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Many neurons in the primary visual cortex are tuned to orien-
tation, and their responses as a function of orientation, known
as tuning curves, are typically bell-shaped (Fig. 1a). From these
tuning curves, one can predict how neurons will respond, on
average, to a given orientation. However, neurons are noisy, and
a neuron whose average response to a grating at a particular ori-
entation is 20 spikes per second might respond at 18 spikes per
second on one trial and 23 spikes per second on the next. This
variability is evident when we plot the activity of a population of
neurons produced by a grating presented at 90 degrees. If the
activity of each neuron is plotted on one trial as a function of its
preferred orientation, the resulting pattern looks like a noisy hill
(Fig. 1b). On another trial, the presentation of the same stimulus
would lead to a similar hill, but each cell would respond slightly
differently. The task faced by the brain is to estimate, on each
trial, the orientation of the grating from this noisy hill.

The task of estimating encoded variables is not specific to ori-
entation; many sensory and motor variables are encoded through
the activity of large populations of neurons with bell-shaped tun-
ing curves1,2. How does the brain perform this estimation, and
how well can it do? Several methods, also known as estimators,
have been proposed to ‘read out’ these noisy hills, that is, to extract
the encoded variable or variables based on the observed activity3.
One such method is the population vector estimator2, which
assigns to each neuron a vector whose length is proportional to
the neuron’s activity and whose direction corresponds to its pre-
ferred orientation, sums all the individual vectors to form a pop-
ulation vector, and then estimates the orientation from the angle
of the population vector. This is mathematically equivalent to
finding the cosine function that best fits through the pattern of
activity and using the position of the peak of the cosine as the esti-
mate of direction4,5 (Fig. 1c). This method has received consider-
able attention recently, primarily because of its mathematical
simplicity. Is it, however, the optimal method? A natural way to
answer this question is to present the same orientation repeated-
ly and compute the mean and variance of the estimate. Recall that
the hill of activity changes from trial to trial because of the neu-
ronal noise, even if the orientation stays the same. As a result, the

estimate also changes from trial to trial. An optimal estimator
should be right on average; that is, the mean estimate should equal
the presented orientation. An estimator that is right on average
is referred to as unbiased, and it is the only type we consider in
this paper. An optimal estimator should also have minimum vari-
ance; that is, the estimate should be as similar as possible from
trial to trial when the orientation is held fixed. It is possible to
derive a lower bound on the variance of the estimator if one knows
the structure of the neuronal noise, and an estimator is said to be
optimal if its variance is equal to this lower bound.

Although the population vector estimator is unbiased, its vari-
ance is typically well above the lower bound dictated by the noise;
thus, it is not optimal. The problem with the population vector
can be seen in Fig. 1c—the cosine function is not the right tem-
plate for this particular activity pattern. Instead, one should fit
a template derived from the tuning curves of the cells, as illus-
trated in Fig. 1d. Fitting the optimal template is known as max-
imum likelihood, and this type of estimator reaches the lower
bound dictated by the noise (at least for the case considered here,
in which the noise exhibited by each of a large number of neu-
rons is independent of the noise exhibited by the others4–6). An
estimator that reaches the lower bound is often referred to as an
ideal observer, because it performs as well as possible given the
noise. Because an ideal observer provides an objective yardstick
against which one can measure the performance of an animal, it
has been used in several recent studies to relate neuronal vari-
ability to behavioral variability7–9.

A natural question is whether biologically plausible networks
can implement a maximum likelihood estimator. We show here
that the answer is yes, provided that the level of neuronal noise is
independent of firing rate. In this case, recurrent networks of
nonlinear units with broad tuning curves—the kind of networks
found throughout cortex—can achieve maximum likelihood.
When the neuronal noise is more Poisson-like, so that the vari-
ance increases with mean activity as observed in cortical neu-
rons10–12, then the type of network considered in this paper is a
close approximation to maximum likelihood.

To illustrate these results, we simulated a recurrent network

Reading population codes: a neural
implementation of ideal observers

Sophie Deneve1, Peter E. Latham2 and Alexandre Pouget1

1Brain and Cognitive Science Department, University of Rochester, Rochester, New York 14627, USA
2Department of Neurobiology, University of California, Los Angeles, Los Angeles, California 90095-1763, USA

Correspondence should be addressed to A.P. (alex@bcs.rochester.edu)

Many sensory and motor variables are encoded in the nervous system by the activities of large popula-
tions of neurons with bell-shaped tuning curves. Extracting information from these population codes is
difficult because of the noise inherent in neuronal responses. In most cases of interest, maximum likeli-
hood (ML) is the best read-out method and would be used by an ideal observer. Using simulations and
analysis, we show that a close approximation to ML can be implemented in a biologically plausible
model of cortical circuitry. Our results apply to a wide range of nonlinear activation functions, suggest-
ing that cortical areas may, in general, function as ideal observers of activity in preceding areas.

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
N

at
u

re
 A

m
er

ic
a 

In
c.

 • 
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



nature neuroscience  •  volume 2  no 8  •  august 1999 741

made up of units whose activation function consisted of a divisive
normalization13–16. We chose this activation function because
recordings in the primary visual cortex show that it provides a
good fit to the observed activation function of neurons in V1
(refs. 13–16), and theoretical models reveal that it has several
computational advantages17–19. We demonstrate numerically that
this network can be used to estimate the value of a variable
encoded in a population response. We then show that, for neu-
ronal noise independent of firing rate, the variance of the result-
ing estimator is equal to the minimum achieved by maximum
likelihood, whereas for Poisson-like noise, it is very close to the
minimum value. We confirmed these results analytically, not only
for the special case of networks using divisive normalization, but
also for a large class of recurrent networks with other nonlinear
activation functions.

RESULTS
Network architecture
We modeled a cortical hypercolumn consisting of a single layer of
units with identical spatial receptive fields but differing in pre-
ferred orientation and spatial frequency arranged in a two-dimen-
sional array. Two indices described each unit’s position, and unit
ij had preferred orientation θi and preferred spatial frequency λj.
Orientation preferences were mapped along one dimension of
the two-dimensional array and spatial frequency preferences
along the other, producing a topographic arrangement group-
ing together units with similar orientation and spatial frequen-
cy preferences to resemble arrangements observed in cortex20.

The network received pooled input (‘input activity’) from the
preceding layer, which represented either another cortical layer
or the lateral geniculate nucleus. The resulting activity of the net-
work is referred to as the ‘output activity’.

The input to the network depended on the orientation (θ)
and spatial frequency (λ) encoded in the previous layer. For a
particular value of θ and λ, the total input activity (aij) was the
sum of two terms: the mean input, fij(θ,λ), and the noise around
that mean.

Mean input activity, fij(θ,λ), followed physiologically realistic

tuning curves—bell-shaped profiles with height pro-
portional to contrast (Fig. 1a; Methods). Noise was
assumed to be independent and to follow a zero-

mean Gaussian distribution whose variance was either fixed (σij
2

constant) or set to the mean activity [σij
2 = fij(θ,λ)], which better

approximates noise that has been measured in cortex10–12. We refer
to Gaussian noise with fixed variance as ‘flat’ and to Gaussian noise
with variance equal to the mean as ‘proportional’ noise.

Units in the network communicated through lateral connec-
tions of two types: filtering weights, pooling activity of cells with
similar preferred orientations and spatial frequencies (see Meth-
ods), as might be accomplished via excitatory lateral connec-
tions21, and divisive normalization weights serving as gain
control, possibly mediated by shunting inhibition16. Activities in
the resulting recurrent network are described by a set of coupled
nonlinear evolution equations,

uij (t + 1) = Σ
kl

wij,klokl (t) (1)

(2)

where {wij,kl} are the filtering weights, oij(t) is the activity of unit
ij at time t, S is a constant, and µ is the divisive normalization
weight.

The initial conditions, oij(t = 0), for evolution equations 1 and
2 were determined by setting oij(0) to the activity of the input
units, aij. The aij were obtained by drawing samples from a Gauss-
ian distribution, as described above. The resulting initial condi-
tion, aij = fij(θ, λ) + noise, resembled a noisy hill (Fig. 2, bottom).
Once the initial conditions were chosen, iteration of equations 1
and 2 caused network activity to relax to a smooth hill (Fig. 2,
top) whose coordinates gave estimates of orientation and spatial
frequency.

With distance appropriately defined, this stable activity func-
tion can be interpreted as a template, and the relaxation
process—the evolution of the network—as a template match-
ing procedure. We asked whether the network provided esti-
mates close to maximum likelihood, or whether it provided a
nonoptimal estimate like the population vector (Fig. 1d and c,
respectively).

oij (t + 1) =
uij (t + 1)2

S + µΣkl ukl (t + 1)2

articles

Fig. 1. Methods for reading out population codes. (a)
Orientation tuning curves for 8 of 64 cells with preferred
directions evenly distributed between 0° and 180°. (b) A
noisy activity pattern in response to a grating presented at
90°. Activities of 64 cells are plotted according to pre-
ferred direction. The noise was drawn from a Poisson dis-
tribution. (c) The population vector reads out this activity
curve by fitting it with a cosine function. The peak of the
cosine gives an estimate of orientation (θ̂). (d) Maximum
likelihood fits a template (solid line) derived from the cell
tuning curves. When all the tuning curves are identical,
this template has the same profile as the tuning curves.
Although it is hard to see on this particular trial, the tem-
plate fit by maximum likelihood (d) and the cosine func-
tion fit by the population vector (c) do not peak at the
same location. This is true in general: the estimate
obtained from maximum likelihood is very likely to be dif-
ferent from the one obtained with population vector. The
maximum likelihood estimate is better—in fact, it is the
best of all methods in this context—in the sense that it
has minimum variance over trials with fixed orientation.

a b

c d
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Simulation results
For very low contrast, the activity of all output units decayed to
zero, independent of initial conditions. Above some contrast
threshold, however, activities converged to a smooth stable peak
(Fig. 2). The width of this peak was controlled by the width of
the filtering weights (the extent of pooling between units of sim-
ilar orientation and spatial frequency preference) but was inde-
pendent of input orientation and spatial frequency, θ and λ. On
the other hand, the position of the peak depended on θ and λ,
and therefore could be used to estimate these quantities, denot-
ed θ̂ and λ̂ , respectively (Fig. 2).

As indicated in the introduction, the quality of an estimate
can be assessed by looking at its mean and variance over many
trials. To compute  mean and variance for a particular set of net-
work parameters, we performed 1000 trials with the same input
orientation and spatial frequency. On each trial, we generated a
different noisy hill of activity, let the network relax to a smooth
hill, and then computed the estimates, θ̂ and λ̂ , from its peak.

Estimates of orientation and spatial frequency were unbi-
ased for all network parameters; that is, the mean values of θ̂
and λ̂ converged to their true values. (This is expected from
the symmetry of the network; see Methods.) Network quality
was thus determined by the variance of θ̂ and λ̂ and the covari-

ance between these two quantities, /\(θ̂ – θ)2
/
\, /\(λ̂ – λ)2

/
\ and 

/
\(θ̂ – θ)(λ̂ – λ)/

\, respectively, where the angle brackets denote
an average over initial conditions, aij. In our network, we chose
input tuning curves, noise and filtering weights that were
invariant under interchange of θ and λ (see Methods). Conse-
quently, the variances of θ̂ and λ̂ were identical and the covari-
ance term, /\(θ̂ – θ)(λ̂ – λ)/

\, was zero. Thus, we consider further
only the variance of θ̂ , /

\(θ̂ – θ)2
/
\.

To establish that our network is an optimal estimator, we
needed to show that the variance of θ̂ was as small as possible,
given the noise. For unbiased estimators like the ones consid-
ered here, the minimum variance (the Cramér-Rao bound22;
reached by ML for the noise we consider4,6) can be computed
directly from the tuning curves and the noise distribution5,23.
We thus computed, for a range of output tuning-curve widths,
the variance of the network estimate and compared it to the
variance that would be obtained by ML. To vary the widths of
the output tuning curves, we adjusted the spatial extent of the
filtering weights (see Methods). We found that the best network
performance was within 1.6% of maximum likelihood for flat
noise and within 5.1% for proportional noise. By comparison,
standard deviations of a population vector estimate on the same
data were 278% and 98% of the maximum likelihood variance,
respectively (Fig. 3). For both kinds of noise, performance was
optimal for a particular ratio of the tuning-curve width of the
input to that of the output units, as demonstrated by the plot
of network performance as a function of the width of the out-
put tuning curve for a fixed input tuning curve (Fig. 3).

For flat noise, the network performed best (1.6% above max-
imum likelihood) when output tuning curves were about 30%
sharper than input tuning curves (Fig. 3). By contrast, for pro-
portional noise, the best estimate (5.1% above maximum likeli-
hood) was obtained when input and output tuning curves were
nearly identical. This near-maximum-likelihood property was
preserved over a large range of input tuning curve widths in the
sense that the widths of the filtering weights, and thus the out-
put tuning curves, could be adjusted to produce network esti-
mates within a few percent of maximum likelihood for any input
width. Likewise, large variations in contrast did not affect net-
work estimates, as long as the contrast exceeded the threshold
for activation (Fig. 4b).

For both types of noise, network performance degraded
smoothly as the widths of the output tuning curves deviated from
their optimal values. For width ±10° from the optimum, the net-
work still performed within 10% of maximum likelihood. Fur-
thermore, the network outperformed the population vector over
almost the entire range of widths tested (Fig. 3).

We also found that the network converged to its asymptotic
performance in 2–3 iterations (Fig. 4a), although it could take
several hundred iterations for the network to stabilize. Interest-
ingly, after 2–3 iterations, the tuning of the output units to con-
trast (Fig. 4c) resembled the sigmoidal tuning curves reported
for real neurons19,24 (Fig. 4d). On the other hand, after many
network iterations, the contrast tuning curve approached a step

articles

Fig. 2. Activity in the network immediately after initialization and after
several iterations. The bottom plot shows a noisy activity function across
a two-dimensional array of neurons tuned to orientation and spatial fre-
quency. The top plot corresponds to the stable output curve that
appears as a result of the dynamics of the network. The stable hill can be
interpreted as a template fit through the noisy hill; the position of its peak
can be used to estimate orientation, θ̂, and spatial frequency, λ̂..
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function, which is not observed experimentally. Therefore, sta-
bilization is not required for optimal performance, and even
produces contrast tuning inconsistent with properties of real
neurons.

Analysis: general case
Both our network and maximum likelihood fit a template to the
initial noisy data and estimate orientation and contrast from its
peak. Our numerical results (Fig. 3), however, raise three ques-
tions. First, why does the network optimize its performance at a
specific value of the width of the output tuning curves? Second,
why does optimal width depend on the noise distribution? Third,
why does the network perform better for flat noise then for pro-
portional noise?

To address these questions, we used a perturbative analysis—
we examined the linearized network dynamics near an equilib-
rium. Our analysis applied to networks that estimate an arbitrary
number of variables; however, we state the results for a single
variable, orientation. Our analysis was also valid for nonlinear
activation functions other than divisive normalization as long as
the network activity relaxes to a smooth curve whose peak gives
estimates of the encoded variables (Fig. 2). For this class of net-

works, we found that the smallest variance achievable by such an
estimator is given by

/
\(θ̂– θ)2

/
\
network min = [∂θf • R–1 • ∂θf]–1, (3)

where R–1 is the inverse of the covariance matrix of the noise, δθf
is a vector whose ith component, ∂θfi (θ), is the derivative of the
ith input tuning curve with respect to θ and ‘•’ denotes the stan-
dard dot product. In all simulations, a unit’s noise was indepen-
dent of noise in the other units. This implies that the off-diagonal
terms in the covariance matrix of the noise, R, are zero. (Diago-
nal terms correspond to the variance of the noise of each unit.)
However, our analysis is not restricted to independent noise, but
generalizes to arbitrary covariance matrices.

The minimum variance occurs when network parameters are
such that the following equation is satisfied. (The steps necessary
to derive this equation can be found at http://neurosci.nature.com/
supplementary_info/.)

v† ∝ R–1 • ∂θ f, (4)

where v† is the adjoint eigenvector of the Jacobian of the lin-

Fig. 3. Network performance compared to maximum like-
lihood and population vector. Network performance rela-
tive to maximum likelihood as a function of the width of
the output tuning curves for (a) flat noise and (b) propor-
tional noise. The width of the input tuning curves was held
at 69° (vertical dotted line), and contrast was set to 0.5.
Performances of the population vector estimator were
applied directly to the input patterns of activity (upper
curves). These curves are flat because they only depend on
the width of the input tuning curves, which is fixed. For
each type of noise, there is an output tuning-curve width
for which the network performs very close to ML. The
optimal network sharpens the output tuning curves by a
factor of 1.4 compared to the input for flat noise, but
barely changes the tuning curves for proportional noise.

Fig. 4. Temporal evolution of the network esti-
mate and its sensitivity to contrast. (a) Variance
of the network estimate as a function of the num-
ber of iterations. The contrast was 0.5. Two to
three iterations are sufficient to reach asymptotic
performance. (b) Inverse of the variance for the
network estimate, 1/σθ

2, as a function of contrast
for 3 iterations (squares). We plot 1/σθ

2 instead
of σθ for visual clarity: σθ is so close to zero for
contrasts greater than about 0.4 that the different
curves are indistinguishable. The solid line indi-
cates the theoretical maximum for 1/σθ

2 (which is
achieved by maximum likelihood) and the dotted
line corresponds to a population vector estimate.
The network stays close to maximum likelihood
over a wide range of suprathreshold contrasts.
(c) Contrast tuning curves as a function of the
number of iterations. The output units exhibit
realistic contrast tuning curves after 2–3 itera-
tions, but converge to a step function after a large
number of iterations. (d) Experimental contrast
tuning curve (adapted from ref. 24).

a b

c d

a b

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
N

at
u

re
 A

m
er

ic
a 

In
c.

 • 
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



744 nature neuroscience  •  volume 2  no 8  •  august 1999

earized network with eigenvalue 1. The quantity v† depends on
network parameters such as the width of the output tuning
curves, and, by adjusting those parameters, equation 4 can be
satisfied. The resulting network is the best of all networks of the
type we have considered, and the width of the output tuning
curves for this network is the optimal one. Note also that, as the
covariance matrix appears in equation 4, optimal weights and,
consequently, the optimal width, depend on the noise distribu-
tion. That the minimum variance is achieved only for a particu-
lar set of network parameters, and that those parameters depend
on the covariance matrix, explain both why performance is opti-
mal for a specific width of the output tuning curves and why the
optimal width depends on the noise distribution (Fig. 3).

To test our analysis, we computed v† using equation 4 and
used it to determine the optimal widths for the networks used in
the numerical simulations described in the previous section. We
found optimal widths of 48° for flat noise and 67° for propor-
tional noise. These were almost exactly the optimal widths for
network performance (Fig. 3).

To explain why the network performed better for flat noise
then for proportional noise, we compared the network variances
to maximum likelihood variance for flat and proportional noise.
For Gaussian noise with arbitrary covariance matrix, R, the max-
imum likelihood variance (absolute minimum variance, as spec-
ified by the Cramér-Rao bound23) is given by

/
\(θ̂– θ)2

/
\
ML min = [∂θf • R–1 • ∂θf + 1–

2
tr{R–1 • ∂θR • R–1• ∂θR}]–1 (5)

where tr{} denotes the trace (sum of diagonal elements) of a
matrix. The trace term is zero only when R is independent of θ;
otherwise, it is greater than zero (it is the sum of the squares of
real eigenvalues).

When the covariance matrix is independent of orientation,
the trace term in equation 5 vanishes, and the variance obtained
by the network, equation 3, is identical to maximum likelihood.
Thus, flat noise leads to near-optimal performance (1.6% above
maximum likelihood). The reason we did not actually acheive
maximum likelihood is that the network is optimal for a precise
shape of the output tuning curves, and we adjusted only the
width. However, the network’s close approximation with adjust-
ment of only a single parameter indicates that the architecture
we used is extremely robust.

When the covariance matrix depends on orientation, the trace
term in equation 5 is greater than zero, and the maximum likeli-
hood bound drops below the variance achieved by the network.
For proportional noise, we found that the trace term predicts
network performance 4.6% above maximum likelihood. This is
consistent with the 5.1% found in our simulations, considering
that we adjusted only the width of the output tuning curves.

In conclusion, the networks we considered achieve maximum
likelihood only for noise with a covariance matrix that is inde-
pendent of the stimulus, although close approximations to max-
imum likelihood can be obtained for stimulus-dependent noise.

DISCUSSION
Using numerical simulations, we have shown that a recurrent net-
work of units with broad tuning curves and divisive normaliza-
tion can extract variables encoded by a population of noisy
neurons. Moreover, with proper tuning of parameters, the net-
work can implement, or come close to implementing, ML—an
ideal observer. As our analysis shows, this result extends beyond
divisive normalization networks to any recurrent network whose
activity relaxes to a smooth curve peaking at a position that

depends on the encoded variables (Fig. 2). This curve can be
viewed as a template whose position is determined by fitting it to
the initial activity of the noisy population (Fig. 1d). By adjusting
network parameters to modify the shape of the template, the net-
work can be made to estimate optimally. Such adjustments could
be made in cortical networks with reinforcement learning25,26.

Because the network recovers a smooth curve from a noisy one,
it also acts as a near-optimal nonlinear noise filter by pooling activ-
ities through lateral connections. This pooling, however, tends to
widen and distort the population activity because it involves cells
with different tuning curves. The nonlinear activation function
compensates for these distortions, and the combination of pooled
activity and the nonlinearity enforces a particular shape for the
smooth hill of activity at equilibrium. After 2–3 iterations, the noise
is effectively removed, yielding an accurate assessment of the loca-
tion of the peak and, thus, of the encoded input variables.

That only 2–3 iterations are needed for asymptotic perfor-
mance (Fig. 4a) makes it possible to implement our scheme in a
feed-forward network with 2–3 layers (in addition to the input
layer). This is because an iteration in time for a recurrent network
is equivalent to propagation from one layer to the next in a feed-
forward network27. Fast convergence also implies that the smooth
activity function need not be perfectly stable for the network to
approach maximum likelihood; even if the curve decays to zero,
noise would be filtered out in the first 2–3 iterations.

The near-equivalence to maximum likelihood is not restricted to
networks that encode two variables and exhibit divisive normal-
ization. It generalizes to networks that encode an arbitrary num-
ber of variables and exhibit virtually any nonlinear activation
function, as long as the network relaxes to a smooth hill of activity
whose peak depends on initial activity. Such networks are equivalent
to ML when the noise is Gaussian and the variance is input inde-
pendent, and are close to ML when the variance depends on input.
Thus, neurally plausible networks can essentially behave as ideal
observers. We emphasize that this result applies to networks of units
with tuning curves that are heterogeneous in width and amplitude.

The class of networks investigated here—recurrent networks
of nonlinear neurons with broad tuning curves (Fig. 2)—are
found throughout the cortex. Therefore, our results raise the pos-
sibility that each cortical area can be tuned to perform maximum
likelihood estimation of variables encoded in the noisy activity
from another area. As a result, each area can behave as an ideal
observer, suggesting that the ability to optimally process noisy
input may be a general property of cortex.

METHODS
The input tuning curves, defined to be the mean response to a stimulus of
orientation, θ, spatial frequency, λ, and contrast, C, were taken to be circular
normal functions with a small amount of spontaneous activity, ν,

(6)

where K, σθ and σλ are constant, and the units are arranged in a Pθ × Pλ
grid: θi = 2πi/Pθ, i = 1,...,Pθ and λj = 2πj/Pλ, j = 1,..., Pλ. Note that spatial
frequency is treated as a periodic variable to avoid edge effects; this should
have a negligible effect on our results as long as we keep λ far from 2πn,
n an integer. We used the circular normal function instead of the Gauss-
ian because this function is periodic.

On any given trial, aij, the input to cortical unit ij is sampled from a
Gaussian noise distribution with variance σ2

ij,

(7)

These inputs supply the initial conditions: oij(t = 0), the initial activity
of the network, is set to aij.

P(aij – fij | θ,λ) = 1

√
——
2πσ2

ij

exp 




[aij – fij (θ,λ)]2 

2πσ2
ij




.

fij (θ, λ) = KCexp 




cos (θ – θi) – 1 cos (λ – λ j) – 1
+σ2

θ σ2
λ

+ ν



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The weights implement a two-dimensional Gaussian filter,

(8)

where Kw is constant and δwθ and δwλ control the width of the weights.
The maximum likelihood variance in the estimate of θ̂ (equal to the

Cramér-Rao bound for the noise used here) can be computed from the
probability distribution given in equation 7; the resulting expression is

(9)

where the angle brackets denote an average over trials and a prime
denotes a derivative with respect to θ. An essentially identical expression
exists for the minimum variance in λ̂ ; the only difference is that the
derivative with respect to θ is replaced by a derivative with respect to λ.
Note that for fixed variance, (log σ2

ij)' = 0, and the second term on the
right hand side of equation 9 (trace term discussed in analysis) is zero,
whereas for noise proportional to the mean activity, (log σ2

ij)' = f 'ij / fij.
In all simulations, we used a 20 × 20 array of units (Pθ = Pλ = 20), and

the parameters were set to the following values: K = 74, ν = 3.7,
σθ = σλ = 0.38, µ = 0.002, Kw = 1. For Gaussian noise with fixed vari-
ance, σn

2= 25. The parameters δwθ and δwλ, which affect the extent of
spatial pooling of the filtering weights and thus width of the output tun-
ing curves, were kept equal and were systematically varied within the
interval [0.14, 0.718].

Because our noise distribution and filtering weights were symmetric
with respect to the interchange of θ and λ (equation 6 with σθ = σλ and
equation 8 with δwθ = δwλ,), by symmetry, the variance in θ̂ is equal to
the variance in λ̂ , the covariance, /\(θ̂– θ)(λ̂ – λ)/

\, vanishes and the net-
work is unbiased, /\θ̂/

\ = θ, and /\λ̂/
\ = λ. Thus, in Results we computed only

/
\(θ̂– θ)2

/
\. We used the standard formula, valid for unbiased estimators,

where N is the number of trials, and θ̂was determined using a complex
estimator4,5, equivalent to a population vector estimator2,

(10)

(Note that in this equation, i is used not as an index but as notation for
√—

–1 .) Each trial consisted of initializing the network with a noisy input
function [oij(t = 0) = aij, as described above], iterating equations 1 and 2
and computing θ̂ from equation 10.

Note: a mathematical appendix is available at http://neurosci.nature.com/
supplementary_info/ .
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