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Abstract

Point process encoding models provide powerful statistical methods for under-
standing the responses of neurons to sensory stimuli. Although these models have
been successfully applied to neurons in the early sensory pathway, they have fared
less well capturing the response properties of neurons in deeper brain areas, ow-
ing in part to the fact that they do not take into account multiple stages of pro-
cessing. Here we introduce a new twist on the point-process modeling approach:
we include unobserved as well as observed spiking neurons ina joint encoding
model. The resulting model exhibits richer dynamics and more highly nonlinear
response properties, making it more powerful and more flexible for fitting neural
data. More importantly, it allows us to estimate connectivity patterns among neu-
rons (both observed and unobserved), and may provide insight into how networks
process sensory input. We formulate the estimation procedure using variational
EM and the wake-sleep algorithm, and illustrate the model’sperformance using a
simulated example network consisting of two coupled neurons.

1 Introduction

A central goal of computational neuroscience is to understand how the brain transforms sensory
input into spike trains, and considerable effort has focused on the development of statistical models
that can describe this transformation. One of the most successful of these is the linear-nonlinear-
Poisson (LNP) cascade model, which describes a cell’s response in terms of a linear filter (or recep-
tive field), an output nonlinearity, and an instantaneous spiking point process [1–5]. Recent efforts
have generalized this model to incorporate spike-history and multi-neuronal dependencies, which
greatly enhances the model’s flexibility, allowing it to capture non-Poisson spiking statistics and
joint responses of an entire population of neurons [6–10].

Point process models accurately describe the spiking responses of neurons in the early visual path-
way to light, and of cortical neurons to injected currents. However, they perform poorly both in
higher visual areas and in auditory cortex, and often do not generalize well to stimuli whose statis-
tics differ from those used for fitting. Such failings are in some ways not surprising: the cascade
model’s stimulus sensitivity is described with a single linear filter, whereas responses in the brain
reflect multiple stages of nonlinear processing, adaptation on multiple timescales, and recurrent
feedback from higher-level areas. However, given its mathematical tractability and its accuracy in
capturing the input-output properties of single neurons, the model provides a useful building block
for constructing richer and more complex models of neural population responses.

1



Here we extend the point-process modeling framework to incorporate a set of unobserved or “hid-
den” neurons, whose spike trains are unknown and treated as hidden or latent variables. The unob-
served neurons respond to the stimulus and to synaptic inputs from other neurons, and their spiking
activity can in turn affect the responses of the observed neurons. Consequently, their functional
properties and connectivity can be inferred from data [11–18]. However, the idea is not to simply
build a more powerful statistical model, but to develop a model that can help us learn something
about the underlying structure of networks deep in the brain.

Although this expanded model offers considerably greater flexibility in describing an observed set
of neural responses, it is more difficult to fit to data. Computing the likelihood of an observed set
of spike trains requires integrating out the probability distribution over hidden activity, and we need
sophisticated algorithms to find the maximum likelihood estimate of model parameters. Here we
introduce a pair of estimation procedures based on variational EM (expectation maximization) and
the wake-sleep algorithm. Both algorithms make use of a novel proposal density to capture the
dependence of hidden spikes on the observed spike trains, which allows for fast sampling of hidden
neurons’ activity. In the remainder of this paper we derive the basic formalism and demonstrate
its utility on a toy problem consisting of two neurons, one ofwhich is observed and one which
is designated “hidden”. We show that a single-cell model used to characterize the observed neuron
performs poorly, while a coupled two-cell model estimated using the wake-sleep algorithm performs
much more accurately.

2 Multi-neuronal point-process encoding model

We begin with a description of the encoding model, which generalizes the LNP model to incorporate
non-Poisson spiking and coupling between neurons. We referto this as a generalized linear point-
process (glpp) model1 [8, 9]. For simplicity, we formulate the model for a pair of neurons, although
it can be tractably applied to data from a moderate-sized populations (∼10-100 neurons). In this
section we do not distinguish between observed and unobserved spikes, but will do so in the next.

Let xt denote the stimulus at timet, andyt andzt denote the number of spikes elicited by two
neurons att, wheret ∈ [0, T ] is an index over time. Note thatxt is a vector containing all elements
of the stimulus that are causally related to the (scalar) responsesyt andzt at timet. Furthermore, let
us assumet takes on a discrete set of values, with bin size∆, i.e.,t ∈ {0,∆, 2∆, . . . , T}. Typically
∆ is sufficiently small that we observe only zero or one spike inevery bin:yt, zt ∈ {0, 1}.

The conditional intensity (or instantaneous spike rate) ofeach cell depends on both the stimulus and
the recent spiking history via a bank of linear filters. Lety[t−τ,t) andz[t−τ,t) denote the (vector)
spike train histories at timet. Here[t − τ, t) refers to times betweent − τ andt − ∆, soy[t−τ,t) ≡
(yt−τ , yt−τ+∆, ..., yt−2∆, yt−∆) and similarly forz[t−τ,t). The conditional intensities for the two
cells are then given by

λyt = f(ky · xt + hyy · y[t−τ,t) + hyz · z[t−τ,t))

λzt = f(kz · xt + hzz · z[t−τ,t) + hzy · y[t−τ,t)) (1)

whereky andkz are linear filters representing each cell’s receptive field,hyy andhzz are filters
operating on each cell’s own spike-train history (capturing effects like refractoriness and bursting),
andhzy andhyz are a filters coupling the spike train history of each neuron to the other (allowing
the model to capture statistical correlations and functional interactions between neurons). The “·”
notation represents the standard dot product (performing asummation over either index or time):

k · xt ≡
∑

i

kixit

h · y[t−τ,t) ≡
t−∆
∑

t′=t−τ

ht′yt′ ,

where the indexi run over the components of the stimuli (which typically are time points extending
into the past). The second expression generalizes toh · z[t−τ,t).

1We adapt this terminology from “generalized linear model” (glm), a much more general class of models
from the statistics literature [19]; this model is a glm whose distribution functionis Poisson.
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Figure 1: Schematic of generalized linear point-process (glpp) encoding model.a, Diagram of model
parameters for a pair of coupled neurons. For each cell, the parameters consist of a stimulus filter
(e.g.,ky), a spike-train history filter (hyy), and a filter capturing coupling from the spike train history
of the other cell (hzy). The filter outputs are summed, pass through an exponential nonlinearity, and
drive spiking via an instantaneous point process.b, Equivalent diagram showing just the parameters
of the neurony, as used for drawing a sampleyt. Gray boxes highlight the stimulus vectorxt and
spike train history vectors that form the input to the model on this time step.c, Simplified graphical
model of the glpp causal structure, which allows us to visualize how the likelihood factorizes. Arrows
between variables indicate conditional dependence. For visual clarity, temporal dependence is depicted
as extending only two time bins, though in real data extends over many more. Red arrows highlight the
dependency structure for a single time bin of the responsey3.

The nonlinear function,f , maps the input to the instantaneous spike rate of each cell.We assume
here thatf is exponential, although any monotonic convex function that grows no faster than expo-
nentially is suitable [9]. Equation 1 is equivalent tof applied to a linear convolution of the stimulus
and spike trains with their respective filters; a schematic is shown in figure 1.

The probability of observingyt spikes in a bin of size∆ is given by a Poisson distribution with rate
parameterλyt∆,

P (yt|λyt) =
(λyt∆)yt

yt!
e−λyt∆, (2)

and likewise forP (zt|λzt). The likelihood of the full set of spike times is the product of condition-
ally independent terms,

P (Y,Z|X, θ) =
∏

t

P (yt|λyt)P (zt|λzt), (3)

where Y and Z represent the full spike trains,X denotes the full set of stimuli, andθ ≡
{ky,kz,hyy,hzy,hzz,hyz} denotes the model parameters. This factorization is possible because
λyt andλzt depend only on the process history up to timet, makingyt andzt conditionally inde-
pendent given the stimulus and spike histories up tot (see Fig. 1c). If the response at timet were to
depend on both the past and future response, we would have a causal loop , preventing factorization
and making both sampling and likelihood evaluation very difficult.

The model parameters can be tractably fit to spike-train datausing maximum likelihood. Although
the parameter space may be high-dimensional (incorporating spike-history dependence over many
time bins and stimulus dependence over a large region of timeand space), the negative log-likelihood
is convex with respect to the model parameters, making fast convex optimization methods feasible
for finding the global maximum [9]. We can write the log-likelihood simply as

log P (Y,Z|X, θ) =
∑

t

(yt log λyt + zt log λzt − ∆λyt − ∆λzt) + c, (4)

wherec is a constant that does not depend onθ.
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3 Generalized Expectation-Maximization and Wake-Sleep

Maximizing log P (Y,Z|X, θ) is straightforward if bothY andZ are observed, but here we are
interested in the case whereY is observed andZ is “hidden”. Consequently, we have to average
overZ. The log-likelihood of the observed data is given by

L(θ) ≡ log P (Y |θ) = log
∑

Z

P (Y,Z|θ), (5)

where we have droppedX to simplify notation (all probabilities can henceforth be taken to also
depend onX). This sum overZ is intractable in many settings, motivating the use of approximate
methods for maximizing likelihood. Variational expectation-maximization (EM) [20, 21] and the
wake-sleep algorithm [22] are iterative algorithms for solving this problem by introducing a tractable
approximation to the conditional probability over hidden variables,

Q(Z|Y, φ) ≈ P (Z|Y, θ), (6)

whereφ denotes the parameter vector determiningQ.

The idea behind variational EM can be described as follows. Concavity of thelog implies a lower
bound on the log-likelihood:

L(θ) ≥
∑

Z

Q(Z|Y, φ) log
P (Y,Z|θ)

Q(Z|Y, φ)

= log P (Y |θ) − DKL

(

Q(Z|Y, φ), P (Z|Y, θ)
)

, (7)

whereQ is any probability distribution overZ andDKL is the Kullback-Leibler (KL) divergence
betweenQ andP (usingP as shorthand forP (Z|Y, θ)), which is always≥ 0. In standard EM,Q
takes the same functional form asP , so that by settingφ = θ (the E-step),DKL is 0 and the bound is
tight, since the right-hand-side of eq. 7 equalsL(θ). Fixing φ, we then maximize the r.h.s. forθ (the
M-step), which is equivalent to maximizing the expected complete-data log-likelihood (expectation
taken w.r.t.Q), given by

E
Q(Z|Y,φ)

[

log P (Y,Z|θ)
]

≡
∑

Z

Q(Z|Y, φ) log P (Y,Z|θ). (8)

Each step increases a lower bound on the log-likelihood, which can always be made tight, so the
algorithm converges to a fixed point that is a maximum ofL(θ). The variational formulation differs
in allowing Q to take a different functional form thanP (i.e., one for which eq. 8 is easier to max-
imize). The variational E-step involves minimizingDKL(Q,P ) with respect toφ, which remains
positive ifQ does not approximateP exactly; the variational M-step is unchanged from the standard
algorithm.

In certain cases, it is easier to minimize the KL divergenceDKL(P,Q) than DKL(Q,P ), and
doing so in place of the variational E-step above results in the wake-sleep algorithm [22]. In this
algorithm, we fitφ by minimizingDKL(P,Q) averaged overY , which is equivalent to maximizing
the expectation

E
P (Y,Z|θ)

[

log Q(Z|Y, φ)
]

≡
∑

Y,Z

P (Y,Z|θ) log Q(Z|Y, φ), (9)

which bears an obvious symmetry to eq. 8. Thus, both steps of the wake-sleep algorithm involve
maximizing an expected log-probability. In the “wake” step(identical to the M-step), we fit the
true model parametersθ by maximizing (an approximation to) the log-probability ofthe observed
dataY . In the “sleep” step, we fitφ by trying to find a distributionQ that best approximates the
conditional dependence ofZ onY , averaged over the joint distributionP (Y,Z|θ). We can therefore
think of the wake phase as learning a model of the data (parametrized byθ), and the sleep phase as
learning a consistent internal description of that model (parametrized byφ).

Both variational-EM and the wake-sleep algorithm work wellwhenQ closely approximatesP , but
may fail to converge to a maximum of the likelihood if there isa significant mismatch. Therefore,
the efficiency of these methods depends on choosing a good approximating distributionQ(Z|Y, φ)
— one that closely matchesP (Z|Y, θ). In the next section we show that considerations of the spike
generation process can provide us with a good choice forQ.
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Figure 2: Schematic diagram of the (acausal) model for the proposal densityQ(Z|Y, φ), the condi-
tional density on hidden spikes given the observed spike data.a, Conditional model schematic, which
allows zt to depend on the observed response both before and aftert. b, Graphical model showing
causal structure of the acausal model, with arrows indicating dependency. The observed spike re-
sponses (gray circles) are no longer dependent variables, but regarded as fixed, external data, which is
necessary for computingQ(zt|Y, φ). Red arrows illustrate the dependency structure for a single bin of
the hidden response,z3.

4 Estimating the model with partially observed data

To understand intuitively why the trueP (Z|Y, θ) is difficult to sample, and to motivate a reasonable
choice forQ(Z|Y, φ), let us consider a simple example: suppose a single hidden neuron (whose full
response isZ) makes a strong excitatory connection to an observed neuron(whose response isY ),
so that ifzt = 1 (i.e., the hidden neuron spikes at timet), it is highly likely thatyt+1 = 1 (i.e.,
the observed neuron spikes at timet + 1). Consequently, under the trueP (Z|Y, θ), which is the
probability overZ in all time bins givenY in all time bins, ifyt+1 = 1 there is a high probability
thatzt = 1. In other words,zt exhibits an acausal dependence onyt+1. But this acausal dependence
is not captured in Equation 3, which expresses the probability over zt as depending only on past
events at timet, ignoring the future eventyt+1 = 1.

Based on this observation — essentially, that the effect of future observed spikes on the probability of
unobserved spikes depends on the connection strength between the two neurons — we approximate
P (Z|Y, θ) using a separate point-process modelQ(Z|Y, φ), which contains set of acausal linear
filters fromY to Z. Thus we have

λ̃zt = exp(k̃z · xt + h̃zz · z[t−τ,t) + h̃zy · y[t−τ,t+τ)). (10)

As above,k̃z, h̃zz and h̃zy are linear filters; the important difference is thath̃zy · y[t−τ,t+τ) is
a sum over past and future time: fromt − τ to t + τ − ∆. For this model, the parameters are
φ = (k̃z, h̃zz, h̃zy). Figure 2 illustrates the model architecture.

We now have a straightforward way to implement the wake-sleep algorithm, using samples fromQ
to perform the wake phase (estimatingθ), and samples fromP (Y,Z|θ) to perform the sleep phase
(estimatingφ). The algorithm works as follows:

• Wake: Draw samples{Zi} ∼ Q(Z|Y, φ), whereY are the observed spike trains andφ is
the current set of parameters for the acausal point-processmodelQ. Evaluate the expected
complete-data log-likelihood (eq. 8) using Monte Carlo integration:

E
Q

[

log P (Y,Z|θ)
]

= lim
N→∞

1

N

N
∑

i=1

log P (Y,Zi|θ). (11)

This is log-concave inθ, meaning that we can efficiently find its global maximum to fitθ.
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• Sleep: Draw samples{Yj , Zj} ∼ P (Y,Z|θ), the true encoding distribution with current
parametersθ. (Note these samples are pure “fantasy” data, drawn withoutreference to the
observedY ). As above, compute the expected log-probability (eq. 9) using these samples:

E
P (Y,Z|θ)

[

log Q(Z|Y, φ)
]

= lim
N→∞

1

N

N
∑

i=1

log Q(Zj |Yj , φ), (12)

which is also log-concave and thus efficiently maximized forφ.

One advantage of the wake-sleep algorithm is that each complete iteration can be performed using
only a single set of samples drawn fromQ andP . A theoretical drawback to wake-sleep, however, is
that the sleep step is not guaranteed to increase a lower-bound on the log-likelihood, as in variational-
EM (wake-sleep minimizes the “wrong” KL divergence). We canimplement variational-EM using
the same approximating point-process modelQ, but we now require multiple steps of sampling for
a complete E-step. To perform a variational E-step, we draw samples (as above) fromQ and use
them to evaluate both the KL divergenceDKL

(

Q(Z|Y, φ)||P (Z|Y, θ) and its gradient with respect
to φ. We can then perform noisy gradient descent to find a minimum,drawing a new set of samples
for each evaluation ofDKL(Q,P ). The M-step is equivalent to the wake phase of wake-sleep,
achievable with a single set of samples.

One additional use for the approximating point-process model Q is as a “proposal” distribution for
Metropolis-Hastings sampling of the trueP (Z|Y, θ). Such samples can be used to evaluate the true
log-likelihood, for comparison with the variational lowerbound, and for noisy gradient ascent of the
likelihood to examine how closely these approximate methods converge to the true ML estimate. For
fully observed data, such samples also provide a useful means for measuring how much the entropy
of one neuron’s response is reduced by knowing the responsesof its neighbors.

5 Simulations: a two-neuron example

To verify the method, we applied it to a pair of neurons (as depicted in fig. 1), simulated using a
stimulus consisting of a long presentation of white noise. We denoted one of the neurons ”observed”
and the other ”hidden”. The parameters used for the simulation are depicted in fig. 3. The cells have
similarly-shaped biphasic stimulus filters with opposite sign, like those commonly observed in ON
and OFF retinal ganglion cells. We assume that the ON-like cell is observed, while the OFF-like
cell is hidden. Both cells have spike-history filters that induce a refractory period following a spike,
with a small peak during the relative refractory period thatelicits burst-like responses. The hidden
cell has a strong positive coupling filterhzy onto the observed cell, which allows spiking activity in
the hidden cell to excite the observed cell (despite the factthat the two cells receive opposite-sign
stimulus input). For simplicity, we assume no coupling fromthe observed to the hidden cell2. Both
types of filters were defined in a linear basis consisting of four raised cosines, meaning that each
filter is specified by four parameters, and the full model contains 20 parameters (i.e., 2 stimulus
filters and 3 spike-train filters).

Fig. 3b shows rasters of the two cells’ responses to a repeated presentations of a 1s Gaussian white-
noise stimulus with a framerate of 100Hz. Note that the temporal structure of the observed cell’s
response is strongly correlated with that of the hidden celldue to the strong coupling from hidden
to observed (and the fact that the hidden cell receives slightly stronger stimulus drive).

Our first task is to examine whether a standard, single-cell glpp model can capture the mapping from
stimuli to spike responses. Fig. 3c shows the parameters obtained from such a fit to the observed data,
using 10s of the response to a non-repeating white noise stimulus (1000 samples, 251 spikes). Note
that the estimated stimulus filter (red) has much lower amplitude than the stimulus filter of the true
model (gray). Fig. 3d shows the parameters obtained for an observed and a hidden neuron, estimated
using wake-sleep as described in section 4. Fig. 3e-f shows acomparison of the performance of the
two models, indicating that the coupled model estimated with wake-sleep does a much better job of
capturing the temporal structure of the observed neuron’s response (accounting for 60% vs. 15% of

2Although the stimulus and spike-history filters bear a rough similarity to those observed in retinal ganglion
cells, the coupling used here is unlike coupling filters observed (to our knowledge) between ON and OFF cells
in retinal data; it is assumed purely for demonstration purposes.
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Figure 3: Simulation results.a, Parameters used for generating simulated responses. The top row
shows the filters determining the input to the observed cell, while the bottom rowshows those influ-
encing the hidden cell.b, Raster of spike responses of observed and hidden cells to a repeated, 1s
Gaussian white noise stimulus (top).c, Parameter estimates for a single-cell glpp model fit to the
observed cell’s response, using just the stimulus and observed data (estimates in red; true observed-
cell filters in gray).d, Parameters obtained using wake-sleep to estimate a coupled glpp model, again
using only the stimulus and observed spike times.e, Response raster of true observed cell (obtained
by simulating the true two-cell model), estimated single-cell model and estimated coupled model.f,
Peri-stimulus time histogram (PSTH) of the above rasters showing that the coupled model gives much
higher accuracy predicting the true response.

the PSTH variance). The single-cell model, by contrast, exhibits much worse performance, which
is unsurprising given that the standard glpp encoding modelcan capture only quasi-linear stimulus
dependencies.

6 Discussion

Although most statistical models of spike trains posit a direct pathway from sensory stimuli to neu-
ronal responses, neurons are in fact embedded in highly recurrent networks that exhibit dynamics
on a broad range of time-scales. To take into account the factthat neural responses are driven by
both stimuli and network activity, and to understand the role of network interactions, we proposed
a model incorporating both hidden and observed spikes. We regard the observed spike responses
as those recorded during a typical experiment, while the responses of unobserved neurons are mod-
eled as latent variables (unrecorded, but exerting influence on the observed responses). The resulting
model is tractable, as the latent variables can be integrated out using approximate sampling methods,
and optimization using variational EM or wake-sleep provides an approximate maximum likelihood
estimate of the model parameters. As shown by a simple example, certain settings of model param-
eters necessitate the incorporation unobserved spikes, asthe standard single-stage encoding model
does not accurately describe the data.

In future work, we plan to examine the quantitative performance of the variational-EM and wake-
sleep algorithms, to explore their tractability in scalingto larger populations, and to apply them to
real neural data. The model offers a promising tool for analyzing network structure and network-
based computations carried out in higher sensory areas, particularly in the context where data are
only available from a restricted set of neurons recorded within a larger population.
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