure 2b).

Origins and function of post-decisional biases
Empirical evidence suggests that post-decisional process-

es affect our sense of confidence and influence subse-

quent decisions. Some of these processes clearly arise

from a finite cognitive capacity. For example, in studies in
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which sensory stimulation is turned off after choice, post-

decisional decay in accuracy may be due to the transient

nature of working memory [39]. The lack of perceptual

input in these studies may lead to greater uncertainty and

a reduction in confidence. Several studies have also tested

conditions in which the stimulus remains available after

choice [13�,15,17�]. It would be interesting, however, to

see more experiments testing both conditions and ma-

nipulating the availability of perceptual evidence during

the inter-judgement interval (e.g., [13�]). This would

make it possible to determine which paradigms are likely

to elicit post-decisional decay and which ones lead to

confirmation bias.

Variations in post-decisional bias can be attributed to

individual differences in metacognition. Previous re-

search showed that healthy adults differ in their meta-

cognitive accuracy [40], in their tendency to be under or

overconfident, and in the shape of their distribution of

confidence ratings [41]. These features were linked to

individual differences in brain structure [40], function

[42], and personality trait [41]. For example, scoring high

in optimism correlates with the tendency to be overcon-

fident [41]. It would not be surprising if these individuals

were also more prone to post-decisional biases that inflate

confidence such as confirmation bias, but experiments

testing this have not been performed yet.

Confirmation biases could also be a consequence of finite

cognitive resources which results in the use of heuristics

[43,44]. One proposal posits that humans can contemplate

only one hypothesis at a time, and that they implement a

‘positive-test strategy’ [45]. This approach assumes that a

given hypothesis is true and rejects it only if there is

sufficient evidence against it. Positive-test strategies are

much more liberal than most statistical tests, which

assume exactly the opposite (the ‘null hypothesis’) pre-

cisely to avoid false positives. Other studies emphasise

motivational aspects of the confirmation bias, such as our

desire to believe in propositions that we would prefer to

be true. For example, people may hang on to beliefs that

are categorically wrong to minimise cognitive dissonance

[46], even in the light of overwhelming evidence against

them [47]. Yet another explanation argues that decision-

makers are pragmatic, and that confirmation bias might be

optimal in certain real-life scenarios [43]. According to

this view, humans might not be so concerned about

determining the veracity of different hypothesis as they

are about minimising the odds of making a costly mistake.

If the negative consequences of assuming that a particular

hypothesis is false are larger than the positive ones

associated with accepting it as true, then the strategy

that maximises reward would also exhibit a confirmation

bias (see [43,44] for real-life examples of this situation).

Finally, serial dependencies (Figure 1b) can lead to

bias in laboratory experiments (where evidence is often
Current Opinion in Behavioral Sciences 2016, 11:55–60 
independent and identically distributed), but they may

be a good strategy in more realistic conditions, where

noise is structured differently [33��,34]. Because the

statistical properties of the physical world are temporally

stable (for example, low-level properties in a natural

scene do not vary randomly over time, making the past

a good predictor of the future), the brain might be tuned

to exploit these regularities in the environment. This

principle was demonstrated  in the visual system both in

the processing of orientation [33��] and face identity [34].

Future research should explore whether this effect is also

present in other sensory modalities, and whether it

affects our sense of confidence.

Although conditions exist where biases improve decision

making, they always distort confidence judgments. This

is because, from a normative perspective, confidence

should reflect the probability of being correct [20]. In

this context, processing information with bias implies

under or overweighting evidence for the chosen option

(regardless of its validity) leading to suboptimal estimates

of confidence (Box 1).

Concluding remarks
We focused on whether and how post-decisional process-

es influence our sense of confidence. In particular, we

discussed a recent class of theories based on sequential

sampling methods which allow decision-makers to con-

tinue accumulating evidence after choice [13�,15,17�].
This framework can account for a wide range of beha-

vioural patterns, such as changes of mind [12], improve-

ments in metacognitive accuracy with increasingly long

inter-judgement intervals [13�], and serial dependencies

[33��]. This framework also explains distortions of confi-

dence (Box 1), such as under and overconfidence, as a

consequence of biased processing taking place after

choice.

One of the most intriguing aspects of two-stage models

are their predictions for neural data. As an extension of

accumulation-to-bound models, one would expect that

neural signals indexing evidence accumulation (e.g., the

firing of neurons in the macaque lateral intraparietal

sulcus [11]) should continue evolving during the inter-

judgement interval. This result has not yet been reported.

One possible explanation could be that, until recently,

neural signatures of evidence accumulation were found

only in non-human animals, where confidence judge-

ments are obtained indirectly (see [48] for a review of

different techniques for indirectly measuring confidence

in animals). Hence, testing this prediction might be more

suitable for an experiment combining explicit reports in

humans with M/EEG recordings as the analogous coun-

terpart for the firing of intraparietal neurons [49,50]. In

fact, a very recent study found that these signals indeed

continued evolving after choice, guiding confidence
www.sciencedirect.com
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judgments [51]. Further research is needed to identify the

neural sources contributing to this process.
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