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To decide which flavor of ice cream to buy, 
you might taste first the mint chip and then 
the rocky road. To decide which painting to 
hang, you could try first the Picasso and then 
the Matisse. To decide which boy to date, you 
might kiss first Jack and then Sam. Decisions 
like these involving a comparison between 
memories and immediate sensations are a key 
part of our daily lives. Not surprisingly, a major 
goal of neuroscience is to understand the nature 
of decision-making and the workings of the 
neural structures underlying it. In a most inter-
esting paper in a recent issue of Science, Machens 
and colleagues1 have taken us one step closer to 
this goal. By proposing a circuit that implements 
both the memory and the comparison—one 
that both casts and counts votes—they have 
provided us with a parsimonious theory that 
ties up several experimental loose ends that have 
been vexing theoretical neuroscientists.

The paper investigates the mechanisms 
underlying a somatosensory version of a two-
stimulus interval discrimination task, a basic 
workhorse of psychophysics and sensory 
physiology. In this task, subjects compare two 
successively presented stimuli, in this case two 
frequencies of vibration of a touch probe, and 
report the higher frequency. This task involves 
two primitive computations—memory for the 
first frequency (f1) during the interstimulus 
interval, and comparison between the stored f1 
and the frequency of the second stimulus (f2).

A seemingly obvious neural circuit for solv-
ing this problem (Fig. 1) has two components 
for the two computations: working memory for 
remembering the first stimulus, and a mutually 
inhibitory winner-take-all network for mak-
ing the comparison and the eventual decision. 
It would seem reasonable to locate the working 
memory in prefrontal cortex (PFC), because 
PFC has long been recognized to be involved 
in working memory2,3 and is also known to 
receive information about vibration frequency 
(in this case f1) from higher somatosensory cor-

tex (S2)4, an area that encodes frequency during 
stimulus presentation. It is harder to pin down 
the comparison system, although based on data 
from the lateral intraparietal area (LIP) during 
decision-making, one might infer that structures 
associated with reporting could be involved. 
Unfortunately, this perfectly beautiful theory is 
ruined by inconvenient data. There are indeed 
anatomically relevant PFC neurons that code, via 
persistent activity, for f1 during the interstimulus 
interval. However, these neurons come, rather 
unnecessarily, in two flavors: ‘plus’ neurons with 
monotonically increasing and decreasing tuning 
curves to f1 and f2, respectively, and ‘minus’ neu-
rons with the opposite tuning profile1,4. More 
importantly, the activity of these same neurons 
seems to report which of the two stimuli the 
monkey chooses. Because these neurons report 
the monkey’s decision, it is plausible that they are 
actively involved in the decision-making circuit, 
thus casting doubt on the ‘obvious’ two-compo-
nent model that postulates separate circuits for 
memory and comparison.

Machens et al.1 report two insights that 
make limpid sense of these data. First, they 
note that the natural opposition of the plus 
and minus neurons is reminiscent of the kind 
of opposition that occurs in winner-take-all 
networks, exactly the structure assumed in the 
comparison network in Figure 1. Second, they 
observe that minor changes in the parameters 

of winner-take-all networks can turn them 
into the sorts of memory devices (in this case 
a line attractor5) capable of storing quantities 
such as f1. Combining these two insights led 
them to a network that both supports mem-
ory and compares the two frequencies, thus 
making sense of the seemingly redundant plus 
and minus neurons, and also nicely matching 
various experimental data from PFC1.

Figure 2 shows how the authors’ proposed 
mechanisms work. The basic network involves 
plus and minus groups of units, with mutual 
inhibition between the groups. By changing 
external control parameters, the network can 
be made to exist in three dynamical regimes. 
To switch the network among these regimes, 
Machens et al. use external input as a con-
trol parameter (an idea also widely used in 
Grossberg’s opponent dipole networks6); for 
didactic convenience in describing their mech-
anism, we will use self-excitation within each 
of the two groups as the control parameter.

For weak self-excitation, the network has a 
stable operating point that is determined by 
the input from S2. In this regime, the location 
of this stable point is a function of the first 
stimulus that is presented, f1. A high-frequency 
vibration (large f1), for example, would cause 
the plus neurons to fire at high rate and the 
minus neurons at low rate (Fig. 2a); a low-fre-
quency vibration would do the opposite.

Figure 1 Hypothetical circuit for comparing stimuli that occur at different times. (a) Loading phase. The first 
stimulus, f1, which is on in this period, is encoded in the firing rates of neurons in S2. This code is passed 
to PFC. (b) Maintenance phase. Persistent activity in PFC stores the value of f1 during the delay period, 
which lasts for several seconds. During this phase, S2 is silent. (c) Comparison phase. Stimulus f1 is sent 
to one population of neurons in the comparison circuit (which sits inside the rectangular box). Stimulus 
f2, which is active in this period, is sent to another population in the same circuit. These populations, 
which interact through mutual inhibition, form a winner-take-all network. The population with the higher 
frequency—and thus, in this model, the higher firing rate—ultimately silences the other population.
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decision will be made (and this has been the 
target of some highly instructive analysis by 
the same group8). However, for the decision 
model, these modifications also make the 
point of comparison for the second stimulus 
potentially capricious. This effect can be ame-
liorated if both plus and minus neurons change 
firing rates in the same direction, indicating a 
drift perpendicular to the line attractor rather 
than parallel to it. Whether or not this is the 
case in real PFC neurons needs to be checked 
experimentally. Particularly problematic for the 
model would be an experimental finding of net 
drift parallel to the line attractor without bias 
in the monkeys’ responses. This is because a key 
prediction is that position on the line attractor 
is the only source of memory.

The other potential challenge comes from 
a discrepancy between the temporal dynam-
ics of the model and the real neural activity 
at the time of the second stimulus: the rela-
tively simple dynamics of the model minus 
neurons at the time of the second stimulus 
are not matched by the data (again compare 
their Figures 1c,d and 4a). In the model, 
minus neurons show a monotonic decrease 
in firing rate when they report that the fre-
quency of the second stimulus is higher than 
that of the first, and a non-monotonic con-
vergence toward about 40 Hz in the opposite 
case. In the neural data, on the other hand, 
the minus neurons always show a transient 
increase in activity before a decision is made. 
How f1 is preserved through this transient is 
not completely clear. Nor is it clear whether 

this transient is a key element of the dynamics 
of PFC neurons that is beyond the scope of the 
model, or if it is an unimportant detail easily 
explained by minor modifications to it.

Independent of these challenges, Machens 
and colleagues have shown us how a single 
network can very naturally make a compari-
son between stimuli that occur at different 
times. The idea of having multiple different 
dynamics in the same underlying network is 
a familiar theme in discussions of the effects 
of neuromodulators on neural circuits9 and 
gated dipoles6, but is new in the current con-
text. A network such as this is a critical element 
in building a theory of decision-making. It is 
furthermore attractively general purpose, as 
it will readily work with any one-dimensional 
input variable, not just simple stimuli like vibra-
tion frequency. In addition, given the ease with 
which line attractors can be made to perform 
integration over time5, the same network could 
handle situations in which evidence accumu-
lates slowly, as it does whenever sensory input is 
noisy. The nature of the accumulated evidence 
is also flexible: it could be a function of the 
expected reward10 or of the log-likelihood ratio 
in favor of one or other alternatives (such as in 
motion discrimination tasks11,12). In the latter 
case, the network could perform optimal statis-
tical inference, an intriguing possibility in light 
of recent work on the relation between noisy 
integration and optimal decision-making13.

Decision-making lies toward the end stage 
of one of the most taxing problems organisms 
face: action selection in an uncertain world. It 
combines elements of optimal inference, game 
theory, memory, reward and punishment, and 
learning. Understanding the neural circuits 
that implement and integrate these elements 
is a key objective, toward which Machens et al. 
have taken us one step further.
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Figure 2 The Machens et al. mechanism. The top of each panel shows the mutual excitation circuit they 
use. Filled circles correspond to excitatory connections, with strength indicated by the thickness of the 
lines, and open triangles correspond to inhibitory connections. The bottom of each panel shows the firing 
rates of the plus (+) and minus (–) groups plotted against each other. Because of the mutual inhibition, 
there is a general trend for the rates to be anti-correlated; thus, the interesting dynamics happen along the 
dashed line. More specifically, independent of any external control parameter, the firing rates are pulled 
quickly onto the dashed line and after that evolve more slowly along the line. (a) Loading phase. Recurrent 
excitation is weak, so the firing rates of both the plus and minus neurons are set by f1. The blue arrows 
indicate flow along the line; all initial firing rates are attracted to the point indicated by the blue ball. 
(b) Maintenance phase. Recurrent excitation is slightly stronger, so there is no drift along the dashed 
line. In this regime, the firing rates of the two groups of neurons remain constant. (c) Comparison phase. 
Recurrent excitation is stronger still, and the circuit switches to winner-take-all. The threshold is set by 
the value of f2: firing rates above it are pushed toward the fixed point at the top of the dashed line (the 
plus between the red arrows); firing rates below it are pushed toward the fixed point at the bottom. In this 
example, f1 is larger than f2, so the plus group ultimately fires at high rate and the minus group becomes 
relatively silent.

For somewhat stronger self-excitation, the 
network becomes neutrally stable, with activity 
tending to persist wherever it starts (Fig. 2b). 
In the hands of Machens et al., this regime cor-
responds to the delay period, in which activity 
in PFC is approximately constant.

Finally, for yet stronger self-excitation, the 
network acts as a winner-take-all, with just one 
group dominating. In this regime, the stimulus 
input f2 affects almost exclusively which state the 
network settles into. In effect, it sets a threshold 
relative to the current activity of the network, 
and thus biases which of the two populations 
will ultimately be active (Fig. 2c). For this mech-
anism to report the larger frequency correctly, f2 
must be coupled to the plus and minus groups in 
an opposite manner to f1, with higher f2 boost-
ing the minus group more than the plus group, 
and vice versa. Machens et al. avail themselves of 
some creative wiring to achieve this.

Machens et al. present a beautiful theory, but 
is it also ruined by inconvenient data? There 
are two interesting potential challenges to their 
theory. One comes from the temporal dynamics 
during the delay period. In the model, the firing 
rates of the PFC neurons are rock solid. Real 
prefrontal neurons, however, do not have such 
stable activity, but rather show a net change in 
firing rate (see Figures 1c,d and 4a of Machens 
et al., which show delay data and delay model1). 
Furthermore, we can expect from other stud-
ies that a significant fraction of the neurons in 
PFC (>90%) will show strong time dependence 
during the delay7,8. Such changes are potentially 
informative of the expected time at which a 

©
20

05
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e


