
are positive for the MuSC marker Pax7 (Fig. 4, A

andB, and fig. S11). In contrast, only 6�of doublets

in plastic microwells have this gene expression

pattern, suggesting that a pliant substrate enables

MuSC expansion. Although gene expression data

are suggestive, an in vivo functional assay is nec-

essary to conclude definitively that a self-renewal

division event occurred in culture.

We show conclusively that stem cell self-

renewal occurs using an in vivo functional assay.

The transplantation of MuSCs at a population level

demonstrates engraftment (Figs. 2 and 3) but does

not definitively show that self-renewal divisions

occurred in culture, because the population could

include nondividing cells that maintained stem

cell properties. Accordingly, in this experiment, we

plated MuSCs in hydrogel microwell arrays and

obtained images immediately after plating and 2

to 3 days after culturing to identify microwells

that contained only one doublet. Doublets from

5 microwells were picked and pooled using a

micromanipulator, and 10 cells total were trans-

planted per mouse (Fig. 4A). A detectable BLI

signal indicates engraftment resulting from a self-

renewal division event that must have occurred in

at least one of the five transplanted doublets.

Notably, 25� (3 of 12) of mice transplanted with

doublets cultured on soft substrates demonstrate

detectable engraftment (Fig. 4C) and contribution

to regenerating myofibers (Fig. 4D, top), pro-

viding in vivo functional evidence that MuSC

self-renewal division events occur in culture on

pliant substrates. In contrast, doublets grown on

rigid plastic microwells never exhibit engraftment

after transplantation (0 of 14) (Fig. 4C), indicating

that their regenerative potential is rapidly lost.

MuSC self-renewal on pliant hydrogel occurs

even after multiple divisions. We transplanted

clones that arose from a single cell that under-

went 3 to 5 divisions. Remarkably, 12� (1 of 8)

of mice transplanted with a single clone show en-

graftment, demonstrating that MuSC self-renewal

capacity is retained on pliant substrates even after

multiple divisions (Fig. 4, C and D, bottom).

Here, we provide insight into the potency of

tissue rigidity, a biophysical property of the skel-

etal muscle microenvironment, on stem cell fate

regulation. Using a single-cell tracking algorithm

to interrogate MuSC behaviors at the single-cell

level, we demonstrate that soft substrates enhance

MuSC survival, prevent differentiation, and pro-

mote stemness. Functional assays in mice dem-

onstrate conclusively that pliant substrates permit

MuSC self-renewal in culture. Although the un-

derlying mechanisms remain to be elucidated,

we hypothesize that decreased rigidity preserves

stemness by altering cell shape, resulting in cyto-

skeletal rearrangements and altered signaling, as

shown for cell lines (16). Despite the remarkable

retention of stemness in response to a single pa-

rameter, rigidity,we anticipate further enhancement

of stemness through incorporation of additional

biochemical cues into our reductionist platform.

Studies employing biomimetic culture platforms,

such as described here for MuSCs, will broadly

affect stem cell studies by facilitating in vitro prop-

agation while maintaining stemness and the ca-

pacity to regenerate tissues, a critical step toward

the development of cell-based therapies. As an

alternative to embryonic stem cells and iPS cells

that must be directed toward a differentiated fate,

our approach exploits the existence of native

stem cells within tissues that have a well-defined

tissue-specific identity.
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Optimally Interacting Minds
Bahador Bahrami�1�2�3* Karsten Olsen�3 Peter E. Latham�4 Andreas Roepstorff�3

Geraint Rees�1�2 Chris D. Frith2�3

In everyday life, many people believe that two heads are better than one. Our ability to solve
problems together appears to be fundamental to the current dominance and future survival of the
human species. But are two heads really better than one? We addressed this question in the context
of a collective low-level perceptual decision-making task. For two observers of nearly equal
visual sensitivity, two heads were definitely better than one, provided they were given the
opportunity to communicate freely, even in the absence of any feedback about decision outcomes.
But for observers with very different visual sensitivities, two heads were actually worse than the
better one. These seemingly discrepant patterns of group behavior can be explained by a model
in which two heads are Bayes optimal under the assumption that individuals accurately
communicate their level of confidence on every trial.

T
o come to an optimal joint decision, in-

dividuals must share information with each

other and, importantly, weigh that infor-

mation by its reliability (1, 2). It has been well

established that isolated individuals can accurate-

ly weigh information when combining different

sources of sensory information (3�5). Little is

known, however, about how, or even whether, two

individuals can accurately combine information

that they communicate with each other. To inves-

tigate this issue, we examined the behavior of pairs

of individuals in a simple perceptual decision task,

and we asked how signals from the same sen-

sory modality (vision) in the brains of two dif-

ferent individuals could be combined through

social interaction.
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Work on perceptual decision-making has shown

that when combining information from different

senses, individuals have access not just to mag-

nitudes of sensory signals, but also to their prob-

ability distributions, or at least to their means and

variances (3�8). However, this may not be true

for interpersonal communication. Whereas prob-

ability distributions arising from different sensory

modalities are available within an individual’s

brain, it is not clear whether such distributions

can be passed directly to another person or what

types of information can be communicated. To

answer this, we considered four models (9), each

of which proposes that different types of infor-

mation could be communicated, and quantita-

tively compared the predictions of those models

to empirical data in a low-level visual decision-

making task.

The first model proposes that nothing except

the decision about the visual stimulus is com-

municated, and when there is disagreement, the

joint decision is no better than a coin flip (CF

model). This strategy is expected from previous

work on collective decision-making without feed-

back (1�). The secondmodel proposes that nothing

except the decision is communicated, but that pairs

of individuals learn, from trial-to-trial feedback,

which of them is more accurate, so they eventually

use that individual’s decisions [the behavior and

feedback (BF) model]. This model was motivated

by previouswork showing that collective decisions

are dominated by the most competent group mem-

ber in situations where clear feedback about “the

truth” (in our case, the correct answer) is available

(11, 12). The third model, put forward here for the

first time, proposes that confidence, which we de-

fine as an internal estimate of the probability of

being correct (13), is communicated [the weighted

confidence sharing (WCS) model] (9). Finally, the

fourth model proposes that the mean and standard

deviation of the sensory response to the stimulus

about which the decision is made are communi-

cated [direct signal sharing (DSS) model]. This

model is used to account for multisensory inte-

gration within an individual (3, 4) and also for

collective decisions in groups (14). To anticipate

our findings, we determined that the WCS model

was quantitatively consistent with our empirical

data, whereas the other three models were not.

Our empirical data were obtained from pairs

of participants (dyads) who viewed brief visual

displays containing a faint target (contrast oddball;

Fig. 1A) in either the first or second viewing in-

terval (9). We performed a series of four exper-

iments, each of which followed very similar

procedures. Initially, each participant chose the

interval that they thought contained the target,

without consulting the other. Individual decisions

were then shared, and if participants disagreed,

they discussed the matter until they reached a joint

decision. Subsequently, both participants were in-

formed of the correct choice (with the exception

of experiment 4 in which no feedback was given).

Individual and dyad psychometric functions (Fig.

1B, left and middle panels) were fit with a cumu-

lative Gaussian function, from which we extracted

the slope s. The slope provided an estimate of sen-

sitivity (the steeper the slope, the higher the sensi-

tivity). More sensitive observers were, by definition,

more reliable in their estimates of contrast.

Fig� 1� �A) Experimental paradigm. Each trial consisted of two observation intervals. In each interval,
six vertically oriented Gabor patches were displayed equidistantly around an imaginary circle �duration:
85 ms). In either the first or second interval, there was one oddball target that had slightly higher contrast
than all of the others �in this example, upper-left target in interval 1). �B) Two example psychometric
functions and the group average in experiment 1. The proportion of trials in which the oddball was
reported to be in the second interval is plotted against the contrast difference at the oddball location �i.e.,
contrast in the second interval minus contrast in the first). A highly sensitive observer would produce a
steeply rising psychometric function with a large slope. Blue circles, performance of the less sensitive
observer �smin) of the dyad; red squares, performance of the more sensitive observer �smax); and black
diamonds, performance of the dyad �sdyad). The blue and red dashed curves are the best fit to a cumu-
lative Gaussian function ��); the solid black curve is the prediction of the WCS.N= 15 dyads. �C) Predictions of
the four models �see Eqs. 1 to 4). The x axis shows the ratio of individual sensitivities �smin/smax), with values
near one corresponding to dyad members with similar sensitivities and values near zero to dyad members
with very different sensitivities. The y axis shows the ratio of dyad sensitivity to the more sensitive member
�sdyad/smax). Values above the horizontal line indicate communication benefit; in this range the dyad is
better than the more sensitive observer. The red curve, which corresponds to the WCS model, is above the
horizontal line only if smin/smax is larger than ~0.4, reflecting the prediction that communication by WCS is
beneficial only if dyad members have approximately the same competence. The green curve, which
corresponds to the DSS model, never crosses the black horizontal line, so for this model, communication
will invariably be beneficial. The dot-dashed and solid black lines indicate the CF and BF models,
respectively.
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The four models made different predictions

for the relation between the slope of the psycho-

metric function for each individual and the col-

lective dyad; thus, by comparing predicted and

observed dyad slopes, we could distinguish the

models. For each of the four models (9), we com-

puted the predicted dyad slopes, smodel
dyad , in terms of

the individual slopes, s1 and s2, of observers

1 and 2. For the CF model, the predicted dyad

slope is related to the individual slopes by

sCF
dyad ≈

s1 þ s2

2
ð1Þ

for the BF model by

sBF
dyad � maxðs1, s2Þ ð2Þ

for the WCS model by

sWCS
dyad �

s1 þ s2

21�2
ð3Þ

and for the DSS model by

sDSS
dyad � ðs21 þ s22Þ

1�2 ð4Þ

These equations provide upper bounds on per-

formance for each model: For example, Eq. 3

provides the largest possible dyad slope, given that

participants share only confidence. If the dyads

reach that slope, then they areBayes optimal, given

the model assumptions, where by “Bayes optimal”

we mean that participants made decisions that

maximized their probability of being correct, given

their model assumptions.

Fig. 1C shows the predictions (from Eqs. 1 to

4) for the collective benefit (the ratio sdyad/smax)

versus relative sensitivity (smin/smax), where smin

and smax are the minimum (less sensitive) and

maximum (more sensitive) of the individual

slopes, respectively. The models clearly make dif-

ferent predictions, but to distinguish them requires

experiments with a broad range of smin/smax; we

would need to investigate dyad members with

nearly identical performance (smin/smax ~ 1), as

well as those with very different performance

(smin/smax << 1). Experiments 1 and 2 were per-

formed to test the model predictions in different

ranges of smin/smax.

In experiment 1, participants viewed identical

stimuli, and individual sensitivities of the dyad

members were similar (smin/smax > 0.5) (Fig. 2B).

The CF model (Eq. 1 and Fig. 1C, black dot-

dashed line) predicted that dyad sensitivity would

never be higher than that of the better participant.

The BF model (Eq. 2 and Fig. 1C, solid black line)

predicted that dyad sensitivity would be as good as

that of the better participant. In contrast, the WCS

model (Eq. 3 and Fig. 1C, red line) andDSS model

(Eq. 4 and Fig. 1C, green curve) both predicted

that, within the relative sensitivity range tested here

(smin/smax > 0.5), dyad sensitivity would be higher

than that of the better participant.

We found that the dyad slope was significantly

larger than that of the better participant [t(14) =

5.24, p < 10�3, paired t test]. Thus, these data

ruled out both the CF (Fig. 2A; p < 10�5) and BF

(Fig. 2A; p < 10�3) models, for which the dyad

slope can be no larger than that of the better par-

ticipant, and instead favored the sharing models

(p > 0.1), for which the dyad can outperform the

individuals. The sharing models were also able

to accurately predict, via Eqs. 3 and 4, the dyad

slopes on a case-by-case basis (fig. S1). Thus,

communication conferred a significant benefit,

and, at least on this task, two heads did perform

better than one.

Experiment 1 favored the WCS and DSS mod-

els, but was not able to distinguish between them.

For the range of relative sensitivities tested in

experiment 1, the two models made very similar

predictions (Fig. 2B). To distinguish the mod-

els, we sought to study dyads with very differ-

ent individual sensitivities (smin/smax << 1) for

which the WCS model (Fig. 1C, red line) made

a counterintuitive prediction: If one participant’s

sensitivity was no better than ~40� of the other’s

(e.g., smin/smax < 21/2
� 1 ≈ 0.4), then two heads

should doworse than the better one (sdyad/smax<1),

even when individuals accurately communicated

their confidence. In contrast, the DSS model (Fig.

1C, green curve) invariably predicted a benefit

for dyads, consistent with the fact that when sig-

nals are directly available (as in multisensory

integration within a single brain), putting them

together is never worse than either one alone (4).

We tested these predictions in experiment 2.

In randomly chosen trials, we surreptitiously re-

duced one or the other (or both) participants’ sen-

sitivity by adding a substantial amount of noise to

their stimuli (9) without having told the partic-

ipants about this manipulation. The four noise re-

gimes were randomized, so on each trial, noise

was given to both participants (“equal” condition),

to one but not the other (both possibilities com-

bined together as the “unequal” condition), or to

neither participant (“none” condition). For each

participant and dyad, four psychometric functions

(corresponding to the four noise regimes) were

constructed, and the slopes were estimated (fig.

S2). Figure 3 shows that, in equal and none

conditions—in which participants received iden-

tical amounts of noise—robust group benefitswere

obtained [Fig. 3A; for equal condition: t(10) =

2.50, p = 0.03, paired t test; for none condition:

t(10) = 3.38, p = 0.007, paired t test]. This rep-

licated the results of experiment 1. However, in

the unequal condition, dyads did not perform

better than the better participant, and reliable group

benefit was not observed [Fig. 3A; t(21) = 0.68,

p = 0.54, paired t test].

In all three conditions, the results were con-

sistent with the predictions of the WCS model

(Fig. 3B). Importantly, the majority of the data

points for which smin/smax < 0.4 fell below the

black line in Fig. 3D, indicating that, in these

instances, two heads did worse than the better

one. The DSS model, on the other hand, was

rejected in the unequal condition [Fig. 3C; t(21) =

4.52, p < 10�3, paired t test]. Moreover, ran-

domized addition of noise resulted in a wide

range of relative sensitivity, and a highly signif-

icant linear correlation was observed between col-

lective benefit and relative sensitivity [Fig. 3D;

dotted blue line R2 = 0.51, F42,1 = 43.22, p < 10�7]

with a slope (0.6 � 0.09) and intercept (0.74 �

0.05) that were very close to the slope (1/21/2
≈

0.71) and intercept (1/21/2
≈ 0.71) predicted by

the WCS model.

In these experiments, two aspects of social

information contributed to collective decision-

making: communication and feedback. However,

the experiments could not tell us whether either

or both types of information were necessary for

collective benefit in sensitivity. To address this

issue, we conducted two more experiments: Exper-

iment 3 tested whether communication was neces-

sary,whereas experiment 4 testedwhether feedback

was necessary. We found that communication was

necessary, but, surprisingly, feedback was not.

It is conceivable that, even if the participants

were not able to communicate their confidence

on each trial, they would still be able to estimate

each other’s average reliability (defined explicitly

as the slope of the psychometric curves; see Fig.

1B), not through direct trial-by-trial interaction

and confidence sharing, but by accumulating infor-

mation about one another’s accuracy through feed-

Fig� 2� Results of experiments 1. �A) Plot of the ratio of the dyad slope to the slope predicted by each
model. The BF model comparison also depicts collective benefit over the more sensitive observer. Error
bars indicate SEM �N = 15). �B) Distribution of data points and model predictions. Collective benefit
�sdyad/smax) is plotted against relative sensitivity �smin/smax). Each blue square represents one dyad.
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back. Armed with such an estimate, dyads might

conceivably be able to match the performance of

those that did communicate, and so match the

performance of the WCS model. On theoretical

grounds, we did not expect this; instead, we ex-

pected performance without communication to

match the BF model. We hypothesized that trial-

by-trial communication was necessary and that

feedback alone would not be sufficient for achiev-

ing collective benefit.

Experiment 3 tested this prediction using the

same paradigm as experiment 1, modified so that

participants were now not allowed to communi-

cate anything but their choice. Whenever the par-

ticipants disagreed in their decision, one of the two

(chosen randomly by the computer) made a de-

cision individually by arbitrating between their

own choice and that of the other participant.

Feedback about the correct choice was then given

to both participants (9). The results were un-

equivocal. In contrast to experiment 1, dyad sen-

sitivity did not exceed that of the more sensitive

observer [Fig. 4A, red bar; t(13) = 0.18, p = 0.85,

paired t test], as predicted by the BF model. More

important, dyad sensitivity was significantly lower

than the upper bound predicted by the WCS model

[Fig. 4B, red bar; t(13) = 5.91, p < 10�4, paired

t test], demonstrating that knowledge of current

choice and previous outcomes was not adequate

for the dyads to reach the level of performance

observed in experiment 1, expected from the WCS

model.

Experiment 3 showed that communication

was necessary and that feedback alone was not

sufficient for dyads to achieve a collaboration

benefit. However, the results do not address the

question of whether communication alone, with-

out feedback, is sufficient for achieving collabo-

ration benefit. Could dyads achieve any group

benefit at all without ever receiving any objective

feedback about the accuracy of their decisions?

This is an important question, because feedback

is not formally incorporated in the confidence-

sharing model (9). Taking this model seriously

at face value, onemaymake the extremely counter-

intuitive assumption that, as long as accurate com-

munication of confidence is ensured, dyad benefit

can still be achieved without any feedback (that

is, without any definitive knowledge of decision

outcomes).

In experiment 4, we removed the feedback

stage of the task to test this prediction (9): After

the joint decision was made (either automatically

in the agreement trials or after interaction in the

disagreement trials), the participants were not

told the correct answer. All other aspects of the

experiment were identical to experiment 1. Con-

sistent with our prediction, even without feed-

back, the dyads nevertheless achieved a significant

collaboration benefit [Fig. 4A, blue bar; t(10) =

2.68, p = 0.022, paired t test], and dyad sen-

sitivity was statistically indistinguishable from

the prediction of the confidence sharing model

[Fig. 4B, blue bar; t(10) = 1.16, p = 0.27, paired

t test]. These findings indicate that objective

feedback was not necessary, and communica-

tion alone was sufficient for achieving collective

benefit.

Our results show that interactive decision-

making between two individuals can significant-

ly improve perceptual sensitivity, but, importantly,

only for similarly sensitive observers. Moreover,

such joint behavior is Bayes optimal under the

assumption that participants accurately communi-

cate their internal estimate that they are correct.

Our findings show that human-to-human inter-

personal communication is adequately rich to

permit sharing of subjective estimates of confi-

dence, and humans are adequately perceptive to

make optimal use of this information. Moreover,

communication of trial-by-trial confidence is nec-

essary for collective benefit, but, somewhat sur-

prisingly, feedback about decision outcomes is not.

Quantitatively, we tested four models, and

only one—the WCS model, in which participants

communicated only an internal estimate of their

reliability on each trial—was consistent with the

data. Of the three models that were not consistent

with the data, one, the DSS model, posited that

participants communicated both the perceived

contrast and their estimate of its reliability on

Fig� 4� Results of exper-
iments 3and4. y-axis con-
ventions are the same as
in Fig. 3, A and B. �A) Col-
lective benefit �sdyad/smax)
is plotted for experiment
3 �red, without communi-
cation) and for experiment
4 �blue,without feedback).
�B) Ratio of the dyad slope
to the slope predicted by
the WCS model for ex-
periment 3 �red, without
communication), and experiment 4 �blue; without feedback). In all panels, error bars denote SEM �N= 14 for
experiment 3; N = 11 for experiment 4).

Fig� 3� Results of experiment
2. �A) Ratio of the dyad slope
to the maximum individual
slope for the three noise con-
ditions �equal, unequal, and
none; see main text). The line
at sdyad/smax = 1 corresponds
to the case in which the dyad
is performing exactly as well
as themore sensitivemember.
Values above and below the
line correspond to benefit and
loss due to communication, re-
spectively. ns, not significant.
�B) Ratio of the dyad slope to

the slope predicted by the WCS model, the latter denoted sWCS. This ratio was not significantly different from
zero for any of the noise conditions. �C) Ratio of the dyad slope to the slope of the DSS model. For the
unequal noise condition, this ratio was significantly smaller than 1 �p< 10�4). �D) Distribution of data points
and model predictions �the latter taken from Fig. 1C). Collective benefit �sdyad/smax) is plotted against relative
sensitivity �smin/smax). Each dyad contributed four sets of data points �one triangle for equal, one square for
none, and two circles for unequal conditions). The solid black line indicates the boundary of collective benefit
�see Fig. 1C). In �A) to �C), error bars denote SEM �N = 11 data points for equal and none conditions; N = 22
for unequal condition).
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each trial. That model was rejected because it out-

performed the dyads in experiment 2. This leaves

open the possibility that the participants did com-

municate contrast and reliability, but used that

information suboptimally, which seems unlikely,

as we never observed any dyads explicitly com-

municating contrast and reliability separately.

However, our data cannot definitively rule out

this idea, and further research is needed to dis-

tinguish between optimal use of WCS versus

suboptimal DSS.

The general consensus from extensive earlier

work on collective decision-making is that groups

rarely outperform their best members (11, 15).

Even in one of the rare cases in which consistent

collaborative benefit was established, group per-

formance failed to reach the bound predicted by

the proposed ideal combination of individual

decisions (14). That study employed the DSS

model (see Eq. 4) to estimate the ideal, expected

group sensitivity. As shown in experiments 1 and

2, however, the predictions of that model deviate

significantly from empirical data if individuals’

sensitivities differ markedly. In particular, exper-

iment 2 demonstrated the detrimental side effect

of collective decision-making based on Bayesian

combination of confidence: Individuals with very

different sensitivities are best advised to avoid

collaboration and instead should rely entirely on

the more sensitive individual. In fact, the WCS

model and the results of experiment 2 (Fig. 3D)

set a quantitative limit on the usefulness of coop-

eration that, to our knowledge, is not predicted by

current economic and social theories of collective

decision-making (15). An important next step for

future research is to test the generality of this limit

in other types of dyadic interactions.

Our findings have direct bearing on studies in

social psychology that have discovered numer-

ous situations in which groups fail to do better

than their individuals. Many explanations for

such “process loss” have been proposed, such as

reduced effort in the presence of others [e.g.,

“social loafing” (16)], interpersonal competition

(11), and groupthink (17). Our results raise the

rather different possibility that, when the com-

municated evidence (perceived contrast) cannot

be separated from its reliability (slope), such fail-

ures of collective decision-making may be the

natural consequence of a perfectly reasonable

strategy (for instance, WCS). Indeed, we know

all too well about the catastrophic consequences

of consulting “evidence” of unknown reliability

on problems as diverse as the existence of weapons

of mass destruction and the possibility of risk-

free investments.
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Phosphatidic �cid Is a pH Biosensor
That Links Membrane Biogenesis
to Metabolism
Barry P. Young�1* John J. H. Shin�1* Rick Orij�2 Jesse T. Chao�1 Shu Chen Li�1 Xue Li Guan�3�4

Anthony Khong�5 Eric Jan�5 Markus R. Wenk�4�6�7 William A. Prinz�8 Gertien J. Smits�2

Christopher J. R. Loewen1�9�

Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways,
but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of
proteins to the ubiquitous signaling lipid phosphatidic acid �PA) depended on intracellular pH and the
protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response
to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed
phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.

T
he hydrophobic portions of lipids can be

sensed by hydrophobic protein domains

that are often membrane inserted. Soluble

protein domains recognize lipids by interacting

predominately with their hydrophilic headgroups.

Recruitment of proteins to membranes is depen-

dent on the concentration of their target lipid in

the bilayer. Membrane-associated transcription

factors sense changes in the levels of key signal-

ing lipids, enabling direct feedback regulation of

lipid metabolism (1�3). In yeast, phospholipid

metabolism is regulated by the transcriptional re-

pressor Opi1, part of a lipid-sensor complex in the

endoplasmic reticulum (ER) (fig. S1) (3). Opi1 is

sequestered on the ER by binding both PA and

the tail-anchored ER protein Scs2. Addition of

inositol results in the rapid depletion of PA, re-

lease of Opi1 from the ER, and translocation of

Opi1 to the nucleus (3). Nuclear Opi1 represses

the Ino2/4 transcriptional activator complex, which

binds a cis regulatory element, UASINO, found in

many phospholipid metabolic genes (4).

Of the genes regulated by inositol and Opi1,

INO1 is the most highly regulated (4). INO1

encodes the rate-limiting enzyme in inositol bio-

synthesis; thus, inositol auxotrophy is a sensitive

measure of expression of the INO1 gene and the

status of the ER lipid sensor. We screened the
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