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tAlmost two de
ades ago, Hop�eld [1℄ showed that networks ofhighly redu
ed model neurons 
an exhibit multiple attra
ting �xedpoints, thus providing a substrate for asso
iative memory. It is stillnot 
lear, however, whether realisti
 neuronal networks 
an supportmultiple attra
tors. The main diÆ
ulty is that neuronal networksin vivo exhibit a stable ba
kground state at low �ring rate, typ-i
ally a few Hz. Embedding attra
tor is easy; doing so withoutdestabilizing the ba
kground is not. Previous work [2, 3℄ fo
usedon the sparse 
oding limit, in whi
h a vanishingly small number ofneurons are involved in any memory. Here we investigate the 
asein whi
h the number of neurons involved in a memory s
ales withthe number of neurons in the network. In 
ontrast to the sparse
oding limit, we �nd that multiple attra
tors 
an 
o-exist robustlywith a stable ba
kground state. Mean �eld theory is used to under-stand how the behavior of the network s
ales with its parameters,and simulations with analog neurons are presented.One of the most important features of the nervous system is its ability to performasso
iative memory. It is generally believed that asso
iative memory is implementedusing attra
tor networks { experimental studies point in that dire
tion [4{7℄, andthere are virtually no 
ompeting theoreti
al models. Perhaps surprisingly, however,it is still an open theoreti
al question whether attra
tors 
an exist in realisti
 neu-ronal networks. The \realisti
" feature that is probably hardest to 
apture is thesteady �ring at low rates { the ba
kground state { that is observed throughout theinta
t nervous system [8{13℄. The reason it is diÆ
ult to build an attra
tor networkthat is stable at low �ring rates, at least in the sparse 
oding limit, is as follows[2, 3℄:Attra
tor networks are 
onstru
ted by strengthening re
urrent 
onne
tions amongsub-populations of neurons. The strengthening must be large enough that neurons�http://
ulture.neurobio.u
la.edu/�pel



within a sub-population 
an sustain a high �ring rate state, but not so large that thesub-population 
an be spontaneously a
tive. This implies that the neuronal gainfun
tions { the �ring rate of the post-synapti
 neurons as a fun
tion of the average�ring rate of the pre-synapti
 neurons { must be sigmoidal: small at low �ring rateto provide stability, high at intermediate �ring rate to provide a threshold (at anunstable equilibrium), and low again at high �ring rate to provide saturation anda stable attra
tor. In other words, a requirement for the 
o-existen
e of a stableba
kground state and multiple attra
tors is that the gain fun
tion of the ex
itatoryneurons be superlinear at the observed ba
kground rates of a few Hz [2, 3℄. However{ and this is where the problem lies { above a few Hz most realisti
 gain fun
tionare nearly linear or sublinear (see, for example, Fig. B1 of [14℄).The superlinearity requirement rests on the impli
it assumption that the a
tivityof the sub-population involved in a memory does not a�e
t the other neurons inthe network. While this assumption is valid in the sparse 
oding limit, it breaksdown in realisti
 networks 
ontaining both ex
itatory and inhibitory neurons. Insu
h networks, a
tivity among ex
itatory 
ells results in inhibitory feedba
k. Thisfeedba
k, if powerful enough, 
an stabilize attra
tors even without a saturatingnonlinearity, essentially by stabilizing the equilibrium (above 
onsidered unstable)on the steep part of the gain fun
tion. The pri
e one pays, though, is that areasonable fra
tion of the neurons must be involved in ea
h of the memories, whi
htakes us away from the sparse 
oding limit and thus redu
es network 
apa
ity [15℄.1 The modelA relatively good des
ription of neuronal networks is provided by synapti
ally 
ou-pled, 
ondu
tan
e-based neurons. However, be
ause 
ommuni
ation is via a
tionpotentials, su
h networks are diÆ
ult to analyze. An alternative is to model neu-rons by their �ring rates. While this is unlikely to 
apture the full temporal networkdynami
s [16℄, it is useful for studying equilibria. In su
h simpli�ed models, theequilibrium �ring rate of a neuron is a fun
tion of the �ring rates of all the otherneurons in the network. Letting �Ei and �Ii denote the �ring rates of the ex
ita-tory and inhibitory neurons, respe
tively, and assuming that synapti
 input sumslinearly, the equilibrium equations may be written�Ei = �Ei0�Xj AEEij �Ej ;Xj AEIij �Ij1A (1a)�Ii = �Ii 0�Xj AIEij �Ej ;Xj AIIij�Ij1A : (1b)Here �E and �I are the ex
itatory and inhibitory gain fun
tions and Aij determinesthe 
onne
tion strength from neuron j to neuron i. The gain fun
tions 
an, inprin
iple, be derived from 
ondu
tan
e-based model equations [17℄.Our goal here is to determine under what 
onditions Eq. (1) allows both attra
torsand a stable state at low �ring rate. To a

omplish this we will use mean �eldtheory. While this theory 
ould be applied to the full set of equations, to redu
e
omplexity we make a number of simpli�
ations. First, we let the inhibitory neuronsbe 
ompletely homogeneous (�Ii independent of i and 
onne
tivity to and frominhibitory neurons all-to-all and uniform). In that 
ase, Eq. (1b) be
omes simply



�I = �(�E; �I) where �E and �I are the average �ring rates of the ex
itatory andinhibitory neurons. Solving for �I and inserting the resulting expression into Eq. (1a)results in the expression �Ei = �Ei�Pj AEEij �Ej ; AEI�I(�E)� where AEI � Pj AEIij .Se
ond, we let �Ei have the form �Ei(u; v) = �E(xi+bu�
v) where xi is a Gaussianrandom variable, and similarly for �I (ex
ept with di�erent 
onstants b and 
 andno dependen
e on i). Finally, we assume that �I is threshold linear and the networkoperates in a regime in whi
h the inhibitory �ring rate is above zero. With thesesimpli�
ations, and a trivial rede�nition of 
onstants, Eq. (1a) be
omes�i = �p1=2�0�xi � (a+ 1)� +Xj Aij�j1A : (2)We have dropped the sub and supers
ript E, sin
e Eq. (2) refers ex
lusively toex
itatory neurons, de�ned � to be the average �ring rate, � � N�1Pi �i, andres
aled parameters. We let the fun
tion � be O(1), so � 
an be interpreted as thegain. The parameter p is the number of memories. The redu
tion from Eq. (1) toEq. (2) was done solely to simplify the analysis; the te
hniques we will use applyequally well to the general 
ase, Eq. (1).Note that the gain fun
tion in Eq. (2) de
reases with in
reasing average �ring rate,sin
e it's argument is �(1 + a)� and a is positive. This negative dependen
e on �arises be
ause we are working in the large 
oupling regime in whi
h ex
itation andinhibition are balan
ed [18, 19℄. The negative 
oupling to �ring rate has important
onsequen
es for stability, as we will see below.We let the 
onne
tivity matrix have the formAij = 1hgiN Cijg(Wij + Jij) :Here N is the number of ex
itatory neurons; Cij , whi
h regulates the degree of
onne
tivity, is 1=
 with probability 
 and and 0 with probability (1 � 
) (ex
eptCii = 0, meaning no autapses); g(z) is an O(1) 
lipping fun
tion that keeps weightsfrom falling below zero or getting too large; hgi is the mean value of g(z), de�nedin Eq. (4) below; Wij , whi
h 
orresponds to ba
kground 
onne
tivity, is a randommatrix whose elements are Gaussian distributed with mean 1 and varian
e Æw2; andJij produ
es the attra
tors. We will follow the Hop�eld pres
ription and write Jijas Jij = �pp pX�=1 ��i��j (3)where � is the 
oupling strength among neurons involved in the memories, and thepatterns ��i determine whi
h neurons parti
ipate in ea
h memory. The ��i are aset of un
orrelated ve
tors with zero mean and unit varian
e. In simulations weuse ��i = [(1 � f)=f ℄1=2 with probability f and �[f=(1 � f)℄1=2 with probability1 � f , so a fra
tion f of the neurons are involved in ea
h memory. Other 
hoi
esare unlikely to signi�
antly 
hange our results.



2 Mean �eld equationsThe main diÆ
ulty in deriving the mean �eld equations from Eq. (2) is separatingthe signal from the noise. Our �rst step in this endeavor is to analyze the noiseasso
iated with the 
lipped weights. To do this we break Cijg(Wij + Jij) into twopie
es: Cijg(Wij + Jij) = hgi+ hg0iJij + ÆCij whereÆCij � Cijg(Wij + Jij)� (hgi+ hg0iJij) :The angle bra
kets around g represent an average over the distributions of Wij andJij , and a prime denotes a derivative. In the large p limit, ÆCij 
an be treated as arandom matrix whose main role is to in
rease the e�e
tive noise [20℄. The mean ofÆCij is zero and its varian
e normalized to hgi2=
, whi
h we denote �2, is given by�2 � 
hgi2Var[ÆCij ℄ = hg2i � 
(1 + hg0i2hJ2iji)hgi2 :For large p, the elements of Jij are Gaussian with zero mean and varian
e �2, sothe averages involving g 
an be writtenhgki = Z dz exp[�z2=2(Æw2 + �2)℄[2�(Æw2 + �2)℄1=2 gk(1 + z) (4)where k 
an be either an exponent or a prime and the \1" in g(1 + z) 
orrespondsto the mean of Wij . In our simulations we use the 
lipping fun
tion g(z) = z if z isbetween 0 and 2, 0 if z � 0 and 2 if z � 2.Our main assumptions in the development of a mean �eld theory are thatPj 6=i ÆCij�j is a Gaussian random variable, and that ÆCij and �j are independent.Consequently, Var24 1hgiN Xj 6=i ÆCij�j35 = �2
N h�2iwhere h�2i � N�1Pi �2i is the se
ond moment of the �ring rate. Letting �̂i be azero mean Gaussian random variable with varian
e �̂2 � �2h�2i=
N , we 
an use theabove assumptions along with the de�nition of Jij , Eq. (3), to write Eq. (20) as�i = �p1=2�0�xi � a� + p�1=2�
��i 1N Xj 6=i ��j�j + �̂i1A : (5)We have de�ned the 
lipped memory strength, �
, as �
 � �hg0i=hgi. While it isnot totally obvious from the above equations, it 
an be shown that both �2 and�
 be
ome independent of � for large �. This makes network behavior robust to
hanges in �, the strength of the memories, so long as � is large.Derivation of the mean �eld equations from Eq. (5) follow standard methods [21, 22℄.For de�niteness we take �(x) to be threshold linear: �(x) = max(0; x). For the 
aseof one a
tive memory, the mean �eld equations may then be written in the form



w = ��
1� r�F1(w; z) (6a)1 = � �2�2
(1� r)2 � �2
�2
 + 1(1� q)2 � [F2(z) + f�F2(w; z)℄ (6b)+ �2�20a2=x20(1� r)2 [F1(z) + f�F1(w; z)℄2r = ���
q1� q (6
)q = ��
1 + ���
 [F0(z) + f�F0(w; z)℄ (6d)where � � p=N is the load parameter, x0 and �20=p are the mean and varian
e ofof xi (see Eq. (2)), and, re
all, f is the fra
tion of neurons that parti
ipate in ea
hmemory. The fun
tions Fk and �Fk are de�ned byFk(z) � Z 1�z d�(2�)1=2 (z + �)k exp(��2=2)�Fk(w; z) � Fk(w + z)� Fk(z) :For large negative z, Fk(z) vanishes as exp(�z2=2), while for large positive z,Fk(z)! zk=k!.The average �ring rate, �, and strength of the memory, m � N�1Pi �1j�j (takenwithout loss of generality to be the overlap with pattern 1), are given in terms of zand w as � = x0a+ p�1=2�
(z=w + f)�F1(w; z)=(F1(z) + f�F1(w; z))m = (1� f)�F1(w; z)F1(z) + f�F1(w; z) �:3 ResultsThe mean �eld equations 
an be understood by examining Eqs. (6a) and (6b). The�rst of these, Eq. (6a), is a res
aled form of the equation for the overlap, m. (Fromthe de�nition of �F1 given above, it 
an be seen that m is proportional to w forsmall w). This equation always has a solution at w = 0 (and thus m = 0), whi
h
orresponds to a ba
kground state with no memories a
tive. If ��
 is large enough,there is a se
ond solution with w (and thus m) greater than zero. This se
ondsolution 
orresponds to a memory. The other relevant equation, Eq. (6b), des
ribesthe behavior of the mean �ring rate. This equation looks 
ompli
ated only be
ausethe noise { the variation in �ring rate from neuron to neuron { must be determinedself-
onsistently.The solutions to Eqs. (6a) and (6b) are plotted in Fig. 1 in the z-w plane. The solidlines, in
luding the horizontal line at w = 0, represents the solution to Eq. (6a), the



Figure 1: Graphi
al solution of Eqs. (6a)and (6b). Solid lines, in
luding the one atw = 0: solution to Eq. (6a). Dashed line:solution to Eq. (6b). The arrows indi
ateapproximate 
ow dire
tions: verti
al ar-rows indi
ate time evolution of w at �xedz; horizontal arrows indi
ate time evolu-tion of z at �xed w. The bla
k squaresshow potentially stable �xed points. Notethe ex
hange of stability to the right ofthe solid 
urve, indi
ating that interse
-tions too far to the right will be unstable.dashed line the solution to Eq. (6b), and their interse
tions solutions to both. Whilestability 
annot be inferred from the equilibrium equations, a reasonable assumptionis that the evolution equations for the �ring rates, at least near an equilibrium, havethe form �d�i=dt = �i � �i. In that 
ase, the arrows represent 
ow dire
tions, andwe see that there are potentially stable equilibria at the interse
tions marked bythe solid squares.Note that in the sparse 
oding limit, f ! 0, z is independent of w, meaning that themean �ring rate, �, is independent of the overlap, m. In this limit there 
an be nofeedba
k to inhibitory neurons, and thus no 
han
e for stabilization. In terms of Fig.1, the e�e
t of letting f ! 0 is to make the dashed line verti
al. This eliminates thepossibility of the upper stable equilibrium (the solid square at w > 0), and returnsus to the situation where a superlinear gain fun
tion is required for attra
tors to beembedded, as dis
ussed in the introdu
tion.Two important 
on
lusions 
an be drawn from Fig. 1. First, the attra
tors 
an bestable even though the gain fun
tions never saturate (re
all that we used threshold-linear gain fun
tions). The stabilization me
hanism is feedba
k to inhibitory neu-rons, via the �(1 + a)� term in Eq. (2). This feedba
k is what makes the dashedline in Fig. 1 bend, allowing a stable equilibrium at w > 0. Se
ond, if the dashedline shifts to the right relative to the solid line, the ba
kground be
omes destabi-lized. This is be
ause there is an ex
hange of stability, as indi
ated by the arrows.Thus, there is a tradeo�: w, and thus the mean �ring rate of the memory neurons,
an be in
reased by shifting the dashed line up or to the right, but eventually theba
kground be
omes destabilized. Shifting the dashed line to the left, on the otherhand, will eventually eliminate the solution at w > 0, destroying all attra
tors butthe ba
kground.For �xed load parameter �, fra
tion of neurons involved in a memory, f , and degreeof 
onne
tivity, 
, there are three parameters that have a large e�e
t on the lo
ationof the equilibria in Fig. 1: the gain, �, the 
lipped memory strength, �
, and thedegree of heterogeneity in individual neurons, �0. The e�e
t of the �rst two 
anbe seen in Fig. 2, whi
h shows a stability plot in the �-� plane, determined bynumeri
ally solving the the equations �d�i=dt = �i � �i (see Eq. (2)). The �lled
ir
les indi
ate regions where memories were embedded without destabilizing theba
kground, open 
ir
les indi
ate regions where no memories 
ould be embedded,and �s indi
ate regions where the ba
kground was unstable. As dis
ussed above,�
 be
omes approximately independent of the strength of the memories, �, when� be
omes large. This is seen in Fig. 2A, in whi
h network behavior stabilizeswhen � be
omes larger than about 4; in
reasing � beyond 8 would, presumably,



produ
e no surprises. There is some sensitivity to gain, �: when � > 4, memories
o-existed with a stable ba
kground for � in a �15% range. Although not shown,the same was true of �0: in
reasing it by about 20% eliminated the attra
tors;de
reasing it by the same amount destabilized the ba
kground. However, moredetailed analysis indi
ates that the stability region gets larger as the number ofneurons in the network, N , in
reases. This is be
ause 
u
tuations destabilize theba
kground, and those 
u
tuations fall o� as N�1=2.
Figure 2: A. Stability diagram, found by solving the set of equations �d�i=dt =�i � �i with the argument of �i given in Eq. (2). Filled 
ir
les: memories 
o-existwith a stable ba
kground (also outlined with solid lines); open 
ir
les: memories
ould not be embedded; �s: ba
kground was unstable. The average ba
kgroundrate, when the ba
kground was stable, was around 3 Hz. The network parameterswere �0 = 6, x0 = 1:5, a = 0:5, 
 = 0:3, � = 2:5%, and Æw = 0:3. 2000 neuronswere used in the simulations. These parameters led to an e�e
tive gain, p1=2��
, ofabout 10, whi
h is 
onsistent with the gain in large networks in whi
h ea
h neuronre
eives �5-10,000 inputs. B. Plot of �ring rate of memory neurons, m, when thememory was a
tive (upper tra
e) and not a
tive (lower tra
e) versus � at � = 2.4 Dis
ussionThe main out
ome of this analysis is that attra
tors 
an 
o-exist with a stableba
kground when neurons have generi
 threshold-linear gain fun
tions, so long asthe sparse 
oding limit is avoided. The parameter regime for this 
o-existen
e ismu
h larger than for attra
tor networks that operate in the sparse 
oding limit[2, 23℄. While these results are en
ouraging, they do not de�nitively establishingthat attra
tors 
an exist in realisti
 networks. Future work must in
lude inhibitoryneurons, in
orporate a mu
h larger exploration of parameter spa
e to ensure thatthe results are robust, and ultimately involve simulations with spiking neurons.5 A
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