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Rapid Bayesian learning in the mammalian
olfactory system
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Many experimental studies suggest that animals can rapidly learn to identify odors and

predict the rewards associated with them. However, the underlying plasticity mechanism

remains elusive. In particular, it is not clear how olfactory circuits achieve rapid, data efficient

learning with local synaptic plasticity. Here, we formulate olfactory learning as a Bayesian

optimization process, then map the learning rules into a computational model of the mam-

malian olfactory circuit. The model is capable of odor identification from a small number of

observations, while reproducing cellular plasticity commonly observed during development.

We extend the framework to reward-based learning, and show that the circuit is able to

rapidly learn odor-reward association with a plausible neural architecture. These results

deepen our theoretical understanding of unsupervised learning in the mammalian brain.
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It is crucial for animals to infer the identity of odors,
in situations ranging from foraging to mating1. While some
odors are hardwired2, most must be learned. Learning, how-

ever, is particularly difficult, especially in natural environments
where odors are rarely presented in isolation, most odors are
presented a small number of times, and odor identities are rarely
supervised. Nevertheless, animals can learn to associate an odor
with a reward in a few trials3–5. Our goal here is to elucidate the
local plasticity mechanisms that orchestrate this rapid learning.

To gain a conceptual understand of how learning occurs, note
that if the affinities of olfactory receptor neurons (OSNs) to odors
were known, approximate Bayesian inference could be used to
infer which odors are present given OSN activity6. And in a
supervised setting—a setting in which the animal is told which
odors are present—the affinities (i.e. the weights) could be learned
efficiently using recently proposed Bayesian approaches7,8. Here
we show that, even when the weights are not known and learning
is unsupervised, we can combine these two methods to simulta-
neously learn the weights and infer the odors.

Our approach is as follows: when inferring which odors are
present, average over the uncertainty in the weights; then use the
inferred odors to update the estimates of the weights, and,
importantly, decrease the uncertainty. As the estimates of the
weights become more accurate, inference also improves. How-
ever, while straightforward, exact implementation of this learning
process is intractable. Consequently, we have to use an approx-
imate method9.

Although inference is approximate, our model still leads to
faster learning of olfactory stimuli compared to previously pro-
posed sparse-coding-based approaches10–12. It also provides some
insight into olfactory circuitry: it reveals the advantage, relative to
the rectified linear transfer function13, of sigmoidal-shaped f–I
curves typical of biological neurons14,15, and it reproduces the
reduction in neuronal input gain16,17 and learning rate18 com-
monly observed during development. In addition, it predicts that
the learning rate of granule cells should decrease as they become
more selective, and thus exhibit lower lifetime sparseness19,20,
something that is possible (although difficult) to test experi-
mentally. And finally, we extended our model to an odor–reward
association task, and found that learning of a concentration
invariant representation at the piriform cortex helps rapid
odor–reward association.

While our approach gives us a model that is reasonably con-
sistent with mammalian olfactory circuitry, the architecture pre-
dicted by our approximate Bayesian algorithm does not perfectly
match the architecture of the olfactory system. However, a
plausible olfactory circuit based on our model, but with the
addition of recurrent inhibition among piriform neurons21, still
learns to perform reward-based learning quickly. These results
suggest that even at the circuit level, approximate Bayesian
optimization may underlie rapid biological learning. But at the
same time, our study reveals its limitation when applied to a
complicated system.

Results
Problem setting. Let us denote odor concentrations by a vector c
= (c1, . . . , cM), where cj > 0 if odor j is present and cj= 0
otherwise. By odor, we mean something like the odor of apple or
coffee, not a single odorant molecule. In a typical environment,
odors are very sparse, in the sense that few of them have a sig-
nificant presence (i.e. cj > 0 for a small number of j at any time;
Fig. 1 left).

In the olfactory system, odors are first detected by OSNs, and
then transmitted to glomeruli as spiking activity22. Neural activity
accumulated at a glomerulus, denoted xi for ith glomerulus (and

thus ith OSN receptor type), is, approximately

xi ¼
X

j
wijcj þ n; ð1Þ

where n is the noise due to sensory variability and unreliable
OSN-spiking activity, and the affinity, or the mixing weight, wij,
determines how strongly odor j activates glomerulus i (Fig. 1
right). OSN activity shows a roughly logarithmic dependence on
odor concentration23,24. Thus the amplitude, cj, of each odor
reflects log-concentration, not concentration. Below a threshold,
here taken to be zero, odors are considered undetectable.

Olfactory learning as Bayesian inference. The goal of the early
olfactory system is to infer which odors are present and what
their concentrations are, based on OSN activity, x. However, this
is a difficult problem because the animal does not know the
mixing weights, w, but instead has to learn them, without
supervision. One common approach to this type of unsupervised
learning is the sparse coding model. Its associated learning
algorithm is, however, inefficient, and thus slow, as we will see
below (see the subsection “Sparse coding” in the Methods sec-
tion). We thus turn to Bayesian inference.

The Bayesian approach is efficient because it takes into account
uncertainty in both odor, c, and weight, w, and it can naturally
incorporate a prior that reflects the sparseness of the olfactory
environment. The steps are straightforward: first write down,
from Eq. (1), an expression for p(c∣x, w), the distribution over
odor concentrations given glomeruli activity, x, and weights w;
then marginalize over the distribution of the weights given all the
previous inputs, p(w∣ past observations of x) (see Methods
section, Eq. (10)). However, exact marginalization is neither
computationally tractable nor biologically plausible. We therefore
employ a variational Bayesian approximation9, by replacing the
true joint probability distribution with a fully factorized one. The
effect of making a variational approximation is illustrated in
Fig. 2c: the distribution of a pair of odors are typically slightly
anti-correlated (Fig. 2c, left), while the variational distribution is
independent (Fig. 2c, right). Because the anti-correlation is
typically weak, the variational distribution captures the true
distribution well.

The derivation of the algorithm for variational inference is
described in detail in Methods section; here we simply give the
results. The variational probability distribution of the concentra-
tion of odor j is updated iteratively as (see Methods section, Eq.
(14b))

qðcjjxÞ / qðxjcjÞpcðcjÞ ð2Þ
where q(x∣cj) is the variational likelihood of the concentration of
the jth odor, cj, given x, and pc(cj) is the prior distribution over cj.
We take the noise, n, in Eq. (1) to be Gaussian, so q(x∣cj) is
Gaussian (Fig. 2a, left). And to reflect the sparsity, pc(cj) is taken
to be a point mass at zero combined with a continuous piece at
positive concentration (Fig. 2a, middle). Because, the prior
strongly favors the absence of odors, the estimated mean
concentration, 〈c〉q(c∣x) (dashed black line in Fig. 2a, right), is
typically smaller than the mean over the likelihood function, 〈c〉q
(x∣c) (dashed orange line in Fig. 2a, right).

Similarly, the update rule for the variational probability
distribution of a weight is given by (see Methods section,
Eq. (14a))

qtðwijÞ / Δqtðwij; xÞqt�1ðwijÞ; ð3Þ
where Δqt(wij, x) is the evidence provided by the new
information, carried in x, at trial t (Fig. 2b) and qt(wij) is the
variational probability distribution of the weight, wij, given
observations up to trial t (we suppress the time dependence to
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reduce clutter). Importantly, depending on the uncertainty in the
weights, the same stimulus causes different amounts of plasticity.
In particular, the higher the uncertainty in the estimated weight,
wij, at t−1, the larger the change in the mean weight, Δw (left vs.
right in Fig. 2b).

The update rules given in Eqs. (2) and (3) can be mapped onto
neural dynamics and synaptic plasticity that closely mirrors the
mammalian olfactory bulb (Fig. 3a and b). The firing rate
dynamics obeys

τr
dmi

dτ
¼ �mi �

XM
j¼1

wL
ijcj þ xi ð4aÞ

τr
dcj
dτ

¼ �cj þ Fj

XN
i¼1

wF
jimi

 !
ð4bÞ

where τ denotes time within an odor presentation (not to be
confused with t, which refers to trial), mi is the firing rate of the
ith M/T (mitral/tufted) cell relative to baseline, and cj is the firing
rate of the jth granule cell. The ith M/T cell is linearly modulated
by excitatory input from glomerulus i, via xi, and also by

inhibitory input from granule cells, the cj. The granule cells,
whose activity correspond to the expected concentration of the
odors, are driven by excitatory input from M/T cells, mediated by
a nonlinear transfer function Fj. As we discuss below, this
nonlinearity plays a critical role in rapid learning.

The weights in Eq. (4), wF
ij and wL

ij, correspond to M/T-to-
granule and granule-to-M/T synapses, respectively (blue and red
arrows in Fig. 3b). These synapses jointly form a dendro-dendritic
connection between M/T and granule cells25. To keep track of the
variational probabilistic distribution qt(wij), both the mean and
the variance of each weight need to be updated. The update of the
mean is

wF;t
ji ¼ ð1� δw;tj ÞwF;t�1

ji þ 1=t
ρtjσ

2
x
cjmi ð5aÞ

wL;t
ij ¼ ð1� δw;tj ÞwL;t�1

ij þ 1=t
ρtjσ

2
x
micj ð5bÞ

where mi and cj are evaluated at the end of the odor presentation.

Here δw;tj is the discount factor and ρtj represents the precision

Fig. 1 Problem setting. An example odor stimulus, c (left), and the response at the glomeruli, x (right). The mixing weights (i.e., affinities), w (which are
unknown to the animal) map odors, with concentration c, to OSN activity accumulated at the glomeruli, x. A goal of the animal is to infer the odor
concentrations from the glomeruli activity.

a
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x
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Fig. 2 Bayesian inference of odors and weights. a Inference of odor concentration. Combining the likelihood q(x∣c) (left) and the prior pc(c) (middle),
the posterior distribution q(c∣x) is obtained (right). The orange dashed line is the mean concentration associated with the likelihood, q(x∣c); the black
dashed line is the mean associated with the posterior, q(c∣x). Because the prior strongly favors the absence of odors, the latter is shifted to lower
concentration. b Illustration of the weight update given the same sensory evidence Δqt(w, x) when the previously estimated probability distribution over
the weights, qt−1(w), is broad (left), and narrow (right). Note that the mean of qt−1(w) is the same in both panels. c Illustration of the variational
approximation. The true posterior over the joint distribution of odors c1 and c2, p(c1, c2∣x) (left), is approximated by a factorized distribution q(c1∣x)q(c2∣x)
(right). The black cross indicates the true concentrations, and colored lines are contours of equal probability.
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(the inverse of the variance) of the synaptic weights wF;t
ji and wL;t

ij

(see subsection “Synaptic plasticity” in the Methods section for
details). This rule is Hebbian, as the update depends on the
product of presynaptic and postsynaptic activity mi and cj. It is
also adaptive, as the update depends on the precision, ρtj : because
of the 1=ρtj dependence, low precision (and thus high uncertainty)
produces large weight changes while high precision (and thus low
uncertainty) produces small weight changes. This is illustrated in
Fig. 2b. The precision, ρtj , is also updated in an activity-dependent
manner (see the Methods section, Eq. (35)). Figure 3c describes
typical neural dynamics before and after learning. Before learning,
when a mix of four odors is presented, M/T activity quickly
converges to constant values with a relatively broad range (Fig. 3c,
top-left), and granule cell activity is small and homogeneous
(Fig. 3c, bottom-left). After learning, M/T cells exhibit transient
activity, followed by convergence to a somewhat smaller range
than before learning (Fig. 3c, top-right), as the large input-driven
activity is partially canceled by the feedback from the granule
cells. Granule cells, on the other hand, show very selective
responses, with activity levels roughly matching the concentration
of the corresponding odors (Fig. 3c, bottom-right).

The activity profiles of cells in our model have many
similarities with experimental observations. For instance, as
observed in experiments26, M/T cells show both positive and
negative responses relative to baseline (Fig. 3c top, here the
baseline is 5), and their responses become more transient after
learning (Fig. 3c, top-right, and Fig. 3d). Moreover, the response
range of M/T cells becomes smaller as the animal learns the odors
(Fig. 3d), as observed experimentally27. In addition, after learning,
granule cell activity is strongly modulated by odor concentration
(Fig. 3c bottom-right; dotted horizontal lines represent the true
concentrations of the corresponding odors), as observed
experimentally28.

After learning, the circuit can robustly detect odors with very
few false positives, even when several odors are presented
simultaneously (Fig. 3e). Moreover, the learning performance
was robust with respect to odor presentation time: even if the
odors were presented for only a few hundred milliseconds, which
corresponds roughly to one sniff cycle29,30, performance
remained high (Fig. 3f). Learning was also robust to changes in
the prior: a large increase in the range of possible odor
concentrations had very little effect on learning performance
(Supplementary Fig. 1).

a

b

c

d e f

Fig. 3 Neural implementation of Bayesian learning. a Schematic of the neural architecture. Dotted box represents the internal variables of the brain; the
odor, c, comes from the outside world. b The neural implementation of our Bayesian learning model maps almost perfectly onto the circuitry of the
olfactory bulb. Dotted circles are glomeruli, green triangles are M/T cells, and blue circles represent olfactory granule cells. Red and blue arrows indicate
weights from granule to M/T and M/T to granule cells, respectively. c An example of firing rate dynamics before (left) and after (right) learning (M= 50
odors, N= 400 glomeruli, four odors presented). Different colors represent different neurons. Dotted horizontal lines in the bottom figures represent the
true concentration of the presented odors. d Change in the variance of M/T cells during learning (t: trial). The expectation was taken over both population
and trials. e Receiver operating characteristic (ROC) curves under different numbers of simultaneously presented odors (M= 100 odors, N= 400
glomeruli). See subsection “ROC curve” in the Methods section for details. f Performance under learning from various odor exposure duration (see
subsection “Performance evaluation” in the Methods section), where M= 100, N= 400, and three odors are presented simultaneously, on average. The
lines and their error bars are mean and standard deviation over 10 simulations.
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The Bayesian approach is optimal if implemented exactly, but
in the approximate model used here, learning is necessarily
suboptimal. To determine how suboptimal, we would need to
compare against exact inference. However, that is not feasible
because exact inference is intractable. Our model does, however,
do better than the sparse coding model (Fig. 4): it learns much
faster (Fig. 4a), and it achieves high performance without fine
tuning, whereas the learning rate of the sparse coding model must
be fine-tuned (gray lines in Fig. 4a). This advantage was replicated
when we assessed the performance by the error in the weights
(Fig. 4b). Despite faster learning, the asymptotic performance of
the Bayesian model is similar to that of sparse coding when there
are a relatively small number of odor sources in the environment,
and much better when there are many sources, although the
performance of both models deteriorates in that regime (Fig. 4c).

These results indicate that a variational approximation
of Bayesian learning and inference enables data efficient learning,
and does so using biologically plausible learning rules and neural
dynamics. How does our model manage to perform fast and
robust learning? And is there evidence that the brain uses this
strategy? Below, we show that our proposed circuit performs well
because it exploits the sparseness of the odors and utilizes the
uncertainty in both the weights and odor concentration. We then
discuss the relationship of our model to experimental
observations.

The sparse prior leads to a nonlinear transfer function. An
important feature of olfaction, like many real world inference
problems, is that the distribution over odors has a mix of discrete
and continuous components: an odor may or may not be present
(the discrete part), and if it is present its concentration can take
on a range of values (the continuous part). In our model, we
formalize this with a spike and slab prior (Fig. 2a middle): the
spike is the delta function at zero; the slab is the continuous part.
In this model, sparseness is ensured by setting the cumulative
probability of the slab, denoted co, close to zero.

To see how the prior affects the dynamics, note that the granule
cells (cj in Eq. (4)) represent the expected concentration of the
odors, and so take the prior into account. Thus, after learning,
most of them have near zero activity, with only a few of them
active (Fig. 3c, bottom right panel). To achieve sparsity, the
granule cells need a great deal of evidence to report non-negligible
concentrations. That is reflected in the transfer functions of the
granule cells (the function Fj in Eq. (4b); see orange curve in
Fig. 5a). The function exhibits near zero response (corresponding
to near zero concentration) for small input, followed by a sharp
rise and then an approximately linear response for large input.

If we derive update rules using a different prior, the transfer
function changes. If we then perform inference and learning
using the transfer function derived under a different prior, but
drawing odors from the true prior, performance is, not
surprisingly, sub-optimal (see subsection “Models with various
priors on odor concentration” in the Methods section). For
example, if we constrain the odors to be non-negative, the
transfer functions are approximately rectified linear, a commonly
used nonlinearity in artificial neural networks (gray line Fig. 5a13).
However, this model failed to learn the input structure generated
from the spike-and-slab prior, as the sparseness of the odor
concentration is not taken into account (gray line in Fig. 5b). If
we constrain the odors to be non-negative, but also ensure that
they are not too large, by introducing an exponential decay10,
learning improves initially, but the weight error eventually
increases (black lines in Fig. 5a and b). These results suggest
that the classic input–output function—sigmoidal at small input
and linear at large input—found both in vitro14,31 and in
biophysically realistic models of neurons15, reflects the fact that
the world is truly sparse—something not captured by classical
sparse coding models. These gain functions thus offer a
normative explanation for the biophysical responses of typical
olfaction neurons to input. The shape of the activation function
for the precision update also depends on the choice of prior, but
they all closely resemble the squared transfer function, F2

(Supplementary Fig. 2).
As the animal learns a better approximation to the true

weights, the olfactory system can extract more information from
the OSN activity; this results in a change in the transfer function.
In particular, the transfer function exhibits a decrease in gain with
learning (mainly a shift to the right), as shown in Fig. 5c (see
subsection “The variational weight distribution” in the Methods
section for details). Such a decrease in gain is a widely observed
phenomenon among diverse neurons during development14,16. It
is also consistent with the reduction of input resistance observed
in adult-born granule cells during development17,18, as low
resistance causes low excitability. If the transfer functions were
held fixed during learning, performance would deteriorate
gradually (gray and black curves vs. orange line in Fig. 5d),
though the benefit of the adaptive gain was rather small in our
model setting.

Weight uncertainty leads to adaptive synaptic plasticity. A key
aspect of our model is that it explicitly takes the uncertainty of the
weights into account. This leads to an adaptive learning rate (see
Eq. (5)). In particular, the learning rate is the product of two
terms: ð1=tÞ ´ 1=ρtj . The first term, 1/t, is a global decay, and

cba

Fig. 4 Performance comparison. a Learning curves for our model (orange) and sparse coding (light gray to black).M= 100 odors, N= 400 glomeruli, and
on average, three odors were presented at each trial. See subsection “Performance evaluation“ in the Methods section for details. The learning rates of the
sparse coding model, ηw, were 0.3, 0.5, and 1.0 from light gray to black. b Same as a, but the performance was evaluated by the error in the weight.
c Performance (after learning from 4000 trials) of the proposed Bayesian model (orange) and the sparse coding model (gray) versus the number of odors.
Shaded regions represent standard deviation over 10 simulations. As in panels a and b, N= 400 glomeruli and three odors were presented on average.
Here, ηw was fixed at 0.5.
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reflects an accumulation of information over time: at the begin-
ning of learning, the olfactory stimuli contains a relatively large
amount of information about the weights, and so the learning rate
is large, and vice versa. The second term, 1=ρtj , is the cell-specific
contribution to the learning rate. In steady state, it is given
approximately by 1=ρtj / 1=hc2j iodors (the subscript “odors” indi-
cates an average over odors).

It turns out that the second term is related to the lifetime
sparseness, Sj � hcji2odors=hc2j iodors (note that smaller Sj means
activity is more sparse; see subsection “Lifetime sparseness” in the
Methods section and ref. 19). Assuming the mean firing rate,
hcjiodors, is approximately constant (as we see in our simulations),
then 1=ρtj / Sj. When the granule cells have broad, non-selective
tuning, the lifetime sparseness is large, and the learning rate is

high; when the cells are sparse and have highly selective tuning,
the lifetime sparseness is low, and so is the learning rate. Thus, if
the mean granule cell responses are similar for all presented
odors, the learning rate is large, encouraging neurons to modify
their selectivity. If, on the other hand, the granule cell responses
are sparse and selective, the learning rate is low, helping the
neurons stabilize their acquired selectivity.

We examined the effects of the two factors—1/t and 1=ρtj—on
learning. When the learning rate, 1=tρtj , was kept constant
throughout learning, learning was slower, even when the learning
rate was finely tuned (gray lines vs. orange line in Fig. 6a). This
makes sense from a Bayesian perspective: early on, when weight
uncertainty is large, learning should be fast (the dark gray line,
which has the highest learning rate, drops rapidly), whereas after
a large number of trials, when weight uncertainty is low, learning

dcba

Fig. 5 Adaptive transfer functions. a The shapes of the transfer functions of granule cells under different priors on the odor distribution. See subsection
“Models with various priors on odor concentration” in the Methods section for the details. bWeight errors under different priors. Shaded regions represent
standard deviation over 10 simulations. c The average transfer function F½y; c ¼ 0� at the beginning (light gray), middle (gray), and the end (black) of the
learning. The x-axis represents the input current y. d The weight error under fixed input gain, compared to the control model with adaptive gain, averaged
over 50 simulations. For the gray line, the transfer function was set to the top curve in panel c; for the black line it was set to the bottom curve. In all panels,
M= 100 odors, N= 400 glomeruli, and three odors were presented on average.

ba

c d

Fig. 6 Adaptive synaptic plasticity. a Weight error when 1=tρtj is fixed (gray lines), ρtj is fixed (light green), and fully adaptive (orange). For the gray lines
we used learning rates of 0.01, 0.1, 1.0, correspond to light gray to dark gray. The sparsity, co, was 0.03. b Same as panel a, but with a lower sparsity, co=
0.07. c, d Correlations between the lifetime sparseness and the learning rate, after 300 stimuli were presented to the network, under more sparse (c: co=
0.03) and less sparse (d: co= 0.07) conditions. Lines are linear regressions, and each dot represents one granule cell. Correlation were significant for both
c and d (p≪ 10−6). Vertical clusters appearing on the left edges of the panels correspond to neurons with very small lifetime sparseness. In all panels,M=
100 odors, N= 400 glomeruli, and 3 (a, c) or 7 (b, d) odors were presented on average. Light-green and orange lines in a and b are mean over
50 simulations, while the rest were calculated from 10 simulations.
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should be slow (the lighter gray lines, which have lower learning
rates, have better asymptotic performance). It is also consistent
with the fine tuning required for the sparse coding model in Fig.
4a and b. When we fixed 1/ρj but included the global factor 1/t,
performance was better than the model with fixed learning rate
(light-green vs. gray in Fig. 6a), yet still worse than the original
fully adaptive model (light-green vs. orange in Fig. 6a). This was
more clear under a less sparse setting (co= 0.07 in Fig. 6b, versus
co= 0.03 in Fig. 6a). Furthermore, as predicted, we found that the
learning rate of a cell, 1=tρtj , is positively correlated with the
lifetime sparseness at each time point (i.e. at fixed t) as shown in
Fig. 6a and b. This correlation becomes weaker as the prior
becomes more sparse (compare Fig. 6c and d, for which co= 0.03
and 0.07, respectively). That is because a very sparse prior (low co)
helps the granule cells to be highly selective at an early stage,
enabling the lifetime sparseness to quickly converge to a small
value (vertical cluster on the left edge of Fig. 6c and d). These
results indicate that the global and postsynaptic-neuron-specific
adaptation of the learning rate cooperatively help fast learning.

Learning concentration invariant representation and valence.
Our results so far indicate that olfactory learning is well char-
acterized as an approximate Bayesian learning process. Our cir-
cuit estimates odor concentration, which is important for locating
an odor source32. However, the perceived concentration depends
on factors such as the distance from the odor source, its size, and
wind speed. Thus, odor concentration is not a reliable indicator of
the amount of reward expected. Hence, acquisition of a
concentration-invariant representation is highly useful for many
olfactory-guided behaviors.

A concentration-invariant representation is essentially a
representation of the probability of an odor being present,
denoted pj. Because of the spike in our prior, pj ¼ Pr½cj>0�, thus
probability is easily decoded from M/T cells using the circuit
depicted in Fig. 7a (see subsection “Learning of concentration-
invariant representation” in the Methods section). Here, pj could
be represented in layer 2 of piriform cortex neurons, as that is the
main downstream target of M/T cells, and odor representation in
piriform cortex is approximately concentration-invariant21,33. As
the granule cells acquire odor representation, neurons in piriform
cortex acquire odor probability representation (cyan and dark
blue line in Fig. 7e left).

While the circuit shown in Fig. 7a exhibits good performance,
it is not consistent with the mammalian olfactory system, in two
ways. First, the weights from the M/T cells to the granule cells
have to be copied to the corresponding M/T to piriform cortex
connections (i.e. wp=wF), something that is not biologically
plausible. Second, a direct projection from granule cells to
piriform cortex is needed, but such a connection does not exist.
These inconsistencies can be circumvented by modifying the
circuit heuristically (Fig. 7b–d). Weight copying can be avoided
by learning wp with local synaptic plasticity (Fig. 7b), although in
the absence of the teaching signal from the granule cells, this
naive extension does not work (dark blue line in Fig. 7e middle-
left). However, introducing lateral inhibition among the piriform
neurons (Fig. 7c) as observed experimentally21, allows the
piriform neurons to acquire odor representation (Fig. 7c and e
middle-right), although the decoding performance was worse
than the Bayesian model (Fig. 7e left vs. 7e middle-right). Finally,
if connections from piriform cells to granule cells are added as
well, the learning performance of granule cells became slightly
better (Fig. 7d and e right), and more robust to changes in the
strength of lateral inhibition (Fig. 7f). As expected, the responses
of piriform neurons were mostly concentration-invariant (dark
blue line in Fig. 7g), whereas granule cells showed a clear

concentration dependence (cyan line in Fig. 7g). Thus, the
architecture of the mammalian olfactory circuit indeed supports
robust learning of concentration-invariant representation.

Once the circuit acquires a concentration-invariant representa-
tion, a circuit that performs odor–reward association can be
constructed simply by taking the circuit depicted in Fig. 7d and
adding a region that receives input from both piriform neurons
and the reward system (ep in Fig. 7h). Olfactory tubercle could be
the site for this odor–reward association5,34, but it could be other
regions, such as layer 3 of piriform cortex, as well. To test
performance of this circuit, we implemented a go/no go task in
which one odor is associated with a reward (R= 1.0), while
another odor is associated with no reward (R= 0.0), regardless of
concentrations. We simulated this task by randomly presenting
rewarded or unrewarded stimulus with equal probability (see
subsection “Go/no go task” in the Methods section). We used the
circuit pre-trained with a large number of odors but without
reward. When the reward prediction was learned with the
projection from piriform cells, p, to olfactory tubercle cells, ep
(Fig. 7h), classification performance reaches 90% after just six
trials (Fig. 7j; magenta lines). On the other hand, when the circuit
learns the task directly from the glomeruli (Fig. 7i), though the
circuit still learns to predict the reward as suggested previously35,
learning was much slower and the performance was worse even
after a large amount of training (Fig. 7j; purple lines). After a
dozen odor–reward association from piriform neurons, p,
olfactory tubercle cell activity, ep, learned to represent the reward
prediction given olfactory stimuli unless the concentration is very
small (left half of Fig. 7k; in our model—ep is the reward
prediction), and once the reward is presented at τ= 2.5 s, the
activity went back to near zero (right half of Fig. 7k; in our model,
positive ep represents an error, and so drives learning).

These results indicate that unsupervised learning of odor
representation may underlie fast reward-based learning, and the
proposed Bayesian learning mechanism improves reward associa-
tion by enabling robust odor representation in a data
efficient way.

Discussion
We formulated unsupervised olfactory learning in the mamma-
lian olfactory system as a Bayesian optimization problem, then
derived a set of local synaptic plasticity rules and neural dynamics
that implemented Bayesian inference (Figs. 2 and 3). Our theory
provides a normative explanation of the functional roles for the
nonlinear transfer function and the developmental adaptation of
the neuronal input gain (Fig. 5), both widely observed among
sensory neurons. The model also predicts that the learning rate of
dendro-dendritic connections should be approximately linear in
the lifetime sparseness of the corresponding granule cells (Fig. 6).
Finally, we extended the framework to learning of odor identity
by piriform cortex, and showed that such learning supports rapid
reward association (Fig. 7).

Our results suggest that adaptation of both input gain (Fig. 5)
and learning rate (Fig. 6) are important for successful learning.
The developmental reduction in input gain can be explained by a
decrease in neural excitability, which is partially caused by the
increased expression of K+ channels14. Correspondingly, it is
known that changes in channel expression at the dendrite mod-
ulate the sensitivity of synaptic plasticity36. In particular, it has
been reported that elimination of voltage-gated K+ channels
enhances the induction of long-term potentiation37. These results
suggest that developmental up-regulation of K+ channel expres-
sion at the soma and the dendrite may underlie the adaptation of
the input gain and learning rate.
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The cellular plasticity rules we derived explain multiple
developmental changes in adult born granule cells. Experimen-
tally, relative to young cells, mature granule cells have sparser
selectivity20, lower membrane resistance17,18, and are less plas-
tic18, as predicted by our model. In addition, our results provide
insight into the functional role of adult neurogenesis. As shown
previously8, if each synapse keeps track of its uncertainty, by
removing the most uncertain synapses while adding synapses at a
random position on the dendritic tree, a neuron can achieve
sample-based Bayesian learning, making neurogenesis unneces-
sary. However, in our unsupervised learning framework, uncer-
tainty is defined at neurons, not at synapses. As a result, from a
Bayesian perspective, there is no good way to perform synapto-
genesis. Thus, the brain should instead remove the most uncer-
tain neurons, while at the same time randomly adding new ones.

The importance of the feedback circuit between M/T cells and
granule cells has been noted previously6,38, but plasticity

mechanisms that generate this circuit have not been considered.
Recently, several groups proposed learning algorithms for unsu-
pervised olfactory learning using stochastic gradient
descent11,12,39, as in the case of our sparse coding model. How-
ever, as we have seen (Fig. 4), these algorithms are very unlikely to
be fast. In addition to the sparse coding model, our problem
setting is deeply related to Independent component analysis
(ICA)40. Indeed, by using the sparseness as the measure of non-
Gaussianity, unsupervised olfactory learning can be reformulated
as an ICA problem11.

The spike-and-slab prior employed here is widely used in
machine learning41, and has been applied to the sparse coding
model of the early visual system42, and a normative analysis of
nonlinear transfer functions has been carried out previously43. A
contribution of this work is the establishment of a link between
the spike-and-slab prior and nonlinear transfer function of a
neuron.
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Fig. 7 Learning a concentration invariant representation and an odor-reward association. a–d A set of increasingly realistic decoding models. a The
decoding model associated with our variational Bayesian inference algorithm. Note that the weights need to be copied from wF to wp, something that is not
biologically plausible. b Similar circuit, but with the mapping from m to p learned via a local rule. c Same as b, but with lateral inhibition. d Same as c, but
with feedback to the granule cells. e Learning performance for the models in a–d when decoding from granule cells (cyan) or piriform cortex (dark blue; see
subsection “Odor estimation performance” in the “Methods” section). f Comparison of performance for model c (gray) and d (orange). Mean and standard
deviation over 10 simulations are plotted. g Mean and standard deviation of responses of the granule cells, �c, and the piriform neurons, �p, for their selective
odors presented at various concentrations. The responses were measured by presenting each odor in isolation with different concentration, and then
averaging over populations. h Schematic of the reward prediction circuit utilizing concentration-invariant representation in the piriform cells, �p. i Direct
reward prediction from neural activity at glomeruli. j Performance of odor–reward association measured by the classification performance (left) and the
mean-squared error between the predicted reward and the actual reward (right) for the models in panels h (magenta) and i (purple). Lines are mean over
100 simulations. k The mean response of neuron ep given an odor associated with the reward. The vertical line at τ= 2.5 s represents the reward
presentation, and the dotted horizontal line is the sign-flipped reward value (−R). Different colors represents the different concentrations of the presented
odor, from purple (c≈ 0.1) to yellow (c≈ 2.0). In all panels, M= 50 odors, N= 200 glomeruli, and three odors were presented on average, except for the
go/no go task where one of two selected odors was presented randomly.
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Studies of adaptive learning rates date back many decades44,45;
more recent studies have taken a Bayesian approach to adaptive
learning in simplified single neurons models7. In this study, we
considered an unsupervised learning problem, and showed that
the learning rate of excitatory feedforward connections should
depend only on the postsynaptic activity, independent of the
presynaptic activity. Moreover, our theory predicted a non-trivial
relationship between the learning rate and the lifetime sparseness
of the postsynaptic neuron (Fig. 6c and d).

Acceleration of reward-based learning by unsupervised learn-
ing (Fig. 7j) has been studied in the context of both semi-
supervised learning and model-based reinforcement learning. In
particular, the latter approach has been applied to rapid learning
by animals, but these were limited to abstract models, not circuit-
based implementations46. In the invertebrate literature, Bazhenov
and colleagues (2013) studied the combination of unsupervised
and reward-based learning in a computational model of the insect
brain47, but plasticity was applied only to the output connections
(corresponding in our model to p ! ep in Fig. 7h). Interestingly,
in the invertebrate brain, the connections corresponding to m !
p are mostly random and fixed48, so the acceleration shown in
Fig. 7j is potentially unique to vertebrates.

While our approach gave us a model that is reasonably con-
sistent with mammalian olfactory circuitry, it is not perfect. In
particular, the architecture predicted by our approximate Baye-
sian algorithm does not match perfectly the architecture of the
olfactory bulb, piriform cortex, and olfactory tubercle. We were
able to make small modifications to our circuit so that it did
match the biology, and still gave decent performance, but per-
formance was about 10% worse than the circuit predicted purely
by Bayesian inference (blue lines in Fig. 7e-left vs. 7e-right). This
discrepancy between the predicted and observed architecture
highlights a limitation of this approach, especially when applied
to complex systems. In particular, it is difficult to include biolo-
gical constraints, both because we do not know exactly what they
are, and because there is no straightforward way to marry those
constraints with a normative Bayesian approach. However, that is
an important avenue for future work.

Methods
Stimulus configuration. On each trial, the response of the ith glomerulus is
modeled as

xi ¼
X
j

wijcj þ σxξi ð6Þ

where cj is the concentration of odor j, and ξi is a zero mean, unit variance Gaussian
random variable. The Gaussian assumption is justified because, although olfactory
sensory neurons fire with approximately Poisson statistics, 1000–10,000 sensory
neurons converge to a single glomerulus22, where OSN activity is conveyed to M/
T cells as stochastic currents. We take the affinities, or mixing weights, w, to be log
normal, followed by a normalization step

log ewij � Nð�log ðcoMÞ; 1Þ ð7aÞ

wij ¼ ewij ´
1

NM

PN
i

PM
j ewij

1
M

PM
j ewij

ð7bÞ

where recall, M is the number of odors and N is the number of glomeruli. The
factor multiplying ewij is 1 on average, so the normalization step does not have a
huge effect on the weights. However, it forces ∑jwij to be strictly independent of i,
which makes the learning process less noisy.

On each trial, odors cj (j= 1, 2, . . . , M) are generated from the spike-and-slab
prior given as

pcðcjÞ ¼ ð1� coÞδðcjÞ þ co
αα

ΓðαÞ c
α�1
j e�αcjΘðcjÞ; ð8Þ

where Θ(x) is a Heaviside function. We used α= 3 everywhere except
Supplementary Fig. 1, where we used α= 1. Under this prior, each odor is
independently presented with probability co, and its amplitude follows a Gamma
distribution with unit mean (Fig. 1a left). Note that the amplitude, cj, reflects

log-concentration rather than concentration24. To avoid the null stimulus, we
resampled the odors if all of the cj were 0 on any particular trial.

Bayesian model. As discussed in the main text, we mainly focus on unsupervised
learning, in which animals see only glomeruli activity and must make sense of it.
This is essentially a clustering problem: if the same pattern of glomeruli activity
occurs multiple times, the brain should recognize it as an odor. The activity pat-
terns at the glomeruli are determined by the product of odorant concentrations in
the inhaled air, and the affinities of the OSNs for those odorants. Thus, to recognize
an odor, animals have to effectively learn the affinities of OSNs for each odor, and
store them in the olfactory circuitry. As we will see, in our model they are stored as
weights between M/T cells and granule cells. Once those weights are stored, if an
odor co-occurs with a reward (or punishment), the valance of that odor can be
determined. And indeed, we find that unsupervised learning enables rapid learning
of odor–reward associations.

More formally, the goal of the olfactory system is to infer the odor at time t, ct,
given all past presentations of odors, x1:t≡ {x1, x2, . . . , xt}. Because the weights are
not known, they must be integrated out

pðct jx1:tÞ ¼
Z

dw pðct ;wjx1:tÞ: ð9Þ

Using Bayes’ theorem, this can be written in a more intuitive form

pðct jx1:tÞ /
Z

dw pðxt jct ;wÞpcðctÞpðwjx1:t�1Þ ð10Þ

where, recall, pc(ct) is the prior over odors. To derive this expression, we used two
facts: given ct and w, xt does not depend on past observations, and ct does not
depend on past observations. The first term on the right-hand side, p(xt∣ct, w) is the
likelihood given the weights; but because we do not know the weights, we have to
marginalize over them given past observations. The marginalization step is
intractable, as we have to introduce past odors and then integrate them out. This
leaves us with an integral over w (Eq. (10)) that cannot be performed analytically.
And even if it could, the circuit would have to memorize all past stimuli,
x1, x2, . . , xt−1. We thus have to perform approximate inference. For that we make
a variational approximation.

Variational approximation. The integral in Eq. (10) becomes easier if the dis-
tributions factorize. We thus make the variational approximation

pðc;wjx1:t�1; xÞ � qtðw; cÞ �
Y

ij
qw;tij ðwijÞ´

Y
j
qcj ðcjÞ ð11Þ

where, to avoid a proliferation of subscripts, we suppress the fact that c and qcj are
to be evaluated at trial t; in line with this, to simplify subsequent equations we
replace xt with x; and, as is standard, we suppress the dependence of q on x1:t.

The variational distributions, qw;tij and qcj , are found by minimizing the KL-
divergence with respect to the true distribution, with the KL-divergence given by

DKL q
tðw; cÞjjpðc;wjx1:t�1; xÞ½ � ¼

Z
dcdw qtðw; cÞlog qtðw; cÞ

pðc;wjx1:t�1; xÞ
: ð12Þ

As is straightforward to show9, minimizing this quantity leads to the update rules

log qw;tij ðwijÞ � hlog pðxjc;wÞinwij
þ hlog pðwjx1:t�1Þinwij

ð13aÞ

log qcj ðcjÞ � hlog pðxjc;wÞincj þ log pcðcjÞ ð13bÞ

where ~ indicates equality up to a constant, \wij indicates an average with respect
to the variational distribution over all variables except wij, and, similarly, \cj
indicates an average with respect to the variational distribution over all variables
except cj. In the first equation, we approximate p(w∣x1:t−1) with the variational
distribution at the previous time step,

Q
ijq

w;t�1
ij ðwijÞ, which makes the

marginalization self-consistent. This approximation breaks down early in the
learning process; nevertheless, in practice it works quite well. Using this
approximation, we arrive at

qw;tij ðwijÞ / qw;t�1
ij ðwijÞ exp log pðxjc;wÞh inwij

h i
ð14aÞ

qcj ðcjÞ / pcðcjÞ exp hlog pðxjc;wÞincj
h i

: ð14bÞ

In the next two subsections we derive explicit update rules by computing the
averages in these expressions.

The variational odor distribution. To find the variational distribution over odors,
we need to compute the average over log pðxjc;wÞ that appears on the right-hand
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side of Eq. (14b). Using the fact that the x follows a Gaussian distribution, we have

hlog pðxt jc;wÞincj � � 1
2σ2x

X
i
xti �

X
m
wimcm

� �2� �
ncj

� �
P

ihwt
ij
2i

2σ2x
cj �

1P
ihwt

ij
2i
X

i
hwt

iji xti �
X

m≠j
hwt

imihcmi
h i !2

;

ð15Þ
where the averages are with respect to the variational distribution. This is Gaussian,
and it is straightforward to work out the mean and variance. Note that both depend
on the first and second moments of the weights (which, as we will see below,
determine the variational weight distribution) evaluated, importantly, at time t.
However, synaptic plasticity is much slower than neural dynamics, so it is rea-
sonable to update the weights on a slower timescale than concentration. Thus,
when evaluating the mean and variance, we use the weight distribution on the
previous time step. Using μtj and 1=λtj to denote the mean and variance, and
making this approximation, we have

μtj �
1P

ihwt�1
ij

2i
X
i

hwt�1
ij i mt

i þ hwt�1
ij ihcji

h i
ð16aÞ

λtj �
1
σ2x

X
i

hwt�1
ij

2i ð16bÞ

where we made the definition

mt
i � xti �

XM
j¼1

hwt�1
ij ihcji : ð17Þ

The distribution qcj ðcjÞ can now be written in a very compact form

qcj ðcjÞ / pcðcjÞ exp � λtj
2

cj � μtj

� �2" #
: ð18Þ

As we will see below, to update the weights we just need the first and second
moments of cj (see Eq. (27a)). And for the reward-based learning, we need the
probability that cj is positive. These quantities are straightforward, if tedious, to
compute, and are given as follows.

For the first moment,

hcji ¼
1

Zj

ffiffiffiffi
λj

q ½2þ α2j � þ αj½3þ α2j �ΨðαjÞ
� �

; ð19Þ

where the average is with respect to the distribution in Eq. (18), Zj is the
normalization constant

Zj �
2ð1� coÞ
27co

λ3=2j þ αj þ ð1þ α2j ÞΨðαjÞ; ð20Þ

and αj and Ψ(αj) are defined by

αj �
ffiffiffiffi
λj

q
μj �

3ffiffiffiffi
λj

q ð21aÞ

ΨðαjÞ �
ffiffiffiffiffi
2π

p
eα

2
j =2ΦðαjÞ; ð21bÞ

with Φ the cumulative normal function

ΦðαÞ � 1ffiffiffiffiffi
2π

p
Z α

�1
e�x2=2dx: ð22Þ

Similarly, the second moment is given by

hc2j i ¼
1

Zjλj
αjð5þ α2j Þ þ ð3þ 6α2j þ α4j ÞΨðαjÞ
� �

: ð23Þ

And finally, the probability that an odor is present is written

Pr½cj>0� ¼
1
Zj

αj þ ð1þ α2j ÞΨðαjÞ
� �

: ð24Þ

The variational weight distribution. To find the variational distribution over
weights, we need to compute the average on the right-hand side of Eq. (14a). This
is the same as Eq. (15), except that the average now excludes wij rather than cj,

hlog pðxjc;wÞinwij
� � 1

2σ2x
xi �

X
m

wimcm

 !2* +
nwij

� �hc2j i
2σ2x

wij �
hcji
hc2j i

xi �
X
m≠j

hwt
imihcmi

" # !2
ð25Þ

where the averages are, as above, with respect to the variational distributions. This
is a quadratic function of wij; thus, if we assume that qw;t�1

ij ðwijÞ is Gaussian, then

qw;tij ðwijÞ is also Gaussian. Using wt
ij and 1=ðtρtj Þ to denote the mean and variance at

time t, respectively (the latter to anticipate the 1/t falloff of the variance expected
under Bayesian filtering), Eq. (14a) becomes

� tρtj
2
ðwij � wt

ijÞ2 � �ðt � 1Þρt�1
j

2
wij � wt�1

ij

� �2 � hc2j i
2σ2x

wij �
hcji
hc2j i

xi �
X
m≠j

wt
imhcmi

" # !2

: ð26Þ

As in Eq. (15), wt appears on the right-hand side of Eq. (26). However, very fast
synaptic plasticity is required for solving this equation recursively for all the
weights. We thus approximate the right-hand side by using the previous timestep,
t−1, rather than the current one, t; an approximation that should be good when the
weights change slowly. Doing that, we arrive at the update rules

ρtj ¼ ð1� 1=tÞρt�1
j þ 1=t

σ2x
hc2j i ð27aÞ

wt
ij ¼ ð1� 1=tÞ ρ

t�1
j

ρtj
wt�1
ij þ 1=t

ρtjσ
2
x
hcji mt

i þ wt�1
ij hcji

� �
ð27bÞ

where we used Eq. (17) to simplify the second expression. Note that the update rule
for wt

ij is local, as it depends only on variables indexed by i and j. The update rule
for ρj is also local, and in fact depends only on variables indexed by j.

Finally, it is convenient to write the update rules for the mean and precision of
the variational distribution over concentration, Eq. (16), in terms of wij and ρj,

μtj �
1

σ2xλ
t
j

X
i

wt�1
ij mt

i þ wt�1
ij hctj i

h i
ð28aÞ

λtj �
1
σ2x

X
i

wt�1
ij

� �2
þ N
σ2xðt � 1Þρt�1

j
: ð28bÞ

As shown in Fig. 5c, the transfer function shifts to the right with learning. This
seems counter-intuitive: because the weights become more certain with learning, it
should take less input to the granule cells to produce activity; this suggests that the
transfer functions should shift left, not right. However, an increase in certainty is
not the only thing that changes with learning; the weights also become more
diverse, capturing the diverse responses of glomeruli for each odor. The diversity
increases the variance of the input to the granule cells, and so to ensure a sparse
response with increasing diversity, the transfer functions need to shift to the right.
In our model, increased diversity (the first term in Eq. (28b)) had a larger effect
than increased certainty (the second term), resulting in a net rightward shift in the
transfer functions.

Network model. The analysis in the previous sections revealed that under the
variational approximation, the distribution of the odors and the weights are
updated locally. Thus, we implement the update rules in a network model of the
olfactory bulb. The update of the weight distribution, qw;tij ðwijÞ, depends on 〈cj〉 and

hc2j i, as shown in Eq. (27), while the update of the odor distribution, qc;tj ðcjÞ,
depends on wij and ρj, as shown in Eq. (28). Ideally, all these parameters should be
updated simultaneously. However, as mentioned above, updates to synaptic
weights are typically much slower than the neural dynamics, so here we consider a
two step update. First, the relevant parameters of the variational odor distribution,
〈cj〉 and hc2j i, are updated using the mean and precision of the weight distribution,
wij and ρj, evaluated at t−1. Then, wij and ρj are updated using the first and second
moments of the weights, 〈cj〉 and hc2j i, evaluated at time t.

Neural dynamics. Our goal is to write down a set of dynamical equations for 〈cj〉
and hc2j i whose fixed points correspond to the values given in Eqs. (19) and (23),

respectively. Examining these equations, we see that 〈cj〉 and hc2j i depend on αj and
λj; after a small amount of algebra (involving the insertion of Eq. (28a) into Eq.
(21a)), αj may be written

αj ¼
1ffiffiffiffi
λj

q
σ2x

X
i

wijmi þ
X
i

w2
ijhcji � 3σ2x

 !
: ð29Þ

To avoid clutter, we dropped the dependence on time, but the weights should be
evaluated at time t−1 and all other variables at time t.

Because neither αj nor λj (the latter given in Eq. (28b)) depend on hc2j i, we can
write down coupled equations for 〈cj〉 and mi; the solution of those equations gives
us the values of αj and λj, which in turn gives us, via Eq. (23), hc2j i. Using, for
notational ease, cj rather than 〈cj〉, the simplest such equations (derived from Eqs.
(17) and (19)) are

τr
dmi

dτ
¼ xi �mi �

XM
j¼1

wL
ijcj ð30Þ

τr
dcj
dτ

¼ �cj þ Fj

XN
i¼1

wF
jimi; cj

" #
ð31Þ
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where τr is the time constant of the firing rate dynamics, and the nonlinear transfer
function, F, is given by the right-hand side of Eq. (19)

Fj

XN
i¼1

wF
jimi; cj

" #
� 1ffiffiffiffi

λj
q ð2þ α2j Þ þ αjð3þ α2j ÞΨðαjÞ

2ð1�coÞ
27co

λ3=2j þ αj þ ð1þ α2j ÞΨðαjÞ
ð32Þ

with αj given in Eq. (29) and λj in Eq. (28b). Note that we have replaced the average
weights, wij , with two different weights, wL

ij and wF
ij . Ideally, we should have

wF
ji ¼ wL

ij ¼ wij , but, for biological plausibility, we allow these reciprocal synapses to

be learned independently. Note that when evaluating αj, Eq. (29), wF
ij should be

used. Although the expression for Fj seems complicated, the transfer functions are
relatively smooth, and resemble experimentally observed ones (see Fig. 5).

As shown in Fig. 3b, this dynamical system resembles the neural dynamics of
the olfactory bulb, under the assumption that mi and cj are the firing rates of M/
T cells and the granule cells, respectively. With this assumption, wF

ji is the

connection from M/T cell i to granule cell j and wL
ij is the connection from granule

cell j to M/T cell i.
Finally, the second moment of the concentration is given, via Eq. (23), by

hc2j i ¼ Gj

XN
i

wF;t�1
ji mi; cj

" #
� 1

λj

αjð5þ α2j Þ þ ð3þ 6α2j þ α4j ÞΨðαjÞ
2ð1�coÞ
27co

λ3=2j þ αj þ ð1þ α2j ÞΨðαjÞ
: ð33Þ

Synaptic plasticity. After trial t, the average feedforward weights, wF
ji , and the

average lateral weights, wL
ij , are updated as in Eq. (27b)

wF;t
ji ¼ 1� δw;tj

� �
wF;t�1
ji þ 1=t

ρtjσ
2
x
cjmi ð34aÞ

wL;t
ij ¼ 1� δw;tj

� �
wL;t�1
ij þ 1=t

ρtjσ
2
x
micj ð34bÞ

δw;tj � 1
t
þ 1� 1

t

� �
1� ρt�1

j

ρtj

 !
� c2j
tρtjσ

2
x
: ð34cÞ

We used the firing rates mi and cj at the end of trial, after the neural dynamics has
reached steady state. As the weight updates depend primarily on the product of mi

and cj , the learning rules are essentially Hebbian. Note that if the initial conditions

are the same (i.e., if wF;0
ji ¼ wL;0

ij ), then wF;t
ji and wL;t

ij will remain the same for all
time. This is reasonable given that connections between M/T cells and granule cells
are dendro-dendritic.

The variance of the weights, 1=tρtj , consists of two components. The first, 1/t,
represents the global hyperbolic decay in the learning rate due to accumulation of
information. In our simulations, we started t from t ¼ tmin to suppress the
influence of the initial samples; this is equivalent to using a trial-dependent
discount factor 1=ðt þ tminÞ instead of 1/t, where t is the actual trial count. The
second, ρtj , represents the neuron-specific contribution to the precision, and is
given, via Eqs. (27) and (23), by

ρtj ¼ ð1� 1=tÞρt�1
j þ 1

tσ2x
Gj

XN
i

wF;t�1
ji mi; cj

" #
; ð35Þ

where Gj, the second moment of the concentration, is given in Eq. (33).

Models with various priors on odor concentration. In our model setting, the
prior over concentration, pc(c), enters via Eq. (14b), and affects the transfer
functions F and G, given in Eqs. (32) and (33), respectively. Choosing different
priors gives different transfer function. Below we consider two common ones: non-
negative, and non-negative with an exponential decay.

The first of these is actually an improper prior, pc(c)∝Θ(c). This results in gain
functions of the form

F½μj; λj� ¼ μj þ
1ffiffiffiffi

λj
q

Ψ
ffiffiffiffi
λj

q
μj

h i ð36aÞ

G½μj; λj� ¼ μjF½μj; λj� þ
1
λj

ð36bÞ

where μj and λj are given in Eqs. (28a) and (28b), respectively.
Under the non-negative prior introduced above, all positive concentrations are

equally likely. However, that is not the case in a typical environment. Far more
realistic is to assume that large concentrations are exponentially unlikely, yielding a
prior of the form pcðcÞ ¼ 1

co
exp �c=coð Þ. (The decay constant, co, was chosen so that

the mean is equal to co, the same mean as in the true generative model.) For this

prior, the functions F and G are

F½μj; λj� ¼ μj �
1

coλj

 !
þ 1ffiffiffiffi

λj
q

Ψ
ffiffiffiffi
λj

q
μj � 1

co
ffiffiffi
λj

p
	 
 ð37aÞ

G½μj; λj� ¼ μj �
1

coλj

 !
F½μj; λj� þ

1
λj

: ð37bÞ

While this prior is suboptimal for olfactory learning, experimental results from visual
cortex indicate that the transfer function there resembles the one in Eq. (37a)49

(black curve in Fig. 5a). Indeed, in early visual regions, where the prior is arguably
more continuous10, this shifted rectified-linear transfer function, might be more
beneficial50.

Learning concentration invariant representations. Up to now we focused on the
expected concentration, cj. However, in natural environments animals often care
more about whether or not an odor exists in its vicinity than what its concentration
is. From a Bayesian perspective, this means the animals should compute the
probability that an odor is present, denoted pj . Using Eq. (24), pj can be estimated
as the steady state of the following dynamics:

τr
dpj
dτ

¼ �pj þ Hj

X
i

wF
jimi; cj

" #
ð38Þ

where Hj, which is approximately sigmoidal, is given, via Eq. (24), by

Hj

X
i

wF
ijmi; cj

" #
¼ αj þ ð1þ α2j ÞΨðαjÞ

2ð1�coÞ
27co

λ3=2j þ αj þ ð1þ α2j ÞΨðαjÞ
ð39Þ

with αj given in Eq. (29), but with wij replaced by wF
ij in that equation as before.

In principle, neurons receiving input, mi, from M/T cells, such as layer 2
piriform cortex neurons, can decode the odor probability, as shown in Fig. 7a and
7e-left. However, to calculate Hj given input from M/T cells, the neuron would
need to know the weights, wF

ij , as well as λj and cj (the latter because αj depends on
cj ; see Eq. (29)). This is clearly unrealistic, because there is no known biological
mechanism that enables copying weights. Moreover, because granule cells do not
have output projections, except for the dendro-dendritic connections with M/
T cells, piriform neurons cannot know cj directly. Nevertheless, piriform neurons
can learn to decode the concentration-invariant representation, pj , as follows.

Let us use wp
ji to denote the mean weight from M/T cells to the piriform neurons

(see Fig. 7b–d). Assume for the moment that wp
ji � wF

ji ; shortly we will write down a
learning rule that achieves this (see Eq. (43)). This takes care of the weights, but we
also need an approximation to cj . For that, we notice that if the estimation is
unbiased, on average both cj and pj are equal to co. Thus, the simplest way to
approximate cj with the information available to the jth piriform neuron is to use

cj � pj . Under this approximation, and using wp
ji in place of wF

ji , Eq. (38) becomes

τr
dpj
dτ

¼ �pj þ Hj

X
i

wp
ijmi; pj

" #
ð40Þ

where Hj is the same as Eq. (39), but with αj replaced by αpj —the analog of αj, but

with wp
ij and lateral inhibition

αpj �
1ffiffiffiffiffi
λpj

q
σ2x

X
i
wp
ijmi þ

X
i

wp
ij

� �2
pj � σ2x 3þ λpj

X
k≠j

J jkpk

24 350@ 1A ð41Þ

where considering the analogy with Eq. (28b), λpj is given by

λpj �
1
σ2x

XN
i¼1

wp
ji

� �2
þ N

σ2xðt � 1Þρp;t�1
j

: ð42Þ

As above, pj evolves with the weights set to their values updated at the end of
previous trial. Once the neural dynamics reaches steady state, the weights are
updated as in Eq. (34)

wp;t
ji ¼ 1� δp;tj

� �
wp;t�1
ji þ 1=t

ρp;tj σ2x
Fj

XN
i

wp;t�1
ji mi; pj

" #
mi ð43aÞ

δp;tj � 1
t
þ 1� 1

t

� �
1� ρp;t�1

j

ρp;tj

 !
� 1

tρp;tj σ2x
Fj

XN
i

wp;t�1
ji mi; pj

" # !2

ð43bÞ

and the precision as in Eq. (27a)

ρp;tj ¼ ð1� 1=tÞρp;t�1
j þ 1=t

σ2x
Gj

XN
i

wp;t�1
ji mi; pj

" #
: ð44Þ

Here Fj and Gj are the estimated first/second moment given in Eqs. (32) and Eq.
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(33), but calculated with αpj in Eq. (41). In steady state, these two terms
approximate cj and hc2j i, respectively. In addition, to ensure sparse piriform cell
firing51, we introduced Hebbian plasticity to the lateral weights Jjk,

ΔJjk ¼ 0:1pk �5coJ jk þ pj

� �
; ð45Þ

while bounding Jjk > 0 and enforcing Jjj= 0. We initialized Jjk by Jjk= 0.02.
In Fig. 7e (panel d), 7f (orange line), 7g, and 7j–k, we modified the transfer

function Fj of granule cells by replacing the prior term co with the input from
piriform neuron pj . This means that FD

j is written as

FD
j

XN
i¼1

wF
jimi; cj; pj

" #
� 1ffiffiffiffi

λj
q ð2þ α2j Þ þ αjð3þ α2j ÞΨðαjÞ

2ð1�pjÞ
27pj

λj

� �3=2
þ αj þ ð1þ α2j ÞΨðαjÞ

ð46Þ

where αj is still given by Eq. (29). We modulated the gain function Gj of granule
cells, Eq. (33), in the same way, by replacing co with pj. In Fig. 7f, we changed the
relative strength of lateral inhibition by replacing Jjk in Eq. (41) with κJJjk where κJ,
the relative strength, ranged from 0 to 3, as shown in the x-axis of Fig. 7f, while
using the original Jjk for the weight update.

Reward-based learning. Assuming that the reward amplitude depends only on the
identity of the odors, not on their concentrations, the reward, R, on trial t is given
by

R ¼
XM
j¼1

ajΘðcjÞ þ σζ ζ t ð47Þ

where ζt is a zero mean, unit variance Gaussian random variable, and Θ(x) is a
Heaviside function.

To estimate the reward, we augment the circuit in Fig. 7d by introducing a set of
neurons, denoted ep, that receive input both from pj and the reward, R (see Fig. 7h).
Using a to denote those weights, the natural neural dynamics of ep is

τr
dep
dτ

¼ �ep þ bRtðτÞ �
X
j

ajpj: ð48Þ

To represent the delay in reward delivery, bRtðτÞ is zero for the first 2.5 s; after that
it is set to the value of the reward,

bRtðτÞ ¼
0 τ<2:5 s

R τ ≥ 2:5 s:

�
ð49Þ

Note that for the first 2.5 s of the trial, -ep carries a prediction of the upcoming
reward from the olfactory input, x. Once the reward is provided, the neuron
represents the difference between the expected reward and the actual reward. That
difference can be used to drive learning, via Hebbian plasticity

atj ¼ at�1
j þ ηaeppj ð50Þ

where aj is updated only after the reward has been presented. Importantly, ep is
evaluated after the reward presentation.

Similarly, for the direct readout from x depicted in Fig. 7i, the reward is
predicted by

τr
dex
dτ

¼ �ex þ bRt �
X
i

hixi ; ð51Þ

with hi again update via Hebbian plasticity,

hti ¼ ht�1
i þ ηhexxi ; ð52Þ

after the reward has been presented.

Sparse coding. The sparse coding model originally proposed by Olshausen and
colleagues10,52 can be applied to the model of olfactory learning as shown below.
The basic idea is that the odor, denoted bc, and the weight matrix, denoted bw, that
best explains the input, x, should be close to the real c and w. This means bc and bw
can be estimated by performing stochastic gradient descent on the likelihood of the
inputs, x.

However, this is sub-optimal, primarily because uncertainty in bc and bw are
ignored, even though they are important for data efficient learning45. In addition,
for tractability, the prior over the odors is taken to be a continuous function,
making it difficult to capture the fact that at any given time most odors are absent.
These constraints make the learning algorithm inefficient.

The log likelihood of the data with respect to an unknown set of weights,
denoted bw, is given by

log pðxt jbwÞ ¼ log
Z

pðxt jct ; bwÞpðctÞdct� �
� log pðxt jbct ; bwÞpðbctÞð Þ þ const:

ð53Þ

In the second line, the integral was approximated with the maximum a posteriori

estimate bct ¼ arg max
c

pðxt jc; bwÞpðcÞ. The objective function is thus given by

Et � log pðxt jbct ; bwÞ þ log pðbctÞ: ð54Þ
Because the noise on xt is Gaussian (see Eq. (6)), the first term is a simple quadratic
function. However, the second term, log pðbctÞ, requires further approximation to
remove the delta function, and thus ensure differentiability of Et with respect to ĉj . To

this end, we approximated the prior with a Gamma distribution: pc ð̂cjÞ / ĉkc�1
j e�ĉj=θc ,

for which the mean is kcθc. We used kc= 3 and θc= co/3, ensuring a mean of co.
Under this approximation, the objective function, Et, becomes

Et ¼
�1
2σ2x

X
i

xti �
X
j

bwijĉ
t
j

 !2

þ
X
j

ðkc � 1Þlog ĉtj � ĉtj=θc
� �

: ð55Þ

We maximize the objective function via stochastic gradient descent, which occurs in
two steps. In the first step, we maximize Et with respect to bc,

Δĉj /
∂Et

∂ĉj
¼ 1

σ2x

X
i

m̂ibwij þ
kc � 1
ĉj

� 1
θc

; ð56Þ

where m̂i is the analog of Eq. (17),

m̂i � xi �
X
j

bwijĉj: ð57Þ

Once ĉj has converged, we update the weights via

Δbwij /
∂Et

∂bwij
¼ 1

σ2x
m̂iĉj: ð58Þ

To prevent divergence of the weights, after each timestep we apply L-2 normalization
(see Eq. (60b) below).

In summary, on each trial, t, first, the ĉj ðj ¼ 1; 2; :::;MÞ are updated,

ĉtj ðτÞ ¼ ĉtj ðτ � 1Þ þ ηc
X
i

m̂t
iðτ � 1Þbwt�1

ij þ σ2x
2

ĉtj ðτ � 1Þ �
3
co

" # !
; ð59Þ

where the time step τ runs from 0 to 100,000 in each trial. At the end of trial t, the
weights are then updated by

ewij ¼ bwt�1
ij þ ηwm̂

t
i ĉ
t
j ð60aÞ

bwt
ij ¼

e
coM

ewijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iew2

ij=N
q : ð60bÞ

The learning rates, ηc and ηw, were manually tuned. We used ηc= 0.00001 and
ηw= 0.5 unless stated otherwise.

Simulation details. The parameters used in the simulations are given in Table 1.
Additional details of the simulations, from the implementation of neural dynamics
to the setting of Go/no go task, are provided in Table 1.

Implementation of neural dynamics. The M/T cell activity, mi, was defined
relative to a baseline, denoted msp; in Fig. 3c, we plotted emi � mi þmsp. On each
trial, mi was initialized to zero and cj to co: mi(τ= 0)= 0 (i.e., emið0Þ ¼ msp) and
cjðτ ¼ 0Þ ¼ co. In addition, the firing rates were lower-bounded by mi ≥−msp and
cj ≥ 0.

To avoid numerical instability, Ψ(α) in Eq. (21b) was approximated as

1=ΨðαÞ �
�α αffiffi

2
p <� 10

expð�α2=2Þffiffiffiffi
2π

p
ΦðαÞ �10≤ αffiffi

2
p ≤ 10

0 10< αffiffi
2

p :

8>><>>: ð61Þ

Implementation of synaptic plasticity. Both the feedforward and lateral weights
were initially sampled from a log-normal distribution

wt¼0
ij ¼ logNðμinitg ; σ initg Þ ; ð62Þ

with the variance and mean parameters set to

σ initg ¼ 0:1 ð63aÞ

μinitg ¼ 1
2

1� ðσ initg Þ2
� �

� log ðcoMÞ : ð63bÞ

The precision factors, ρj, were initialized as

ρt¼0
j ¼ co

σ2xZρ

: ð64Þ

We used Zρ= 0.5, except in Fig. 6b and d, where we used Zρ= 0.3. The weights
were lower-bounded by zero. As mentioned above, in the simulations we started t
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from t ¼ tmin to suppress the influence of the initial samples. Recurrent inhibition,
J, was initialized to Jjk= 0.02 × (1−δjk).

Learning with a fixed gain function. In Fig. 5d, we fixed all λj at 200 (gray) and
342 (black), while the ρtj were updated at each trial as in Eq. (35).

Learning with a fixed learning rate. Fixing the learning rate, 1=tρtj , to a constant,
denoted η, the learning rules for wF

ji and wL
ij are rewritten as

wF;t
ji ¼ wF;t�1

ji þ η
σ2x
cj mi þ cjw

F;t�1
ji

h i
wL;t
ij ¼ wL;t�1

ij þ η
σ2x
cj mi þ cjw

L;t�1
ij

h i ð65Þ

and λj is given by

λj ¼
1
σ2x

XN
i¼1

wF
ji

� �2
þ Nη

 !
: ð66Þ

Go/no go task. In the simulation of the go/no go task, we selected two odors (j+
and j−) out of M total odors, then randomly presented one or the other with
concentrations drawn from a Gamma distribution (as in Eq. (8), but cj > 0 and co=
1). The reward associated with j+ was R= 1.0+ ζ (i.e. ajþ ¼ 1:0), where ζ

is the noise in the observed reward sampled from a zero-mean Gaussian with
variance 0.01. The reward associated with j− was R= ζ (i.e. ajþ ¼ 0:0).

Learning of the circuit shown in Fig. 7h was done in two steps. First, the
weights, wF

ij;w
L
ij and wp

ij , and the precisions, ρj and ρpj , were learned with the
unsupervised learning rules. During this unsupervised period, the reward, R, was
kept at zero. After 4000 trials of unsupervised learning, we fixed wF

ij;w
L
ij;w

p
ij, ρj, and

ρpj , then trained the weights aj using Eq. (50).
The reward weights for the circuits in both Fig. 7h and i, aj and hj, respectively,

were initialized to zero, and the learning rates were manually tuned to the largest
stable rates (ηa= 0.5 and ηh= 0.0015). The latter learning rate was smaller because
∥x∥ is typically much larger than k �p k, and also because the update of the hj was
more susceptible to instability.

The classification performance was measured by the probability that the
predicted and actual reward were both above 0.5 or both below 0.5,

performance � hΘ½ðRt � 0:5Þð�bep � 0:5Þ�i ; ð67Þ
where bep is the value of ep right before the reward delivery (bep ¼ epðτ ¼ 2:45 sÞ).
Note that, as mentioned above, bep should converge to -Rt. Thus, the average error
was defined to be

Average error � ðRt þbepÞ2D E1=2
: ð68Þ

Performance evaluation. In the following sections, we summarized the perfor-
mance evaluation methods we employed in this study.

Selectivity of granule cells. Because the network is trained with an unsupervised
learning rule, we cannot know which neuron encodes which odor. We thus esti-
mated the selectivity of a neuron from the incoming synaptic weights using a
bootstrap method. Specifically, on each trial, the odor o(j) encoded by granule cell j
is determined by choosing the odor that yields the maximum covariance between
the estimated weights, wF, and the true mixing weight, w,

oðjÞ ¼ arg max
m

XN
i¼1

wF;t
ji � hwF;t

ji ii
� �

wim � hwimii
� 


: ð69Þ

The selectivity can also be estimated from the activity of a neuron directly, by
assuming that the granule cell with the highest activity to odor j codes for odor j.
Essentially the same result holds when we take this approach, although accurate

readout of selectivity requires a large number of trials. After learning, most neurons
learn to encode one odor stably.

Odor estimation performance. Given the odor selectivity, o(j), the original odors
can be reconstructed by

ĉj ¼
P

oðmÞ¼jcjP
oðmÞ¼j1

: ð70Þ

The denominator is the number of neurons that encode odor j, which converges to
one after successful learning. If both the denominator and the numerator were zero,
we set ĉj to 0. Performance was defined to be the correlation between the estimated
odor concentration, ĉj , and the true concentration, cj. Evaluation of performance on
trial t used o(j) calculated from wF,t−1, not from wF,t. In Fig. 7e and f, we instead
calculated the correlation between bpj and the true value of Θ[cj] using the same
method, where

bpj ¼
P

opðmÞ¼jpjP
opðmÞ¼j1

; ð71Þ

using the piriform neuron selectivity op(j).

ROC curve. We calculated the generalized ROC curves as in Fig. 7 of Grabska-
Barwińska et al. (2017)6 using ĉj . We first separated the trials based on the
total number of odors presented, and then for each trial we calculated the
number of true/false positives under various thresholds θth. The true positive
fraction is the fraction of presented odors above a threshold, θth, whereas the
false positive count is the number of absent odors above a threshold, θth. The
threshold, θth, was varied from 10−6 to 101 in a log scale, with an ~20% increase
on every step.

Weight error. Given o(j), the error between the learned feedforward weight, wF
ij ,

and the true mixing weight, wij, was calculated by

dF;tw � 1
M

XM
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i

wF;t
ji =Z

w
j;t � wi;oðjÞ

� �2vuut ; ð72Þ

where Zw
j;t ¼

P
iw

F;t
ji =
P

iwi;oðjÞ. For ease of comparison, in Fig. 6b the weight
errors were scaled by 7/3, so that the initial error was similar to the errors
shown in Fig. 6a.

Lifetime sparseness. For the measurement of the lifetime sparseness19, we first
presented individual odors m= 1, 2, . . . , M, then recorded the activity of granule

cells fcðmÞ
j g. Subsequently, we calculated the sparseness using

Sj �
1
M

PM
m¼1 c

ðmÞ
j

� �2
1
M

PM
m¼1 cðmÞ

j

� �2 : ð73Þ

The lifetime sparseness, Sj, takes a small value (Sj≃ 0) if the activity is sparse, while
Sj≲ 1 is satisfied if the activity is uniform/homogeneous. Because of this, the
lifetime sparseness is sometimes defined as eSj � 1� Sj

53.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The main source codes of the simulations and the data analysis, from which our
simulation date was generated, are publicly available at https://github.com/nhiratani/
olfactory_learning. The rest are available from the corresponding author.

Table 1 Definitions and values of the parameters.

Definition Value

M The total number of odors presented and granule cell population 100 (Figs. 3e, f, 4–6), 50 (Figs. 3c, d, 7)
N The total number of glomeruli 400 (Figs. 3–6), 200 (Fig. 7)
co The probability of a odor being present 3/M, except Fig. 6b, d
σx The variance of noise on the glomeruli activity 1.0
ση The variance of the noise in the reward 0.01
msp The spontaneous firing rate of M/T cells 5 Hz
τr The timescale of firing rate dynamics 50ms
Tmax The duration of each trials 5000ms, except for Fig. 3f
tmin The initial count for the global learning rate, 1/t 100 [trials]
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Code availability
The main codes for simulations and data analysis are publicly available as mentioned
above, at http://github.com/nhiratani/olfactory_learning.

Received: 11 November 2019; Accepted: 2 July 2020;

References
1. Li, Q. & Liberles, S. D. Aversion and attraction through olfaction. Curr. Biol.

25, R120–R129 (2015).
2. Ishii, K. K. et al. A labeled-line neural circuit for pheromone-mediated sexual

behaviors in mice. Neuron 95, 123–137 (2017).
3. Staubli, U., Fraser, D., Faraday, R. & Lynch, G. Olfaction and the "data"

memory system in rats. Behav. Neurosci. 101, 757 (1987).
4. Linster, C., Johnson, B. A., Morse, A., Yue, E. & Leon, M. Spontaneous

versus reinforced olfactory discriminations. J. Neurosci. 22, 6842–6845
(2002).

5. Millman, D. J. & Murthy, V. N. Rapid learning of odor–value association in
the olfactory striatum. J. Neurosci. 40, 4335–4347 (2020).

6. Grabska-Barwińska, A. et al. A probabilistic approach to demixing odors. Nat.
Neurosci. 20, 98 (2017).

7. Aitchison, L., Pouget, A. & Latham, P. E. Probabilistic synapses. Preprint at
https://arxiv.org/abs/1410.1029 (2017).

8. Hiratani, N. & Fukai, T. Redundancy in synaptic connections enables
neurons to learn optimally. Proc. Natl Acad. Sci. USA 115, E6871–E6879
(2018).

9. Beal, M. J. Variational Algorithms for Approximate Bayesian Inference
(University of London, London, 2003).

10. Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set: a
strategy employed by v1? Vis. Res. 37, 3311–3325 (1997).

11. Tootoonian, S. & Lengyel, M. A dual algorithm for olfactory
computation in the locust brain. Adv. Neural Inf. Process. Syst. 27, 2276–2284
(2014).

12. Kepple, D. et al. Computational algorithms and neural circuitry for
compressed sensing in the mammalian main olfactory bulb. Preprint at
https://doi.org/10.1101/339689 (2018).

13. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), 807–814 (ACM, 2010).

14. Oswald, A.-M. M. & Reyes, A. D. Maturation of intrinsic and synaptic
properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J.
Neurophysiol. 99, 2998–3008 (2008).

15. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural
network. Neuron 37, 989–999 (2003).

16. Zhang, Z.-W. Maturation of layer v pyramidal neurons in the rat prefrontal
cortex: intrinsic properties and synaptic function. J. Neurophysiol. 91,
1171–1182 (2004).

17. Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A. & Lledo, P. -M.
Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6, 507
(2003).

18. Nissant, A., Bardy, C., Katagiri, H., Murray, K. & Lledo, P.-M. Adult
neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat. Neurosci. 12,
728 (2009).

19. Willmore, B. & Tolhurst, D. J. Characterizing the sparseness of neural
codes. Network 12, 255–270 (2001).

20. Wallace, J. L., Wienisch, M. & Murthy, V. N. Development and refine-
ment of functional properties of adult-born neurons. Neuron 96, 883–896
(2017).

21. Bolding, K. A. & Franks, K. M. Recurrent cortical circuits implement
concentration-invariant odor coding. Science 361, 6407 (2018).

22. Wilson, R. I. & Mainen, Z. F. Early events in olfactory processing. Annu. Rev.
Neurosci. 29, 163–201 (2006).

23. O’Connell, R. J. & Mozell, M. M. Quantitative stimulation of frog olfactory
receptors. J. Neurophysiol. 32, 51–63 (1969).

24. Hopfield, J. J. Odor space and olfactory processing: collective
algorithms and neural implementation. Proc. Natl Acad. Sci. USA 96,
12506–12511 (1999).

25. Shepherd, G. M., Chen, W. R., Willhite, D., Migliore, M. & Greer, C. A. The
olfactory granule cell: from classical enigma to central role in olfactory
processing. Brain Res. Rev. 55, 373–382 (2007).

26. Gschwend, O. et al. Neuronal pattern separation in the olfactory
bulb improves odor discrimination learning. Nat. Neurosci. 18, 1474
(2015).

27. Yamada, Y. et al. Context-and output layer-dependent long-term ensemble
plasticity in a sensory circuit. Neuron 93, 1198–1212 (2017).

28. Tan, J., Savigner, A., Ma, M. & Luo, M. Odor information processing
by the olfactory bulb analyzed in gene-targeted mice. Neuron 65, 912–926
(2010).

29. Shusterman, R., Smear, M. C., Koulakov, A. A. & Rinberg, D. Precise olfactory
responses tile the sniff cycle. Nat. Neurosci. 14, 1039 (2011).

30. Smear, M., Shusterman, R., O’Connor, R., Bozza, T. & Rinberg, D. Perception
of sniff phase in mouse olfaction. Nature 479, 397–400 (2011).

31. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background
synaptic input. Neuron 35, 773–782 (2002).

32. Baker, K. L. et al. Algorithms for olfactory search across species. J. Neurosci.
38, 9383–9389 (2018).

33. Roland, B., Deneux, T., Franks, K. M., Bathellier, B. & Fleischmann, A. Odor
identity coding by distributed ensembles of neurons in the mouse olfactory
cortex. Elife 6, e26337 (2017).

34. Wesson, D. W. & Wilson, D. A. Sniffing out the contributions of the olfactory
tubercle to the sense of smell: hedonics, sensory integration, and more?
Neurosci. Biobehav. Rev. 35, 655–668 (2011).

35. Mathis, A., Rokni, D., Kapoor, V., Bethge, M. & Murthy, V. N. Reading out
olfactory receptors: feedforward circuits detect odors in mixtures without
demixing. Neuron 91, 1110–1123 (2016).

36. Shah, M. M., Hammond, R. S. & Hoffman, D. A. Dendritic ion channel
trafficking and plasticity. Trends Neurosci. 33, 307–316 (2010).

37. Chen, X. et al. Deletion of kv4. 2 gene eliminates dendritic a-type k+ current
and enhances induction of long-term potentiation in hippocampal ca1
pyramidal neurons. J. Neurosci. 26, 12143–12151 (2006).

38. Koulakov, A. A. & Rinberg, D. Sparse incomplete representations: a potential
role of olfactory granule cells. Neuron 72, 124–136 (2011).

39. Beck, J., Pouget, A. & Heller, K. A. Complex inference in neural circuits with
probabilistic population codes and topic models. Adv. Neural Inf. Process. Syst.
25, 3059–3067 (2012).

40. Hyvärinen, A. & Oja, E. Independent component analysis: algorithms and
applications. Neural Netw. 13, 411–430 (2000).

41. Mitchell, T. J. & Beauchamp, J. J. Bayesian variable selection in linear
regression. J. Am. Stat. Assoc. 83, 1023–1032 (1988).

42. Garrigues, P. & Olshausen, B. A. Learning horizontal connections in a sparse
coding model of natural images. Adv. Neural Inf. Process. Syst. 20, 505–512
(2008).

43. Triesch, J. Synergies between intrinsic and synaptic plasticity in
individual model neurons. Adv. Neural Inf. Process. Syst. 17, 1417–1424
(2005).

44. Amari, S. A theory of adaptive pattern classifiers. IEEE Trans. Electron.
Comput. 3, 299–307 (1967).

45. MacKay, D. J. C. A practical Bayesian framework for backpropagation
networks. Neural Comput. 4, 448–472 (1992).

46. Doll, B. B., Simon, D. A. & Daw, N. D. The ubiquity of model-based
reinforcement learning. Curr. Opin. Neurobiol. 22, 1075–1081 (2012).

47. Bazhenov, M., Huerta, R. & Smith, B. H. A computational framework for
understanding decision making through integration of basic learning rules. J.
Neurosci. 33, 5686–5697 (2013).

48. Caron, S. J. C., Ruta, V., Abbott, L. F. & Axel, R. Random convergence of
olfactory inputs in the drosophila mushroom body. Nature 497, 113 (2013).

49. Anderson, J. S., Carandini, M. & Ferster, D. Orientation tuning of input
conductance, excitation, and inhibition in cat primary visual cortex. J.
Neurophysiol. 84, 909–926 (2000).

50. Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. & Miller, K. D. The
dynamical regime of sensory cortex: stable dynamics around a single stimulus-
tuned attractor account for patterns of noise variability. Neuron 98, 846–860
(2018).

51. Hiratani, N. & Fukai, T. Mixed signal learning by spike correlation propagation in
feedback inhibitory circuits. PLoS Comput. Biol. 11, e1004227 (2015).

52. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607 (1996).

53. Bolding, K. A. & Franks, K. M. Complementary codes for odor identity and
intensity in olfactory cortex. Elife 6, e22630 (2017).

Acknowledgements
This work was supported by the Gatsby Charitable Foundation and the Wellcome
Trust (110114/Z/15/Z).

Author contributions
NH and PEL designed the research; NH performed the research; NH analyzed the data;
and NH and PEL wrote the paper.

Competing interests
The authors declare no competing interests.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17490-0

14 NATURE COMMUNICATIONS |         (2020) 11:3845 | https://doi.org/10.1038/s41467-020-17490-0 | www.nature.com/naturecommunications

http://github.com/nhiratani/olfactory_learning
https://arxiv.org/abs/1410.1029
https://doi.org/10.1101/339689
www.nature.com/naturecommunications


Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-17490-0.

Correspondence and requests for materials should be addressed to N.H.

Peer review information Nature Communications thanks Brent Doiron, Matthew Smear
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17490-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3845 | https://doi.org/10.1038/s41467-020-17490-0 |www.nature.com/naturecommunications 15

https://doi.org/10.1038/s41467-020-17490-0
https://doi.org/10.1038/s41467-020-17490-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Rapid Bayesian learning in the mammalian olfactory system
	Results
	Problem setting
	Olfactory learning as Bayesian inference
	The sparse prior leads to a nonlinear transfer function
	Weight uncertainty leads to adaptive synaptic plasticity
	Learning concentration invariant representation and valence

	Discussion
	Methods
	Stimulus configuration
	Bayesian model
	Variational approximation
	The variational odor distribution
	The variational weight distribution
	Network model
	Neural dynamics
	Synaptic plasticity
	Models with various priors on odor concentration
	Learning concentration invariant representations
	Reward-based learning
	Sparse coding
	Simulation details
	Implementation of neural dynamics
	Implementation of synaptic plasticity
	Learning with a fixed gain function
	Learning with a fixed learning rate
	Go/no go task
	Performance evaluation
	Selectivity of granule cells
	Odor estimation performance
	ROC curve
	Weight error
	Lifetime sparseness

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




