
Assoiative memory in realisti neuronalnetworksP.E. Latham�Department of NeurobiologyUniversity of California at Los AngelesLos Angeles, CA 90095pel�ula.eduNeural Information Proessing SystemsVanouver, Canada, 2001AbstratAlmost two deades ago, Hop�eld [1℄ showed that networks ofhighly redued model neurons an exhibit multiple attrating �xedpoints, thus providing a substrate for assoiative memory. It is stillnot lear, however, whether realisti neuronal networks an supportmultiple attrators. The main diÆulty is that neuronal networksin vivo exhibit a stable bakground state at low �ring rate, typ-ially a few Hz. Embedding attrator is easy; doing so withoutdestabilizing the bakground is not. Previous work [2, 3℄ fousedon the sparse oding limit, in whih a vanishingly small number ofneurons are involved in any memory. Here we investigate the asein whih the number of neurons involved in a memory sales withthe number of neurons in the network. In ontrast to the sparseoding limit, we �nd that multiple attrators an o-exist robustlywith a stable bakground state. Mean �eld theory is used to under-stand how the behavior of the network sales with its parameters,and simulations with analog neurons are presented.One of the most important features of the nervous system is its ability to performassoiative memory. It is generally believed that assoiative memory is implementedusing attrator networks { experimental studies point in that diretion [4{7℄, andthere are virtually no ompeting theoretial models. Perhaps surprisingly, however,it is still an open theoretial question whether attrators an exist in realisti neu-ronal networks. The \realisti" feature that is probably hardest to apture is thesteady �ring at low rates { the bakground state { that is observed throughout theintat nervous system [8{13℄. The reason it is diÆult to build an attrator networkthat is stable at low �ring rates, at least in the sparse oding limit, is as follows[2, 3℄:Attrator networks are onstruted by strengthening reurrent onnetions amongsub-populations of neurons. The strengthening must be large enough that neurons�http://ulture.neurobio.ula.edu/�pel



within a sub-population an sustain a high �ring rate state, but not so large that thesub-population an be spontaneously ative. This implies that the neuronal gainfuntions { the �ring rate of the post-synapti neurons as a funtion of the average�ring rate of the pre-synapti neurons { must be sigmoidal: small at low �ring rateto provide stability, high at intermediate �ring rate to provide a threshold (at anunstable equilibrium), and low again at high �ring rate to provide saturation anda stable attrator. In other words, a requirement for the o-existene of a stablebakground state and multiple attrators is that the gain funtion of the exitatoryneurons be superlinear at the observed bakground rates of a few Hz [2, 3℄. However{ and this is where the problem lies { above a few Hz most realisti gain funtionare nearly linear or sublinear (see, for example, Fig. B1 of [14℄).The superlinearity requirement rests on the impliit assumption that the ativityof the sub-population involved in a memory does not a�et the other neurons inthe network. While this assumption is valid in the sparse oding limit, it breaksdown in realisti networks ontaining both exitatory and inhibitory neurons. Insuh networks, ativity among exitatory ells results in inhibitory feedbak. Thisfeedbak, if powerful enough, an stabilize attrators even without a saturatingnonlinearity, essentially by stabilizing the equilibrium (above onsidered unstable)on the steep part of the gain funtion. The prie one pays, though, is that areasonable fration of the neurons must be involved in eah of the memories, whihtakes us away from the sparse oding limit and thus redues network apaity [15℄.1 The modelA relatively good desription of neuronal networks is provided by synaptially ou-pled, ondutane-based neurons. However, beause ommuniation is via ationpotentials, suh networks are diÆult to analyze. An alternative is to model neu-rons by their �ring rates. While this is unlikely to apture the full temporal networkdynamis [16℄, it is useful for studying equilibria. In suh simpli�ed models, theequilibrium �ring rate of a neuron is a funtion of the �ring rates of all the otherneurons in the network. Letting �Ei and �Ii denote the �ring rates of the exita-tory and inhibitory neurons, respetively, and assuming that synapti input sumslinearly, the equilibrium equations may be written�Ei = �Ei0�Xj AEEij �Ej ;Xj AEIij �Ij1A (1a)�Ii = �Ii 0�Xj AIEij �Ej ;Xj AIIij�Ij1A : (1b)Here �E and �I are the exitatory and inhibitory gain funtions and Aij determinesthe onnetion strength from neuron j to neuron i. The gain funtions an, inpriniple, be derived from ondutane-based model equations [17℄.Our goal here is to determine under what onditions Eq. (1) allows both attratorsand a stable state at low �ring rate. To aomplish this we will use mean �eldtheory. While this theory ould be applied to the full set of equations, to redueomplexity we make a number of simpli�ations. First, we let the inhibitory neuronsbe ompletely homogeneous (�Ii independent of i and onnetivity to and frominhibitory neurons all-to-all and uniform). In that ase, Eq. (1b) beomes simply



�I = �(�E; �I) where �E and �I are the average �ring rates of the exitatory andinhibitory neurons. Solving for �I and inserting the resulting expression into Eq. (1a)results in the expression �Ei = �Ei�Pj AEEij �Ej ; AEI�I(�E)� where AEI � Pj AEIij .Seond, we let �Ei have the form �Ei(u; v) = �E(xi+bu�v) where xi is a Gaussianrandom variable, and similarly for �I (exept with di�erent onstants b and  andno dependene on i). Finally, we assume that �I is threshold linear and the networkoperates in a regime in whih the inhibitory �ring rate is above zero. With thesesimpli�ations, and a trivial rede�nition of onstants, Eq. (1a) beomes�i = �p1=2�0�xi � (a+ 1)� +Xj Aij�j1A : (2)We have dropped the sub and supersript E, sine Eq. (2) refers exlusively toexitatory neurons, de�ned � to be the average �ring rate, � � N�1Pi �i, andresaled parameters. We let the funtion � be O(1), so � an be interpreted as thegain. The parameter p is the number of memories. The redution from Eq. (1) toEq. (2) was done solely to simplify the analysis; the tehniques we will use applyequally well to the general ase, Eq. (1).Note that the gain funtion in Eq. (2) dereases with inreasing average �ring rate,sine it's argument is �(1 + a)� and a is positive. This negative dependene on �arises beause we are working in the large oupling regime in whih exitation andinhibition are balaned [18, 19℄. The negative oupling to �ring rate has importantonsequenes for stability, as we will see below.We let the onnetivity matrix have the formAij = 1hgiN Cijg(Wij + Jij) :Here N is the number of exitatory neurons; Cij , whih regulates the degree ofonnetivity, is 1= with probability  and and 0 with probability (1 � ) (exeptCii = 0, meaning no autapses); g(z) is an O(1) lipping funtion that keeps weightsfrom falling below zero or getting too large; hgi is the mean value of g(z), de�nedin Eq. (4) below; Wij , whih orresponds to bakground onnetivity, is a randommatrix whose elements are Gaussian distributed with mean 1 and variane Æw2; andJij produes the attrators. We will follow the Hop�eld presription and write Jijas Jij = �pp pX�=1 ��i��j (3)where � is the oupling strength among neurons involved in the memories, and thepatterns ��i determine whih neurons partiipate in eah memory. The ��i are aset of unorrelated vetors with zero mean and unit variane. In simulations weuse ��i = [(1 � f)=f ℄1=2 with probability f and �[f=(1 � f)℄1=2 with probability1 � f , so a fration f of the neurons are involved in eah memory. Other hoiesare unlikely to signi�antly hange our results.



2 Mean �eld equationsThe main diÆulty in deriving the mean �eld equations from Eq. (2) is separatingthe signal from the noise. Our �rst step in this endeavor is to analyze the noiseassoiated with the lipped weights. To do this we break Cijg(Wij + Jij) into twopiees: Cijg(Wij + Jij) = hgi+ hg0iJij + ÆCij whereÆCij � Cijg(Wij + Jij)� (hgi+ hg0iJij) :The angle brakets around g represent an average over the distributions of Wij andJij , and a prime denotes a derivative. In the large p limit, ÆCij an be treated as arandom matrix whose main role is to inrease the e�etive noise [20℄. The mean ofÆCij is zero and its variane normalized to hgi2=, whih we denote �2, is given by�2 � hgi2Var[ÆCij ℄ = hg2i � (1 + hg0i2hJ2iji)hgi2 :For large p, the elements of Jij are Gaussian with zero mean and variane �2, sothe averages involving g an be writtenhgki = Z dz exp[�z2=2(Æw2 + �2)℄[2�(Æw2 + �2)℄1=2 gk(1 + z) (4)where k an be either an exponent or a prime and the \1" in g(1 + z) orrespondsto the mean of Wij . In our simulations we use the lipping funtion g(z) = z if z isbetween 0 and 2, 0 if z � 0 and 2 if z � 2.Our main assumptions in the development of a mean �eld theory are thatPj 6=i ÆCij�j is a Gaussian random variable, and that ÆCij and �j are independent.Consequently, Var24 1hgiN Xj 6=i ÆCij�j35 = �2N h�2iwhere h�2i � N�1Pi �2i is the seond moment of the �ring rate. Letting �̂i be azero mean Gaussian random variable with variane �̂2 � �2h�2i=N , we an use theabove assumptions along with the de�nition of Jij , Eq. (3), to write Eq. (20) as�i = �p1=2�0�xi � a� + p�1=2���i 1N Xj 6=i ��j�j + �̂i1A : (5)We have de�ned the lipped memory strength, �, as � � �hg0i=hgi. While it isnot totally obvious from the above equations, it an be shown that both �2 and� beome independent of � for large �. This makes network behavior robust tohanges in �, the strength of the memories, so long as � is large.Derivation of the mean �eld equations from Eq. (5) follow standard methods [21, 22℄.For de�niteness we take �(x) to be threshold linear: �(x) = max(0; x). For the aseof one ative memory, the mean �eld equations may then be written in the form



w = ��1� r�F1(w; z) (6a)1 = � �2�2(1� r)2 � �2�2 + 1(1� q)2 � [F2(z) + f�F2(w; z)℄ (6b)+ �2�20a2=x20(1� r)2 [F1(z) + f�F1(w; z)℄2r = ���q1� q (6)q = ��1 + ��� [F0(z) + f�F0(w; z)℄ (6d)where � � p=N is the load parameter, x0 and �20=p are the mean and variane ofof xi (see Eq. (2)), and, reall, f is the fration of neurons that partiipate in eahmemory. The funtions Fk and �Fk are de�ned byFk(z) � Z 1�z d�(2�)1=2 (z + �)k exp(��2=2)�Fk(w; z) � Fk(w + z)� Fk(z) :For large negative z, Fk(z) vanishes as exp(�z2=2), while for large positive z,Fk(z)! zk=k!.The average �ring rate, �, and strength of the memory, m � N�1Pi �1j�j (takenwithout loss of generality to be the overlap with pattern 1), are given in terms of zand w as � = x0a+ p�1=2�(z=w + f)�F1(w; z)=(F1(z) + f�F1(w; z))m = (1� f)�F1(w; z)F1(z) + f�F1(w; z) �:3 ResultsThe mean �eld equations an be understood by examining Eqs. (6a) and (6b). The�rst of these, Eq. (6a), is a resaled form of the equation for the overlap, m. (Fromthe de�nition of �F1 given above, it an be seen that m is proportional to w forsmall w). This equation always has a solution at w = 0 (and thus m = 0), whihorresponds to a bakground state with no memories ative. If �� is large enough,there is a seond solution with w (and thus m) greater than zero. This seondsolution orresponds to a memory. The other relevant equation, Eq. (6b), desribesthe behavior of the mean �ring rate. This equation looks ompliated only beausethe noise { the variation in �ring rate from neuron to neuron { must be determinedself-onsistently.The solutions to Eqs. (6a) and (6b) are plotted in Fig. 1 in the z-w plane. The solidlines, inluding the horizontal line at w = 0, represents the solution to Eq. (6a), the



Figure 1: Graphial solution of Eqs. (6a)and (6b). Solid lines, inluding the one atw = 0: solution to Eq. (6a). Dashed line:solution to Eq. (6b). The arrows indiateapproximate ow diretions: vertial ar-rows indiate time evolution of w at �xedz; horizontal arrows indiate time evolu-tion of z at �xed w. The blak squaresshow potentially stable �xed points. Notethe exhange of stability to the right ofthe solid urve, indiating that interse-tions too far to the right will be unstable.dashed line the solution to Eq. (6b), and their intersetions solutions to both. Whilestability annot be inferred from the equilibrium equations, a reasonable assumptionis that the evolution equations for the �ring rates, at least near an equilibrium, havethe form �d�i=dt = �i � �i. In that ase, the arrows represent ow diretions, andwe see that there are potentially stable equilibria at the intersetions marked bythe solid squares.Note that in the sparse oding limit, f ! 0, z is independent of w, meaning that themean �ring rate, �, is independent of the overlap, m. In this limit there an be nofeedbak to inhibitory neurons, and thus no hane for stabilization. In terms of Fig.1, the e�et of letting f ! 0 is to make the dashed line vertial. This eliminates thepossibility of the upper stable equilibrium (the solid square at w > 0), and returnsus to the situation where a superlinear gain funtion is required for attrators to beembedded, as disussed in the introdution.Two important onlusions an be drawn from Fig. 1. First, the attrators an bestable even though the gain funtions never saturate (reall that we used threshold-linear gain funtions). The stabilization mehanism is feedbak to inhibitory neu-rons, via the �(1 + a)� term in Eq. (2). This feedbak is what makes the dashedline in Fig. 1 bend, allowing a stable equilibrium at w > 0. Seond, if the dashedline shifts to the right relative to the solid line, the bakground beomes destabi-lized. This is beause there is an exhange of stability, as indiated by the arrows.Thus, there is a tradeo�: w, and thus the mean �ring rate of the memory neurons,an be inreased by shifting the dashed line up or to the right, but eventually thebakground beomes destabilized. Shifting the dashed line to the left, on the otherhand, will eventually eliminate the solution at w > 0, destroying all attrators butthe bakground.For �xed load parameter �, fration of neurons involved in a memory, f , and degreeof onnetivity, , there are three parameters that have a large e�et on the loationof the equilibria in Fig. 1: the gain, �, the lipped memory strength, �, and thedegree of heterogeneity in individual neurons, �0. The e�et of the �rst two anbe seen in Fig. 2, whih shows a stability plot in the �-� plane, determined bynumerially solving the the equations �d�i=dt = �i � �i (see Eq. (2)). The �lledirles indiate regions where memories were embedded without destabilizing thebakground, open irles indiate regions where no memories ould be embedded,and �s indiate regions where the bakground was unstable. As disussed above,� beomes approximately independent of the strength of the memories, �, when� beomes large. This is seen in Fig. 2A, in whih network behavior stabilizeswhen � beomes larger than about 4; inreasing � beyond 8 would, presumably,



produe no surprises. There is some sensitivity to gain, �: when � > 4, memorieso-existed with a stable bakground for � in a �15% range. Although not shown,the same was true of �0: inreasing it by about 20% eliminated the attrators;dereasing it by the same amount destabilized the bakground. However, moredetailed analysis indiates that the stability region gets larger as the number ofneurons in the network, N , inreases. This is beause utuations destabilize thebakground, and those utuations fall o� as N�1=2.
Figure 2: A. Stability diagram, found by solving the set of equations �d�i=dt =�i � �i with the argument of �i given in Eq. (2). Filled irles: memories o-existwith a stable bakground (also outlined with solid lines); open irles: memoriesould not be embedded; �s: bakground was unstable. The average bakgroundrate, when the bakground was stable, was around 3 Hz. The network parameterswere �0 = 6, x0 = 1:5, a = 0:5,  = 0:3, � = 2:5%, and Æw = 0:3. 2000 neuronswere used in the simulations. These parameters led to an e�etive gain, p1=2��, ofabout 10, whih is onsistent with the gain in large networks in whih eah neuronreeives �5-10,000 inputs. B. Plot of �ring rate of memory neurons, m, when thememory was ative (upper trae) and not ative (lower trae) versus � at � = 2.4 DisussionThe main outome of this analysis is that attrators an o-exist with a stablebakground when neurons have generi threshold-linear gain funtions, so long asthe sparse oding limit is avoided. The parameter regime for this o-existene ismuh larger than for attrator networks that operate in the sparse oding limit[2, 23℄. While these results are enouraging, they do not de�nitively establishingthat attrators an exist in realisti networks. Future work must inlude inhibitoryneurons, inorporate a muh larger exploration of parameter spae to ensure thatthe results are robust, and ultimately involve simulations with spiking neurons.5 AknowledgementsThis work was supported by NIMH grant #R01 MH62447.Referenes[1℄ J. J. Hop�eld. Neural networks and physial systems with emergent olletive om-putational abilities. Pro. Natl. Aad. Si., 79:2554{2558, 1982.[2℄ N. Brunel. Persistent ativity and the single-ell frequeny-urrent urve in a ortialnetwork model. Network: Computation in Neural Systems, 11:261{280, 2000.[3℄ P.E. Latham and S.N. Nirenberg. Intrinsi dynamis in ultured neuronal networks.So. Neurosiene Abstrat, 25:2259, 1999.
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