
Articles
DOI: 10.1038/s41562-017-0215-1

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

1 Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK. 2 Universidad Torcuato Di Tella, Av. Figueroa 
Alcorta 7350, Buenos Aires, C1428BCW Argentina. 3 Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK.  
4 Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London W1T 4JG, UK. *e-mail: joaquin.navajas@utdt.edu

Understanding the computational basis of individual differ-
ences in human cognition has fundamental implications for 
medical and biological sciences, as well as for economics and 

the social sciences. A prime example is confidence, which plays a 
key role in a wide range of aspects in life, including learning to make 
better decisions1, monitoring our actions2, cooperating effectively 
with others3,4 and displaying good political judgement5. One of the 
most intriguing features of confidence is that humans tend to com-
municate this feeling in a largely idiosyncratic way: although confi-
dence reports are typically stable within each person, they tend to be 
variable across the population6,7. For instance, different individuals 
performing the same task generate distributions of confidence rat-
ings with different means and shapes7. In addition, the correlation 
between confidence and objective performance varies for different 
people, and is related to individual variations in brain structure8 and 
connectivity9,10. While a vast literature has focused on the biologi-
cal correlates of individual differences in human confidence8–10, the 
computational roots of this phenomenon remain unclear.

Previous research in sensory psychophysics8,11 and value-based 
decision-making10 assumed that confidence is a function solely 
of the perceived probability of being correct. This assumption is 
reasonable: confidence should reflect only this subjective prob-
ability12–14. Driven by this normative framework, previous studies 
explained differences among people as measurement noise15, or 
as individual differences in the ability to report the probability of 
being correct8,9. This may have been an oversimplification: there is 
extensive literature showing that confidence is influenced by factors 
other than the probability of being correct16, such as the reliability of 
sensory stimuli2,13, the magnitude of sensory data11, post-decisional 
biases17 and even personality traits7.

Here we set out to determine what probabilistic quantities, 
besides perceived probability of being correct, contribute to indi-
vidual differences in human confidence. We focused on a categori-
cal task, in which subjects had to decide whether the mean of a set of 
items was above or below a decision boundary, and then report their 
confidence. For about half of the subjects, confidence did depend 
solely on the perceived probability that they were correct. However, 
for the other half, confidence also depended on a different statistical 

quantity: their uncertainty in the estimate of the mean18,19. Moreover, 
the dependence of confidence on the perceived probability of being 
correct and uncertainty was stable across experiments performed 
weeks apart. Finally, the dependence of confidence on the perceived 
probability of being correct was stable across tasks involving uncer-
tainty in the perceptual and cognitive domain, but the dependence 
on the perceived uncertainty was not. This is consistent with the 
predictions of a recent theoretical account arguing that uncertainty 
is encoded by domain-specific neural populations14. Overall, these 
findings provide a computational interpretation of individual dif-
ferences in the human sense of confidence.

Results
In a perceptual task (experiment 1), participants observed a 
sequence of 30 tilted Gabor patches presented at the fovea in rapid 
(4 Hz) serial visual presentation (Fig.1a). At the end of the sequence, 
participants decided whether the mean orientation of the patches 
was clockwise or anticlockwise relative to vertical. Participants then 
reported how confident they were in their decision on a scale from 
1 to 6. To manipulate uncertainty, we pseudo-randomly drew the 
orientation samples from uniform distributions with exactly the 
same mean (+ 3 degrees or − 3 degrees) but different variances on 
different trials (Fig. 1b). Participants performed better as variance 
decreased (Fig. 1c, one-way repeated-measures analysis of variance 
(rm-ANOVA), F(3,29) =  231.4, p <  10−10).

To fit the choices of each participant, we assumed that they keep 
track of the mean orientation, which they update after each stimulus 
presentation. To update their estimate of the mean within each trial, 
we considered a model in which participants combine a noisy esti-
mate of the current sample with their previous estimate of the mean,

μ λ μ λθ γθ ξ= − + +−(1 ) (1)i i i i i1

where μi is the estimate of the mean after i samples (μ0 =  0), 0 <  λ <  1 
determines the relative weighting of recent versus more distant sam-
ples, θi is the actual orientation of the ith sample in the sequence, 
ξi is sampled from the standard normal distribution and γ is a free 
parameter indicating the strength of the noise. The multiplicative 
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nature of the noise ensures that the uncertainty in the update of the 
estimate scales with the size of the observed sample, θi. At the end 
of the sequence, choice is determined by the sign of the final value 
of the mean (μ30): the agent chooses clockwise if μ30 is positive, and 
anticlockwise if μ30 is negative.

This model explains two important quantitative patterns 
observed in our behavioural data. First, all items in the sequence 
had a significant influence on choice (regression weights against 
zero, t(29) >  3.17, p <  0.003 for all items), but later samples had more 
influence than earlier ones (slope of regression weights against zero, 
t(29) =  4.70, p =  10−6). This recency effect was modulated by the 
learning rate, λ (Supplementary Fig. 1). Second, we observed that 
items in high-variance sequences had smaller influence on choice 
(F(3,29) =  57.8, p ~ 0), indicating larger integration noise in these 
trials. The last term in equation (1), modulated by γ, captures this 
pattern (Supplementary Fig. 2).

We also tested an alternative model that tracks the mean of the 
sequence in a deterministic way, and then makes stochastic deci-
sions. This model, however, failed to explain the trend in Fig. 1c, 
which shows that performance increases as variance decreases (see 
Supplementary Fig. 3 for details and model comparison).

Computation of confidence. In this task, confidence should reflect 
the perceived probability of being correct, for which participants 
need to have an estimate of the variance of μ30. We assumed that 
they are able to compute the true variance associated with equa-
tion (1) (although our findings do not require this assumption, 
see Supplementary Notes). Thus, perceived variance, denoted σ30

2 , 
is given by

∑σ γ λ θ= − .
=

−(1 ) (2)
i

i
i30

2 2
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30
2(30 ) 2

The model described by equations (1) and (2), which we call the 
stochastic updating model, is illustrated in Fig. 2a. Given μ30 and σ30

2 ,  
subjects can compute, on each trial, the perceived probability of 
being correct, p (correct) (shaded area under the Gaussian distribu-
tion in Fig. 2a).

Using this model, we estimated the expected values of p (correct) 
for different variance conditions (see Methods, equation (9) and 
Fig. 2b). When we separated these values by correct and incorrect 
trials, we observed a pattern that has been suggested on the basis of 
normative arguments15,20: confidence on correct trials should increase 
as the variance decreases, whereas confidence on error trials should 
show the opposite effect, and decrease as the variance decreases. We 
did not, however, observe this pattern in our data, at least not on 
average: as shown in Fig. 1d, confidence on correct trials did indeed 
increase as variance dropped, but on error trials confidence was rela-
tively independent of variance (F(3,29) =  0.57, p = 0.63).

This last observation indicates that, again on average, subjects 
were mis-estimating confidence: they should have been less con-
fident on low-variance error trials than in high-variance error tri-
als, as their probability of being correct was lower (dashed curve in 
Fig. 2b). This suggests that subjects partially based their confidence 
on the uncertainty in the value of the mean orientation—a reason-
able, if suboptimal, heuristic. Under this heuristic, low-variance 
trials would raise their confidence relative to high-variance ones. 
An appropriate weighting of perceived probability of being correct, 
shown in Fig. 2b, and a function of uncertainty such as the observed 
Fisher information (the inverse of σ30

2 ), shown in Fig.  2c, could, 
therefore, explain the confidence ratings observed in Fig. 1d.

To formally test this proposal, we compared the normative model 
of confidence based on only p (correct) with seven alternative mod-
els based on different linear combinations of p (correct), mean, stan-
dard deviation, variance and Fisher information (Supplementary 
Fig.  4). We evaluated which combination provided a better fit to 
confidence ratings using ordinal logistic regressions (see Methods). 
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Fig. 1 | Tracking mean evidence in rapid serial visual presentations. a, Thirty tilted Gabor patches were serially flashed at the fovea, updated at 4 Hz. 
Participants made a binary decision about whether the mean in the sequence was tilted to the right or left, followed by a confidence rating. After an 
inter-trial interval (ITI), which was uniformly distributed between 0.7 and 0.9 seconds, a new trial began. Full details of the task are available in the 
Methods section. b, The samples were drawn from a uniform distribution with mean, m, set to either exactly + 3 degrees or exactly − 3 degrees. The dashed 
line shows m =  + 3. The endpoints of the uniform distributions were m ±  v, with v = 10, 14, 24 or 45 degrees, yielding four conditions with four different 
variances. c, Performance increased with decreasing variance. The dots show the average performance across subjects, and the vertical lines depict the 
s.e.m. The solid black curve shows the best fit of the stochastic updating model (equations (1) and (2)). d, Confidence reports averaged over all subjects. 
The vertical lines show s.e.m. At the population level, confidence in incorrect trials remains approximately constant as a function of variance.
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The normative model based on just p (correct) had one parameter 
per subject, whereas the alternative models had two parameters 
for each participant. Our data supported extending the normative 
model by adding a second parameter, uncertainty in the estimated 
mean, quantified by standard deviation, variance or Fisher informa-
tion (Wilcoxon signed-rank test for deviance: z =  4.78, p =  10−6 for 
standard deviation; z =  4.73, p =  10−6; for variance; z =  4.73, p =  10−6 
for Fisher information). These three models were statistically indis-
tinguishable from each other (z <  1.7, p >  0.1 for all pairwise com-
parisons; see Supplementary Fig. 4 for more details).

This analysis indicates that uncertainty in orientation does indeed 
influence confidence. To analyse this finding in more detail—and, 
in particular, to quantitatively examine inter-subject differences—
we need to choose a particular function of uncertainty. Because 
standard deviation, variance and Fisher information are related 
by invertible transformations, it is fundamentally impossible to 
determine which function is used by the brain (see Supplementary 
Notes). Instead, we ask which quantity is the best linear predictor of 
confidence in an ordinal regression model.

To do that, we conducted a separate experiment in which the 
perceived probability of being correct played no role. We asked 
participants to estimate the average orientation in the sequence of 
Gabor patches and to rate their confidence (see the Control experi-
ment section in the Methods). This experiment was very similar to 
experiment 1: on each trial, the angles of the Gabor patches were 
drawn from uniform distributions with one of four different vari-
ances (the same used in experiment 1). However, rather than just 
two possible means, the mean was randomly chosen from a uniform 
distribution over the whole range of orientations. Consequently, 
participants did not make a categorical decision, as in the previ-
ous experiment; instead, they estimated the value of the mean. 
Therefore, their reported confidence was not about the probability 
that they were correct, but about their uncertainty in the estimate 
of the mean. As the variance in the sequence decreased, responses 

were more accurate (F(3,9) =  13.21, p = 10−5) and more confident 
(F(3,9) =  37.4, p = 10−9, see Supplementary Fig. 5). We regressed con-
fidence against single-trial estimates of either Fisher information, 
variance or standard deviation. These fits were significantly bet-
ter when using Fisher information rather than variance (Wilcoxon 
signed-rank test for difference in log-likelihood, z =  2.8, p =  0.005) 
or standard deviation (z =  2.9, p =  0.004). These results suggest that 
it is reasonable to use Fisher information to quantify uncertainty. 
(For additional details, see Methods and Supplementary Fig. 5.)

Individual differences and their stability over time. The analysis 
presented so far is based on population-averaged data (Fig. 1d), 
so it is uninformative about differences among individuals. To 
determine whether, and how, p (correct) and Fisher informa-
tion influence confidence within subjects, we looked at the data 
of each individual. As expected6,7, we observed substantial inter-
individual differences (Fig.  3). Some subjects did indeed base 
confidence solely on p (correct). However, in approximately half 
of them, confidence appeared to be influenced—at least to some 
degree—by Fisher information. To quantify this, we regressed21 
confidence reports against model-based estimates of p (correct) 
and information. Figure 3 shows a scatter plot of the regression 
weights for p (correct) and Fisher information. In 13 out of the 30 
participants, confidence significantly reflected p (correct) but not 
information. In 14 other participants, however, confidence sig-
nificantly reflected both p (correct) and information. One partici-
pant’s confidence conveyed only information but not p (correct), 
and finally, for two participants, confidence did not reflect either 
of the two quantities.

The ordinal regression identified seven parameters for each indi-
vidual (see Methods, equation (10)): a weight for p (correct), denoted 
βp; a weight for information, denoted βI; and five parameters αj 
(j =  1,… ,5). The five parameters are the average log odds of observ-
ing a confidence rating greater than j; from these we selected the 
mid-value, α3, which is based on splitting the confidence scale into 
halves. The parameter α3 was correlated with the average confidence 
across the entire experiment (r =  0.84, p <  10−8), and so indicates 
how under- or overconfident a given participant is; we thus refer to 
α3 as the overall confidence. We confirmed that individual differ-
ences in these parameters (βp, βI and α3) are not simply explained 
by how well our model fitted decisions (see Supplementary Notes). 
The three selected variables were uncorrelated with each other 
across the population (r <  0.35, p >  0.1 for all pairwise comparisons 
between βp, βI and α3).

Finally, we note that while subjects were required to report con-
fidence, they did not explicitly use it to, for example, regulate learn-
ing1 or make collective decisions3. Thus, we know only that βp and βI 
link perceived probability of being correct and Fisher information 
to confidence reports, which could in principle differ from internal 
computations of confidence11. To explore this issue, we regressed 
reaction time against perceived probability of being correct and 
Fisher information, as previous studies have shown that reaction 
time correlates with the computation of confidence22,23. The regres-
sion coefficients based on reaction time were highly correlated with 
βp and βI (Supplementary Fig. 6), suggesting that confidence ratings 
reflected the computation of confidence.

This analysis would be no more than a model-fitting exercise if 
a different profile—that is, a different relationship between confi-
dence, p (correct) and Fisher information—emerged when the same 
participants were retested. To test for stability, in experiment 2 we 
retested 14 of the participants from experiment 1 approximately one 
month later. We observed that the three variables (βp, βI and α3) were 
correlated across experiments (Fig. 4), indicating that this decom-
position is stable across time and informative of the identity of the 
participants. To further validate this observation, we found that the 
distance in the three-dimensional space defined by (βp, βI and α3)  
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Fig. 2 | Estimating confidence. a, Each trial consists of 30 presentations of 
tilted Gabor patches. At each presentation (θi), the mean (μi) is updated 
by combining the estimate on the previous sample with a noisy version of 
the current Gabor patch. The black line represents one realization of the 
model. At the end of the sequence, the subject makes a decision based on 
the sign of μ30. The subjective probability of being correct and the observed 
Fisher information are then computed according to the equations shown on 
the right; see Methods for full details. b, The perceived probability of being 
correct, p(correct), averaged over variance condition for correct trials (solid 
grey line) and incorrect trials (dashed black line), and also averaged across 
participants. For correct trials, this quantity increases with decreasing 
variance (solid grey line); for incorrect trials, it shows the opposite pattern 
(dashed black line; see ref. 15 for more details). c, The uncertainty in the 
estimate of μ30, quantified by the observed Fisher information, increases 
both for correct and incorrect trials (same markers as b).
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within participants (across the two experiments) was smaller 
than the distance between different participants within an experi-
ment (Wilcoxon rank sum test, z =  4.0, p <  10−4). This shows that  
our computational model of confidence is stable across differ-
ent experimental sessions (see Discussion for comparison with  
previous studies).

Consistency across tasks. To determine whether subjects compute 
confidence the same way across tasks—that is, whether they give 
the same weight to p (correct) and Fisher information, and have  
the same overall confidence—we repeated our experiments on a 
cognitive task: averaging a sequence of numbers. In experiment 3, a  
new group of 20 participants performed, in counterbalanced order, 
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the visual task described above and a numerical averaging task 
(Fig.  5). In the numerical task, we presented two-digit numbers, 
updated at the same rate as in experiment 1 (4 Hz). The task was 
to decide whether the mean of the sequence was greater or smaller 
than 50. Uncertainty was manipulated in the same way as in experi-
ment 1, using a set of variances that ensured comparable perfor-
mance across tasks (see Methods).

In both tasks, accuracy increased with decreasing variance 
(Fig. 5a,b). A two-way rm-ANOVA with the factors ‘variance’ and 
‘task’ showed a significant main effect of variance (F(3,19) =  194.3, 
p <  10−10) but a non-significant effect of task (F(1,19) =  2.5, p =  0.13) 
or interaction (F(3,19) =  0.84, p =  0.47). Importantly, replicat-
ing experiment 1, variance did not modulate confidence in error 
decisions (F(3,19) =  0.2, p =  0.89 for the visual task; F(3,19) =  1.1, 
p =  0.4 for the numerical task). Confidence in the visual task was 
not statistically different from confidence in the numerical task 
(F(1,19) =  1.58, p =  0.22, Fig. 5c,d).

As in the visual task, later numbers had more influence on choice 
than earlier numbers (F(5,19) =  18.0, p =  10−12) (Supplementary 
Fig. 1), and numbers in the high-variance condition had a smaller 
influence on choice than number in the low-variance condition 
(F(3,19) =  19.4, p =  10−9) (Supplementary Fig. 2). We therefore used 
the same stochastic updating model (equations (1) and (2)) to fit the 
data in experiment 3. Also consistent with the visual task, decisions 
were better fitted by this model than the alternative model we con-
sidered in the visual task (log-likelihood of the difference against 
zero: t(19) =  5.2, p <  10−4 for the cognitive task; t(19) =  6.4, p <  10−5 
for the perceptual task). We regressed confidence against p (correct) 
and Fisher information, and, as in experiment 1, about half the sub-
jects based confidence solely on p (correct), and about half also took 
into account Fisher information (see Supplementary Figs. 7 and 8).  
We also provided independent evidence that, in the numerical 
task, Fisher information was more linearly predictive of confidence 
reports than other functions of variance (Supplementary Fig. 5).

We asked if our three regressors (βp, βI and α3) were consistent 
across the numerical and visual tasks. The within-participants 
distance in the three-dimensional space was smaller than the  

between-participants distance (Wilcoxon rank sum test, z =  3.3, 
p <  0.001), suggesting that they were—at least in aggregate. And 
indeed, the weight of perceived probability of being correct, βp, and 
the overall confidence, α3, were significantly correlated across tasks 
(r =  0.74, p <  0.001 and r =  0.63, p <  0.01, respectively). However, 
the weight of Fisher information, βI, was uncorrelated across tasks 
(r =  0.20, p =  0.37), indicating that Fisher information has quantita-
tively different effects on confidence in visual and numerical tasks 
(Fig. 6). This result is in agreement with a recent theoretical account 
arguing that the inverse variance is represented by domain-specific 
neural populations14 (see Discussion).

Discussion
The computations underlying confidence have attracted considerable 
attention over the last several years, in part due to recent develop-
ments in model-based approaches12–14 combined with neurophysi-
ological recordings in non-human animals24–26 and neuroimaging in 
humans8–10,27. The standard approach consists of fitting a model to the 
entire population and treating inter-individual variability as noise11,15. 
However, if such individual differences are robust over time, and 
consistent across tasks7, then treating them as noise limits our under-
standing of the computational processes underlying confidence. Here 
we found that inter-individual differences in confidence ratings are 
meaningful in terms of their underlying computations. In particular, 
we found that different individuals used different weightings for two 
probabilistic quantities: their perceived probability of being correct, 
and their uncertainty in their estimate of the task-relevant variable14, 
the latter quantified by the observed Fisher information18,19. We iso-
lated the contribution of each of these two quantities to confidence, 
and measured, for each individual: the influence of the perceived 
probability of being correct on confidence (βp); the influence of Fisher 
information on confidence (βI); and the participants’ overall confi-
dence (α3). All three variables were stable across several weeks (Fig. 4), 
and two of them (βp and α3) were stable across different tasks—one 
in the perceptual domain; the other in the cognitive domain (Fig. 6).

Normative theories of decision-making postulate that confi-
dence should depend solely on the probability of being correct12–14. 
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We speculate that the perceived uncertainty about task-relevant 
variables could serve as a mental shortcut—a convenient heuris-
tic—that provides a proxy for the probability of being correct28. This 
shortcut is reasonable, as uncertainty correlates with decision per-
formance in our experiments (Figs. 1c and 2c). Previous research in 
our group showed that confidence can reflect the magnitude of sen-
sory data11, a choice-independent quantity that also correlates with 
behavioural performance. Our finding that a heuristic computation 
modulates confidence judgements about categorical decisions is in 
line with this study.

Our model of confidence assumes that subjects linearly combine 
the normative computation of p (correct) with a function of vari-
ance. However, we cannot rule out the possibility that subjects com-
pute p (correct) suboptimally—for example, by partially basing it on 
the uncertainty in the task-relevant variable—and then computing 
confidence based solely on their suboptimal estimate of p (correct). 
While further experiments are needed to disentangle these alterna-
tives, we consider the former explanation to be more likely than the 
latter. Indeed, many studies suggest that confidence is a multivariate 
function that depends on factors such as the structure of the task11, 
the social context29 and post-decisional biases17.

Previous research has shown reliable individual differences in the 
mean and shape of the distribution of confidence ratings6,7, and in the 
extent to which confidence predicts behavioural accuracy7,8. These 
properties are believed to be idiosyncratic and correlate with indi-
vidual variations in personality trait7, brain structure8 and resting-
state functional connectivity9. For example, individual differences in 
the correlation between confidence and accuracy were systematically 
linked to a frontal network including the anterior prefrontal cortex, 
ventro-medial prefrontal cortex and rostro-lateral prefrontal cor-
tex8,10,30,31. These findings were based on decisions in a wide range of 
contexts, including visual8 and value-based10 judgements. Although 
these studies provided interesting insights into the brain regions that 
correlate with individual differences in confidence, none of them 
explicitly asked what probabilistic quantities influence this variability.

Here, we provide empirical evidence that the idiosyncratic nature 
of confidence is due to differences in the computation of confidence; 
more specifically, different individuals place different weighting on 
the perceived probability of being correct and the perceived uncer-
tainty in the estimate of the task-relevant variable. In principle, we 
could have used any function of variance to quantify uncertainty, 
and indeed all tested functions provide equally good fits in our cate-
gorical task (see Supplementary Fig. 4). We chose to model the influ-
ence of uncertainty as linear changes in Fisher information (inverse 
variance) only because it provided the best linear fits to confidence 
in a separate experiment (see Supplementary Fig. 5).

The idea that the inverse variance could modulate confidence 
has been previously proposed and tested in several studies1,2,17,32,33. 
In ref. 32, subjects judged the mean orientation of a set of lines, and it 
was found that confidence reports underweighted the stimulus vari-
ance32. However, whether the model parameters of that study were 
stable over time or consistent across domains remains unknown. In 
ref. 33, participants observed random-dot motion in two conditions: 
one with low mean and low variance, and the other one with high 
mean and high variance33. Although performance was the same for 
both conditions, some participants gave higher confidence ratings 
in one condition or the other. A model in which different subjects 
gave different weights to signal-to-noise ratio and inverse variance 
fitted these data but, critically, the fit was unstable over time (the 
weight of the signal-to-noise ratio was uncorrelated across a test and 
retest). In principle, this is at odds with our finding that the weight 
of p (correct) was stable over time. However, we should emphasize 
that the signal-to-noise ratio is different from p (correct): while the 
signal-to-noise ratio is an objective quantity that depends only on 
stimulus properties, p (correct) is a subjective quantity that depends 
on the decision and how the subject learned about the stimulus (see 
equations (5)–(9) in Methods).

Here, instead of fitting confidence against physical properties of 
the stimuli, we focused on a normative theory based on the perceived 
(rather than the actual) probability of being correct, and explained 
individual differences in confidence as systematic deviations from 
this theory. This decomposition fitted our data better than a linear 
combination of the stimulus mean and variance (Supplementary 
Fig. 4). Our work thus provides a robust model of individual dif-
ferences in confidence, with all parameters stable over time (Fig. 4). 
Finally, we evaluated the reliability of this computational model of 
confidence across domains, which suggested a relationship between 
specific model components and their neural encoding.

An implication of our behavioural findings is that neurons rep-
resenting confidence should receive input both from populations 
encoding the perceived probability of being correct and from popu-
lations encoding uncertainty. Because of differences in connectivity 
(which are likely to arise during learning and development), dif-
ferent individuals should have different weightings for these two 
quantities; that is, different values of βp and βI. That is exactly what 
we found (Fig. 3). Furthermore, if connectivity changes slowly—a 
reasonable assumption in the absence of learning—βp and βI would 
be stable over time. Again, that is exactly what we found (Fig. 4).

This does not, however, explain the fact that βp is invariant across 
tasks whereas βI is not (Fig.  6a,b). For that, we need to consider 
how p (correct) and uncertainty are encoded. Because the prob-
ability of being correct is a dimensionless quantity, and is universal 

β p i
n 

vi
su

al
 ta

sk

r = 0.74, P < 0.001

0

0.5

1

β I i
n 

vi
su

al
 ta

sk

r = 0.20, P = 0.37

0

0.4

0.8

βp in numerical task βI in numerical task α3 in numerical task

α 3 i
n 

vi
su

al
 ta

sk

r = 0.63, P < 0.01

0 0.5 1 0 0.4 0.8 0–4 2–2
–4

–2

0

2a b c

Fig. 6 | Consistency across tasks involving uncertainty in the perceptual and cognitive domain. Twenty participants that were not tested in experiments 
1 or 2 performed one visual and one numerical task (experiment 3). As in Fig. 3, we decomposed confidence in terms of the weight of p(correct) (βp), the 
weight of information (βI), and the overall confidence (α3). a–c, Correlation across tasks for βp (a), βI (b) and α3 (c). Each square is a different participant, 
the dotted line is the identity, and the value of r given in each box indicates the Pearson correlation coefficient. βc and α3 were positively correlated 
across tasks; however, the weights of Fisher information, βI, were uncorrelated across tasks. A non-parametric method to measure the correlation across 
experiments yielded similar results (rs =  0.68, p <  0.01 for βp, rs =  0.22, p =  0.35 for βI, and rs =  0.62, p <  0.01 for α3).

NaTuRE HuMaN BEHaviouR | VOL 1 | NOVEMBER 2017 | 810–818 | www.nature.com/nathumbehav 815

http://www.nature.com/nathumbehav


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Articles NaTurE HumaN BEHaviOur

across different sources of uncertainty, it is reasonable to assume 
that it is encoded by a domain-general circuitry—for instance, by 
neurons in the prefrontal cortex8,10,30,31. In contrast, uncertainty—
whether it is Fisher information, variance or standard deviation 
(see Supplementary Notes)—is a quantity with dimension, and so is 
likely to be encoded by domain-specific populations14. For example, 
in the case of the visual task, uncertainty could be represented by 
neurons in the primary visual cortex that are tuned to orientation34; 
and indeed, sensory uncertainty can be decoded from activity in the 
visual cortex35. In the same manner, numerical uncertainty could 
be represented by neurons in the parietal cortex tuned to different 
numerical quantities36, although this has not yet been tested.

Under the assumption that the perceived probability of being 
correct is encoded by domain-invariant populations, the influence 
of this quantity on confidence should be stable across domains. This 
would explain our results in Fig.  6a: βp was correlated across the 
visual and numerical tasks. Likewise, under the assumption that 
uncertainty is encoded by domain-invariant populations, the influ-
ence of this quantity on confidence should vary across domains. 
This would explain our results in Fig.  6b: βI was not correlated 
across the visual and numerical tasks.

These are, of course, hypotheses. They do, though, make test-
able predictions. First, neural circuits encoding confidence should 
show different functional connectivity with those encoding visual 
versus numerical uncertainty. Second, different participants should 
have different relative strengths of these two forms of connectivity, 
co-varying with their behavioural differences. Future experiments 
combining behavioural data, computational modelling and neural 
recordings could test these predictions.

The value of investigating individual differences in human 
behaviour and cognition was first recognized in the psychological 
sciences, with a special interest in high-level aspects such as intel-
ligence37 and personality38. More recently, technical advances in 
magnetic resonance imaging have made it possible to develop a cog-
nitive neuroscience of individual differences39,40. Findings include 
neural correlates of individual differences in motor behaviour41, 
visual perception42, mood43, social network size44 and confidence8–10. 
While these studies provide valuable insights into the neural basis 
of inter-individual differences in human cognition, the mechanisms 
responsible for such differences remain unknown. To overcome this 
limitation, the next challenge is to build a computational neuro-
science of individual differences. A first step in this direction is to 
understand the computations performed by healthy adults leading 
to inter-individual variability in behaviour. Our study provides a 
computational model of consistent individual differences in confi-
dence, paving the way towards determining how these computations 
change under development45, aging46 and psychiatric disorders47.

Methods
Participants. Sixty healthy adults (aged 18–45, 43 right-handed, 31 female) with 
normal or corrected-to-normal vision participated in this study. All participants 
were recruited through advertisement at University College London, and gave 
written informed consent. We collected data from 94 experimental sessions lasting 
approximately 90 min each. Participants were paid £10 per hour. All experimental 
procedures were approved by the research ethics committee at University College 
London.

Display. Stimuli were generated using the Cogent Toolbox (http://www.vislab.ucl.
ac.uk/cogent.php) for MATLAB (Mathworks Inc.). Participants observed an LCD 
display (21-inch monitor; refresh rate: 60 Hz; resolution: 1,024 ×  768 pixels) at a 
viewing distance of approximately 60 cm.

Experiment 1: visual task. Thirty participants performed experiment 1, which 
consisted of an orientation-averaging task (Fig. 1). Observers viewed a sequence 
of 30 tilted Gabor patches over a middle-grey background (standard deviation of 
the Gaussian envelope: 0.63 deg; spatial frequency: 1.57 cycles deg−1; contrast: 25%) 
flashed in rapid succession at the centre of the screen. Each patch was presented 
for 200 ms with an inter-stimulus interval of 50 ms, resulting in an update rate of 
4 Hz. Once the sequence finished, participants were asked to judge whether the 

mean orientation of the patches was tilted clockwise or anticlockwise relative to 
the vertical. The response alternatives consisted of two tilted lines presented in the 
left and right visual field (size: 2.2 deg, location: 11.3 deg left or right to the centre 
of the screen). The position of the response alternatives was randomly assigned 
and counterbalanced across trials. To select the option displayed in the left, 
participants pressed the ‘Q’ button of a QWERTY keyboard using the left hand; 
to select the option on the right, they pressed the ‘P’ button. Participants were 
then asked to report their confidence on a rating scale from 1 to 6. A horizontal 
line was presented at the centre of the screen (length: 18.9 deg) with six equally 
spaced marks signalling different levels of confidence. Participants moved a cursor 
to the left or right of the scale by pressing the ‘Q’ or ‘P’ buttons respectively. The 
initial point in the scale was randomly chosen on a trial-by-trial basis. Once the 
participants selected a confidence rating, they pressed the space bar to continue. 
After an inter-trial interval (which was uniformly distributed between 0.7 and 
0.9 s), a new trial began.

The orientations of the patches were drawn from uniform distributions with 
mean m and endpoints m ±  v. We used distributions with two different means 
(m = +3 or − 3 degrees) and four different variances (given by their different 
endpoints: v =  10, 14, 24 or 45 degrees). Uniform distributions were pseudo-
randomly sampled such that the mean was exactly ± 3 degrees on every trial. 
This generated weak correlations, but multi-collinearity analyses indicated 
that presentations could not be predicted from previous samples (R2 <  0.07). 
Orientations were randomly shuffled to define the presentation order. The 
experiment consisted of 400 trials: 50 trials for each of the 8 distributions. Blocked 
feedback was given every 20 trials by a message displaying the number of correct 
trials in that block. Each block comprised five trials of each variance condition 
presented in random order. Therefore, performance for different variance 
conditions could not be learned from feedback.

Experiment 2: stability across time. All participants of experiment 1 were 
invited to perform the visual task a second time, approximately one month later. 
Fourteen participants accepted the invitation and were re-tested. Experiment 2 was 
performed 35.2 ±  2.4 days after experiment 1 (range: 23–49 days). Experimenters 
were blind to the results of experiment 1 when testing participants in experiment 2.

Experiment 3: stability across the perceptual and cognitive domain. Twenty 
healthy adults who did not participate in experiment 1 or 2 performed  
experiment 3. Participants performed two sessions: the visual task described  
in experiment 1 and a numerical averaging task. Half of the participants  
performed the visual task first. The second session was performed 9.7 ±  2.9 days 
(range: 1–27 days) after the first one. Experimenters were blind to the results  
of the first session when testing the participants in the second session.

The numerical task was identical in structure to the visual task but, instead of 
Gabor patches, two-digit numbers (size: 3.8 deg; font: Arial) were presented. The 
colour of the numbers (black or white over a middle-grey background) was randomly 
chosen at each presentation. Participants were instructed to decide whether the 
mean of the sequence was greater or smaller than 50. Numbers were sampled from 
uniform distributions with mean m =  47 or m =  53, and endpoints m ±  v were defined 
by v =  7, 9, 11 or 33. These values were chosen, through pilot experiments with 
a different set of participants, to obtain performances similar to that observed in 
experiment 1. Uniform distributions were pseudo-randomly sampled such that the 
mean of the sequence was exactly m on each trial. We performed the same multi-
collinearity analysis of experiment 1, and found that presentations could not be 
predicted from previous samples (R2 <  0.06). Decisions were collected in the same 
way as in experiment 1: a response screen with two options (‘smaller’ and ‘greater’) 
was presented on both sides of the visual field. Participants gave their answer, and 
indicated confidence, using the same keys as in the visual task.

Control experiment. Ten healthy adults (aged 20–45, 6 female, all right-handed) 
who had not participated in experiment 1, 2 or 3 participated in the control 
experiment. The experiment consisted of one visual and one numerical task 
that subjects performed in a single session of approximately 90 min. Half of the 
participants performed the visual task first. Participants observed a sequence of 
items serially flashed at the fovea at 4 Hz, and were asked to provide their analogue 
estimate of the mean. To rate their confidence, participants moved a cursor over a 
continuous horizontal line. All other parameters (length of the sequence, colour, 
contrast, brightness, viewing distance and so on) were identical to our main study.

In the visual task, participants observed tilted Gabor patches. The mean of 
the distribution was uniformly sampled across the entire circle. After observing 
30 items, we presented a line in the centre of the screen, initialized at a random 
orientation. Participants then moved the mouse horizontally to change its 
orientation until they matched the perceived mean in the sequence. In the numerical 
task, participants observed two-digit numbers. We uniformly sampled the mean 
between 44 and 66 (to ensure that all numbers were between 11 and 99 in the 
condition with higher variance). Participants typed their answer using a keyboard.

Model fitting. To fit the stochastic updating model (equations (1) and (2)) to the 
participants’ decisions, we find, for each individual, the parameters λ and γ that 
maximize the log-likelihood,
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is the mean value of μ30 on trial k. (A minor technical point: equation (4) describes 
the visual task; the cognitive task is the same except that the mean is offset by 50.)

Estimating the Fisher information and the perceived probability of being 
correct. On the basis of the best fitting parameters λ and γ derived from the 
stochastic updating model (the values of λ and γ that maximize L(λ,γ) in equation 
(2)), we estimated, on a trial-by-trial basis, the observed Fisher information 
and the expected perceived probability of being correct. The observed Fisher 
information is just the inverse variance of the participants’ estimate, the latter 
computed via equation (2) (Fig. 2a). The expected perceived probability of having 
made a correct decision, d, is given by
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The first term inside the integral,  μ σ( )p correct ,30 30 , is the shaded area under 
the Gaussian in Fig. 2a; consequently, it is given by the cumulative normal distribution,
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On each trial,  ̄μ σ( )p dcorrect , ,30 30  was computed numerically using Matlab. 
Note that the expected perceived probability of being correct (equation (9)) is 
dependent on the decision, d, whereas the Fisher information (equation (2); Fig.2a) 
does not depend on d, and so is choice-independent.

Ordinal regression of confidence reports. We ran for each individual a 
multivariate ordinal regression21. For each of the five possible splits in the rating 
scale, this regression fits a logistic model with fixed effects and different offsets,
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where 1 ≤  j ≤  5, c denotes confidence, and Zp and ZI are z-scored estimates of the 
perceived probability of being correct and Fisher information on each trial. The 
outputs of this regression are the offsets α1,… ,α5, and the weights βp and βI. To 
summarize the computations underlying confidence, we selected α3 (the offset 
when splitting the scale into halves, which we refer to as the overall confidence),  
βp (the weight of the probability of being correct on confidence) and βI (the weight 
of information on confidence).

Statistical analyses. In experiment 1, we computed the average performance 
for each variance condition and each participant. These values were submitted 
to a repeated-measures one-way analysis of variance (rm-ANOVA) with factor 
‘variance condition’ (4 levels) and ‘participant’ (30 levels) as repeated measure 
(Fig. 1). The normality assumption of this test was checked using the Lilliefors test 
(k =  0.7, c =  0.8, p =  0.07). We also computed the average confidence rating for each 
variance condition and each participant, conditioned on correct or incorrect trials, 
and submitted those values to a two-way rm-ANOVA with the factors ‘variance 
condition’ (4 levels), ‘outcome’ (2 levels: correct or incorrect) and ‘participant’ (30 
levels) as repeated measures (Fig. 2c). The normality assumption of this test was 
checked using the Lilliefors test (k =  0.04, c =  0.06, p >  0.5). The goodness of fit for 
each model and subject (Supplementary Fig. 1b), quantified by the negative log-
likelihood (equation (3)), was submitted to a two-sided paired t-test (29 degrees of 
freedom). The normality assumption of this test was checked using the Lilliefors 
test (k =  0.08, c =  0.11, p >  0.5).

In experiment 2, we compared the within-participants distances in the space 
defined by (βp,βI,α3) with the between-subjects distances. Because we have 14 
participants, this defines 14 within-subjects distances and 14 ×  13/2 =  91 between-
subjects distances. We z-scored each dimension and used the Euclidean metric to 
compute distance. The Lilliefors test rejected the null hypothesis that these values 
were normal (k =  0.1, c =  0.08, p =  0.01); therefore, we used a non-parametric test, 
the Wilcoxon ranked sum test. This test is unpaired and the reported p value is 
two-sided.

In experiment 3, we computed the average performance for each variance 
condition, task and participant (Fig. 5a,b). We submitted these values to a two-way 
rm-ANOVA with the factors ‘variance condition’ (4 levels), ‘task’ (2 levels) and 
‘participants’ (20 levels) as repeated measures. The normality assumption of this 
test was checked using the Lilliefors test (k =  0.07, c =  0.09, p =  0.36). We computed 
the average confidence rating across all conditions and participants and performed 
the same rm-ANOVA used in experiment 1 (Fig. 5c,d). As in experiment 1, average 
confidence was normally distributed (Lilliefors test, k =  0.06, c =  0.07, p =  0.17). To 
evaluate the stability of (βp,βI,α3) across domains, we computed the within- and 
between-subjects distances following the same procedure of experiment 2, and 
compared these values using the same non-parametric test.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.

Code availability. The codes that support the findings of this study are available 
from the corresponding author upon request.
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