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Supplementary Notes 

Does goodness of fit explain our findings? 

We asked if individual differences in how well our model fit the decisions could explain the 

inter-individual variability in the parameters 𝛽𝑝, 𝛽𝐼 , and 𝛼3. To do this, we correlated these 

values with the deviance1, a standard metric of quality of the fit,  

𝐷 =  −2(ℒ − 〈ℒ〉), 

where ℒ is the log likelihood of the data, obtained through Equation [3] and 〈ℒ〉 is the log 

likelihood of data that perfectly fits the model (often referred to as a saturated model). In our 

case, 〈ℒ〉 is found by replacing the decision dependent terms in Equation [3] (those that 

depend on 𝑑𝑘) by their probability under the model, leading to 

〈ℒ〉 = ∑ Φ (
𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
) log [Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] + [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] log [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] .

𝑁𝑡𝑟

𝑘=1

 

Our three parameters, 𝛽𝑝, 𝛽𝐼 and 𝛼3, were uncorrelated with the deviance, 𝐷 (r=0.22, 

p=0.24 for 𝛽𝑝; r=-0.12, p=0.54 for 𝛽𝐼; r=0.24, p=0.19 for 𝛼3), and 𝐷 was uncorrelated with 

average performance (r=0.22, p=0.23). This indicates that individual differences in 𝛽𝑝, 𝛽𝐼 , and 

𝛼3 are not explained by inter-individual variability in the goodness of the fit. 

Do our findings depend on the assumptions of the stochastic updating model? 

We assumed that subjects were able to compute the mean and variance following Equations 

[1] and [2]. To evaluate whether or not the idiosyncrasies in confidence depended on these 

assumptions, we considered a different model, one without the subject-to-subject distortions 

(introduced by 𝜆 and 𝛾) in the computation of 𝑝̂(correct) and Fisher information.  We set the 

mean value of 𝜇30 on trial 𝑘 (Equation [4]) to the true average orientation, and the perceived 

variance (Equation [2]) to the true variance. We took the inverse of the true variance to obtain 

trial-to-trial estimates of Fisher information, and used Equations [5-9] to compute 𝑝̂(correct). 

 [S1] 

 [S2] 
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We regressed these estimates against confidence (Equation [10]) and obtained very similar 

results to our main study. Both 𝛽𝑝 (r=0.95, p=10-16) and 𝛽𝐼 (r=0.98, p=10-20) were highly 

correlated across models.  

We also tested an alternative model, in which we relaxed the assumption of an ideal 

observer, and instead assumed that subjects computed the variance the same way they 

computed the mean, 

𝜎𝑖
2 = (1 − 𝜆) 𝜎𝑖−1

2 +  𝜆 𝜃𝑖
2. 

We computed 𝑝̂(correct) and Fisher information using Equations [4-9] and [S3], and regressed 

these values against confidence. Again, our findings were very consistent across models 

(r=0.99, p=10-26 for 𝛽𝑝 and r=0.98, p=10-20 for 𝛽𝐼). This analysis confirms that our findings did 

not depend on the specific assumptions of the stochastic updating model.  

Neuronal encoding of all functions of variance are fundamentally indistinguishable 

In our analysis, we quantified participants’ certainty in the estimate of the mean using the 

observed Fisher information. We used Fisher information, rather than standard deviation or 

variance, only because it provided the best linear fits to confidence reports in our Control 

Experiment (see Methods). Is there a more principled way to choose a function of uncertainty? 

For instance, could we determine which one is used by the brain? The answer to the latter 

question turns out to be no: even with neuronal recordings, it would be impossible to 

distinguish which function is encoded by the brain. Indeed, if the brain encodes one function 

of variance, it automatically encodes all functions of variance. For example, if a neuronal 

population encodes Fisher information, it automatically encodes variance, 

𝑝(𝐼30|𝐫) = 𝑝(𝜎30
2 |𝐫) |

𝑑𝜎30
2

𝑑𝐼30
| = 𝑝(𝜎30

2 |𝐫) 𝜎30
4 , 

 [S3] 

 [S4] 
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where 𝐫 is the population response. Equation [S4] implies that even if we recorded the 

population activity, 𝐫, we would be unable to distinguish whether the brain encodes Fisher 

information or variance. The same analysis applies to all functions of variance. 

Correlation with objective performance 

We asked if our three model parameters (𝛽𝑝, 𝛽𝐼 and 𝛼3) were correlated with the average task 

performance. We did not find any correlation for 𝛽𝐼 (r=0.25, p=0.18) or 𝛼3 (r=0.21, p=0.27), 

but we found that 𝛽𝑝 was correlated with task performance (r=0.55, p=0.002). This is 

consistent with previous studies showing that participants with larger objective performance 

typically show larger correlation between confidence and their probability of being correct2. 

 This raises a potential concern: the stability of 𝛽𝑝 over time and across tasks might 

simply reflect the stability of performance. To evaluate this possibility we computed the partial 

correlation of 𝛽𝑝 across experiments after controlling for the mean performance on each task 

and observed that 𝛽𝑝 was still stable over time (r=0.63, p=0.025) and across domains (r=0.63, 

p=0.005). This finding suggests that even though 𝛽𝑝 correlates with performance, it still reflects 

an idiosyncratic property of confidence reports that is stable over time and across tasks 

involving uncertainty in different domains. 

Controlling for individual differences in eye movement 

We analysed electrooculography (EOG) data collected on 20 subjects while they performed 

Experiment 1. To measure individual differences in the amount of eye movement, we 

computed the EOG power (mean squared amplitude) on each trial and averaged this quantity 

across trials. We found that the EOG power did not correlate with 𝛽𝑝 (r=0.11, p=0.63), 𝛽𝐼 (r=-

0.07, p=0.75) or 𝛼3 (r=0.35, p=0.12), nor was it correlated with average performance in the 

task (r=0.09, p=0.70). 
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Supplementary Figures 

 

 

 

Supplementary Figure 1. Recency effect. To test the influence that each Gabor patch 

(Experiment 1) or number (Experiment 3) exerted on choice, we implemented a multivariate 

logistic regression where the independent variables were the orientations/numbers presented 

at each position in the sequence (with positive items favouring the clockwise/greater option 

and negative items favouring the counter-clockwise/lower option), and the dependent variable 

was the probability of giving a clockwise/greater answer (for consistency with our notation, we 

define a variable, 𝑑, that is equal to 1 in clockwise/greater decisions and -1 in counter-

clockwise/lower choices),  
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log (
𝑝(𝑑 = 1)

1 − 𝑝(𝑑 = 1)
) = 𝑤0  + ∑ 𝑤𝑖  𝜃𝑖 ,

30

𝑖=1

 

where 𝑤𝑖 measures the weight that an item presented at position 𝑖 had over choice. We ran 

this regression for all subjects separately. a) Average weights across subjects for the visual 

task (Experiment 1); the shaded area is the s.e.m. We observed that all items had a significant 

effect on choice (t(29)>3.17, p<0.003 for all item positions). We also observed a significant 

recency effect, which we quantified by fitting a line to the weights of each individual and 

comparing the distribution of slopes against zero (t(29)=4.70, p=10-6). b) This recency effect 

is captured by our model and modulated by the parameter λ in Equation [1]; larger values of 

λ (x-axis) lead to a larger influence of recent items (slope of the regression, y-axis). Each grey 

dot is a different participant of Experiment 1. We observed that subjects with a larger recency 

effect (quantified by the slope in the regression) had a larger best-fitting λ (r=0.81, p=10-7). 

Importantly, the extent to which people focus on recent items, quantified by λ, does not 

correlate with the overall performance in the task (r=-0.28, p=0.13), and it was also 

uncorrelated with the best-fitting parameters of our model of confidence (r=0.25, p=0.17 for 

𝛽𝑝, r =-0.03, p=0.85 for 𝛽𝐼, and r=0.15, p=0.42 for 𝛼3). c-d) Same as a-b) but for the numerical 

task performed in Experiment 3. c) All items had a significant effect on choice (t(19)>2.4, 

p<0.03 for all item positions). The recency effect was also significant, as quantified by the 

distribution of best-fitting slopes (t(19)=3.81, p=10-3). d) The parameters λ correlate with the 

recency effect quantified by the best-fitting slope of the regression weights (r=0.76, p=10-5). 

 

 

 

 

 

 [S5] 
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Supplementary Figure 2. Influence on choice for different variance conditions. To test if 

subjects integrated items differently depending on the variance of each trial, we implemented 

a multivariate logistic regression separately for each variance condition. To prevent overfitting, 

we considered a regression where the weights changed every 5 items, 

log (
𝑝(𝑑 = 1)

1 − 𝑝(𝑑 = 1)
) = 𝑤0  + ∑ 𝑤𝑖  ( ∑ 𝜃𝑗 

5𝑖

𝑗=5(𝑖−1)+1

) .

6

𝑖=1

 

This is very similar to Equation [S5]; the main difference (besides the grouping into 5 weights) 

is that we estimated the weights, 𝑤𝑖, for each variance condition separately. a) Visual Task 

(Experiment 1): Weights for each variance condition, averaged over subjects; error bars are 

 [S6] 
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s.e.m., and colours code for different variance conditions as in the main figures. Presentations 

in the low-variance condition had larger influence over choice, and, as in Supplementary 

Figure 1, later items had larger weights than early items (2-way repeated measures ANOVA; 

effect of item position, F(5,29)=16.19, p=10-12; effect of variance condition F(3,29)=57.8, p~0). 

We asked if these findings were consistent with our model. To test this, for each subject we 

found the best-fitting parameters λ and γ, as described in Methods, and used those to 

compute, on each trial, the probability of a clockwise option, 𝑝(𝑑 = 1) . We then used that in 

the left-hand side of Equation [S6], and ran standard linear regression to find the model 

weights. The grey dashed lines show the model weights averaged across subjects. b) 

Recency effect estimated by the best-fitting slopes of the weights obtained from data versus 

model for each variance condition. Colours code as in panel a. Each dot is a different subject. 

The model weights matched well the weights computed from data (r>0.71, p<10-5 for all four 

conditions). c-d) Same as a-b but for the numerical task (Experiment 3). c) We observed that 

later items had larger influence on choice (F(5,19)=18.4, p=10-12) and that items had less 

influence if they had higher variance (F(3,19)=19.4, p=10-8). d) The model captured individual 

differences in recency, quantified by the slope of the regression weights for each variance 

condition (r>0.63, p<0.003 for all conditions). This finding suggest that the last term in Equation 

[1], noise that scales with the size of the upcoming sample relative to the decision boundary 

(modulated by parameter γ), is not a property of the visual task but of the serial integration of 

items. To provide further support for this idea, we compared the best-fitting γ in both tasks 

(using the data collected in Experiment 3 and comparing the visual and numerical sessions) 

and observed a positive correlation (r=0.80, p=10-5). This suggests that the subjects who had 

larger integration noise in one task also had larger integration noise in the other. 
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      [S7] 

     [S8] 

] 

 

Supplementary Figure 3. Model fitting results in Experiment 1. We fit two probabilistic 

models that make different assumptions about how decisions are made. The stochastic 

updating (SU) model is described in the main text (Equations [1] and [2]). In the stochastic 

decision (SD) model, the agent makes deterministic updates, 

𝜇𝑖 = (1 − 𝜆) 𝜇𝑖−1 + 𝜆 𝜃𝑖 

 and then makes a softmax decision,  

𝑝(𝑑 = 1) =
exp(− 𝜇30/𝜏)

exp(−𝜇30/𝜏) + exp(𝜇30/𝜏)
  

where 𝑝(𝑑 = 1) is the probability of choosing clockwise and 𝜏 is the temperature of the softmax 

rule. In this model, the agent updates perfectly and uses a stochastic (and thus suboptimal) 

rule for action selection; errors are due to noise in the decisional stage. In the SU model, the 

updating process is stochastic (Equation [1] in the main text), and decisions are optimal based 

on the perceived estimate; errors are due to uncertainty in the updating process. Both models 

fit two parameters to the data of each individual. a) The SU model (solid line) but not the SD 

model (dashed line) fits the pattern of increasing performance with decreasing variance. b) 

Model comparison: negative log likelihood of the SU and SD models using the best fitting 

parameters. Each dot is a different participant. The SU model fits the data significantly better 

than the SD model (t(29)=9.0, p<10-9).  
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    [S9] 

] 

 

 

Supplementary Figure 4. Probing different models of confidence. Normative models 

propose that confidence should be a function of only 𝑝̂(correct). We compared such a model 

(M0) with 7 alternative models which linearly combine two different probabilistic quantities 

(ordinal regression, see Equation [10] in Methods). Models M1 to M3 are extensions of M0 

using a function of variance: they are based on 𝑝̂(correct) and a second quantity (M1: Fisher 

information, M2: variance, M3: standard deviation). Model M4 is a different extension of M0 

based on 𝑝̂(correct) and the perceived mean. Models M5 to M7 are alternative models to M0 

that linearly combine the perceived mean with Fisher information (M5), variance (M6), or s.d. 

(M7). The y-axis shows the difference in deviance between the extended/alternative models 

and M0. The difference in deviance is defined as two times the negative log-likelihood ratio,  

𝐷(M) − 𝐷(M0) =  −2 ∑ log (
𝑝(𝑑𝑖|M)

𝑝(𝑑𝑖|M0)
)

400

𝑖=1

, 

where 𝑝(𝑑𝑖|M) is the probability of observing decision 𝑑𝑖 given model M. More negative values 

provide stronger support for the extended/alternative model compared to M0. The boxplots 

show the distribution of difference in deviance for the 30 subjects in Experiment 1 (red line: 

median; box limits: 25 and 75-percentiles, whiskers at 1.5 times the interquartile range, red 
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crosses: outliers). We observed that models M1 to M3 were significantly more likely than M0 

(Wilcoxon sign rank test, z > 4.7, p < 10-5 for all pairwise comparisons to M0; log likelihood 

ratio test, ∆df = 30, p ~ 0), but not significantly different from each other (z < 1.7, p > 0.1 for all 

pairwise comparisons between M1, M2 and M3). The model based on 𝑝̂(correct) and the 

perceived mean (M4) was more likely than M0 (z = 4.7, p = 10-5, log likelihood ratio test, ∆df 

= 30, p = 10-14) but less likely than M1, M2, or M3 (z > 2.7, p < 0.006 for all pairwise 

comparisons to M4). All alternative models based on the perceived mean and a function of 

variance (M5 to M7) were significantly less likely than M0 (z > 3.2, p < 0.002 for all pairwise 

comparisons to M0). This finding indicates that confidence is not well fit by a linear combination 

of mean and variance (or mean and Fisher information or s.d.). Altogether, this analysis 

suggests that confidence is better explained by a linear combination of 𝑝̂(correct) and a 

function of variance. 
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Supplementary Figure 5. Control Experiment. We asked if Fisher information correlates 

with confidence or other functions of variance. (a-c): Visual task. (d-f) Numerical task. 

Participants observed a sequence of items (Gabor patches in the visual task and two-digit 

numbers in the numerical task) serially flashed at the fovea at 4 Hz, and we asked them to 

provide their analog estimate of the mean (see Methods). We observed that, as we increased 

the variance in the sequence, responses became more accurate (panel a for the visual task 

(F(3,9)=13.21, p=10-5), panel d for the numerical task F(3,9)=3.8, p=0.003) and more confident 

(panel b for the visual task, F(3,9)=37.4, p=10-9, panel e for the numerical task, F(3,9)=7.6, 

p=10-4). c and f) We regressed confidence against Fisher information (𝐼30), variance (𝜎30
2 ), or 

standard deviation (𝜎30) and measured the deviance of each model (see Equation [S9] in 

Supplementary Figure 4). The boxplots show the distribution of deviances for each model 

across subjects. In both tasks, the winning model was the one in which linear changes of 

Fisher information modulated confidence ratings (Wilcoxon sign-rank test, z > 2.8, p < 0.005 

for both pairwise comparisons in the visual task, z > 2.7, p < 0.006 for the numerical task). 
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 [S10] 

] 

 

Supplementary Figure 6. Influence of  𝒑̂(𝐜𝐨𝐫𝐫𝐞𝐜𝐭) and Fisher information on reaction 

times and confidence reports. a) Mean reaction times (mRT) averaged across participants 

for each variance condition, separated into correct and incorrect trials. Horizontal lines show 

the s.e.m. We observed a significant effect of outcome (correct vs. incorrect, F(1,29)=40.6, 

p=10-7), a non-significant main effect of variance (F(3,29)=0.49, p=0.69), and a significant 

interaction (F(3,29)=4.3, p=0.007). b) We regressed reaction times against 𝑝̂(correct) and 

Fisher information. To do this, we used Equation [10], except with reaction time rather than 

confidence on the left hand side,  

log (
𝑝(𝑅𝑇 > 𝑗)

1 − 𝑝(𝑅𝑇 > 𝑗)
) = −𝜐𝑗 + 𝜂𝑝𝑍𝑝 + 𝜂𝐼𝑍𝐼 

where 𝑝(𝑅𝑇 > 𝑗) stands for the probability of observing a reaction time larger than the 𝑗𝑡ℎ 

sextile in the distribution. The influence of 𝑝̂(correct) on confidence (𝛽𝑝, x-axis) was 

significantly correlated with the influence of 𝑝̂(correct) on reaction times (𝜂𝑝, y-axis) (r=-0.61, 

p=10-4). c) The influence of Fisher information on confidence (𝛽𝐼, x-axis) was significantly 

correlated with the influence of Fisher information on reaction times (𝜂𝐼, y-axis) (r=-0.49, 

p=0.005). We also observed a non-significant correlation between 𝛽𝑝 and 𝜂𝐼 (r=-0.06, p=0.75) 

and between 𝛽𝐼 and 𝜂𝑝 (r=-0.15, p=0.41). These findings suggest that the contribution of 

𝑝̂(correct)  and Fisher information to confidence is not simply reflected in confidence reports, 

but also in reaction times. The negative correlation between the regressors is consistent with 

the idea that confidence might be, at least partially, based on decision time3. 
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Supplementary Figure 7. Analysis of confidence across domains. Same as the main 

panel in Fig. 3 of the main text, except that both tasks of Experiment 3 are also included here. 

Regression weights on confidence for different individuals. x-axis: weight of the probability of 

being correct (𝛽𝑝); y-axis: weight of information (𝛽𝐼). Each marker (circle, diamond, or square) 

represents one experiment. The colour codes for significance (at the 0.05 level) are as follows: 

dark green, only 𝛽𝑝 was significant; light green, both 𝛽𝑝 and 𝛽𝐼 were significant; yellow, only 

𝛽𝐼 was significant; grey, neither was significant. Circles: 30 participants performing the visual 

task in Experiment 1. Diamonds: 20 other participants performing the visual task in Experiment 

3. Squares: the same 20 participants of Experiment 3 performing the numerical task.  
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Supplementary Figure 8. Stability in Experiment 3. Stability within each experiment for the 

visual (a-c) and numerical (d-f) task.  For each half of the experiment (200 trials each), we 

decomposed confidence in terms of the weight of 𝑝̂(correct) (𝛽𝑝), the weight of information 

(𝛽𝐼), and the overall confidence (𝛼3). Correlation across halves for 𝛽𝑝 (a/d), 𝛽𝐼 (b/e), and 𝛼3 

(c/f). Each square is a different participant, the dotted line is the identity, and the value of r 

given in each box is the Pearson correlation coefficient. All three variables are stable within 

each experiment for both the visual and numerical task.  
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