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Abstract

We investigate the ability of multi-dimensional attractor networks to perform reliable computations with noisy population codes.

We show that such networks can perform computations as reliably as possible––meaning they can reach the Cram�er-Rao bound––
so long as the noise is small enough. ‘‘Small enough’’ depends on the properties of the noise, especially its correlational structure.

For many correlational structures, noise in the range of what is observed in the cortex is sufficiently small that biologically plausible

networks can compute optimally. We demonstrate that this result applies to computations that involve cues of varying reliability,

such as the position of an object on the retina in bright versus dim light.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many variables in the brain are encoded in the
activity of large populations of neurons with bell-shaped

tuning curves (see Fig. 1a). A critical question in neu-

roscience is: how do networks compute with these

codes? How can a network extract, for example, the

position of an object in head-centered coordinates from

the position of the object on the retina and the position

of the eyes in the head, given that all three variables are

encoded by population activity? Tasks like this are made
especially difficult by the variability in neuronal re-

sponses (Fig. 1b): neurons never fire with exactly the

same pattern twice, even when an animal is performing

identical tasks––say responding to the same stimulus, or

producing the same motor response [9,14,17].

The fact that population codes are noisy means that

information is lost at every stage of processing, so there

is pressure to perform computations reliably. To
understand the limits of reliability, we consider a sce-

nario in which a network receives as input information
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about a set of variables, each encoded in population

activity, and the network performs some computation

based on that input (such as the one mentioned above).
The question we ask is: how reliably can the network do

this? In other words, how much of the information in

the input can the network extract while it is carrying out

the computation?

As a first step toward answering this question, we

consider a restricted class of networks for which smooth

hills of activity are stable. When a network within this

class is initialized with noisy population activity––with
noisy hills of activity––the network eventually evolves

onto smooth hills, like the one shown in Fig. 1c. Once

the smooth hill is obtained, its peak constitutes an

estimate of the value of the variable encoded in the noisy

hill. The crucial question is whether this estimate can be

optimal, that is, whether the estimate can be computed

with no loss of information.

For the simple case of a single variable encoded in
population activity, as in Fig. 1, we found in our pre-

vious work that there is a network that produces an

optimal estimate of the encoded variable [13]. This result

holds so long as the noise is Poisson and is independent

among neurons. In a subsequent study, we extended

this finding to networks encoding multiple indepen-

dent variables [6]. More recently, we presented simula-

tions suggesting an even more general result: networks
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Fig. 1. (a) A set of tuning curves for the direction of motion of an object. Such tuning curves are found throughout the visual cortex, and in particular

in area MT. (b) A noisy pattern of activity for a population of neurons. This pattern arose from an object moving at )30�. (c) A smooth hill of
activity. The networks we consider here evolve to a smooth hill like this one when initialized with the noisy pattern in panel b. The position of the

peak of the smooth hill (marked with a red arrow) provides an estimate of direction of motion. With proper tuning of its parameters, a network can

recover the optimal estimate; that is, it can evolve to a smooth hill without losing any of the information coded in the noisy hill.
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encoding multiple variables, related to one another

through nonlinear transformations, can be tuned to

perform optimal computation even when the reliability

of the input variables change from trial to trial [7].

In this paper we prove the above general result. Our
proof applies to the case in which the evolution of the

network is noise-free, which means the only source of

noise is the noise corrupting the input hills. Given this

assumption, we derive conditions for the existence of a

network that can perform optimal computations; that is,

for a network that can manipulate population codes

without losing any of the information in the input. The

conditions are very general and relatively simple; they
depend only on the correlational structure of the noise

in the input. Interestingly, for small enough noise there

is always a network that can perform computations

optimally. However, the size of ‘‘small enough’’ depends

in detail on the correlational structure.

Letting the network evolve noise-free is a big

approximation; we make it because it allows us to derive

powerful results telling us when a network can carry out
computations reliably and when it cannot. The more

realistic case of internal noise (synaptic failures, sto-

chastic ion channels, etc.) can be handled by considering

the evolution of probability distributions over neuronal

activity rather than the neuronal activity itself. This

case will be considered in future work; our underlying

assumption in this paper is that, for small enough

internal noise, the deterministic evolution should pro-
vide a reasonable first approximation to the true prob-

abilistic evolution (see Fig. 3).

This paper is arranged as follows. In Section 2 we

provide an intuitive explanation of how neuronal net-

works perform efficient estimation. Section 3 contains a

formal derivation of our main result, that any recurrent

network exhibiting an M-dimensional attractor is
capable of performing as well as the best possible esti-
mator in the limit of small noise. We provide an estimate

of the size of the noise for this result to hold, and show

that for uncorrelated noise, or correlated noise that is

stimulus independent, it need only be Oð1Þ. However, if
the noise is correlated and stimulus-dependent, it must

be Oð1=NÞ. In Section 4 we extend this result to net-
works in which the reliability of stimuli is variable. In

Section 5 we consider an example: correlated, Poisson-

like neurons, for which Oð1=NÞ noise is required to
perform optimal computations for the class of networks

considered in Sections 2 and 3. We show that a network

does exist that computes optimally for Oð1Þ noise.
However, that network is not so easily implemented in a

biological network, and does not readily generalize.

Section 6 contains our summary and conclusions.
2. Extracting information from noisy neurons: general

considerations

Biological organisms must estimate stimuli from

noisy neuronal responses. They must be able, for

example, to translate from the noisy hill of activity in

Fig. 1a to the value of the variable encoded by that hill,

or perform a computation by combining the noisy hills
associated with several variables. (We are using ‘‘stim-

ulus’’ in a very general sense; a stimulus could be an

external variable, such as the direction of a moving

object, or an internal variable, such as the position of

the eyes relative to the head. Stimuli could even consist

of some combination of external and internal variables.)

The question we ask in this paper is: how well can

biologically plausible networks carry out these estima-
tion tasks? In particular, can they do as well as the best

possible estimator; that is, can they reach the Cram�er-
Rao bound [5]? Surprisingly, the answer to the latter

question is yes, so long as certain conditions are met. In

the next section we derive those conditions; in this sec-

tion we provide an intuitive explanation of why bio-

logically plausible networks might be able to act as

optimal estimators.
Formally, the brain performs estimation by imple-

menting a mapping from a set of neuronal responses,

denoted a � ða1; a2; . . . ; aNÞ, to a stimulus or set of
stimuli, denoted s. For simplicity, in this section we take
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Fig. 2. Schematic (three-dimensional cut) of a line-attractor network

that mimics ŝðaÞ. The sheets represent ðN � 1Þ-dimensional subspaces
for two different values of ŝ; points on the sheets satisfy Eq. (1), with
ŝ ¼ ŝ1 for the upper one and ŝ ¼ ŝ2 for the lower. Arrows on the sheets
indicate trajectories. The line labeled gðsÞ is the line-attractor: all initial
conditions evolve to some point on this line. The position on the line

provides the estimate, ŝ, of the true stimulus, s. A blowup of the region
near the line-attractor, shown in red, indicates that the subspaces are

locally flat. Consequently, for initial conditions close enough to the

line-attractor, gðsÞ, the trajectories of the line-attractor network are
well approximated by straight lines. For a network to mimic the esti-

mator ŝðaÞ, at least in the small noise limit, it is necessary that the
trajectories be parallel to að̂sÞ when a is near gðsÞ.
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both the stimulus and each of the neuronal responses
to be one-dimensional; so we let ða1; a2; . . . ; aN Þ !
ða1; a2; . . . ; aN Þ and s! s, where the ai and s are scalar
variables. For example, the ai might be firing rates and s
the direction of a moving object, as in Fig. 1. We show

in the next section, however, that our results apply even

when both the stimulus and the response of each neuron

is multi-dimensional.

We start by assuming that some estimator exists; i.e.,
that there is some function of a, denoted ŝðaÞ, that
provides an estimate of the stimulus, s. The estimator
ŝðaÞ can be thought of as a many-to-one mapping from a
to ŝ. To make this explicit, we write

ŝ ¼ ŝðaÞ: ð1Þ

The observation that allows us to construct a network

estimator out of the general estimator, ŝðaÞ, is that Eq.
(1) can be inverted to provide a one-to-many map from ŝ
to a. Specifically, if we view activity space as an N -
dimensional space whose coordinates are ða1; a2; . . . ; aN Þ,
then, for each value of ŝ, the set of ai that satisfies Eq. (1)
forms an ðN � 1Þ-dimensional subspace, denoted aðŝÞ.
The key feature of this subspace is that every point in it

leads to the same estimate, ŝ, of the stimulus, s; i.e., every
point in the subspace aðŝÞ produces the same value for
ŝðaÞ. If we could construct a network that maps the
whole ðN � 1Þ-dimensional space to a single point, the
location of that point would provide a natural estimate

of ŝ.
Attractor networks [4,8,10–12,18,20] could perform

such a mapping. These networks evolve in time, starting

from some initial condition, to an attractor––a sub-

manifold of their full activity space. An attractor

network could, then, take as initial conditions the pop-

ulation activity, a, and evolve in time such that the

whole ðN � 1Þ-dimensional subspace, aðŝÞ, goes even-
tually to the same point. In the full N -dimensional
activity space, such a network would admit a line-

attractor, so constructing a network estimator out of the

general estimator ŝðaÞ reduces to the problem of finding
the appropriate line-attractor network.

Fig. 2 shows schematically how a line-attractor net-

work could act as an estimator. The activity, a, in

response to a stimulus, s, corresponds to an initial
condition for the attractor network. Each initial condi-
tion lies on some ðN � 1Þ-dimensional subspace; i.e.,
every a solves Eq. (1) for some ŝ. Two such subspaces
are shown in Fig. 2. Under the action of the line-

attractor network, every point in a particular subspace

evolves to the same final point, and that point lies on the

line labeled gðsÞ. For example all points lying on the
sheet að̂s1Þ evolve to gðŝ1Þ and all points on the sheet
aðŝ2Þ evolve to gðŝ2Þ. The final position on the line gðsÞ
represents the network estimate of the stimulus, s.
This analysis indicates that every line-attractor cor-

responds to some estimator. The question of interest is:
can a line-attractor network do as well as the best pos-

sible estimator? This is a hard question to answer in

general. However, it is tractable in the limit of small

noise. In this limit, the initial condition, a, is near the

line-attractor, gðsÞ, which allows us to treat the ðN � 1Þ-
dimensional subspaces as linear spaces and the trajec-

tories as straight and locally parallel to aðŝÞ (red blowup
in Fig. 2). Consequently, we can use linear analysis to

compute the quality of the network estimator for any

line-attractor network––that is, we can compute how

well ŝ approximates s. This is a key point, because
knowing the quality of the estimator for any line-

attractor network allows us to find the best possible line-
attractor network. Moreover, we can show that the best

possible line-attractor network really is good: if the

noise is small––aðŝÞ is close to the line gðsÞ, where close
is relative to the curvature of aðŝÞ––we are guaranteed
that the best possible line-attractor network does as well

as the optimal estimator, the latter assessed by the

Cram�er-Rao bound.
The quality of the linear approximation depends, of

course, on the smoothness of aðŝÞ: if aðŝÞ exhibits sharp
curvature, then our analysis applies only if the noise is

very small (see Section 5 for an example). In the extreme

case in which að̂sÞ exhibits one or more singularities, our
analysis would break down if the line-attractor passed

through any of them. Thus, the smoothness of aðŝÞ must
be checked on a case-by-case basis. For the remainder of



686 P.E. Latham et al. / Journal of Physiology - Paris 97 (2003) 683–694
this paper, however, we simply assume that aðŝÞ is lo-
cally smooth.

Although the above discussion focused on a one-

dimensional stimulus and one-dimensional responses,

the ideas apply to higher-dimensional stimuli and re-

sponses as well. In particular they apply to cases where

several population codes are combined, as in the three-

dimensional case alluded to in the introduction (popu-

lations codes for the position of an object on the retina
and the position of the eyes in the head are combined to

produce a population code for the position of the object

relative to the head).
3. Constructing networks that perform optimal estimation

We now show explicitly that attractor networks can
act as optimal estimators, in the sense that the network

estimate of a set of stimuli from noisy neuronal re-

sponses is as good as the best possible estimator. We do

this in three steps: we (1) analyze the linearized dynamics

of an attractor network, (2) derive an expression for the

performance of the network in terms of the distance

between the network estimates and the true stimuli, and

(3) show how network parameters can be modified to
optimize the estimates.

The problem we consider is the following. A set of M
stimuli produce a particular pattern of activity. That

pattern of activity is fed into a recurrent network that

supports an M-dimensional attractor. The network then
evolves deterministically in time until it converges onto

the attractor (more accurately, until it get exponentially

close to the attractor). The point on the attractor it
converges to represents the network estimate of the M
stimuli. If we denote the stimuli as s ¼ ðs1; s2; . . . ; sMÞ
and the estimates as ŝ ¼ ð̂s1; ŝ2; . . . ; ŝMÞ, we can think of
this process as the mapping s! að0Þ ! ŝ, where the

mapping from the stimulus to the initial activity, að0Þ, is
probabilistic and the mapping from the initial activity to

the stimulus estimate is deterministic.

A key observation is that the second half of the
mapping, from að0Þ to ŝ, may be implemented with an
attractor network that evolves deterministically in time

according to the equation

s
daðtÞ
dt

¼ HðaðtÞÞ � aðtÞ; ð2Þ

where s is a time constant, aðtÞ ¼ ða1ðtÞ; a2ðtÞ; . . . ; aN ðtÞÞ
represents the activity of the N neurons in the network,
and HðaÞ is a function that contains all the details about
the network––its connectivity and single neuron and

synaptic properties. (The aiðtÞ are vectors because the
response of a single neuron may be multi-dimensional––

latency to the first spike and spike count, for example.)

Our underlying assumption is that HðaÞ is such that the
network admits an M-dimensional attractor; that is,
there is some smooth function, gðsÞ, satisfying
gðsÞ ¼ HðgðsÞÞ: ð3Þ
Since s is an M-component vector, gðsÞ is an M-dimen-
sional manifold.

The network is initialized by transient input at time

t ¼ 0; this input has both a deterministic and noise
component,

að0Þ ¼ fðsÞ þNðsÞ: ð4Þ
Here fðsÞ is the deterministic tuning curve and NðsÞ
is the noise. In the limit t ! 1, aðtÞ approaches the
attractor; i.e., limt!1 aðtÞ ¼ gðŝÞ. The point on the
attractor, ŝ, is the network estimate of the stimuli, s.

Because the initial conditions are generated proba-

bilistically, the estimate will be different on each trial.

We will assume here that the network is unbiased; that

is, averaged over trials, ŝ is equal to s. Thus, the quality

of the network is determined by how close ŝ is to s on

average. For close, we will use the determinant of the
covariance matrix. The covariance matrix, denoted

hdskdsli, is given by
hdskdsli ¼ hð̂skðaÞ � skÞðŝlðaÞ � slÞi:
This expression is, of course, only valid for unbiased

estimators. We use the log of the covariance matrix to

asses the quality of the estimator because it determines, to

a large extent, the mutual information between the noisy

neuronal responses, a, and the stimulus, s: the smaller the

determinant of the covariance matrix, the larger the
mutual information [3]. (Strictly speaking, this result

applies only when the neurons are uncorrelated. We be-

lieve it applies also to correlated neurons, as long as the

determinant of the covariance matrix is small. In any

case, it is a good starting point.)

To compute the covariance matrix, we take a per-

turbative approach: we linearize Eq. (2) around a point

on the attractor, compute the trajectories analytically,
and find the approximate final position on the attractor

given the initial condition. A difficulty arises because,

unlike point (0-dimensional) attractors, there is not any

unique point on theM-dimensional attractor to linearize
around. Because of this nonuniqueness, for now we

perturb around an arbitrary point, say a ¼ gð~sÞ. In
principle it does not matter what we choose for ~s, so
long as it is close to the starting point, að0Þ. However, as
we will see below, there is one especially convenient

choice for ~s.
Letting

aðtÞ ¼ gð~sÞ þ daðtÞ; ð5Þ

inserting Eq. (5) into Eq. (2) and keeping only linear

terms, we find that daðtÞ evolves according to
dda
dt

¼ Jð~sÞ � da; ð6Þ
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where J is the Jacobian evaluated on the attractor,

Jijð~sÞ �
oHiðgð~sÞÞ
ogjð~sÞ

� dij; ð7Þ

dij is the Kronecker delta, and we are using standard

dot-product notation: the ith component of J � da isP
j Jijdaj.
Eq. (6) has the solution

daðtÞ ¼ expðJð~sÞtÞ � dað0Þ: ð8Þ
To cast Eq. (8) in a more useful form, we re-express J
using of its eigenvector expansion,

Jð~sÞ ¼
X
k

kkð~sÞvkð~sÞvykð~sÞ;

where vkð~sÞ is the eigenvector of Jð~sÞ with eigenvalue
kkð~sÞ and vykð~sÞ is the adjoint eigenvector, chosen so that
vkð~sÞ � vylð~sÞ ¼ dkl. In terms of these eigenvectors and ei-

genvalues, Eq. (8) becomes

daðtÞ ¼
X
k

expðkkð~sÞtÞvkð~sÞvykð~sÞ � dað0Þ: ð9Þ

Since Eq. (2) admits an attractor, M of the eigen-

values are zero––these correspond to perturbations

along the attractor––and the rest are negative. For

convenience, we rank the eigenvectors in order of

decreasing eigenvalue, so vkð~sÞ and vykð~sÞ, k ¼ 1; . . . ;M ,
are the eigenvectors and adjoint eigenvectors whose ei-

genvalues are zero. (Interestingly, the first M eigenvec-
tors, vk, can be expressed in terms of g: combining Eqs.

(3) and (7), it is not hard to show that vkðsÞ ¼ oskgðsÞ.) In
the limit that t ! 1, the only terms in Eq. (9) that
survive are the ones with kk ¼ 0; we thus have

lim
t!1

daðtÞ ¼
XM
k¼1
vkð~sÞvykð~sÞ � dað0Þ: ð10Þ

The value of dað1Þ given in Eq. (10) tells us the final
point on the attractor. Knowing dað1Þ would allow us
to find ŝ in terms of ~s. However, it is more convenient to
choose ~s so that dað1Þ ¼ 0, because in that case, ŝ ¼ ~s.
The condition that dað1Þ ¼ 0 is that vykðŝÞ � dað0Þ ¼ 0
for k ¼ 1; . . . ;M . Using Eqs. (4) and (5) to express dað0Þ
in terms of fðsÞ and NðsÞ, and replacing ~s with ŝ, this
condition translates into M equations,

v
y
k ð̂sÞ � ½fðsÞ þNðsÞ � gðŝÞ� ¼ 0 ð11Þ
for k ¼ 1; . . . ;M .
To find ŝ in terms of s, we let ŝ ¼ sþ ds; term by term,

this means that ŝk ¼ sk þ dsk. Expanding Eq. (11) to first
order in ds, we arrive at the set of equations

vykðsÞ �NðsÞ þ v
y
kðsÞ � ½fðsÞ � gðsÞ�

þ
X
l

dsloŝl v
y
kðŝÞ � ½fðsÞ

�
þNðsÞ � gðŝÞ�

�
ŝ¼s

¼ 0: ð12Þ

If the term vykðsÞ � ½fðsÞ � gðsÞ� does not vanish for all s,
then, for some s, ds will be nonzero in the limit that the
noise goes to zero, and the network will produce biased
estimates. Conversely, if it does vanish, then the network

estimator will be unbiased. We assume an unbiased

estimator (a condition that must be checked for indi-

vidual networks), which requires that

vykðsÞ � ½fðsÞ � gðsÞ� ¼ 0 ð13Þ
for k ¼ 1; . . . ;M . If Eq. (13) is satisfied, then Eq. (12)
implies that, for small N, ds � N. Thus, the term
dsloŝlv

y
kðsÞ �NðsÞ that appears in Eq. (12) is OðN2Þ and

can be ignored. With this simplification, we find that ds
is given by

dsk ¼
X
l

½vykðsÞ � oslfðsÞ�
�1
v
y
lðsÞ �NðsÞ: ð14Þ

In this expression, and in what follows, we are using a

shorthand notation for the inverse of a matrix:

½Akl��1 � ½A�1�kl. Thus, ½v
y
kðsÞ � osl fðsÞ�

�1
is the klth com-

ponent of the inverse of the matrix vykðsÞ � osl fðsÞ. To
derive Eq. (14) we used ðoslv

y
kÞ � ½f � g� � v

y
k � oslg ¼

�vyk � oslf, which follows from Eq. (13).
Using Eq. (14), it is straightforward to compute the

covariance matrix that determines the error in the esti-

mate of the angles, and we find that

hdskdsli ¼ osk fðsÞ �
X
ij

v
y
i ðsÞ½vyi ðsÞ � RðsÞ � vyjðsÞ�

�1

 "

v
y
jðsÞ
!

� osl fðsÞ
#�1

;

where RðsÞ is the noise covariance matrix,
RðsÞ � hNðsÞNðsÞi:
Because we now have two covariance matrices, R and

hdsdsi, we will consistently refer to R as the noise
covariance matrix and hdsdsi simply as the covariance
matrix.

As discussed, above, our measure of the quality of the

estimator is the determinant of the covariance matrix.

To find the value of vyk that minimizes this determinant,

we use the relation ðd=dxÞlog detA ¼ TrfA�1 � dA=dxg
where Tr denotes trace. After straightforward, but te-

dious, algebra, we find that

d logdethdsdsi
dvyk

¼ 2
X
i

R � vyi ½vyi � R � vyk�
�1

h
� ½osk f � v

y
i �
�1
osif
i
: ð15Þ

The determinant of the covariance matrix is minimized

when the right hand side of Eq. (15) is zero. This occurs

when

vyk / R�1 � osk f; ð16Þ
at which point the covariance matrix simplifies to

hdskdsli ¼ osk f � R�1 � oslf
� ��1

:
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Thus, whenever Eqs. (13) and (16) are satisfied, the
nonlinear recurrent network given in Eq. (2) leads to a

covariance matrix such that

dethdsdsi ¼ 1

det osfðsÞ � R�1ðsÞ � osfðsÞ
� � :

The above analysis provided us with the best network

estimator within the class of attractor networks,

assuming the noise is small. How good is this network,

and how small must the noise be? To answer these
questions, we use the fact that the lower bound on the

determinant of the covariance matrix is given by the

inverse of the Fisher Information [5],

dethdsdsiP
1

det I
; ð17Þ

where I is the Fisher information,

Ikl ¼


� o2

oskosl
log Pðaðt ¼ 0ÞjsÞ

�
: ð18Þ

Eq. (17) is the multi-dimensional analog of the Cram�er-
Rao bound.

To compute the Fisher information, Eq. (18), we need

to know the distribution of the noise; i.e., we need to

know the explicit form of P ðað0ÞjsÞ. Let us consider two
types of noise: Gaussian with an arbitrary correlation
matrix, for which

P ðað0ÞjsÞ ¼
exp � ðað0Þ � fðsÞÞ �R�1ðsÞ � ðað0Þ � fðsÞÞ=2

� �
½ð2pÞNdetRðsÞ�1=2

ð19Þ
and Poisson with uncorrelated noise, for which

P ðað0ÞjsÞ ¼
Y
i

fiðsÞaið0Þe�fiðsÞ

aið0Þ!
: ð20Þ

In Eq. (19), ai is firing rate, while in Eq. (20), ai is the
number of spikes in an interval. For the Poisson distri-

bution the mean value of að0Þ is f, and the noise
covariance matrix is given by

ðaið0Þ
�

� fiÞðajð0Þ � fjÞ
�
Poisson

¼ fidij � Rij;

where the subscript ‘‘Poisson’’ indicates an average over
the probability distribution given in Eq. (20). Note that

we are using the symbol R for the noise covariance

matrix of both the Gaussian and Poisson distributions;

which distribution we mean should be clear from the

context.

The Fisher information, Eq. (18), for the two cases is

given by [1]

Ikl;Gaussian ¼ osk f � R�1 � osl f þ
1

2
TrfR�1 � oskR � R�1 � oslRg;

ð21aÞ

Ikl;Poisson ¼ osk f � R�1 � oslf: ð21bÞ
The trace term in Eq. (21a) is a nonnegative definite
matrix with respect to the indices k and l, as is the first
term on the right hand side of Eq. (21a). Thus,

det½IGaussian�P det½osf � R�1 � osf�;
det½IPoisson� ¼ det½osf � R�1 � osf�:

For noise in which the noise covariance matrix, R,

depends on the stimulus, s, the network does not appear
to reach the Cram�er-Rao bound. However, for reason-
able noise structures, it turns out that the second term in
Eq. (21) vanishes as the noise goes to zero. Consider, for

example, a covariance matrix in which the noise is

modeled as an overall multiplicative term, which allows

us to write R ¼ �bR where bR is independent of � and �
vanishes as the noise vanishes. With this change of

variable, Eq. (21a) becomes

Ikl;Gaussian ¼ ��1osk f � bR�1 � oslf

þ 1
2
TrfbR�1 � osk bR � bR�1 � osl bRg:

As the noise, �, goes to zero, the first term dominates
and we recover the Cram�er-Rao bound. For this to
happen, we must have

� � kosk f � bR�1 � osl fk
kTrfbR�1 � osk bR � bR�1 � osl bRgk ;

where k � k denotes a norm over the indices k and l (the
details of the norm are not important; we are interested
only in scaling with the number of neurons). The term in

the denominator, the trace term, typically scales as N ,
the size of the noise covariance matrix. The scaling of the

term in the numerator depends on the correlational

structure. For uncorrelated noise, the numerator scales

as osk f � oslf, which is OðNÞ. In this regime, the factor of N
in the numerator and denominator cancel, and the net-

work estimate is comparable to the Cram�er-Rao bound
whenever � � Oð1Þ. For correlated noise, however, the
numerator typically asymptotes to a constant for large N
(see Appendix A). Thus, for noise that is correlated and

depends on the stimulus, the network does not reach the

Cram�er-Rao bound unless � � Oð1=NÞ. Such noise is
much smaller than is observed in practice, indicating

that networks in the class considered here can be sub-

optimal.
4. Stimuli with variable reliability

The analysis in the previous section gave us an opti-

mal network for fixed tuning curves and noise. In the

real world, however, stimuli arrive with varying reli-

ability: visual cues, for example, are more reliable in
bright light than in dim light. Being able to deal with this

situation is a difficult, yet critical, problem, because

more than one cue may be available for inferring the
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value of perceptual variables. For instance, we often
locate objects on the basis of their images and sounds,

perceive the 3D structure of objects from binocular vi-

sion, extract shape from shading, determine structure

from motion and perspective, and infer the position of

our limbs from their image and proprioceptive feedback.

Importantly, we perform these tasks accurately even

though the reliability of any one of the cues can vary

over a broad range.
Can a single network be optimal when the reliability

of the cues is variable? The answer, of course, depends

on how variability is encoded, but a reasonable

assumption is that it is encoded in firing rate; that is, in

the amplitude of the tuning curves, fðsÞ. The question we
address here is: if tuning curves are scaled by a constant

factor to reflect the reliability of the cues, can the net-

work still perform optimally?
Let us consider a network in which several stimuli are

encoded in hills of activity, and the noise among dif-

ferent hills is independent; networks of this type were

shown by Deneve et al. [7] to be able to perform a broad

range of computations optimally. In this type of net-

work, the tuning curve, fðsÞ, is concatenated into p
tuning curves, fðsÞ ¼ ðf1ðsÞ; f2ðsÞ; . . . ; fpðsÞÞ, one for each
hill of activity (typically, p ¼ M , but this is not neces-
sarily the case). To mimic the variable reliability, we

allow both the amplitudes of the individual tuning

curves and the associated noise to be scaled. Given this

scaling, the network is initialized via a slight modifica-

tion of Eq. (4),

að0Þ ¼ ðc1f1ðsÞ þ b1N1ðsÞ; c2f2ðsÞ þ b2N2ðsÞ; . . . ; cpfpðsÞ
þ bpNpðsÞÞ:

The independence of the noise among different hills
implies that hNiNji ¼ 0 if i 6¼ j. Assuming that a net-
work exists that is optimal when ci ¼ bi ¼ 1, we would
like to know whether the same network is also optimal

when ci and bi are not equal to 1, and if so, how bi

should depend on ci to achieve optimality.
The two conditions for optimality are given in Eqs.

(13) and (16). Consider first Eq. (13). In terms of the

scaled, concatenated tuning curves, this equation be-
comes

vykðsÞ � ½cif iðsÞ � giðsÞ� ¼ 0 ð22Þ

for i ¼ 1; . . . ; p. We will assume that Eq. (22) holds for
all ci; this would be the case, for instance, if v

y
kðsÞ were an

odd function of its components and f iðsÞ and giðsÞ were
even functions. With this assumption, the network is

optimal if Eq. (16) is satisfied. When ci ¼ bi ¼ 1, Eq.
(16) can be written

hNNi � vyk ¼ ckosk f; ð23Þ

where the ck are a set of arbitrary constants and we used
R ¼ hNNi. Since the noise associated with the different
tuning curves are independent, Eq. (23) breaks up into p
equations, one for each set of tuning curves,

hNiNii � vyk ¼ ckosk f i: ð24Þ
Scaling f i by ci and Ni by bi, Eq. (24) becomes

b2i hNiNii � vyk ¼ cickosk f i: ð25Þ
Eq. (25) is satisfied, and the network is optimal for

tuning curves of arbitrary height, if bi ¼ c1=2i . In other

words, if the noise in the input to a network scales as the

square root of the firing rate, then that network will be

optimal, independent of the amplitude of the input. This

is an important result, since the square root scaling is
exactly what one finds for neurons that fire with Poisson

statistics. Thus, Poisson statistics are in some sense

optimal, at least for the kinds of networks we considered

here, and nearly Poisson statistics, as are typically ob-

served in cortical neurons [9,14,17], are nearly optimal.

This result confirms what we found in our previous

study using computer simulations [7], which is that basis

function networks exhibiting attractor dynamics can
perform optimal estimation, and they can do so even

when cues arrive with varying degrees of reliability. This

result applies to any set of variables linked to one an-

other through a nonlinear mapping and coded in the

noisy activity of a population of neurons. What we

showed here is that a network must exist that computes,

from the noisy population codes, the optimal estimate of

these variables, and does so regardless of their reliabil-
ity––so long as the noise is Poisson and the reliability is

encoded in firing rate. In such networks, the basis

functions enforce the nonlinear mapping between the

variables and the attractor dynamics ensures optimal

statistical performance.
5. Improved efficiency network

For correlated, stimulus-dependent noise, the class of

networks considered in the previous sections reach the

Cram�er-Rao bound only when the noise is extremely
small, on the order of 1=N . Are there networks that can
do better? The analysis of Section 2 indicates that there

are; all that is required is an optimal estimator, ŝðaÞ, and
an attractor network whose time evolution preserves its
inverse, aðŝÞ. The surface aðŝÞ may be highly curved, but
in principle a network exists whose trajectories remain

within the subspace aðŝÞ if they start within that sub-
space, as in Fig. 2.

To understand the properties of such a network, we

consider the simple case of extracting the value of a

stimulus that is encoded in the mean firing rate of a

population of correlated neurons. For this case, we let
the stimulus be one-dimensional––we refer to it simply

as s––and we let ai be the firing rate of the ith neuron.
For the conditional distribution at time t ¼ 0, P ðað0ÞjsÞ,
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we use the Gaussian distribution given in Eq. (19). (Note
that the Gaussian distribution allows negative firing

rates. While this is unrealistic, we use it because a more

realistic probability distribution would greatly compli-

cate the analysis without changing the underlying re-

sult.) In a slight departure from the previous section, we

let the tuning curves be linear rather than hills of

activity; that is, fiðsÞ ¼ constant� s. For convenience,
we set the constant to one, so fiðsÞ ¼ s. We let the noise
covariance have the form

Rij ¼ r2ðsÞ½dij þ qð1� dijÞ�: ð26Þ

With this choice for the noise, the stimulus-dependent

variance, r2, is the same for each neuron, and the
pairwise correlation coefficient, q, is the same for each
pair. For simplicity, we let r2 be proportional to s:
r2ðsÞ ¼ as. This would be the case for Poisson-like
neurons, in which the error in the estimate of firing rate

increases with firing rate; for truly Poisson neurons, a
would be one. The correlations in Eq. (26) could come

from common input.

The Fisher information, Eq. (21a), is given by (see

Appendix B)

I ¼ 1
as

N
Nq þ 1� q

þ N
2s2

; ð27Þ

where as usual, there are N neurons. The second term in
Eq. (27) corresponds to the trace term in Eq. (21a). As

discussed in the previous section, in the large N limit this
term is negligible compared to the first term only if the

noise, a, is extremely small; for this example, it must be
much smaller than 2s=Nq. Thus, unless a � 2s=Nq, the
class of networks derived in the previous section will do
poorly compared to the Cram�er-Rao bound.
To see how to construct a more efficient network, we

compute the maximum likelihood estimator. This is

done by maximizing log½Pðað0ÞjsÞ�, the log likelihood of
the conditional distribution. A straightforward calcula-

tion (see Appendix B) yields

d logPðað0ÞjsÞ
ds

¼ N
2sr2

r2
"

þ s2 � �a2

Nq þ 1� q
� da2

1� q

#
; ð28Þ

where �a � N�1P
i aið0Þ is the initial mean and

da2 � N�1P
i a
2
i ð0Þ � �a2 is the initial variance.

Setting the right hand side of Eq. (28) to zero and

solving for s in terms of a yields the maximum likelihood
estimator, which we denote ŝMLðaÞ. What does the sur-
face aðŝMLÞ look like; i.e., what is the shape of the sur-
face in activity space that satisfies d logP ðajsÞ=ds ¼ 0?
To answer this, it is convenient to make the orthogonal
change of variables

að0Þ ¼
XN�1

k¼0
xkuk; ð29Þ
where

u0 ¼ N�1=2ð1; 1; . . . ; 1Þ; ð30Þ
i.e., u0i ¼ N�1=28i, and the uk are orthogonal: uk � ul ¼ dkl.
With this change of variables, d logPðað0ÞjsÞ=ds ¼ 0
when

x20
Nq þ 1� q

þ
XN�1

k¼1

x2k
1� q

¼ Nasþ N
Nq þ 1� q

s2: ð31Þ

The surface associated with Eq. (31) is thus cigar

shaped, with the long axis pointing in the u0 direction
and an aspect ratio of ½ðNq þ 1� qÞ=ð1� qÞ�1=2 � N 1=2.
Thus, when N is large, the surface is extremely long and
thin. This makes the curvature very tight, so it is not

surprising that the linear approximation breaks down

and the network derived using linear perturbation does

not provide a good estimate unless a � 1=N .
To understand how to derive a better network esti-

mator, we need an expression for the maximum likeli-
hood estimator. Setting the right hand side of Eq. (28) to

zero and using the relation r2ðsÞ ¼ as, we see that, in the
large N limit, this estimator is given by

ŝMLðaÞ ¼
da2

að1� qÞ : ð32Þ

As we show in Appendix B, in the large N limit, ŝMLðaÞ is
unbiased and its variance is 2s2=N , the same as the
Cram�er-Rao bound. Thus, the estimator derived from
maximum likelihood is efficient, in the sense that it

reaches the Cram�er-Rao bound. That ŝMLðaÞ is efficient
is a peculiarity of high dimensional spaces: for corre-

lated variables, in the large N limit, the mean has a
variance that is Oð1Þ while the variance has a variance
that is Oð1=NÞ. The maximum likelihood estimator
given in Eq. (32) makes use of this fact, along with the
fact that the variance scales with the mean. This result

should dispel the myth that averaging large numbers of

correlated neurons does not improve the estimate of

correlated firing rates [14,21]––it does improve the esti-

mate; one just has to compute the variance, not the

mean.

Is there a neuronal network that can estimate s with a
variance equal to the minimum, 2s2=N? In principle, yes,
but it requires nonlinear synapses. For instance, con-

sider the set of network equations

s
da

dt
¼ u? � ½a� u0u0 � a�

u? � a
a � a� ðu0 � aÞ2

� u0u0 � a

where u0 is given in Eq. (30) and u? is any vector

orthogonal to u0, normalized so that u? � u? ¼ 1. It is
not hard to show that this equation admits a line

attractor. In particular, if að0Þ ¼ fðsÞ þNðsÞ, then a
asymptotes to the point ðNda2Þ1=2u? as t ! 1. Once the
network has asymptoted to that point, da2 is known,
and thus so is the maximum likelihood estimate of s,
ŝMLðaÞ, via see Eq. (32).
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Unfortunately, it is not clear that such a network is
biologically plausible. Nor is it clear that such a network

would generalize: we were able to find an analytic

expression for ŝMLðaÞ, and thus a network that would
compute it, only because we chose a very simple model.

For more realistic, and thus more complex models, we

do not know how easily an estimator can be found.

Nevertheless, it may be possible to train an attractor

network so that it is trajectories are confined to the
highly curved subspaces that arise when the covariance

matrix depends on the stimulus.
a1

a2

line attractor

Fig. 3. Snapshots of deterministic (black) and probabilistic (red) tra-

jectories in activity space. With no internal noise, the network evolves

noise-free and follows the black points toward the line attractor. With

internal noise, trajectories have a random component, as indicated by

the expanding red blobs.
6. Discussion

The brain has a hard job: it must store and mani-

pulate vast quantities of information, it must do so
quickly and accurately, and it must do so with under-

lying elements––neurons––that are not very reliable. In

other words, the brain must carry out complex compu-

tations using populations of neurons that never fire

precisely the same way more than once, even on iden-

tical tasks. The question we asked in this paper was: how

can biologically plausible networks carry out these tasks

with as little information loss as possible?
To address this question, we focused on a particular

class of networks: multi-dimensional attractor networks,

which are recurrent networks that relax onto a line or

higher dimensional manifold in activity space. We chose

these networks for several reasons: they are biologically

plausible, in the sense that they mimic the highly

recurrent connectivity seen in cortex [2], there is exper-

imental evidence for the existence of line-attractor net-
works that code for head direction in rats [15,16], and

they can perform a large range of computations [7].

We asked the following question: suppose a multi-

dimensional attractor network is initialized with noisy

input coding for a set of variables, and after initializa-

tion it evolves noise-free. Can the network manipulate

the encoded variables––carry out a computation––while

extracting all the information contained in the noisy
input? What we showed analytically is that the answer is

yes, provided only that the noise in the input is small.

The size of ‘‘small’’ turns out to depend on the structure

of the noise. If the noise among the different input

neurons is uncorrelated, or if it is correlated but inde-

pendent of the encoded variables, then ‘‘small’’ is with

respect to Oð1Þ. If the noise is correlated and depends on
the encoded variables, then ‘‘small’’ is with respect to
Oð1=NÞ where N is the number of neurons. In the latter
case, there may be a network that does compute opti-

mally; indeed, the analysis in Sections 2 and 5 suggests

that there is. However, we were not able to prove the

existence of such an optimal network in general.

Constructing networks that can perform optimally

for fixed input is valuable, but in the real world input
often arrives with varying degrees of reliability. For
example, if input codes for the position of an object on

the retina, that input will be reliable in bright light but

unreliable in dim light. Perhaps surprisingly, it turns out

that the networks we considered can perform optimally

when cues that arrive with varying degrees of reliability,

so long as two conditions are met: reliability is coded in

the amplitude of the activity (e.g., the firing rate), with

more reliable cues exhibiting large amplitudes, and the
variance in the noise is proportional to the mean activ-

ity. These are both characteristic of cortical neurons, for

which the variance in spike count is approximately

proportional to the mean [9,14,17]. Thus, cortical net-

works may be able to make use of the natural variability

in firing patterns to perform optimal computations.

There are two caveats to this study. The first is that

multi-dimensional attractors are structurally unstable,
in the sense that small perturbations in network

parameters tend to cause systematic drift along the

attractor [18,20]. If the drift is too fast, then the network

can no longer act as an optimal estimator. However, if

the drift is slow relative to the relevant timescale (often

only a few hundred ms, but sometimes much longer),

then it can be ignored. In addition, Wu and Amari [19]

showed recently that the drift can be stabilized by suit-
able synaptic facilitation.

The second caveat is that we considered noise-free

evolution. In essence, we ignored internal sources of

noise that are known to exist in biological networks,

such as synaptic failures and stochastic ion channels.

Thus, the deterministic network evolution, which we

considered here, should be thought of as an approxi-

mation to the true probabilistic evolution. If the internal
noise is sufficiently small and/or well behaved, however,

networks that are optimal for noise-free evolution

should also be near-optimal for noisy evolution, as

indicated in Fig. 3.
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We have shown that biologically plausible recurrent
networks can perform optimal computations with noisy

population codes, at least for uncorrelated or stimulus-

independent noise in the input and for noise-free evo-

lution. This is a first step toward understanding how

spiking networks, which do not evolve noise-free, can

perform optimal computations, and how they can do so

when the noise is correlated and/or stimulus-dependent.
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Appendix A. Scaling of the Fisher information

The size of the noise for which the perturbatively

derived network reaches the Cram�er-Rao bound de-
pends on how the first term in the Fisher information

(Eq. (21a)) scales with N , the number of neurons. The
second term in Eq. (21a) is, if nonzero, proportional to

N , so unless the first term also scales as N , the second
will dominate. For correlated noise, the first term typi-

cally asymptotes to a constant as N becomes large. We
will not prove this, as there are counterexamples [1].

Instead, we will motivate it using generic arguments,

then illustrate those arguments with an example.

For simplicity, we consider the one-dimensional case,

so the stimulus, s, is a scalar variable. Then, the first
term in Eq. (21a), which we denote I1, is given by

I1 ¼ osf � R�1 � osf:
Our main tool for studying I1 is the eigenvalue expan-
sion of R�1,

R�1 ¼
X
k

ukuk

kk
; ðA:1Þ

where the uk are the eigenvectors of R, chosen to be

orthogonal (uk � ul ¼ dkl), and the kk are the corre-

sponding eigenvalues. Using Eq. (A.1), I1 becomes

I1 ¼
X
k

ðosf � ukÞ2

kk
: ðA:2Þ

To make a crude estimate of scaling with N , we make
the following observations: When there are correlations,

many of the entries in Rij are nonzero; consequently, the

kk scale as N . Because of the orthogonality conditions,
the individual terms in uk scale as N�1=2. Since there are
N terms in the dot-product, osf � uk, it scales as N 1=2 and
its square scales as N . The factors of N in the numerator
and denominator thus cancel, and I1 scales as
I1 ¼
X
k

nk;

where nk is Oð1Þ. Although there are N terms in the sum,
only a finite number of them contribute. This is because

osfi is typically a smooth function of i, while the higher
order eigenvectors are rapidly varying. Thus, I1 is Oð1Þ.
Let us see how this works for the particular example

of a translation invariant noise covariance matrix,

Rij ¼ Rkl if i� j ¼ k � l. Typically, Rij depends smoothly

on the difference i� j, except when i� j ¼ 0 (as Rii is the
variance). We thus write

Rjl ¼ r0djl þ rj�l;

where rj is a smooth function of j. The eigenvectors of
Rjl are exponentials; letting ukj be the jth component of
uk, we have:

ukj ¼
e2pijk=N

N 1=2
:

Consequently, the eigenvalues are given by

kk ¼ r0 þ NrðkÞ; ðA:3Þ

where rðkÞ is the discrete Fourier transform of rj,

rðkÞ ¼ 1
N

X
j

rje2pijk=N :

Define also osf ðkÞ as the discrete Fourier transform of
osfiðsÞ,

osf ðkÞ ¼
1

N 1=2
osf � uk ¼

1

N

X
j

osfje2pijk=N : ðA:4Þ

Both rðkÞ and osf ðkÞ are Oð1Þ.
Combining Eqs. (A.3) and (A.4) with (A.2), we arrive

at

I1 ¼
X
k

josf ðkÞj2

r0=N þ rðkÞ : ðA:5Þ

In the limit of large N , we can replace the sum in Eq.
(A.5) by an integral, yielding

I1 ¼
Z
dk

josf ðkÞj2

r0=N þ rðkÞ

which is clearly independent of N in the limit N ! 1.
Although we have not proved that I1 is independent

of N as N ! 1 in general (as, in fact, it is not), we have
shown one common correlational structure for which I1
does asymptote to a constant. In addition, using the

eigenvector expansion for the covariance matrix, we

argued that this is a relatively robust feature. It requires
only that the eigenvalues of R scale as N and that the dot
product, osf � uk, makes a nonnegligible contribution to
I1 only for a finite set of k, even as N goes to 1.
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Appendix B. Correlated neurons with firing rate propor-
tional to the mean

In this Appendix we fill in many of the missing steps
in Section 5. We (1) compute the Fisher information for

a Gaussian distribution with noise covariance matrix

given in Eq. (26), (2) compute the derivative of the log

likelihood, Eq. (28), and (3) show that the maximum

likelihood estimator is unbiased and efficient (i.e., it

reaches the Cram�er-Rao bound).
All of these results rely on the properties of the noise

covariance matrix. To streamline our calculations, we
begin by expressing this matrix in terms of its eigen-

vectors and eigenvalues. We start by rewriting slightly

Eq. (A.1) to explicitly take into account the overall

factor r2,

R�1 ¼ r�2ðsÞ
X
k

ukuk

kk
; ðB:1Þ

where R is given in Eq. (26), the uk are the orthogonal

eigenvectors of R=r2, and the kk are the corresponding

eigenvectors. (This is the same basis chosen in Eq. (29),

so u0 is given by Eq. (30).) It is not hard to show that

there are two distinct eigenvalues, Nq þ 1� q, which
appears once and 1� q, which appears N � 1 times. In a
slight abuse of notation, we define

k0 � Nq þ 1� q; ðB:2aÞ
k1 � 1� q: ðB:2bÞ
Since fiðsÞ ¼ s 8i, fðsÞ can be expressed in terms of u0 as

fðsÞ ¼ sN 1=2u0: ðB:3Þ
We can now compute the Fisher information, Eq.

(21). Recalling that r2ðsÞ ¼ as, so that osR ¼ s�1R, and
using Eq. (B.3) for fðsÞ, we have

I ¼ Nu0 � R�1 � u0 þ
1

2s2
TrfR�1 � R � R�1 � Rg:

Using Eq. (B.1) for R�1, the orthogonality conditions on
the vk, and the relation TrfIg ¼ N where I is the identity
matrix (not to be confused with the Fisher information),

it is trivial to show that the Fisher information reduces

to the expression in Eq. (27).

To derive the maximum likelihood estimator, we dif-

ferentiate logPðajsÞ with respect to s, where P ðajsÞ is
given in Eq. (19). (We use PðajsÞ rather than Pðað0ÞjsÞ for
clarity.) Denoting differentiation with a prime and again
applying the relation ðd=dxÞlog detA ¼ TrfA�1dA=dxg,
we have

d logPðajsÞ
ds

¼ f 0ðsÞ � R�1 � ðfðsÞ � aÞ þ 1
2
ðfðsÞ � aÞ

� R�10 � ðfðsÞ � aÞ þ 1
2
TrfR�1 � R0g: ðB:4Þ

Using R�10 ¼ �s�1R�1, f 0ðsÞ ¼ s�1fðsÞ and, as above,
R0 ¼ s�1R and TrfIg ¼ N , Eq. (B.4) becomes
d logPðajsÞ
ds

¼ 1
2s

N
�

þ ðfðsÞ þ aÞ � R�1 � ðfðsÞ � aÞ
�
:

ðB:5Þ
Using Eq. (B.1), it is straightforward to show that R can

be recast in the form

R�1 ¼ r�2ðsÞ u0u0
1

k0

��
� 1

k1

�
þ I

k1

�
: ðB:6Þ

Inserting Eq. (B.6) into (B.5) and performing a small

amount of algebra, we arrive at

d logPðajsÞ
ds

¼ N
2sr2

r2
"

þ fðsÞ � fðsÞ � a � a
Nk1

þ 1

k0

�
� 1

k1

�
ðfðsÞ � u0Þ2 � ða � u0Þ2

N

#
:

ðB:7Þ

To simplify this expression, as in the main text we define
�a ¼ N�1P

i ai and da2 ¼ N�1P
i a
2
i � �a2. Then, using

these definitions and Eq. (30) for u0, we have f � f ¼ Ns2,
f � u0 ¼ N 1=2s, a � u0 ¼ N 1=2�a, and a � a ¼ Nðda2 þ �a2Þ.
With these relations, Eq. (B.7) becomes

d logPðajsÞ
ds

¼ N
2sr2

r2
"

þ s2 � �a2

k0
� da2

k1

#
: ðB:8Þ

When the definitions of k0 and k1 (Eq. (B.2)) are applied
to Eq. (B.8), that equation becomes identical to the

expression in Eq. (28).
Finally, we show that the maximum likelihood esti-

mate, Eq. (32), is unbiased and efficient when N is large.
We start with the mean,

hŝMLðaÞi ¼
1

að1� qÞ
1

N

X
i

ha2i i
"

� 1
N 2
X
ij

haiaji
#
;

where the angle brackets denote an average with respect

to the Gaussian probability distribution given in Eq.

(19). Because the distribution is Gaussian, the averages
are trivial, and we have

hŝMLðaÞi ¼
1

að1� qÞ
1

N

X
i

Rii

"
� 1
N 2
X
ij

Rij

#
:

Using Eq. (26), the first term inside the brackets is r2ðsÞ
and the second term is r2ðsÞ½q þ ð1� qÞ=N �. Thus, in the
large N limit, the terms inside the brackets reduce to
r2ðsÞð1� qÞ, and

hŝMLðaÞi ¼
r2ðsÞ

a
:

Finally, using r2ðsÞ ¼ as, we see that hŝMLðaÞi ¼ s, so the
maximum likelihood estimator is unbiased.
The variance of ŝMLðaÞ, denoted hdŝ2MLðaÞi �

hŝMLðaÞ2i � hŝMLðaÞi2, can be computed in a similar
manner,
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hdŝ2MLðaÞi ¼
1

a2ð1� qÞ2
1

N 2
X
ij

ha2i a2j i
h"

� RiiRjj

i
� 2
N 3
X
ijk

ha2i ajaki
h

� RiiRjk

i
þ 1
N 4
X
ijkl

½haiajakali � RijRkl�
#
:

Using haiajakali ¼ RijRkl þ RikRjl þ RilRjk for any i, j, k,
and l, this expression becomes

hdŝ2MLðaÞi ¼
2

a2ð1� qÞ2
1

N 2
X
ij

R2ij

"
� 2
N 3
X
ijk

RijRik

þ 1
N 4
X
ijkl

RijRkl

#
:

Using Eq. (26), we find that, to lowest order in 1=N , the
terms inside the brackets add to r4ðsÞð1� qÞ2=N . Con-
sequently,

hdŝ2MLðaÞi ¼
2r4

Na2
:

Finally, using r2 ¼ as, we arrive at

hdŝ2MLðaÞi ¼
2s2

N
;

which is the inverse of the Fisher information, Eq. (27),
in the limit of large N .
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