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The olfactory system has evolved to process information about chemi-
cals in the environment. Much is known about the physiological side 
of this processing, especially in the early stages1. At the very first stage, 
neurons in the nasal epithelium, called olfactory receptor neurons 
(ORNs), transduce chemicals in the air into electrical signals. Each 
ORN expresses exactly one type of olfactory receptor, and in mammals 
there are about 1,000 different types. The question we address here is: 
how does the brain extract olfactory percepts from the ORN activity? 
More simply, how does it answer questions such as: given the relatively 
complex mixture of chemicals just inhaled, which odors are present? 
(We use “odor” to refer to the olfactory percept corresponding to a 
particular object, as in the “the odor of an orange,” and “odorant” to 
refer to the many chemicals that are released by the orange.)

Inferring olfactory percepts from the ORN signals is difficult for 
several reasons. First, it is rarely the case that a single odor dominates 
the environment. Instead, multiple odors are typically present: in a 
restaurant there are many different dishes, in a forest many differ-
ent plants, etc. Thus, the task of the olfactory system is more often 
segmentation than recognition, at least outside an experimental  
laboratory. And even when the task is to recognize a single odor, that 
typically must be done against a background of other odors2. Second, 
ORNs respond to a broad range of odors3, so information about the 
olfactory scene is distributed across many neurons. Finally, because 
neural responses are stochastic, the same odor never elicits the same 
pattern of activity twice.

For all these reasons, olfaction is fundamentally a probabilistic 
inference task. We hypothesize that, when faced with an olfactory 
scene, the olfactory system computes a probability distribution 
over the possible odors. Although it is not known whether olfactory  
neurons encode probabilities, there is very strong evidence that other 
sensory modalities do4, so this is a reasonable hypothesis. And there 
are good reasons to keep track of probabilities. For example, suppose  

you smell a fruit and conclude that there is an 80% chance it is a 
grapefruit and a 20% chance it is an orange. Suppose you then look 
at the fruit and, on the basis of the image, conclude that there is a 
5% chance it is a grapefruit and a 95% chance it is an orange. Such 
cross-modal disagreement is easily resolved using the rules of proba-
bilistic inference (assuming equal a priori probabilities, there is about 
a 17% chance it is a grapefruit). But it is only because the probabili-
ties were known that an optimal decision—about, say, whether to eat 
the fruit—could be made. If the two modalities had returned binary 
answers (“it is a grapefruit” and “it is an orange”), there would be no 
principled way to resolve the conflict.

Here we present a model of how the early olfactory system—the 
olfactory bulb, along with the piriform cortex—could demix odors. 
More specifically, we show that the early olfactory system can, on 
the basis of a single sniff, compute a probability distribution over the 
concentration of each possible odor via a dynamic process involving 
the olfactory bulb and the piriform cortex. Previous work on demix-
ing has either assumed that only one odor is detected on each sniff5–7 
or that different odors have different temporal patterns8,9. Our model 
both treats odors probabilistically and is capable of demixing multiple, 
temporally homogeneous odors in a single sniff.

RESULTS
A probabilistic model of olfaction
Essentially all probabilistic models of sensory processing proceed in 
three steps, and olfaction is no different: (i) specify an encoding model, 
a probabilistic mapping from odors to neural activity, (ii) specify a 
prior probability over odors, and (iii) use Bayes’ theorem to invert the 
model and compute a probability distribution over odors given neural 
activity. Applying this procedure results in a set of equations that 
constitutes our inference algorithm—the algorithm for transforming 
neural activity into a probability distribution. In Online Methods 
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The olfactory system faces a hard problem: on the basis of noisy information from olfactory receptor neurons (the neurons that 
transduce chemicals to neural activity), it must figure out which odors are present in the world. Odors almost never occur in 
isolation, and different odors excite overlapping populations of olfactory receptor neurons, so the central challenge of the olfactory 
system is to demix its input. Because of noise and the large number of possible odors, demixing is fundamentally a probabilistic 
inference task. We propose that the early olfactory system uses approximate Bayesian inference to solve it. The computations 
involve a dynamical loop between the olfactory bulb and the piriform cortex, with cortex explaining incoming activity from the 
olfactory receptor neurons in terms of a mixture of odors. The model is compatible with known anatomy and physiology, including 
pattern decorrelation, and it performs better than other models at demixing odors. 
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section “Approximate inference,” we provide a detailed description of 
the encoding model, the prior, and the method for inverting Bayes’ 
theorem. Here we sketch the main ideas.

The encoding model specifies the activity of each ORN receptor 
type given the set of concentrations in the world. For that we use a rel-
atively simple model: the firing rate of ORN receptor type i, denoted 
vi, is a weighted sum of the concentrations, 

n ni i ij j
j

K
t w c= + −

=
∑0

1

1
1, ( )∆

where cj is taken to be log concentration, chosen so that cj = 0  
corresponds to a concentration so low that it is undetectable, v0,i is 
the background firing rate of ORN receptor type i, and ∆t is the time 
window for counting spikes. We assume that the neurons fire with 
Poisson statistics, as has been observed, at least approximately10;  
thus, in our model the input to the olfactory bulb is a set of Poisson 
spike trains.

The second step of probabilistic modeling is to determine the prior 
probability distribution over concentration (the distribution over cj). 
Here we make two assumptions. The first is that only a small number 
of odors are present at a time, meaning only a small number of the cj 
are nonzero. The second is that odors occur independently of each 
other. While the former is reasonable (we rarely detect more than 
a handful of odors at any one time) the latter is not correct. That’s 
because odors tend to be correlated; for example, the set of odors one 
expects in a restaurant are different from those one expects in a forest. 
However, modeling those dependencies would require a complex, 
hierarchical prior. While such a prior is, ultimately, important for 
a complete understanding of olfaction, it adds complexity without 
changing the basic story; we thus leave it for future work.

We can satisfy both assumptions by combining, for each odor, a 
smooth function, which describes concentrations above detection 
threshold, with a point distribution whose total probability corre-
sponds to the fraction of time concentrations are so low as to be 
undetectable. This gives us a prior of the form 
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where pprior is the prior probability that any particular odor is present, 
βprior sets the characteristic scale of the concentrations, and δ(cj) is a 
delta function (the point mass). In our simulations we use βprior = 3  
and pprior = 3/K where K = 640 is the number of odors; the latter 
implies that there are, on average, 3 odors present in any particu-
lar olfactory scene. The precise shape of the distribution is not so 
important. What is important is that the expected number of 
odors is small, so that the olfactory system infers mixtures with a  
small number of odors.

The third step is to invert the generative model—that is, combine 
the prior (equation (2)) with the encoding model (equation (1))—to 
determine the probability that any particular odor is present. To do 
that, the olfactory system needs to know the possible odors in the 
world and the set of weights, wij, that transform those odors to ORN 
activity. In a full treatment, these would be learned; here we assume 
learning has already occurred. Or, more precisely, we assume that 
a subset of the possible odors, and their corresponding weights, 
have been learned. We refer to the learned subset as “known” odors.  
All other odors are termed “unknown.”

(1)(1)

(2)(2)

Exact inference in this model is not feasible, as computation time is 
exponential in the number of odors; this is typical of Bayesian infer-
ence problems in realistic settings. We therefore use an approximate 
algorithm, which, as we will see, can be implemented in neural cir-
cuitry consistent with known anatomy and physiology11,12. The algo-
rithm finds the factorized distribution that is as close as possible to 
the true one. As we show in Online Methods section “Approximate 
inference” (in particular, equation (21a)), this results in a posterior 
distribution for the concentration of each odor. The posterior for 
odor j has the form 

q c c ej j j
cj j c j j( | ) ( )

/ /
r ∝

− −b b1
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where r (≡ r1, r1, …) is a vector of spike counts, with ri(t) set to the 
number of spikes from ORN receptor type i in a window of size ∆t; in 
our simulations, we set ∆t to 50 ms. The parameters cj and βj deter-
mine the approximate probability distribution over the concentration 
of odor j. These parameters have a natural interpretation: cj  is the 
mean concentration and cj jb  is the variance. Both are important for 
inferring whether or not an odor is present. In particular, the lower the 
mean the less likely an odor is to be present, and for a fixed mean, the 
higher the variance the more likely the odor is to be present because it 
is more likely that the true concentration is relatively high.

Note that we cannot represent arbitrary posterior distributions over 
concentration; instead, our posterior is summarized by two param-
eters. Moreover, although both are important, the second one, βj, 
turns out to be independent of activity, r, and only weakly depend-
ent on odor, j (see Online Methods, equations (22b) and (38)). Thus, 
the distribution in equation (3) is reasonably well summarized by 
cj, and that is what we focus on. Not surprisingly, given the diffi-
culty of the inference task, cj  depends on the activity of the ORNs, 
r, in a complicated way. However, the cj  can be computed by the  
network shown in Figure 1. Explicit equations describing the time 
evolution of the various cells in the network are given in Online 
Methods, equation (28). Here we provide a qualitative description.

Input to our network comes from the ORNs: each ORN receptor 
type projects, via a glomerulus (which we do not model), to one mitral 
cell; those cells then interact, via approximately reciprocal dendro-
dendritic connections, with the granule cells. We ignore any spread of 
signals in the granule cells; essentially, each mitral cell is considered 
to have its own private connection. However, as is observed experi-
mentally13, activity at the soma of the granule cells is transmitted 
to its dendrites and modulates activity there. The mitral cells also 
project, via the lateral olfactory tract, to the ‘mean concentration’ 
cells in piriform cortex—the cells labeled cj in Figure 1. The mean 
concentration cells then project back to the granule cells, which in 
turn inhibit the mitral cells.

As this explanation suggests, the network implements a negative 
feedback loop: the mitral cells excite the mean concentration cells in 
piriform cortex, those cells feed back to the bulb and excite the granule 
cells, and the granule cells inhibit the mitral cells. That feedback loop 
acts iteratively: it infers a set of odors, compares that inference to the 
incoming information, uses the comparison to refine the inference, 
and then repeats the process. Here we illustrate this for an olfactory 
scene containing, for definiteness, three odors.

To simplify the analysis, we focus on mitral cells and mean concen-
tration cells. The granule cells are of course critical to the operation 
of the network, but as shown in Online Methods (in particular, equa-
tion (31)), their main effect is to provide divisive inhibition. For our 

(3)(3)
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network the specific form of the divisive inhibition involves a square 
root: the activity of the ith mitral cell, mi, is given approximately by 
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where ri is, as above, the activity of ORN receptor type i and γi is an 
unimportant scale factor (it cancels the factor of g i−1 that appears 
in equation (5) below). The denominator in this equation is due to 
the granule cell feedback, which provides targeted divisive inhibi-
tion via the wij—the same weights that generated the ORN responses  
(see equation (1)).

The mitral cells drive the mean concentration cells, thus completing 
the feedback loop. As shown in Online Methods (in particular, equa-
tion (28a)), the drive to mean concentration cell i is linear in mi

2, 

t a b gc
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j j j i
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where τc is the time constant of the mean concentration cells and 
α0βj is the mean concentration associated with the prior. The main 
effect of the term td dc tj /  is to introduce a delay, as it forces the 
mean concentration cells to integrate the drive from the mitral 
cells (a similar term should appear in equation (4), but it is less 
important, so to simplify the explanation we did not include it). 
Note that the mitral cells drive the mean concentration cells via the  
transpose of the weights.

(4)(4)

(5)(5)

Immediately after odor onset, cj is small—it is not far from α0βj 
(which is about 0.002)—and so at early times the second term in the 
denominator of equation (4) can be ignored. Consequently, m ri i∝ 1 2/ ,  
and mitral cells closely track ORN activity (see the section “Response 
to a known odor” below). This close tracking does not last long, 
though, only about 20 ms. However, that 20 ms is critical: replacing 
mi

2 by γiri in equation (5), we see that the mean concentration cells 
in piriform cortex are driven by Σiriwij. This is an approximation to 
the template matching signal (see Fig. 2 and Online Methods sec-
tion “ROC curves”), and in the first 20 ms it provides the network’s 
initial estimate of which odors are present. The quality of that esti-
mate can be seen in Figure 2b, which shows the activity of the mean 
concentration cells at 20 ms. Even though only 20 ms have elapsed, 
the presented odors are mainly larger than the non-presented ones. 
More quantitatively, a threshold set to the smallest presented odor 
would produce only 21 false positives (out of 637 possible false-posi-
tives). This is much better than chance, indicating that the initial 
feedforward sweep of activity is beneficial. The activity at 20 ms is also 
qualitatively similar to the actual template matching signal (Fig. 2a),  

Glomeruli

Lateral olfactory
tract

Olfactory receptor
neurons (ORNs)

Olfactory
bulb

Reciprocal
synapses

Mitral cells

Volatile compounds

Piriform
cortex (cj)

–

Granule cells

Figure 1  Circuit diagram. The olfactory receptor neurons (ORNs), which 
respond to volatile compounds in the air, are divided into different 
receptor types. All ORNs of the same receptor type project, via a 
glomerulus (which we do not model), onto a mitral cell. (Each of our mitral 
cells should be thought of as a ‘meta-mitral’ cell, since in the real circuit 
there are approximately 15 mitral cells for every glomerulus.) The mitral 
cells interact, via approximately reciprocal connections, with the granule 
cells (which are inhibitory and, in our network, outnumber the mitral cells 
by a factor of 3). The mitral cells also project, via the lateral olfactory 
tract, to the mean concentration cells in piriform cortex (labeled cj ).  
These are the cells that carry direct information about the distribution 
over concentration for odor j. They also provide feedback—essentially an 
estimate of the mean concentration—to the granule cells: when the odors 
are successfully inferred, the feedback signal cancels, via the inhibitory 
granule cells, the feedforward drive from the ORNs, and the mitral cells 
are pushed toward their baseline firing rates.
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Figure 2  Evolution of activity in the mean concentration cells (the cj )  
when three odors are presented. The first three odors (blue) correspond to 
the presented odors; the remaining 637 (red) correspond to the odors that  
were not presented. All plots except that in e are on a log scale. (a) Template 
matching estimate, rwi iji∑ , 20 ms after odor onset. (b) Activity of the 
mean concentration cells 20 ms after odor onset. (c) Activity 50 ms after 
odor onset. (d) Activity 150 ms after odor onset. (e) Activity 150 ms after 
odor onsets, but on a linear, rather than a log, scale.
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in the sense that a threshold set to the smallest presented odor 
would produce 15 false positives. (The lack of quantitative simi-
larity between Fig. 2a and b is due primarily to nonlinearities in  
the network.)

Once inferred odor concentrations start to grow, their growth accel-
erates. That occurs because of the factor of cj  on the right hand side of 
equation (5). This creates a positive feedback loop and thus leads to a 
‘rich get richer’ effect. But the rich do not get uniformly richer; there 
is also a consistency requirement. Because of the negative feedback, 
the mean concentration cells need appropriate drive from the ORNs 
to sustain their growth. This is a collective phenomenon, which can 
be understood by considering the following example. Suppose wi1 is 
nonzero for i = 1, …, 10 and zero for all the other i, so odor 1 activates 
mitral cells 1–10. If only odor 1 were present, ORNs 1–10 would be 
activated (see equation (1)), and they would drive mitral cells 1–10 
(see equation (4)). Those ten mitral cells would then strongly drive 
the cell representing odor 1 (see equation (5)). They would, of course, 
also drive other cells, but less effectively, as only a fraction of the ten 
active mitral cells, not all of them, would affect the other cells. Because 
of the negative feedback, the cells representing the other odors would 
not be able to sustain their activity. Thus, c1 would grow, but the other 
inferred odor concentrations would stay near background.

In more realistic situations the idea is the same: an initial template 
matching signal causes the correct odor to have reasonably high activ-
ity; the rich-get-richer effect (the factor of cj  on the right hand side 
of equation (5)) causes odors with initially elevated activity to grow; 
and consistency ensures that the correct odors are the ones most likely 
to eventually reach relatively high activity. Note that in our network 
we use a prior that does not favor any particular odor, but it is easy 
to change the prior in an odor-specific way simply by letting pprior in 
equation (5) depend on odor, j; that is, let pprior → pprior,j, with pprior,j 
larger for odors that are more likely to appear.

The growth of the odors is illustrated in Figure 2. We have already 
seen that the activity at 20 ms (Fig. 2b) provides a reasonable estimate 
of which odors are present. Only 50 ms later (Fig. 2c), the presented 
odors are starting to rise above the noise. In fact, a threshold set to 
the activity level of the smallest presented odor is a factor of more 
than 2 larger than the activity level of the largest non-presented odor. 
And at 150 ms (Fig. 2d,e), the smallest presented odor is an order of 
magnitude larger than all of the non-presented odors.

Although the correct odors were inferred, their mean concentra-
tions were underestimated: the presented odors all had concentrations 
of 3, but the inferred mean concentrations were between 1 and 2 
(Fig. 2e). This is a typical side effect of Bayesian inference, in which 
inferred quantities are biased toward the prior14, which in our case 
favors low concentrations.

In this example the activity of the mean concentration cells was 
eventually either very high or very low, so it was clear which odors 
were present and which were not. However, had the activity been at 
an intermediate level it would have been less clear. To handle those 
cases, we need a mapping from the approximate posterior distribution 
(equation (3)) to the probability that an odor is present. Because, as 
discussed above, the approximate distribution is characterized pri-
marily by the mean concentration, cj , we focus on the mapping from 
cj  to probability. To get that mapping, we performed many simu-
lations, each with a different combination of odors, and combined 
them to compute the probability that an odor is present given cj  (see 
Online Methods section “Determining the probability that an odor 
is present”). This yielded a plot of probability versus cj  (Fig. 3a).  
Animals can easily learn, from experience, an approximation to 
this relationship. In addition, the inferred mean concentration, cj,  

is well predicted, but slightly lower than, the true concentration, cj 
(Fig. 3b,c). Thus, above a concentration of about 0.3–0.5 (depending 
on the number of presented odors) the inferred mean concentra-
tion, and thus the probability than an odor is present, is invariant to 
concentration.

Compatibility with known physiology
Our circuit is, of course, simplified relative to the true one. In the 
true circuit, each ORN receptor type projects to two glomeruli (one 
on either side of the olfactory bulb); these in turn innervate mitral 
cells, with each glomerulus innervating about 15 mitral cells; and each 
mitral cell forms dendro-dendritic connections with about 30 gran-
ule cells15. Signals can propagate within granule cells and so inhibit 
other mitral cells. In addition to this main circuitry, there is lateral 
inhibition among the glomeruli15. Finally, tufted and mitral cells have 
different response properties and projection patterns16,17, and con-
nectivity to and from the olfactory bulb is not limited to the piriform 
cortex18. In sum, we have bypassed the glomeruli, replaced the set of 
mitral and tufted cells by one meta-mitral cell, reduced the number 
of granule cells, and ignored the spread of depolarization in those 
cells. It will be important to include this more complex circuitry in 
future work. However, our circuit does contain the main cell types, 
mitral cells and granule cells, it preserves the approximately reciprocal  
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Figure 3  Probability of odor presence and inferred concentration.  
(a) Probability that an odor is present given the inferred mean 
concentration, cj , computed by the network from 10,000 trials.  
(b) Inferred mean concentration (cj ) versus true concentration (cj); error 
bars (shown only in the positive direction to reduce clutter) are s.d. On 
this scale, the inferred mean concentration is approximately proportional 
to (but slightly smaller than) the true concentration. (c) Same as b, but 
for concentrations between 0 and 3. Especially at low concentrations, our 
network underestimates the true concentration, with the underestimate 
larger when more odors are presented. This is due to the sparse prior 
on odors, which introduces a bias toward low inferred concentration. 
All three panels were constructed by performing a large number of 
simulations, each with a different olfactory scene; see Online Methods 
section “Determining the probability that an odor is present.” In b the 
average number of data points per bin was 37, 170 and 127 for 1, 3 and 
5 presented odors, respectively, and in c the corresponding numbers were 
14, 31 and 144.
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connections between those cell types, and it faithfully mirrors the 
main connections between the olfactory bulb and piriform cortex.

In the next several sections we investigate how this circuit responds 
to a range of olfactory scenes. For all simulations the network con-
tained 160 ORN receptor types, 160 mitral cells, 480 granule cells, 
and 640 piriform cortex mean concentration cells, and there were 640 
possible odors (see Online Methods sections “Approximate inference” 
and “Parameters” for parameters and details).

Response to a known odor
We first tested our model in response to a single known odor. Such 
an odor was generated by setting the concentration of odor 1, c1, to 
3 (the mean value of presented odors; see equation (2) and note that 
βprior = 3) and the concentrations of all other odors to zero. Activity 
of our four cell types—ORNs, mitral cells, granule cells and mean 
concentration cells (the cells in piriform cortex that read out the 
odor)—are shown in Figure 4a. The ORN activity quickly rises to 
a steady state and stays there. The mitral cells, however, have more 
interesting dynamics: they exhibit an initial burst of activity from 
the ORN input, but that activity is terminated by inhibitory feedback 
from piriform cortex. In this example, the circuit correctly inferred 
which odor was present, so only one of the mean concentration cells 
(the correct one, c1) had appreciable activity.

The key observation is that when the odor is correctly inferred, 
activity in cortex mainly cancels the incoming ORN signal, and 
so mitral cell activity drops (as also predicted by Koulakov and 
Rinberg19). This is broadly consistent with data in awake, behaving 
animals20–23. To illustrate the importance of this cancellation, we ‘anes-
thetized’ cortex: we reduced the strength of the feedback connections  

from the mitral cells to the mean concentration cells by a factor of 
100. With activity in cortex nearly nonexistent, granule cells have 
relatively low activity (Fig. 4b). Thus, mitral cell activity stays high, 
as it mainly represents the raw ORN signal. This is what is observed 
in rabbits when fibers from piriform cortex to the bulb are cut24 and 
in mice when piriform cortex is pharmacologically suppressed25.

Response to an unknown odor
A milder version of this lack of cancellation can be seen when an 
unknown odor is presented; we mimic this by setting the mean fir-
ing rate of ORN receptor type i to n0, /i iw t+  ∆  where the wi  are a set 
of weights that do not correspond to any of the odors known to the 
animal. Because wi  is not known by the circuit, it cannot infer which 
odor is present. Instead, piriform cortex tries to explain the ORN 
activity with many odors at low concentration (Fig. 4c). The activity 
in piriform cortex is sufficient to elicit granule cell activity; however, 
it is not the right activity, in the sense that it does not cancel the 
ORN input. Thus, although mitral cell activity is slightly lower than 
in Figure 4b, it does not return to the values seen in Figure 4a.

Detecting an odor against a background
One of the most common tasks faced by an animal is to detect a 
known odor against a background consisting of many other odors. 
Humans can do this reasonably well: they can detect a familiar odor in 
a background of 12 odors with about 65% accuracy26. And, as shown 
by Rokni et al.2, mice can do even better: they can determine, with 
over 80% accuracy, whether or not a target odor is present against a 
background containing up to 13 distractor odors. We assessed the 
performance of our model on this task using a protocol identical to 
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that in the experiments of Rokni et al.2. Briefly, we presented between 
0 and 14 background odors, with half the trials also containing a 
known target odor. The concentrations of all odors, both target and 
distractors, was the same, c = 3. We reported the target present if its 
mean concentration (cj) was above a threshold of 0.076 and absent 
if it was below that threshold. In addition, we assumed that the mice 
licked spontaneously on 11% of the NoGo trials (the trials for which 
the animals are supposed to refrain from licking). The value of the 
threshold for our network, and the spontaneous lick rate on NoGo 
trials, were chosen to match as closely as possible the experimental 
results of Rokni et al.2.

Our simulations match well the experimental results (Fig. 5), espe-
cially considering that we did not specifically train our network on 
this task. However, this task may be sufficiently simple that it is not a 
strong test of our Bayesian algorithm: it turns out that a linear decoder 
applied to the glomeruli activity also matches the behavior of the mice 
reasonably well27. We return to this point in the Discussion.

Pattern decorrelation as a side effect of inference
In a now seminal study, Friedrich and Laurent28 showed that aver-
age mitral cell activity in the decerebrate zebrafish decorrelates over 
time: the average activity associated with two odors can be very similar 
(highly correlated) at the beginning of a trial, but very different (uncor-
related) at the end of a trial. (Note that we are referring to so-called pat-
tern correlation, which measures the similarity of the average responses 
to a pair of odors.) The conclusion was that the olfactory bulb actively 
separates odors, making them easier to decode as time goes on28.

To determine whether our model exhibits a similar pattern of 
decorrelation, we measured the average mitral cell responses to nine 
randomly chosen odors, presented one at a time, and computed, from 
ten trials, the correlation coefficient between each pair of odors. 
This gave us a time series of 9 × 9 correlation matrices (Fig. 6a).  
Some of the odors are initially strongly correlated, but over time 
their correlations weaken. Thus, odors that are initially very simi-
lar become less similar as time goes on—exactly what was seen 
by Friedrich and Laurent28. However, other odors become more  

correlated with time, as also seen by Friedrich and Laurent28. The 
net trend is that after odor onset the correlations decrease slightly  
(Fig. 6b). This decrease was recently observed in mouse olfactory  
bulb mitral cells23, where, as in our simulations, the correlations 
dropped from about 0.4 to about 0.2.

Critically, decorrelation in our model does not imply that odors 
are easier to distinguish as time goes on. In fact, the opposite is true: 
mitral cells contain less information, not more, as time goes on. That 
is because during inference, granule cells act to cancel the ORN input 
to the mitral cells. This is consistent with what has been reported in 
awake mice21,29: decoding performance based on mitral cell activ-
ity increased immediately after odor onset, owing to the arrival of 
information in the olfactory bulb, but decreased a short time later. It 
is inconsistent, however, with the study of Friedrich and Laurent28 
in zebrafish, who found that decoding performance improved con-
tinually. This may be because the latter experiments were performed 
in decerebrate fish, where cortical feedback does not operate nor-
mally. Moreover, the decorrelation took place over several seconds, 
whereas in rodents a single breathing cycle (200–300 ms) is often 
sufficient for odor discrimination30. It is therefore unclear whether 
the results obtained in decerebrate fish are relevant for fast processing 
in behaving rodents. Instead, for awake rodents, we are suggesting that 
decorrelation in the olfactory bulb is the consequence of the demixing 
performed by the olfactory bulb–piriform cortex loop, as opposed to 
a pattern separation mechanism.

Comparison to other models
Other demixing algorithms have been proposed; here we compare 
to two template-based approaches. One is direct template matching, 
in which the concentration of an odor is given by the normalized 
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dot product between the ORN responses and a template—a com-
mon approach in the olfactory system31. The other is Fisher’s linear 
discriminant, which is a sophisticated version of template matching: 
ORN responses are passed through a nonlinearity, and then distance 
to a template is computed using a metric that takes into account the 
pattern correlations. The latter was used recently in the analysis of a 
model of the fly olfactory system32.

We can compare these algorithms to ours using a generalization 
of receiver operating characteristic (ROC) curves: we plot hit rate 
(correct identification of odors) versus false positives as the threshold 
for detecting an odor changes. (Note that this analysis differs from 
that in Fig. 5, where the threshold was fixed.) Because more than one 
odor can be present at a time, we define the hit rate as the fraction 
of odors that were correctly identified (see Online Methods section 
“ROC curves”). Our method does significantly better than the others 
(Fig. 7). This is not surprising, as our method performs approximate 
Bayesian inference, whereas the other methods are more ad hoc.

There are, of course, other approaches to demixing odors on a sin-
gle sniff cycle. Most of them effectively choose the odor concentra-
tions that best match the observed firing rates, with a regularizing 
term that prevents overfitting19,33,34. Our model falls into this class, 
with both the definition of “best match” and the regularizing term 
derived using approximate Bayesian inference (see Online Methods 
section “Regularized models”).

DISCUSSION
Olfaction as probabilistic inference
The olfactory system, like all sensory systems, is faced with an infer-
ence problem: given the activity of the olfactory receptor neurons,  

the brain can never know exactly what odors are present. It can, 
though, do the next best thing: it can provide a probability distribu-
tion over odors. Given that distribution, it can make informed deci-
sions (“Do I eat that piece of fruit that smells like a grapefruit but 
looks like an orange?”). We thus treated olfaction as a probabilistic 
inference problem. For that we took the standard Bayesian approach: 
we wrote down an encoding model—a probabilistic transformation 
from odors to neural activity—and inverted that transformation using 
Bayes’ theorem. As is typical of realistic problems, the second step 
could not be done exactly, so we had to compute an approximate 
posterior distribution over concentration.

The approximate inference algorithm we used matched what is seen 
in the early olfactory system in several ways. First, it led to circuitry that 
is broadly consistent with the anatomy of the olfactory bulb: we could 
naturally identify mitral cells and granule cells, those two cell types were 
reciprocally connected, the mitral cells projected to piriform cortex, 
and cells in piriform cortex projected back to granule cells. Second, 
our simulations produced, for a range of olfactory scenes and condi-
tions, firing patterns that were consistent with in vivo activity. Third, 
our model matched behavioral data in which mice were asked to extract 
a target odor from up to 13 distractors. We note, though, that for this 
task Bayesian inference did not appear to be necessary: a linear decoder 
applied to glomeruli activity also matched the behavioral data27. This is 
at least partially because the concentration of the target and background 
odors were constant across trials, which simplifies considerably the seg-
mentation problem. Thus, it is hard to distinguish the two models solely 
on the basis of this experiment. However, the anatomy of the olfactory 
bulb argues against a linear decoder of glomerular activity, and a linear 
decoder does not do as well as our model (compare Fig. 7a and c). 
Finally, activity patterns of the mitral cells evolved in a way consistent 
with pattern decorrelation28. However, in our network pattern decor-
relation is not synonymous with pattern separation, in the sense that 
it does not mean odors are easier to discriminate over time. Instead, 
decorrelation is a byproduct of our demixing algorithm.

Previous work
Ours is not, of course, the only model of the olfactory system; many 
have been proposed, with varying goals5–9,19,33–47. Early theoretical 
work focused on reproducing the oscillations seen in the olfactory 
bulb in response to single odors, either with35 or without37–40 associa-
tive memory. Li5–7 was the first to address the problem of multiple 
odors, although she considered a situation in which odors are added 
on each sniff cycle. Hendin et al.41 considered a one-sniff, one-odor 
version of this model, but with learning; later they extended it to allow 
the detection of one odor within a mixture6. Other models that per-
form demixing on a single breathing cycle either assume that different 
odors have independent, and non-Gaussian, temporal fluctuations8,9 
or require a rather elaborate spike timing scheme42,48; in both cases, 
it is unclear whether these assumptions are realistic. Thus, to our 
knowledge, our model is the first one to identify a cortical–bulbar 
circuit that computes a probability distribution over odors, and does 
so in one breathing cycle without assuming independent fluctuations 
or relying on precise spike timing.

Other models have treated the olfactory bulb as a preprocessing 
step, one that makes it easier for downstream structures to infer what 
odor is present19,33,34,43. Of these, the closest to our work are a set of 
models that both sparsify responses and reduce redundancy19,33,34. In 
the hands of Koulakov and Rinberg19, this was accomplished by recip-
rocal connections between mitral cells and granule cells. The other 
two studies33,34 adopted different implementations, but the underlying 
equations were very similar (see Online Methods section “Regularized 
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models”). Alternatively, some models use a form of lateral inhibi-
tion, in which mitral cells inhibit each other locally and inhibition 
is stronger between cells that are neighbors in olfactory space44–46. 
Besides leading to sparse activity, these models tend to decorrelate 
responses, in the sense that responses to different odors become less 
similar. Finally, one model uses randomly connected recurrent net-
works to decorrelate responses47, indicating that decorrelation does 
not need special circuitry. While these models result in redundancy 
reduction, it is not immediately clear how, or even whether, they help 
with odor segmentation. In particular, to our knowledge these model 
have not been used to demix a complex odor scene.

Experimental predictions
Our model makes several testable predictions. First, inhibition of 
mitral cells by granule cells should be divisive (see equation (4)). 
Testing this prediction experimentally is difficult, as it requires  
knowledge of connectivity and whole cell in vivo recordings. However, 
it should be feasible in the not so distant future.

Second, our model predicts that when an unknown odor is presented, 
many granule cells should fire, but at low rates. In contrast, when a 
known odor is presented, a small fraction of granule cells should fire, 
but at relatively high rates. This could be assessed using standard meth-
ods, such as calcium imaging in awake animals; there is, in fact, already 
some evidence for it49. Our model predicts essentially the same thing 
in piriform cortex: known odors should activate a relatively small frac-
tion of neurons, but at high firing rates; an unknown odor, on the other 
hand, should activate a much larger fraction of neurons, but at much 
lower firing rate. This too could be assessed using calcium imaging.

Li and Hertz7 also predict different responses for known versus 
unknown odors. However, in their model those differences do not 
arise until after the first sniff cycle: the first sniff produces a strong 
response whether the odor is known, unknown, or a mixture of known 
and unknown odors; it is only on subsequent sniffs that the response 
in the bulb is suppressed, and then only if there is a single, known 
odor. Experimental tests of this prediction, which would go a long way 
toward distinguishing our model from that of Li and Hertz7, would be 
relatively straightforward. (For additional experimental predictions of 
Li’s model, many of which have been verified, see ref. 50.)

Broader implications
The set of difficulties faced by the olfactory system is not unique to 
that system; it is common to all sensory modalities: we never observe 
objects in isolation, and the transformation from stimulus to neural 
response is noisy and often ambiguous. For example, we never observe 
visual objects against a uniform black background; instead, objects 
appear against complex backgrounds, and they are often partially 
occluded. Moreover, we see a two-dimensional representation of the 
world from which we want to infer three dimensional shapes, a funda-
mentally ambiguous process. Thus, the lessons we learn from olfaction  
are likely to provide insight into other sensory modalities.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Introduction. Here we provide details of our approximate inference algorithm, 
which leads ultimately to a set of equations that can be implemented in a neu-
ronal network (equation (28)), with parameters given in section “Parameters.” 
We then explain our method for determining the probability that an odor is 
present, how we compute ROC curves, and the relationship of our approach to 
other regularized models.

Exact inference. As in all Bayesian models, inference in olfaction requires that 
we invert the generative model and write down the probability distribution over 
concentration given spikes from the olfactory receptor neurons (ORNs). We start 
by writing down the generative model and discussing exact inference.

The generative model consists of two parts: the likelihood, which is the prob-
ability of the data (in our case, spike trains from ORNs) given the odors that are 
present, and the prior probability distribution over odors. We already have an 
expression for the prior (equation (2)), so we just need the likelihood. In our 
model, ORNs generate spikes via a Poisson process. We assume that there is an 
effective time window, denoted ∆t, for counting spikes; thus, the relevant quantity 
is the probability distribution over spike counts in that time window. Using ri to 
denote the spike count of ORNs of receptor type i in time ∆t, the distribution 
over r (≡ r1, r2, …, rN) is given by 

p
r

w c w c
i

ij
j

K
j

ri

i

N
ij

j

K
j( | ) exp

!
r c =













−










== =

∑∏ ∑1

01 0
(( )6

where N is the number of ORN receptor types and K is the number of odors (see 
section “Parameters”). To take into account the background activity, the sum over j 
runs from 0 to K (instead of 1 to K, as it did in equation (1)), and we have defined 

w c ti i0 0 0 7≡ n , ( )∆

The likelihood, equation (6), came from the encoding model given in equa-
tion (1). In that encoding model, we assumed that ORNs respond linearly to log 
concentration. While this is a relatively common assumption2,6,33,36,43, it is an 
approximation. It is certainly valid over one log unit, as individual ORNs are 
approximately linear over that range51; diversity within an ORN receptor type 
may extend that to two or three log units52–54. A model taking into account non-
linearities would be interesting, but it is beyond the scope of this work.

Combining equation (6) with the expression for the prior, equation (2), the 
distribution over concentration given spike count is 

p w c w c
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j
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ij j
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( | ) exp
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c j
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prior

prior

b

b1

8

While this expression is exact, it contains too much information to be useful to an 
organism; typically what an organism wants to know is whether or not a particular 
odor is present, not the full posterior distribution over all possible combinations of 
odors. In addition, the delta functions, which put point masses at zero concentra-
tion, complicate the analysis. For instance, we cannot find the most likely set of 
odors (the maximum a posteriori solution), as is sometimes done for complicated 
posteriors, because the delta functions imply that zero concentration has infinite 
probability density. We assume, then, that the quantity of interest is the marginal 
distribution over each odor; for odor j, that distribution is given by 

p c c c c c c pj j j K( | ) ( | ) ( )r c r= … …∫ − +d d d d d1 2 1 1 9

Unfortunately, it is not possible to perform that integral exactly. And even if we 
could perform the integral over the continuous part of the posterior distribution, 
because of the delta functions the number of integrals that have to be performed 
is exponential in the number of odors. We must, therefore, resort to approximate 
inference.

(6)(6)

(7)(7)

(8)(8)

(9)(9)

Approximate inference. There are two parts to our approximate inference algo-
rithm. The first is to replace the prior—which is of the ‘spike and slab’ form55, 
notoriously hard to analyze—with a smoother, approximate prior, denoted 
papprox(c). For that we use a product of gamma distributions, 

p
c ej

c j

j
approx ( )

( )
( )

/

c =
− −

=
∏

a b

aa b

0 1 0

0 0
0

1
10

Γ

where Γ(α0) is the standard gamma function. This results in an approximate 
posterior, denoted papprox(c | r), 

p w c w c cij
j

j
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ij j
ji

japprox  ( | ) expc r ∝
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
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
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We follow a convention in which probabilities that depend only on c correspond 
to priors, whereas those that depend on c | r correspond to posteriors.

We use α0 = 1/3, for reasons discussed below (see the text following equation 
(54) in section “Regularized models”). To ensure that the mean concentration of 
each odor under the approximate prior, α0β0, is the same as the mean under the 
exact prior in equation (2), ppriorβprior, we chose β0 to satisfy α0β0 = ppriorβprior. 
From section “Parameters,” βprior = 3 and pprior = 3/K, where K is the number of 
odors; thus, β0 = 27/K.

Although this posterior is simpler than the true one, inference is still intrac-
table, in the sense that even if we replaced p(c | r) with papprox(c | r) on the right 
hand side of equation (9), we still could not do the integral. We could do maxi-
mum a posteriori inference, but then we would lose any notion of uncertainty. 
Thus, the second part of our approximation is to use a variational approach: we 
find a parameterized distribution that is as close as possible to papprox(c | r), as 
assessed by the Kullback-Leibler (KL) divergence56. That distribution, denoted 
qvar(c | r), minimizes the KL divergence between qvar(c | r) and papprox(c | r), 
which is given by 

D q p q
q

pKL var approx var
var

app
d  ( )( | ) || ( | ) ( | ) log

( | )
c r c r c c r

c r= ∫
rrox ( | )

( )
c r

12

It turns out that directly minimizing the KL divergence is also hard, mainly 
because the first term on the right hand side of equation (11) consists of products 
of a sum whenever ri ≥ 2. We can, though, minimize a bound on the KL diver-
gence. To find the bound, we first use the multinomial theorem to write 

w c r N
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where the sum over N is a sum over all sets of non-negative integers Nij such that 
the Nij add to ri, a restriction that is enforced by the Kronecker delta, 

∆( ) ( )n
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1 0
0 0 14

Inserting equation (13) into (11), we have 
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(10)(10)

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)
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To proceed, we introduce a second variational distribution, qvar(N | r). It is 
straightforward to show that regardless of what this new variational distribution 
is, we can bound the Kullback-Leibler divergence via 

D q p q
q

KL( )( | ) || ( | ) ( | ) ( | ) logvar approx var
vd  c r c r c c r N r

N
≤ ∫∑ q var

aar var

approx

 ( | ) ( | )
( | )

(
c r N r

c N r
q

p ,
)17

Rather than minimizing the true KL divergence with respect to qvar (c | r),  
we minimize the right hand side of equation (17), a bound on the true KL 
divergence, with respect to qvar(c | r) and qvar(N | r). To do that, we differentiate  
with respect to qvar(c | r) and qvar(N | r) and set the resulting expressions to zero; 
this gives us 

log ( | ) ( | ) log ( | ) ( )q q pvar var approxc r N r c N r
N

∼ ∑ , a18

log ( | ) ~ ( | ) log ( | ) ( )q q pvar var approxd  N r c c r c N r∫ , b18

where here, and in what follows, ~ indicates equality up to an additive constant. 
To complete these equations, we need an expression for the log of the approximate 
posterior, papprox(c,N | r). Using equation (16), that expression is given by 
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Inserting this into equation (18) yields 
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where the angle brackets indicate an average with respect to either qvar(c | r) or 
qvar(N | r), whichever is appropriate.

Examining these expressions, we see that qvar(c | r) is gamma distributed and 
qvar(N | r) is multinomial distributed,

q
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(17)(17)

(18a)(18a)

(18b)(18b)

(19)(19)

(20a)(20a)

(20b)(20b)

(21a)(21a)

(21b)(21b)

(22a)(22a)

(22b)(22b)

(22c)(22c)

Note that equation (21a) is the expression that appears in equation (3) of the 
main text (except that in the main text we do not include the normalization 
or the subscript “var”). Using equation (21), the averages in equation (22) are 
readily computed, 
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where c is the digamma function, 
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a
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Γ 24

Finally, inserting equations (23a), (23b) and (22c) into (22a), we arrive at the 
update equation for cj (with j ≥ 1), 
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The function F cj j( )  has a relatively simple dependence on cj  and βj. Because 
ec(x) ≈ x2/2 if x < 1 and x − 1/2 if x ≥ 1, we have 
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Equation (25) is appropriate for simulations on a digital computer. However, 
because we are ultimately interested in a model of the mammalian olfactory 
system, we need a set of equations that is approximately consistent with known 
anatomy and physiology. And, of course, those equations must have the same 
fixed point (or points) as equation (25). Finding such a set of equations is a bit of 
an art, as they are not unique. The ones we found are 
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j
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where the γi are arbitrary positive constants and the weights, wmg, wgm and  
A, satisfy

 
w w w Aij ik

k
ki kj= ∑ mg gm ( )29

In these equations we interpret gk as the activity of the soma of granule cell k 
and gik as the activity of spine i associated with granule cell k. Dendro-dendritic 
connections are made at the spines.

To determine the initial conditions, we first ran the model for 2 s with all 
concentrations set to zero at the beginning of the run, and recorded the values 
of all dynamical variables (cj , mi, gik and gk) at the end of the run. Then, at the 

(23a)(23a)

(23b)(23b)

(24)(24)

(25)(25)

(26)(26)

(27)(27)

(28a)(28a)

(28b)(28b)

(28c)(28c)

(28d)(28d)

(29)(29)
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start of each simulation, we took the recorded values and added to each of them 
Gaussian noise with s.d. set to 10% of their value.

To show that in steady state, when all time derivatives are zero, these equations 
reduce to equation (25), we first use the fact that in steady state, g g w mik k ki i= gm

 
(equation (28c)). Inserting that into equation (28b) gives, again in steady state, 

m
r

t w w g
i

i i

i ik
k

ki k

2

0
30=

+ ∑
g

n ,
( )

∆ mg gm

Thus, in our model granule cells are divisive. Using the steady state solution to 
equation (28d) to express gk in terms of the cj  and inserting the resulting expres-
sion into equation (28a), we arrive at equation (25).

In the main text (section “A probabilistic model of olfaction”), we describe how 
our network performs inference. The basis for that description is the behavior of 
the mitral cells, the mi, and the mean concentration cells, the cj . For the mitral 
cells we need only the steady state behavior; for that we simply insert the steady 
state solution of equation (28d) into (30), yielding 

g
ni i

i

i ik
k

j j
m

r
t w F c

− =
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1 2

0
31

, ( )
( )

∆

That corresponds to equation (4), except that in the main text we approximated 
F cj j( ) by cj  , an approximation that is valid so long as cj is sufficiently large (see 
equation (27)). For the mean concentration cells we need the time evolution, for 
which we can use equation (28a) directly. That correspond to equation (5), except 
that again we approximated F cj j( ) by cj  .

Parameters. The parameters we used in our simulations are as follows (see below 
for a description of the weights):

• � K = 640, number of odors and number of mean concentration cells (cj )
• � N = 160, number of olfactory receptor neuron (ORN) receptor types and 

number of mitral cells
• � Ng = 480, number of granule cells
• � pprior = 3/K, prior probability that any particular odor will appear;  

see equation (2)
• � βprior = 3, prior over the concentration for present odors;  

see equation (2)
• � (α0,β0) = (1/3, 27/K), parameters of the gamma distribution used for 

variational inference; see equation (10)
• � ∆t = 50 ms, time window for counting spikes
• � v0,i, background firing rate, drawn from a Gaussian distribution;  

mean = 10 Hz and s.d. = 1 Hz
• � γi, variability parameter, drawn from a log normal distribution; mean of 

logγ = 0.5 and s.d. = 0.275
• � τc = 10 ms, time constant of mean concentration cells
• � τm = 10 ms, time constant of mitral cells
• � τg = 5 ms, time constant of granule cells
• � wmg = 1 20/ , mitral ↔  granule connection strength
• � pmg = 1/2, granule cell ↔ mitral cell connection probability
• � A0 = 15, cortex → granule cell connection strength
• � pA = 0.2, cortex → granule cell connection probability
• � dt = 0.1 ms, time step used in simulations

There are three sets of weights we need to specify: wik
mg  (granule cell → 

mitral cell), wki
gm (mitral cell → granule cell), Aik (piriform cortex → gran-

ule cell). A diagram showing a qualitative picture of the weights is given in 
Figure 1. In words: there are three main granule cells associated with each 
mitral cell; for those the probability of a reciprocal connection is 1. In addi-
tion, there are three secondary granule cells on either side of the three main 
granule cells; for those the probability of a reciprocal connection to the same 
mitral cell is 1/2. Feedback from the mean concentration cells is sparse: the 
connection probability to granule cells is 0.2, but if there is a connection, it 
goes to all three main granule cells. A quantitative, but harder to interpret, 
description follows.

(30)(30)

(31)(31)

Granule cell → mitral cell: 
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Mitral cell → granule cell: 

w wki ik
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Piriform cortex → granule cell: 

A Akj k j
A=

+ 
0 1 3

35x
( )/ ,

( )

where ˙ indicates the integer part and 
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36
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In the above, i and j range from 1 to N and k from 1 to Ng, both inclusive.
In section “Regularized models” we need the typical value of βj, so here we 

compute an approximation to its mean. Given the above definitions, it is straight-
forward to show that 

w Nw p A pij
i

N
A

=
∑ = + =

1

2
03 1 2 144 37mg mg( ) ( )

where the numerical value of 144 follows by using the parameters given at the 
beginning of this section. Combining this with the definition of βj (equation 
(22b)), and noting that β0 = 27/K, we see that 

〈 〉 ≈
+

≈b j
1

640 27 144
1

168
38

/
( )

Determining the probability that an odor is present. Our inference algorithm 
takes ORN input and returns a set of cj, one for each odor. The olfactory system 
must then turn each cj into the probability that odor j is present. This probability 
can be computed from Bayes’ theorem, 

p c
p c p

p c p p c pj j
j j j

j j j j j j
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
( )1

1 1

1 1 0 0
39=

+

where 1j indicates that odor j is present and 0j indicates that it is absent. The prior 
probability that an odor is present, p(1j), is just pprior, independent of j (see equa-
tion (2)). Thus, we need only compute p cj j( | )1  and p cj j( | )0  . To do that, we 
ran 10,000 simulations of equation (28) with the number of presented odors and 
their concentrations drawn from the prior, equation (2). The cj  were evaluated 
in steady state (at t = 300 ms) and binned in log space (we used log space because 
the cj can be very small), and the probability distributions were estimated from 
the histograms. Specifically, letting 

c c kj
k

j
( ) ( )= value of onsimulation 40a

 

s j kj
k( ) ( )= 1 0 40if odor was present onsimulation and otherwise b

(32)(32)

(33)(33)

(34)(34)

(35)(35)

(36)(36)

(37)(37)

(38)(38)

(39)(39)

(40a)(40a)

(40b)(40b)
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an estimate of the conditional probability distributions over log cj  is  
found from 

p c

s c c c c c

s

j
k

jk
j
k

(log | )

log log / log log log /( ) ( )

1

2 2

=

− < ≤ +



∑ I δ δ

jj
k

jk

( ) ( )
∑

41a

p c

s c c c c cj
k

jk
j
k

(log | )

( ) log log / log log log /( ) ( )

0

1 2 2

=

− − < ≤ +∑ I δ δ



−∑ ( )
( )( )1
41

s j
k

jk

b

where I (·) is the indicator function: I [x] = 1 if x is true and 0 otherwise. The bin 
size, d log c , was 0.0182. Because p c c p c(log ) ( )= , we can use the conditional 
distributions over log c  to compute p c( | )1 , the probability that odor 1 is present 
given cj : 

p c
p c p c

p c p
p

p p
( | )

(log | )/ (log | )
(log | )/

1
1 0

1 1
=

− +
prior

prior prior ((log | )
( )

c 0
42

We used this expression to compute the points in Figure 3a. We then fit those 
points to a sigmoidal function of the form 

p c e

e

c c

c c( | ) ( )
(log log )

(log log )1
1

43
0

0
=

+

−

−

k

k

Minimizing the mean square error between the data and the curve gave  
κ = 8.3 and c0 0 31= . ; equation (43), with κ and c0  set to these values, is the  
solid green line in Figure 3a.

We used the same data to determine the degree to which the model exhibits 
concentration invariance: we binned the true concentration, and in each bin 
computed the mean and s.d. of the inferred mean concentration, cj. The results 
are plotted in Figure 3b,c. The bins were 0.5 in Figure 3b and 0.1 in Figure 3c.

ROC curves. We constructed three sets of ROC curves, from three different mod-
els: one from our simulations (Fig. 7a), one from a model by Luo et al.30 (Fig. 7b),  
and one from template matching (Fig. 7c). In all three cases, the ROC curves 
were constructed as follows. The ORN input was mapped to a set of variables, 
which for now we will call zj, j = 1, …, K (see below for explicit examples). Odor 
j was then declared to be present if zj was above a threshold and absent if it was 
below the threshold. For each value of the threshold, we computed the fraction 
of odors that were declared to be present and actually were present (fraction of 
true positives, TP), and the number of odors that were declared to be present 
but were not (number of false positives, FP). These two quantities, fraction of 
true positives and number of false positives, are plotted on the y and x axes, 
respectively, in Figure 7.

What differed among the three models was the mapping from ORN activity 
to zj. Our model was simplest: z cj j=  evaluated at the end of the trial (300 ms). 
For Luo et al.30, the ORN activity on any particular trial was first passed through 
a nonlinearity to create a new variable, ρi, 

r

s

i
i
n

i
n n

i
i

n
r

r m K r

=

+ +








′

′
∑( / )

( )44

where n = 1.5, σ = 2 and m = 0.3 (chosen to maximize performance). Then, 
defining 

 ≡ ( , , ..., ) ( )r r r1 2 45N

(41a)(41a)

(41b)(41b)

(42)(42)

(43)(43)

(44)(44)

(45)(45)

(recall that N is the number of ORN receptor types; see section “Parameters”),  
zj was given, on any particular trial, by 

z j
j

j j=
− ⋅ ⋅
− ⋅ ⋅

−

−
( )

( )
( )

  

  

C

C

1

1 46

where “·” indicates the standard dot product, ρj is the mean activity associated 
with odor j, 

r
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and   and C are the mean and covariance of , 

 =
=
∑1 48

1K
j

j

K
( )a

 

C = − −
=
∑1 b

K
j j

j

K
( )( ) ( )   

1
48

For template matching, zj was taken to be the cosine of the angle between 
the vector of ORN responses, r ≡ (r1, r2, …, rN), and the vector of weights  
wj ≡ (w1j, w2j, …, wNj), 

z j
j

j j
=

⋅

⋅ ⋅

r w

r r w w[( )( )]
( )/1 2 49

For activity, r, we used the vector of spike counts evaluated 50 ms after odor 
onset.

Regularized models. Our model can be written 

c c c
c

= ′ + ′
′

argmax L[ ( ) ( )] ( )Ω 50

where 

L( ) log ( ) ( ),c = +
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


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i
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0 (( )51b

To show this, differentiate L( ) ( )c c+ Ω  with respect to cj  and set the resulting 
expression to zero; that yields equation (25). The first term, L( )c , is the log like-
lihood (the log of equation (6)), but with cj replaced by F cj j( ) (equation (26)), 
which is the geometric mean under the gamma distribution, 

F c ej j
c j( ) ( )

log
=

〈 〉
52

The second term, Ω( )c , is a regularizer, in the sense that when α0 is small, it 
pushes cj j/ b  toward α0. To understand how it behaves in that limit, note that 
when cj j/ b → 0,

Γ( / ) ( )c
cj
j

j
b

b
→ 53a

 

y b
b

( / ) ( )c
cj
j

j
→ − 53b

(46)(46)

(47)(47)

(48a)(48a)

(48b)(48b)

(49)(49)

(50)(50)

(51a)(51a)

(51b)(51b)

(52)(52)

(53a)(53a)

(53b)(53b)
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The second expression, combined with the definition of F cj j( ) given in equation 
(26), implies that F cj j( ) → 0 as cj j/ b → 0. Consequently, when both α0 and 
cj j/ b  are small, 

Ω( ) log( ) ( )
/

/
/α →

−
−













∑
c

c
cj j

j j
j j

j

b a
b

b0 54

Each term in brackets has a quadratic peak, with the jth term peaking at  
cj j= b . The fact that the peaks are quadratic makes this different from an L1 regu-
larizer, which would typically drive cj all the way to 0. Nevertheless, this regularizer 
pushes cj close to (but slightly above) α0βj, which is close to zero (about 0.002). The 
peaks have a width of α0βj; given that α0 = 1/3 (see section “Parameters”) and βj is 
about 1/168 (see equation (38)), the peaks are relatively narrow and can correspond 
to sharp local maxima. We chose α0 = 1/3 to avoid getting stuck in these maxima.

Both Koulakov and Rinberg19 and Tootoonian and Lengyel32 also cast olfaction as 
a minimization problem. For both of their models, the likelihood was quadratic, 

L( ) ( )x = −










∑∑1

2
55

2

Ò
r w xi ij

j
j

i

and the regularizer had the form 

Ω Θ( ) ( ) ( )x = ∑q j
j

j jx x 56

The variables, xj, had different interpretations in the two models: for Koulakov 
and Rinberg it was granule cell activity, and for Tootoonian and Lengyel it was 
a binary variable signaling the presence or absence of chemicals. In addition, 
for Tootoonian and Lengyel’s model, e → 0 (to enforce the constraint exactly), 
whereas for Koulakov and Rinberg’s model, e  was finite.

Druckmann et al.31 considered a very similar model, except they applied it to 
arbitrary stimuli rather than specifically to olfaction. Their model used the same 
likelihood as in equation (55), with, as in Tootoonian and Lengyel’s, e → 0. The 
regularizer was a combination of L1 and L2 norms, 

Ω( ) | | ( )x = +∑ ∑
j

j i
i

x x1
2

572
d

(54)(54)

(55)(55)

(56)(56)

(57)(57)

Unlike in the work targeted specifically for olfaction19,32, in the model of 
Druckmann et al. the xj values were not constrained to be positive.

Statistical tests. We performed a statistical test only for Figure 6b. The sample 
size was 36, the number of unique correlation coefficients associated with our 
9 randomly chosen odors. The sample size was chosen because it was sufficient 
to make our point, and is on the same order as the numbers typically used by  
others in the field. The distribution of the correlations coefficients was assumed 
to be normal, but this was not formally tested. For other figures, sample size was 
limited by the number of simulations we were able to run; because this was not 
a major practical restriction, we ran a large number of simulations, as in other 
modeling studies.

A Supplementary Methods Checklist is available.

Code and data availability. All experimental procedures were based on a custom 
software, written in the Matlab (R2013a) environment. The code is available as 
a zipped archive at https://github.com/agnigb/olfaction/. The file README.md 
contains instructions on how to run the code.

The code uses a different random number seed for each run, so the results 
will differ slightly from the figures in the paper. This could have been avoided by 
fixing the random number generator. However, we preferred not to risk drawing 
conclusions that would not generalize over random seeds.
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