Presented at N PS 2007
To appear in AdvNeural Information Processing Systems 20, Jun 2008

Neural characterization in partially observed
populations of spiking neurons

Jonathan W. Pillow Peter Latham
Gatsby Computational Neuroscience Unit, UCL
17 Queen Square, London WC1N 3AR, UK
pi | | ow@at sby. ucl . ac. uk
pel @at sby. ucl . ac. uk

Abstract

Point process encoding models provide powerful statistizathods for under-
standing the responses of neurons to sensory stimuli. Adthohese models have
been successfully applied to neurons in the early sensohyvpg, they have fared
less well capturing the response properties of heuronsepetebrain areas, ow-
ing in part to the fact that they do not take into account rplétistages of pro-
cessing. Here we introduce a new twist on the point-procexteting approach:
we include unobserved as well as observed spiking neuroagadimt encoding
model. The resulting model exhibits richer dynamics andaroghly nonlinear
response properties, making it more powerful and more flexdr fitting neural
data. More importantly, it allows us to estimate connettipatterns among neu-
rons (both observed and unobserved), and may provide insighhow networks
process sensory input. We formulate the estimation proeedsing variational
EM and the wake-sleep algorithm, and illustrate the mogisormance using a
simulated example network consisting of two coupled nesiron

1 Introduction

A central goal of computational neuroscience is to undedsteow the brain transforms sensory
input into spike trains, and considerable effort has fodusethe development of statistical models
that can describe this transformation. One of the most ss@aleof these is the linear-nonlinear-
Poisson (LNP) cascade model, which describes a cell’s nsgpio terms of a linear filter (or recep-
tive field), an output nonlinearity, and an instantaneotilsisp point process [1-5]. Recent efforts
have generalized this model to incorporate spike-histo multi-neuronal dependencies, which
greatly enhances the model’s flexibility, allowing it to tage non-Poisson spiking statistics and
joint responses of an entire population of neurons [6—10].

Point process models accurately describe the spiking nsggoof neurons in the early visual path-
way to light, and of cortical neurons to injected currentsowdver, they perform poorly both in
higher visual areas and in auditory cortex, and often do enetglize well to stimuli whose statis-
tics differ from those used for fitting. Such failings are omee ways not surprising: the cascade
model’s stimulus sensitivity is described with a singleshn filter, whereas responses in the brain
reflect multiple stages of nonlinear processing, adaptatio multiple timescales, and recurrent
feedback from higher-level areas. However, given its nratiteal tractability and its accuracy in
capturing the input-output properties of single neurohs,model provides a useful building block
for constructing richer and more complex models of neuralupetion responses.



Here we extend the point-process modeling framework torpaate a set of unobserved or “hid-
den” neurons, whose spike trains are unknown and treatemidsrhor latent variables. The unob-
served neurons respond to the stimulus and to synapticgrifmm other neurons, and their spiking
activity can in turn affect the responses of the observedamsu Consequently, their functional
properties and connectivity can be inferred from data [Bl-However, the idea is not to simply
build a more powerful statistical model, but to develop a eidtat can help us learn something
about the underlying structure of networks deep in the brain

Although this expanded model offers considerably greagsitfility in describing an observed set
of neural responses, it is more difficult to fit to data. Conmputhe likelihood of an observed set
of spike trains requires integrating out the probabilitytdbution over hidden activity, and we need
sophisticated algorithms to find the maximum likelihoodreate of model parameters. Here we
introduce a pair of estimation procedures based on vanialtieM (expectation maximization) and
the wake-sleep algorithm. Both algorithms make use of alneraposal density to capture the
dependence of hidden spikes on the observed spike traingh alows for fast sampling of hidden
neurons’ activity. In the remainder of this paper we derive basic formalism and demonstrate
its utility on a toy problem consisting of two neurons, onewdfich is observed and one which
is designated “hidden”. We show that a single-cell modetiusecharacterize the observed neuron
performs poorly, while a coupled two-cell model estimatsithg the wake-sleep algorithm performs
much more accurately.

2 Multi-neuronal point-process encoding model

We begin with a description of the encoding model, which geliwes the LNP model to incorporate
non-Poisson spiking and coupling between neurons. We tefilis as a generalized linear point-
process (glpp) mod&[8, 9]. For simplicity, we formulate the model for a pair ofurens, although
it can be tractably applied to data from a moderate-sizedilptipns ¢-10-100 neurons). In this
section we do not distinguish between observed and unaxsepikes, but will do so in the next.

Let x; denote the stimulus at time andy, and z, denote the number of spikes elicited by two
neurons at, wheret € [0,T] is an index over time. Note that, is a vector containing all elements
of the stimulus that are causally related to the (scalapaeses;; andz, at timet. Furthermore, let
us assumetakes on a discrete set of values, with bin sizg.e.,t € {0,A,2A, ..., T}. Typically

A is sufficiently small that we observe only zero or one spikeviery bin:y;, z; € {0,1}.

The conditional intensity (or instantaneous spike rateaah cell depends on both the stimulus and
the recent spiking history via a bank of linear filters. bet ;) andz_. ;) denote the (vector)
spike train histories at time Here[t — 7,t) refers to times between— 7 andt — A, SOy, 4) =
(Yt—rs Yt—r+, -, Yt—24, Yt—a) and similarly forz,_. ;). The conditional intensities for the two
cells are then given by

)\yt = f(ky - X+ hyy “Yt—7,t) + hyz . z[t—f,t))

At = f(kz x¢+h,, Zit—r1,t) =+ hzy ’ Y[tf‘r,t)) (1)
wherek, andk. are linear filters representing each cell’s receptive fiblg, andh.. are filters
operating on each cell's own spike-train history (captyffects like refractoriness and bursting),
andh., andh,. are a filters coupling the spike train history of each neumthé other (allowing

the model to capture statistical correlations and funetiégmeractions between neurons). The “
notation represents the standard dot product (performgwgranation over either index or time):

k-Xt = Zk:ixit
—a
> oy,

t'=t—1

where the index run over the components of the stimuli (which typically anee points extending
into the past). The second expression generalizhs ;. ;).

h- Y(t—,t)

We adapt this terminology from “generalized linear model” (gim), a mudhengeneral class of models
from the statistics literature [19]; this model is a glm whose distribution fundésiétoisson.
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Figure 1: Schematic of generalized linear point-process (glpp) encoding madelagram of model
parameters for a pair of coupled neurons. For each cell, the pamsnoetesist of a stimulus filter
(e.g.,ky), a spike-train history filterl{,, ), and a filter capturing coupling from the spike train history
of the other cellk.,). The filter outputs are summed, pass through an exponential notitinead
drive spiking via an instantaneous point procdssEquivalent diagram showing just the parameters
of the neurony, as used for drawing a sampje. Gray boxes highlight the stimulus vectey and
spike train history vectors that form the input to the model on this time steimplified graphical
model of the glpp causal structure, which allows us to visualize how the ldadilfactorizes. Arrows
between variables indicate conditional dependence. For visual clanitgpt@l dependence is depicted
as extending only two time bins, though in real data extends over many Redearrows highlight the
dependency structure for a single time bin of the respgnse

The nonlinear functionf, maps the input to the instantaneous spike rate of eachWellassume
here thatf is exponential, although any monotonic convex functior gnaws no faster than expo-
nentially is suitable [9]. Equation 1 is equivalentft@pplied to a linear convolution of the stimulus
and spike trains with their respective filters; a schematihiown in figure 1.

The probability of observing,; spikes in a bin of sizé\ is given by a Poisson distribution with rate
parameten,; A,

At AV
Py Ayt) = (y;t')e Aued, 2

and likewise forP(z:|\.:). The likelihood of the full set of spike times is the produttondition-
ally independent terms,

P(Y, Z|X,0) = [ Pyel Ay) P (2| Az0), ®3)

whereY and Z represent the full spike trainsX denotes the full set of stimuli, and =
{ky.k.,h,,, h,, h.. h, } denotes the model parameters. This factorization is plesb#rause
Ay @and )\, depend only on the process history up to titmenakingy, andz, conditionally inde-
pendent given the stimulus and spike histories up(see Fig. 1c). If the response at timeere to
depend on both the past and future response, we would hawesal é@op , preventing factorization
and making both sampling and likelihood evaluation verfidift.

The model parameters can be tractably fit to spike-train asiteg maximum likelihood. Although
the parameter space may be high-dimensional (incorpgrapike-history dependence over many
time bins and stimulus dependence over a large region ofdimdespace), the negative log-likelihood
is convex with respect to the model parameters, making fastex optimization methods feasible
for finding the global maximum [9]. We can write the log-likedod simply as

log P(Y, Z|X,0) = > (yilog Ayt + zlog Aey — Adyr — Adze) + ¢, (4)

t

wherec is a constant that does not dependjon



3 Generalized Expectation-Maximization and Wake-Sleep

Maximizing log P(Y, Z| X, 0) is straightforward if bothY” and Z are observed, but here we are
interested in the case whe¥eis observed and is “hidden”. Consequently, we have to average
overZ. The log-likelihood of the observed data is given by

L(0) =log P(Y|0) =log > P(Y, Z|0), (5)
zZ

where we have dropped to simplify notation (all probabilities can henceforth lakén to also
depend onX). This sum ovelZ is intractable in many settings, motivating the use of apipnate
methods for maximizing likelihood. Variational expectatimaximization (EM) [20, 21] and the
wake-sleep algorithm [22] are iterative algorithms foréng this problem by introducing a tractable
approximation to the conditional probability over hiddeariables,

Q(ZY,¢) = P(Z|Y,0), (6)
where¢ denotes the parameter vector determirihg

The idea behind variational EM can be described as followmc@vity of thelog implies a lower
bound on the log-likelihood:

P(Y, Z0)
L) > ;Q(lecb)logm
= log P(Y]0) — D1 (Q(Z]Y; ), P(Z|Y,0)), ™

where( is any probability distribution oveZ and D, is the Kullback-Leibler (KL) divergence
between and P (using P as shorthand foP(Z|Y, #)), which is always> 0. In standard EM()
takes the same functional form Bsso that by setting = 6 (the E-step) D, is 0 and the bound is
tight, since the right-hand-side of eq. 7 equal$). Fixing ¢, we then maximize the r.h.s. fér(the
M-step), which is equivalent to maximizing the expected ptate-data log-likelihood (expectation
taken w.r.t.QQ), given by

Eq v [log P(Y, Z|0)] = ZQ(Z|Y7 ¢)log P(Y, Z|0). (8)
z

Each step increases a lower bound on the log-likelihoodchvhan always be made tight, so the
algorithm converges to a fixed point that is a maximunfL ). The variational formulation differs
in allowing @ to take a different functional form thaR (i.e., one for which eq. 8 is easier to max-
imize). The variational E-step involves minimizid@x ., (Q, P) with respect tap, which remains
positive if @ does not approximat® exactly; the variational M-step is unchanged from the stathd
algorithm.

In certain cases, it is easier to minimize the KL divergefiter (P, Q) than Dk (Q, P), and
doing so in place of the variational E-step above resulthiénvtake-sleep algorithm [22]. In this
algorithm, we fit¢ by minimizing D 1, (P, Q) averaged oveY’, which is equivalent to maximizing
the expectation

Epy o [ 108 Q(ZIY, )] = Y P(Y, Z|0) log Q(Z]Y, ¢), )
Y. Z

which bears an obvious symmetry to eq. 8. Thus, both stepseofvaike-sleep algorithm involve
maximizing an expected log-probability. In the “wake” stggentical to the M-step), we fit the
true model parametersby maximizing (an approximation to) the log-probabilitytbe observed
dataY. In the “sleep” step, we fit) by trying to find a distributior() that best approximates the
conditional dependence gfonY’, averaged over the joint distributid®(Y, Z|0). We can therefore
think of the wake phase as learning a model of the data (paraes by#), and the sleep phase as
learning a consistent internal description of that modatgmetrized byp).

Both variational-EM and the wake-sleep algorithm work welllen@ closely approximate#, but
may fail to converge to a maximum of the likelihood if theraisignificant mismatch. Therefore,
the efficiency of these methods depends on choosing a goodxampgting distribution (Z|Y, ¢)

— one that closely matchd’3(Z]Y, 6). In the next section we show that considerations of the spike
generation process can provide us with a good choic&for
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Figure 2: Schematic diagram of the (acausal) model for the proposal deR$ifY, ¢), the condi-
tional density on hidden spikes given the observed spike dataonditional model schematic, which
allows z; to depend on the observed response both before andtafterGraphical model showing
causal structure of the acausal model, with arrows indicating depeyddine observed spike re-
sponses (gray circles) are no longer dependent variables, lautiszbas fixed, external data, which is
necessary for computing(z:|Y, ¢). Red arrows illustrate the dependency structure for a single bin of
the hidden response;.

4 Estimating the model with partially observed data

To understand intuitively why the tru8(Z|Y’, 0) is difficult to sample, and to motivate a reasonable
choice forQ(Z|Y, ¢), let us consider a simple example: suppose a single hiddenmévhose full
response i) makes a strong excitatory connection to an observed nduroose response i8),

so that ifz; = 1 (i.e., the hidden neuron spikes at tinje it is highly likely thaty,,; = 1 (i.e.,
the observed neuron spikes at time- 1). Consequently, under the tru&(Z|Y, ¢), which is the
probability overZ in all time bins givenY in all time bins, ify.; = 1 there is a high probability
thatz, = 1. In other wordsz; exhibits an acausal dependenceypn, . But this acausal dependence
is not captured in Equation 3, which expresses the prolalolier 2, as depending only on past
events at time, ignoring the future evenj;,; = 1.

Based on this observation — essentially, that the effecttofé observed spikes on the probability of
unobserved spikes depends on the connection strengthdsette two neurons — we approximate
P(Z]Y,0) using a separate point-process mo@élZ|Y, ¢), which contains set of acausal linear
filters fromY to Z. Thus we have

5\zt = eXp(f(z "X+ flzz “Z[—rt) T flzy : y[t—‘l',t-‘r‘f'))' (10)

As abovek., h.. andh., are linear filters; the important difference is that, - yj;—, i) is
a sum over past and future time: from- 7 to¢ + 7 — A. For this model, the parameters are
¢ = (k.,h..,h,,). Figure 2 illustrates the model architecture.

We now have a straightforward way to implement the wakepsédgorithm, using samples from
to perform the wake phase (estimatifig and samples fron®(Y, Z|0) to perform the sleep phase
(estimatingp). The algorithm works as follows:

e Wake: Draw sampledZ;} ~ Q(Z]Y, ¢), whereY are the observed spike trains ants
the current set of parameters for the acausal point-pranedel@. Evaluate the expected
complete-data log-likelihood (eq. 8) using Monte Carl@gration:

N
E, [log P(Y, Z|0)] = Jim_ % > log P(Y, Z;16). (11)

=1

This is log-concave i, meaning that we can efficiently find its global maximum ta@fit



e Sleep: Draw sampleqY;, Z;} ~ P(Y, Z|0), the true encoding distribution with current
parameterg. (Note these samples are pure “fantasy” data, drawn wittedatence to the
observedy’). As above, compute the expected log-probability (eq. B)githese samples:

1 N
Epiy 0 [108Q(ZIY,0)] = lim 7 TlogQ(Z;Y;. ¢), (12)

=1

which is also log-concave and thus efficiently maximizeddfor

One advantage of the wake-sleep algorithm is that each eteniperation can be performed using
only a single set of samples drawn fr@grand P. A theoretical drawback to wake-sleep, however, is
that the sleep step is not guaranteed to increase a lowadlmruthe log-likelihood, as in variational-
EM (wake-sleep minimizes the “wrong” KL divergence). We ¢aplement variational-EM using
the same approximating point-process magebut we now require multiple steps of sampling for
a complete E-step. To perform a variational E-step, we di@wptes (as above) fro and use
them to evaluate both the KL divergente,; (Q(Z|Y, ¢)||P(Z|Y,6) and its gradient with respect

to ¢. We can then perform noisy gradient descent to find a minindrawing a new set of samples
for each evaluation oDy, (Q, P). The M-step is equivalent to the wake phase of wake-sleep,
achievable with a single set of samples.

One additional use for the approximating point-processeah@xis as a “proposal” distribution for
Metropolis-Hastings sampling of the trég Z|Y, ¢). Such samples can be used to evaluate the true
log-likelihood, for comparison with the variational lowleound, and for noisy gradient ascent of the
likelihood to examine how closely these approximate mettomhverge to the true ML estimate. For
fully observed data, such samples also provide a useful sfeameasuring how much the entropy
of one neuron’s response is reduced by knowing the respofifisseighbors.

5 Simulations: atwo-neuron example

To verify the method, we applied it to a pair of neurons (asictep in fig. 1), simulated using a
stimulus consisting of a long presentation of white noise.d&hoted one of the neurons "observed”
and the other "hidden”. The parameters used for the sinmulaie depicted in fig. 3. The cells have
similarly-shaped biphasic stimulus filters with oppositgns like those commonly observed in ON
and OFF retinal ganglion cells. We assume that the ON-likeixebserved, while the OFF-like
cell is hidden. Both cells have spike-history filters thatune a refractory period following a spike,
with a small peak during the relative refractory period thladits burst-like responses. The hidden
cell has a strong positive coupling filthr,, onto the observed cell, which allows spiking activity in
the hidden cell to excite the observed cell (despite thetfadtthe two cells receive opposite-sign
stimulus input). For simplicity, we assume no coupling frtste observed to the hidden celBoth
types of filters were defined in a linear basis consisting af faised cosines, meaning that each
filter is specified by four parameters, and the full model ao# 20 parameters (i.e., 2 stimulus
filters and 3 spike-train filters).

Fig. 3b shows rasters of the two cells’ responses to a repgadsentations of a 1s Gaussian white-
noise stimulus with a framerate of 100Hz. Note that the temapstructure of the observed cell’'s
response is strongly correlated with that of the hiddenaed to the strong coupling from hidden
to observed (and the fact that the hidden cell receivestsfigtronger stimulus drive).

Ouir first task is to examine whether a standard, single-t@hl gnodel can capture the mapping from
stimuli to spike responses. Fig. 3c shows the parameteaelotfrom such a fit to the observed data,
using 10s of the response to a non-repeating white noiseilsting1000 samples, 251 spikes). Note
that the estimated stimulus filter (red) has much lower annidi than the stimulus filter of the true
model (gray). Fig. 3d shows the parameters obtained for aerebd and a hidden neuron, estimated
using wake-sleep as described in section 4. Fig. 3e-f shaesw@arison of the performance of the
two models, indicating that the coupled model estimatet wike-sleep does a much better job of
capturing the temporal structure of the observed neuresjsonse (accounting for 60% vs. 15% of

2Although the stimulus and spike-history filters bear a rough similarity to thbserged in retinal ganglion
cells, the coupling used here is unlike coupling filters observed (to owrlkdge) between ON and OFF cells
in retinal data; it is assumed purely for demonstration purposes.
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Figure 3: Simulation results.a, Parameters used for generating simulated responses. The top row
shows the filters determining the input to the observed cell, while the bottonsliows those influ-
encing the hidden cellb, Raster of spike responses of observed and hidden cells to a repested
Gaussian white noise stimulus (topy, Parameter estimates for a single-cell glpp model fit to the
observed cell’s response, using just the stimulus and observed dttaafes in red; true observed-
cell filters in gray).d, Parameters obtained using wake-sleep to estimate a coupled glpp nyadtel, a
using only the stimulus and observed spike timesResponse raster of true observed cell (obtained
by simulating the true two-cell model), estimated single-cell model and estihcaupled modelf,
Peri-stimulus time histogram (PSTH) of the above rasters showing thadtipded model gives much
higher accuracy predicting the true response.

the PSTH variance). The single-cell model, by contrastjt#tehmuch worse performance, which
is unsurprising given that the standard glpp encoding meoakelcapture only quasi-linear stimulus
dependencies.

6 Discussion

Although most statistical models of spike trains posit @clipathway from sensory stimuli to neu-
ronal responses, neurons are in fact embedded in highlyrestunetworks that exhibit dynamics
on a broad range of time-scales. To take into account thetatteural responses are driven by
both stimuli and network activity, and to understand the m@fl network interactions, we proposed
a model incorporating both hidden and observed spikes. g&rdethe observed spike responses
as those recorded during a typical experiment, while theareses of unobserved neurons are mod-
eled as latent variables (unrecorded, but exerting infleenche observed responses). The resulting
model is tractable, as the latent variables can be intedjmateusing approximate sampling methods,
and optimization using variational EM or wake-sleep pregidn approximate maximum likelihood
estimate of the model parameters. As shown by a simple examgitain settings of model param-
eters necessitate the incorporation unobserved spikéise asandard single-stage encoding model
does not accurately describe the data.

In future work, we plan to examine the quantitative perfonoeof the variational-EM and wake-
sleep algorithms, to explore their tractability in scaltedarger populations, and to apply them to
real neural data. The model offers a promising tool for azrialy network structure and network-
based computations carried out in higher sensory areassarly in the context where data are
only available from a restricted set of neurons recordediwi larger population.
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