
ARTICLE Communicated by John Hertz

Randomly Connected Networks Have Short
Temporal Memory

Edward Wallace
ewjwallace@gmail.com
Department of Biochemistry and Molecular Biophysics, University of Chicago,
Chicago, IL 60637, U.S.A., and FAS Center for Systems Biology,
Harvard University, Cambridge, MA 02138, U.S.A.

Hamid Reza Maei
maei@stanford.edu
Electrical Engineering Department, Stanford University, Stanford, CA, U.S.A.

Peter E. Latham
pel@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit, University College, London,
London WC1N 3AR, U.K.

The brain is easily able to process and categorize complex time-varying
signals. For example, the two sentences, “It is cold in London this time of
year” and “It is hot in London this time of year,” have different meanings,
even though the words hot and cold appear several seconds before the
ends of the two sentences. Any network that can tell these sentences apart
must therefore have a long temporal memory. In other words, the current
state of the network must depend on events that happened several sec-
onds ago. This is a difficult task, as neurons are dominated by relatively
short time constants—tens to hundreds of milliseconds. Nevertheless, it
was recently proposed that randomly connected networks could exhibit
the long memories necessary for complex temporal processing. This is
an attractive idea, both for its simplicity and because little tuning of re-
current synaptic weights is required. However, we show that when con-
nectivity is high, as it is in the mammalian brain, randomly connected
networks cannot exhibit temporal memory much longer than the time
constants of their constituent neurons.

1 Introduction

To function well in the world, it is absolutely necessary to have a memory;
without one, we would be reduced to a set of reflex arcs, able to carry out
only the simplest tasks. On long timescales, hours or more, it is thought
that memories are stored in synaptic weights. On shorter timescales, a few

Neural Computation 25, 1408–1439 (2013) c© 2013 Massachusetts Institute of Technology

Randomly Connected Networks Have Short Temporal Memory 1409

seconds, it is likely that information about the past is stored in patterns of
activity. For example, at the ends of the two sentences, “It is cold in London
this time of year” and “It is hot in London this time of year,” patterns of
activity in at least some circuits in the brain must be sufficiently different
to drive different behavior (packing a jacket for one’s trip to London in the
first case, not packing one in the second).

Building a network whose state depends on input that occurred sec-
onds to tens of seconds ago would seem difficult, as neurons have short
memories—typically not more than a few hundred ms. However, a net-
work’s time constant can be considerably longer than its single-neuron
time constants; all that is required is sufficient positive feedback to make the
network almost self-sustaining. As with the well-studied neural integrator,
such feedback can boost single-neuron time constants by large factors—one
to two orders of magnitude (Seung, 1996; Koulakov, Raghavachari, Kepecs,
& Lisman, 2002; Brody, Romo, & Kepecs, 2003).

Jaeger (2001; Jaeger & Haas, 2004) used just this method—positive
feedback—to achieve long time constants in randomly connected networks.
That analysis, however, focused on analog neurons, and it was not imme-
diately clear whether it would apply to networks of spiking neurons. This
was partially remedied by Maass, Natschläger, and Markram (2002), who
showed numerically that randomly connected networks of spiking neu-
rons could exhibit at least some memory of past input (for a review, see
Buonomano & Maass, 2009).

In spite of these encouraging results, whether realistic networks can
exhibit long temporal memory is still an open question, in large part be-
cause networks of spiking neurons are so hard to analyze. Bertschinger
and Natschläger (2004) took a step toward addressing this issue by con-
sidering a network in which such analysis was possible. What they found
was that networks were able to exhibit long memories if they operated
near the edge of chaos. This idea—that temporal memory is longest near
the edge of chaos—was confirmed in subsequent studies (Maass, Legen-
stein, & Bertschinger, 2005; Legenstein & Maass, 2007; Büsing, Schrauwen,
& Legenstein, 2010).

While Bertschinger and Natschläger’s analysis provided a great deal of
insight into the mechanism by which networks process time-varying in-
put, they considered networks with unrealistically low connectivity, as did
subsequent studies of operation near the edge of chaos (Maass et al., 2005;
Legenstein & Maass, 2007). Here we consider the more realistic case of high
connectivity, in which the average number of connections per neuron is
proportional to the number of neurons, and both are large. When we do
that, we find a number of differences, one of which is that networks, or at
least networks in the class Bertschinger and Natschläger considered, are
guaranteed to be chaotic. Chaos is not an especially surprising feature of
spiking networks (van Vreeswijk & Sompolinsky, 1996, 1998; Banerjee, 2006;
Izhikevich & Edelman, 2008; Monteforte & Wolf, 2010; London, Roth,

1410 E. Wallace, H. Maei, and P. Latham

Beeren, Häusser, & Latham, 2010). Here, however, we go beyond just show-
ing that networks are chaotic; our main result is that chaos implies a short
temporal memory—not much longer than the time constants of the con-
stituent neurons (a result partly anticipated by Ganguli, Huh, & Sompolin-
sky, 2008, although in analog rather than spiking networks). This suggests
that randomly connected networks are not able to exhibit memory much
longer than the time constants of their constituent neurons.

2 Temporal Memory in Recurrent Networks: Basic Principles

For a network to exhibit temporal memory, its state must depend on past
input, not merely on current input. Probably the simplest way to think about
this is as follows. A network receives one of two inputs before time t = 0,
and it receives just one input after time t = 0 (see Figure 1a). If the input is
strong and has been applied for a long time, as we assume here, the state of
the network at t = 0 is very different under the two inputs. Consequently, at
t = 0, an observer of the network would know which of the two inputs had
been applied. After time t = 0, however, the network no longer receives
any information about which of the two inputs was presented, and so it
becomes harder and harder to distinguish them. What we want to know is
how long before it is essentially impossible to distinguish them.

To develop the machinery to answer this question, we take a geometric
approach in which network dynamics is described in terms of trajectories
in state-space and statements about those trajectories are translated into
statements about temporal memory. Specifically, suppose that each neuron
in a network is described by one variable, so for N neurons, the state space
is N-dimensional. The state of the network corresponds to a single point in
this space, and trajectories correspond to paths. (To simplify the discussion,
here we treat the state-space as continuous, although the model we analyze
is discrete.)

It turns out that the temporal memory depends strongly on whether
trajectories converge, diverge, or are neutrally stable, with both converging
and diverging trajectories leading to short temporal memory and neutrally
stable trajectories leading to long memory. This observation allows us to
replace a hard question, “Can a network have long temporal memory?”
with a much easier one, “What happens to nearby trajectories under the
network dynamics?”

The three types of trajectories are illustrated in Figures 1b to 1d, with
the input given in Figure 1a. We assume that before time t = 0, the two
inputs are sufficiently different that the trajectories are easily distinguish-
able at time t = 0. After t = 0, the behavior—and the distance between
trajectories—depends strongly on the dynamical regime.

Consider first the converging regime, illustrated in Figure 1b. In this
regime, there is a general contraction of volume in state-space, so the

Randomly Connected Networks Have Short Temporal Memory 1411

Figure 1: Networks evolve under one of three possible dynamical regimes. Al-
though drawn as a three-dimensional space, the actual dimensionality is much
higher: it is proportional to N, the number of neurons in the network. (a) The
input to the network, starting at time t = −τ . Before time t = 0, there are two
possible inputs, shown as black and gray; after time t = 0, there is only one.
The job of the network is to tell us which input was present after time t = 0.
(b) Converging dynamics. After time t = 0, when trajectories receive the same
input, they are pushed together—typically exponentially fast. In this regime,
past input is quickly forgotten. (c) Diverging dynamics. Even when receiving
the same input (t > 0), nearby trajectories are pushed apart. However, because
activity space is bounded, all trajectories eventually converge to a chaotic attrac-
tor. If there is only one such attractor, as we assume here, then after convergence
onto it, the network provides little information about which of the two inputs it
received. (d) Neutrally stable dynamics. After time t = 0, trajectories are nearly
parallel, and so the distance between them stays approximately constant. Be-
cause of nonlinearities, trajectories are not exactly parallel, so eventually the
input becomes indistinguishable, but that takes a long time.

distance between trajectories decreases with time—typically exponentially.
Thus, the trajectories very quickly merge, making it effectively impossible
to distinguish the two inputs.

Diverging trajectories, illustrated in Figure 1c, would seem to offer much
longer temporal memory: nearby trajectories are pushed apart, which over

1412 E. Wallace, H. Maei, and P. Latham

short timescales makes them easy to distinguish. However, if there is a di-
vergence of trajectories in a bounded state-space, then trajectories that were
initially far apart must eventually become very close. This implies mixing,
and the trajectories quickly become hopelessly entangled, again making
it essentially impossible to distinguish the two inputs. In the language of
dynamical systems, diverging trajectories lead to chaotic dynamics, and
trajectories approach a chaotic attractor. Once near the attractor, the input
in the distant past, before time t = 0, becomes effectively unknowable.

Between diverging and converging lies a regime in which trajectories are
neutrally stable, so they stay approximately the same distance apart (see
Figure 1d) and thus are distinguishable for long periods. In this regime,
sometimes referred to as the the edge of chaos (Langton, 1990; Kauffman &
Johnsen, 1991), networks can exhibit long temporal memory.

This suggests a natural way to build networks that can distinguish
among different inputs: tune them so that they are close to neutral sta-
bility. And indeed, both numerical and theoretical studies have shown that
temporal memory is much longer in the neutrally stable regime than in the
converging or diverging regimes (Bertschinger & Natschläger, 2004; Maass
et al., 2005; Legenstein & Maass, 2007; Büsing et al., 2010). However, in all of
these studies the connectivity was low—no more than about 30 connections
per neuron. What happens when the connectivity is high, as it is in the brain?
The answer is that it is not possible to access the neutrally stable regime. We
show here that high-connectivity networks, at least the high-connectivity
networks in the class considered by Bertschinger and Natschläger, have
only diverging trajectories; that is, they are always chaotic. This rules out
operation on the edge of chaos, and so rules out long temporal memory.

3 Model

The model we investigate is a sparse, randomly connected network of N
synchronously updating McCullough-Pitts neurons, with N taken to be
large. We work in discrete time; the length of the time-step is intended to
be roughly the membrane time constant, about 10 ms. The update rule is

xi(t + 1)= sgn(hi(t) + ui(t)) (3.1a)

hi(t)=
N∑

j=1

wi jx j(t), (3.1b)

where xi(t) is the state of the ith neuron at time t, wij is the connection
strength from neuron j to neuron i, and ui(t) is the input at time t. Because
of the sign function, xi(t) is either −1 or +1, with −1 indicating silence and
+1 indicating spiking. Following Bertschinger and Natschläger (2004), we
let the connection strength, wij, be independent and identically distributed

Randomly Connected Networks Have Short Temporal Memory 1413

(i.i.d.) with zero mean. We set the variance, the main statistical property we
will need, to σ 2

w/N. In addition, we use sparse connectivity, meaning the
neurons make an average of K connections out of a possible N, with K < N.
Thus, the weights are drawn i.i.d. from the distribution Pw(w), which is
given by

Pw(w) = (1 − K/N)δ(w) + (K/N)Pc
w(w), (3.2)

where δ(·) is the Dirac delta function and Pc
w(w), which is the distribution of

nonzero weights (the superscript c stands for “connected”), has zero mean
and a variance of σ 2

w/K, the latter chosen to ensure that the total variance of
the weights is σ 2

w/N.
Finally, we need to choose a form for the input, ui(t). For ease of calcu-

lation, we assume that it is i.i.d. and gaussian with mean u and variance
σ 2

u ,

P(u) = e−(u−u)2/2σ 2
u

(2πσ 2
u)1/2 . (3.3)

We also assume that the ui are drawn independently on each time step, so
ui(t) and uj(t

′) are uncorrelated if t �= t′, even when i = j.
Although our network does not obey Dale’s law, it retains what is prob-

ably the most important feature of real neuronal networks, at least when
they are operating in the asynchronous regime: neurons are driven by fluc-
tuations in synaptic drive. Indeed, for balanced networks that obey Dale’s
law, once balance is enforced, spikes are produced by a term much like the
synaptic drive, hi(t), that appears in equation 3.1b (van Vreeswijk & Som-
polinsky, 1998). Thus, although we are using a simple network, we expect
our conclusions, especially the relationship between chaos and temporal
memory, to apply to more realistic networks.

3.1 Population Firing Rates. When the network-averaged firing rate
(the fraction of active spikes per time step) is small, equation 3.1 describes
dynamics that is reminiscent of what real neurons do: the total synaptic
drive, hi(t) + ui(t), is typically below zero (and thus below threshold for
firing); only occasionally does it cross zero. This is illustrated in Figure 2a
where we plot the total synaptic drive for two representative neurons, with
spikes shown whenever the drive crosses zero. We plot spike rasters in
Figure 2b. These are similar to the rasters seen in any network operating in
the asynchronous regime.

The apparent randomness of the synaptic drive plotted in Figure 2a sug-
gests that we could analyze the network by treating it probabilistically. We
do this by approximating the total synaptic drive, hi(t) + ui(t), as a gaussian
random variable with respect to the index i (van Vreeswijk & Sompolinsky,

1414 E. Wallace, H. Maei, and P. Latham

-4

0

4

0 1 2

u
h
+

a)

c)

p
)

(
8

4

0
0.0 0.5 1.0

b)

noruen

0

50

100

-4

0

4

0 1 2

u
h
+

0 1 2

Figure 2: Network simulations show irregular spike trains. (a) Total synaptic
drive, hi(t) + ui(t), for the bottom two neurons in panel b. Spikes (sharp upward
deflections) were added artificially whenever the voltage crossed the threshold
at 0. To obtain the timescale on the x-axis, we assume each time step corresponds
to 10 ms. (b) Spike rasters for the first 100 neurons. (c) Firing rate distribution,
computed empirically (black) and from equation 3.11 (gray). Parameters were
N = 8,192, σ = 1, σu = 0.5, u = −0.941, the last chosen to ensure a firing rate of
0.2 (corresponding to 20 Hz under our assumption of a 10 ms time step), and
K/N = 0.2.

1998). It is not entirely obvious that this approximation is valid, especially
given that the network equations are deterministic. Nevertheless, it gives
very accurate results; we take that accuracy as an indication that the ap-
proximation is a good one.

As discussed above, the quantity of interest is the rate at which trajecto-
ries diverge. Before computing that (which we do in the next section), we
compute the firing rate, as we will need it later, it is relatively simple to
compute, and the techniques will be useful for subsequent analysis.

In the probabilistic spirit, the population-averaged firing rate, denoted
ν, is given by

ν = 1
N

∑
i

〈xi(t) + 1〉t

2
= 1

N

∑
i

〈�[hi(t) + ui(t)]〉t (3.4)

Randomly Connected Networks Have Short Temporal Memory 1415

where � is the Heaviside step function: �(y) = 1 if y > 0 and 0 otherwise.
Essentially ν is the probability that xi is 1, averaged over both index i and
time t.

To compute the right-hand side of equation 3.4, we treat both ui(t) and
hi(t) as random variables with respect to index, i. This allows us to turn
sums over index into integrals over distributions,

1
N

∑
i

〈�[hi(t) + ui(t)]〉t →
∫

du dh P(u, h)�(u + h). (3.5)

Because hi(t) depends on ui(t − 1) (see equation 3.1) and ui(t) and ui(t − 1)

are independent, it follows that hi(t) are ui(t) are independent. Conse-
quently, p(u, h) = p(u)p(h). The distribution of u is given in equation 3.3,
so all we need is the distribution of h. Based on the fact that h is the sum
of a large number of variables (see equation 3.1b), we treat it as a gaussian
random variable. This is not exactly right, as the variables in the sum are
correlated, but we assume, without proof, that the correlations are weak
enough to be ignored. We take the good agreement between theoretical
predictions and simulations (see Figures 5 and 7) as evidence that this as-
sumption is valid.

With the gaussian assumption, we need only the mean and variance of
h. Its mean is zero (because wij has zero mean) and its variance is given by,
via equation 3.1b,

Var[h] = 1
N

∑
i

⎡
⎣∑

j

wi jx j

⎤
⎦

2

= 1
N

∑
i j j′

wi jwi j′ x jx j′ . (3.6)

The weights are i.i.d. with zero mean and variance σ 2
w/N, so in the large

N limit, the average over i (which involves only the weights) is δ j j′σ
2
w/N

where δ j j′ is the Kronecker delta. Consequently,

Var[h] = σ 2
w

N

∑
j

x2
j = σ 2

w. (3.7)

The second equality follows from the fact that xj is ±1.
Using equations 3.3 and 3.7, and noting that hi(t) and ui(t) are inde-

pendent, we see that hi + ui is gaussian with mean u and variance σ 2
u + σ 2

w.
Thus,

P(h + u) = e−(h+u−u)2/2σ 2
tot

(2πσ 2
tot)

1/2
, (3.8)

1416 E. Wallace, H. Maei, and P. Latham

where

σ 2
tot ≡ σ 2

w + σ 2
u . (3.9)

Equation 3.4 tells us that ν is the probability that h + u > 0. Since h+u is
gaussian (see equation 3.8), we see that

ν = �(u/σtot). (3.10)

Here � is the standard cumulative normal function, defined explicitly in
equation A.7. Assuming, as above, that one time step corresponds to 10 ms,
the actual firing rate, in Hz, is 100ν. For most of our simulations, we use
ν = 0.2, which corresponds to 20 Hz.

Using similar analysis, it is relatively straightforward to compute the
distribution of firing rates, something that is useful for verifying the validity
of our approximations. This analysis is performed in the appendix (see
section A.1), where we show that

p(ν) = β

α
e(u+αη(ν))2/2β2−η(ν)2/2, (3.11)

where η(ν) must be found by inverting the equation ν(η) = �((u + αη)/β)

(see equation A.8) and α and β are parameters that must be determined
from a set of nonlinear mean field equations (see equations A.3, A.5, and
A.9). We compare this distribution to simulations in Figure 2c and see that
agreement is very good.

3.2 Evolution of Nearby Trajectories. The temporal memory of a net-
work depends on the behavior of nearby trajectories, with short temporal
memory if trajectories either diverge or converge and long memory at the
boundary between the two. To determine the behavior of nearby trajecto-
ries, we compute the time evolution of the distance between two trajectories
that differ only in their initial conditions. We use superscripts 1 and 2 to
denote the activity of two trajectories, and for the measure of distance, we
use the natural one for our model, the normalized Hamming distance. For
this measure, the distance at time t, denoted d(t), is given by

d(t) ≡ 1
N

∑
i

1
2

∣∣x(1)
i (t) − x(2)

i (t)
∣∣.

Randomly Connected Networks Have Short Temporal Memory 1417

Our goal is to compute the distance at time t + 1 as a function of the
distance at time t. To do that, it is helpful to work with synaptic drive rather
than activity, so we use equation 3.1a to write

d(t + 1) = 1
N

∑
i

1
2
|sgn(h(1)

i (t) + ui(t)) − sgn(h(2)
i (t) + ui(t))|d,

where the synaptic input, h(k)
i (t), k = 1, 2, is given by equation 3.1b but with

xi(t) in that equation replaced by x(k)
i (t), and the subscript d indicates that

the trajectories associated with h(1)
i (t) and h(2)

i (t) are a distance d apart. It is
convenient to define

d(t + 1) ≡ f (d(t)) , (3.12)

as this allows us to drop the time dependence in equation 3.12, and write

f (d) = 1
N

∑
i

1
2
|sgn(h(1)

i + ui) − sgn(h(2)
i + ui)|d. (3.13)

Note that we are assuming that the right-hand side depends only on the
distance between trajectories. In principle, the right-hand side could depend
on dynamical variables (e.g., population firing rate) as well as d. However,
as we will see below, it does not.

The right-hand side of equation 3.13 can be computed using the same
techniques we used to compute the mean firing rate; that computation is
carried out in the appendix (see section A.2). However, we are interested
primarily in the small d limit, and for that we can use qualitative arguments.
Those arguments start with two observations: (1) the only nonzero terms
in equation 3.13 are those for which h(1)

i + ui and h(2)
i + ui have opposite

signs, and (2) when d is small, h(1)
i and h(2)

i are close to each other. Together,
these imply that for h(1)

i + ui and h(2)
i + ui to have opposite signs, both must

be close to zero. Specifically, both must be within about �h of zero, where
�h is the typical size of h(1)

i − h(2)
i . (For example, if h(1)

i + ui is +10�h, it
is highly unlikely that h(2)

i + ui will be negative; that would represent a
10-standard-deviation outlier.)

This is illustrated in Figure 3, which shows the distribution of h(1)
i + ui

with respect to index, i (see Figure 3a), and the distribution of h(1)
i − h(2)

i , also
with respect to index, i (see Figure 3b). The synaptic drives that contribute
to the sum are shown as a gray region around h(1)

i + ui = 0; the width of
this region is the same as the width of the bottom plot. If �h is small
(which we expect it to be if d is small), the area of the gray region scales as

1418 E. Wallace, H. Maei, and P. Latham

a)

b)

h

h ui i+(1)

h hi i-(1) (2)

0

0

h

Figure 3: For small distances, the evolution of distance is determined by near-
threshold neurons. (a) Distribution of h(1)

i + ui with respect to index, i. The
gray region corresponds to synaptic drives for which h(1)

i + ui and h(2)
i + ui are

reasonably likely to have different signs, and thus contribute to f (d) in equation
3.13. (b) Distribution of h(1)

i − h(2)
i with respect to index, i. The width, �h, is the

standard deviation of h(1)
i − h(2)

i .

P(h + u = 0) × �h, which implies that

f (d) ∝ P(h + u = 0)�h(d), (3.14)

where we have now explicitly included the fact that �h depends on distance,
d.

To compute �h(d), we use equation 3.1b to write

h(1)
i − h(2)

i =
∑

j

wi j(x
(1)

j − x(2)

j) (3.15)

and then compute the variance of the right-hand side. Using the fact that
d = P(x(1)

j �= x(2)

j) and applying our standard assumption that the xi are
uncorrelated, we see that the sum on the right-hand side consists of ap-
proximately Kd uncorrelated, zero mean random variables of size ±2wi j. If
Kd is large, this sum is approximately gaussian, so all we need are its mean
and variance. The mean is zero (because wij is zero mean), and the variance
is, by the central limit theorem, Kd × Var[2w] = 4Kdσ 2

w/K. Consequently,
�h(d) = 2σwd1/2, and equation 3.14 becomes

f (d) ∝ 2σwP(h + u = 0) d1/2. (3.16)

Randomly Connected Networks Have Short Temporal Memory 1419

The key result is that f (d) is proportional to d1/2, something that was
found by van Vreeswijk and Sompolinsky (1998) for a similar model but
with excitatory and inhibitory neurons. This square root scaling with d
is important because it means nearby trajectories diverge no matter what
the network parameters; that is, no matter what the scaling factor in front
of d1/2. In fact, it is not hard to show, simply by iterating the equation
d(t + 1) = f0d(t)1/2, that for t not too large and d(0) very small,

d(t) = f 2
0

[
d(0)/ f 2

0

]1/2t

. (3.17)

The exponent 1/2t indicates very rapid divergence. For example, if t = 10,
it says that we should take the 1024th root of d(0)/ f 2

0 . When d(0) = 1/N,
which is as small as it can possibly be, d(t = 10) ≈ f 2

0 [1 − (log N f 2
0)/1024],

which is close to f 2
0 for any reasonable value of N.

The full expression for f (d), which we derive in the appendix (see section
A.2, especially equation A.17), is not very illuminating. However, the small
d limit of the full expression is somewhat more interesting:

f (d) ≈ (2/π)1/2 2σw

e−u2
/2σ 2

tot

(2πσ 2
tot)

1/2
d1/2. (3.18)

Except for the leading factor of (2/π)1/2, this is exactly the approximate ex-
pression we derived above (see equation 3.16 for f (d) and 3.8 for P(h + u)).
A plot of the full expression for f (d), via equation A.17, is shown in Fig-
ure 4, along with the small d limit given in equation 3.18; they are almost
indistinguishable. Moreover, when we simulate the network and compute
the distance between trajectories, we find that it evolves almost exactly as
predicted by equation 3.12 (see Figure 5a).

What are the implications of the shape of f (d) for the behavior of nearby
trajectories? As shown in Figure 5a, when we iterate the update equation,
equation 3.12, with f (d) given in equation A.17, the distance increases
rapidly with each iteration. In addition, at long times, the distance converges
to the intersection of f (d) with the 45 degree line—the point where d =
f (d). That intersection, which we denote d∗, corresponds to the equilibrium
distance between trajectories.

Note that this analysis is valid only if Kd � 1, a condition that is necessary
for us to treat the sum in equation 3.15 as gaussian. This is a reasonable
condition, as we are assuming that K is large. However, the minimum value
of d is 1/N, and so Kd can be as small as K/N. Below, we consider the
small Kd limit. Although somewhat different analysis is required, our main
conclusions are substantially the same.

1420 E. Wallace, H. Maei, and P. Latham

0.0

0.5

1.0

0.0 0.5 1.0

d*

d
f
)

(

d

Figure 4: The distance evolution function for the same network as in Figure 2.
Dashed line: Exact expression, equation A.17. Solid line: Approximate expres-
sion, equation 3.18. The intersection of f (d) with the line at 45 degrees is the
equilibrium distance, d∗; for these parameters, d∗ = 0.162.

4 Memory Lifetime

The above analysis tells us that nearby trajectories diverge. Can it also
provide us with a quantitative estimate of memory lifetime? The answer is
yes, although we need to investigate the behavior of the network when d is
near the equilibrium distance, d∗, rather than when it is near 0. In the next
three sections, we look at memory lifetime in several ways. First we provide
a naive, but essentially correct, analysis; then we address memory lifetime
using an optimal linear classifier; and finally we examine the regime in
which Kd is small.

4.1 Memory Lifetime I: Naive Analysis. To compute memory lifetime,
we consider our usual scenario in which a network receives one of two
inputs, either u(1)(t) or u(2)(t), up to time t = 0; after that, it receives just
one, u(t). Before time t = 0, when the network is receiving different inputs,
the distance between trajectories is larger than the equilibrium distance,
d∗ (see Figure 5b; t ≤ 0). After t = 0, the distance decreases and eventually

Randomly Connected Networks Have Short Temporal Memory 1421

a)

b)

-10 100-5 5

0 20105 15

d*

analytic
simulations

d*

analytic
simulations

0.0

0.1

0.2

d

0.3

0.0

0.1

0.2

d

0.3

Figure 5: The evolution of distance between trajectories, using the same net-
work as in Figures 2 and 4. (a) Distance, d(t), versus (discrete) time for a network
receiving the same input on different trials. The initial distance, d(0), was 1/N
(=1/8192). Gray lines: simulations; 25 different realizations of the network.
Solid line: average of the gray lines. Dashed line: analytic prediction, deter-
mined by iterating the equation d(t + 1) = f (d(t)) with f (d) given by equation
A.17. The slight disagreement is because when d = 1/N, Kd = K/N; this vio-
lates our assumption that Kd � 1. The resulting error propagates to later times.
(b) Distance, d(t), versus (discrete) time for a network receiving different in-
put before t = 0 and the same input starting at t = 0. Gray lines: simulations;
25 different initial conditions. Solid line: average of the gray lines. Dashed
line: analytic prediction, determined by iterating the equation d(t + 1) = f (d(t))
with f (d) given by equation A.17.

approaches d∗ (see Figure 5b; t > 0). Consequently, information about what
happened before t = 0 should be lost. How fast it is lost depends on how
fast the distance, d(t), approached d∗ relative to the fluctuations in d(t).

To determine the rate at which d(t) approaches d∗, we use the distance
update equation, equation 3.12. Because we are interested in large times,

1422 E. Wallace, H. Maei, and P. Latham

for which d(t) is near d∗, we can linearize that equation around d∗. This
yields

d(t + 1) − d∗ ≈ f ′(d∗)(d(t) − d∗).

Solving for d(t) yields, in the large t limit,

d(t) − d∗ ∝ e−λt , (4.1)

where λ, the rate of convergence to the fixed point, is given by

λ = − log f ′(d∗).

The other quantity we need is the size of the fluctuations. Assuming, as
usual, that the neurons are independent, the fluctuations should scale as
1/N1/2. Consequently, information about the past starts to degrade when
d(t) − d∗ is on the order of 1/N1/2. Using t∗

naive to denote the (naively com-
puted) memory lifetime and using equation 4.1 for d(t) − d∗, we have
e−λt∗

naive ∝ 1/N1/2. Solving for t∗
naive yields

t∗
naive ∼ 1

2λ
log N, (4.2)

where ∼ indicates equality up to an additive constant. The key result here
is the scaling: memory lifetime increases only with the log of the network
size.

4.2 Memory Lifetime II: Optimal Linear Classifier. While the above
analysis provides qualitatively correct scaling, it does not give a prescrip-
tion for using network activity to provide information about past input
(nor, as we will see below, does it give us the correct prefactor). To remedy
that, we compute the optimal linear classifier and calculate how fast its per-
formance degrades with time. Using an optimal linear classifier to provide
long temporal memory is the hope of the liquid state machine of Maass
et al. (2002) and Bertschinger and Natschläger (2004) and of the echo state
network of Jaeger and colleagues (Jaeger, 2001; Jaeger & Haas, 2004).

A linear classifier is a vector, J(t), that is used to distinguish between
the two trajectories, x(1)(t) and x(2)(t). Here our goal is to choose J(t) so
that if input 1 is shown, J(t) · x(t) is above some threshold, and if input 2
is shown, J(t) · x(t) is below that threshold (here “·” denotes the standard
dot product). In addition, we demand that J(t) is optimal, in the sense
that it maximizes the mean difference between J(t) · x(1)(t) and J(t) · x(2)(t)

Randomly Connected Networks Have Short Temporal Memory 1423

relative to its standard deviation. Consequently, J(t) is given by

J(t) = arg max
J′

[J′ · 〈x(1)(t) − x(2)(t)〉]2

Var[J′ · (x(1)(t) − x(2)(t))]
, (4.3)

where angle brackets without a subscript t denote an average over trials.
Note that J depends on t. This makes readout difficult in practice, since

a linear decoder would have to be constructed for each time point, which
produces issues of multiple comparisons. We will ignore those issues here,
so the performance we derive is an upper bound on the performance of a
practical classifier.

Assuming, as usual, that the xi and xj are uncorrelated if i �= j, we can
find the optimal weights by differentiating the right-hand side of equation
4.3 with respect to J′ and setting the resulting expression to zero. This leads
to

Ji(t) = 〈x(1)
i (t) − x(2)

i (t)〉
Nσ 2

i (t)
, (4.4)

where σ 2
i (t) is the variance of x(1)

i (t) − x(2)
i (t). Because x(1)

i and x(2)
i are

independent and they take on only the values ±1, it is given by

σ 2
i (t) = 1 − 〈x(1)

i (t)〉2 + 1 − 〈x(2)
i (t)〉2.

The expression for Ji(t) is entirely reasonable: it is large for neurons whose
mean difference in activity is large and whose variance is small.

Figure 6 shows the distribution, across trials, of J(t) · x(t) at several time
points, both when stimulus 1 is shown (left distribution) and when stimulus
2 is shown (right distribution). As is clear from this figure, the classification
error is the probability of the distribution leaking across the midline, de-
noted θ (see the dashed vertical line in Figure 6); that is, it is the probability
that J(t) · x(t) < θ when stimulus 1 is shown or, equivalently, the probability
that J(t) · x(t) > θ when stimulus 2 is shown, where θ is given by

θ ≡ J(t) · 〈
x(1)(t) + x(2)(t)

〉
2

.

Assuming that trial-to-trial fluctuations in both J(t) · x(1)(t) and J(t) · x(2)(t)
are gaussian with the same variance (as is consistent with Figure 6), to
compute the probability of an error, all we need is the ratio of the mean of
J(t) · x(t) − θ to its variance. This quantity, denoted Z(t), is given by

Z(t) = J(t) · 〈x(1)(t) − x(2)(t)〉/2
Var[J(t) · (x(1)(t) − x(2)(t))/2]1/2 , (4.5)

1424 E. Wallace, H. Maei, and P. Latham

0

2000

4000

p
)

(

-0.003 0 0.003

t

t

threshold

t

0

2000

4000

0

2000

4000

.

.

.

Figure 6: A linear classifier distinguishes past inputs for a limited time. Distri-
bution of J(t) · x(t), the output of the linear classifier, at times t = 6, 8, and 10.
Each distribution (thin lines) came from 10,000 trials using the same network as
in Figures 2, 4, and 5, except with 16,384 rather than 8,192 neurons. For the left
distribution in each panel, the network was receiving input 1; for the right dis-
tribution, it was receiving input 2. The thick curves are gaussian distributions
with mean and variance computed from the histograms. The dashed vertical
lines are the thresholds, θ . See the right-most curve in Figure 7a for the fraction
correct at each of these time points.

and the fraction correct, denoted Pc(t), is given by

Pc(t) = �(Z(t)), (4.6)

where, recall, � is the cumulative normal function (defined in equation
A.7).

It is difficult to compute Z(t) exactly, but we can determine how it scales
with the distance between the two trajectories. The analysis, which is rela-
tively straightforward, is carried out in the appendix (see section A.3, in par-
ticular, equation A.24). There we find that the numerator scales as d(t) − d∗,
and the square of the denominator scales as [d(t) − d∗ + O(1/R)]/N, where
R is the number of trials used for training and testing (assumed to be the

Randomly Connected Networks Have Short Temporal Memory 1425

same). Consequently, using the fact that in the large t limit, d(t) − d∗ ∼ e−λt

(see equation 4.1), we see that

Z(t) = c1

[
Ne−λt

1 + c0eλt/R

]1/2

, (4.7)

where c0 and c1 are O(1) quantities that depend on network parameters.
Note that equality holds only when N, R, and t are large. The memory
lifetime, denoted t∗, is found by setting Z(t) to a constant in equation 4.7.
Using Z0 for the constant, we find that

t∗ = 1
λ

log

[[
1 + 4(c0c2

1/Z2
0)N/R

]1/2 − 1
2c0/R

]
. (4.8)

Although the particular form for t∗ isn’t especially intuitive, it is reason-
able that the quality of the decoder, and thus the memory lifetime, should
depend on the number of trials, R, used to train the linear classifier. Fortu-
nately, the expression for the memory lifetime greatly simplifies in the limit
of a large and small number of trials, where “large” and “small” are relative
to the size of the network, N.

In the limit of a large number of trials (R � N), equation 4.8 becomes

t∗
R�N ∼ 1

λ
log N,

where, as above, ∼ indicates equality up to an additive constant. Note that
this scaling is a factor of two better than that of the naive analysis given
in equation 4.2. The increase in lifetime arises because the variance of the
optimal estimator, and not just the mean, decreases as d(t) approaches d∗

(see Figure 6), something we did not take into account in our naive analysis.
However, it is not an increase that is very helpful, as memory lifetime still
scales with the log of the network size. Moreover, for sufficiently large N, we
always enter the opposite limit, R � N. There we recover the naive scaling,

t∗
R�N ∼ 1

2λ
log N.

To verify that this analysis is correct, we computed the fraction correct
from simulations based on the the optimal linear classifier given in equation
4.4, and compared that to the predicted fraction correct, Pc(t), given in
equation 4.6. The results are shown in Figure 7 for two networks—our
standard one (see Figures 7a and 7c) and one with slightly higher firing
rate, 0.3 instead of 0.2 (see Figures 7b and 7d, and the figure caption for
network details). In Figures 7a and 7b, we plot fraction correct versus time

1426 E. Wallace, H. Maei, and P. Latham

a)

0.50

0.75

1.00

-10 0 10 20

c)

b)

d)

u

u

inc
rea
sin
g N

inc
rea
sin
g R

inc
rea
sin
g N

inc
rea
sin
g R

0.50

0.75

1.00

-10 0 10 20

u

u

u

u

u

u

Figure 7: Accuracy of the optimal linear classifier increases with network size
and number of trials. In all panels, we plot fraction correct from simulations
(dashed lines) and the analytic prediction, Pc(t), given in equation 4.6 (solid
lines). For panels a and c, we used the same network as in Figures 2 and 4–6; in
panels b and d, we used u = −0.5 instead of −0.941 and σu = 0.1 instead of 0.5,
which yielded a slightly higher average firing rate, 0.3 spikes/neuron on each
time step rather than 0.2. We adjusted the two free parameters in equation 4.7,
c0 and c1, to match the fraction correct with N = 16,384 (note that this yielded
different values of c0 and c1 for panels a and c versus b and d). (a, b) R = 10,000
training and testing examples; N = 2,048, 4,096, 8,192, and 16,384 neurons, with
N increasing from left to right. (c, d) N = 16,384; R = 1,250, 2,500, 5,000 and
10,000 training and testing examples, with R increasing from left to right.

for different network sizes, N; for these panels, we used 10,000 trials to
train and test the linear classifier. The right-most curve corresponds to
16,384 neurons; for the other curves, we used a factor of 2, 4, and 8 fewer
neurons. The approximately equal spacing between the curves verifies the
log N scaling. In panels Figures 7c and 7d, we fixed the network size at
16,384 neurons and varied R, the number of training and testing examples.
The right-most curve corresponds to R = 10,000; for the other curves, we
used factor of 2, 4, and 8 fewer examples. The decrease in memory lifetime
is consistent with the prediction given in equation 4.8.

4.3 Memory Lifetime III: The Edge of Chaos. The results so far would
seem bad for temporal memory: the optimal linear classifier has a memory

Randomly Connected Networks Have Short Temporal Memory 1427

h - hi i

(1) (2)

w

K1/2

-function

Figure 8: Distribution of h(1)
i − h(2)

i when Kd � 1 is a mixture of a δ-function
and a gaussian. The central peak is meant to represent a δ-function at zero
with area 1 − Kd; it corresponds to the synaptic drives for which h(1)

i = h(2)
i . The

broad gaussian portion corresponds to the distribution associated with synaptic
drives that differ in one presynaptic neuron; its total weight is Kd, and its width
is 2σ

w
/K1/2, the standard deviation of the nonzero weights.

lifetime that scales as the log of the network size, and the square root
singularity in f (d) indicates faster than exponential divergence of nearby
trajectories, no matter what the network parameters. The latter observation
in particular precludes operation on the edge of chaos. How, then, were
model networks in other studies able to achieve long temporal memory
(Bertschinger & Natschläger, 2004; Maass et al., 2005; Legenstein & Maass,
2007; Büsing et al., 2010)? The answer has to do with connectivity: in all stud-
ies that operated on the edge of chaos, the average number of connections
per neuron, K, was small—never more than about 30. By contrast, in our net-
works, so far we have considered the large K regime (we explicitly consid-
ered the the large N regime, but in all of our analysis, K is proportional to N).

To understand why the size of K makes such a difference, we need to take
a close look at the assumptions that led to the square root singularity in f (d).
The main, somewhat hidden, one was that the distribution of h(1)

i − h(2)
i is

gaussian and so yielded the distribution shown in Figure 3b. Gaussianity
is in fact guaranteed if the number of nonzero terms in equation 3.15 is
large, which in turn is guaranteed in the limit K → ∞. However, for finite
K and sufficiently small d, Kd is small rather than large. In this regime, the
sum over j in equation 3.15 is typically zero, but with probability Kd, one of
the terms is nonzero. If there is a nonzero term, its typical size is 2σw/K1/2,
the standard deviation of the connection strength if neurons are connected
(see equation 3.2). This leads to a very different distribution of h(1)

i − h(2)
i

than the one shown in Figure 3b: there is a δ-function peak at zero with
area 1 − Kd, corresponding to neurons for which h(1)

i = h(2)
i ; added to that

is a gaussian distribution with total weight Kd and width 2σw/K1/2. This
distribution is illustrated in Figure 8.

Although the distribution of h(1)
i − h(2)

i is nongaussian when Kd � 1,
it still has a gaussian component. And, in fact, it is only the gaussian
component that contributes to f (d); that is because the δ-function peak

1428 E. Wallace, H. Maei, and P. Latham

corresponds to neurons whose synaptic drives are equal on two trials.
Thus, we can use essentially the same arguments as for the large Kd
regime; the only difference is that the fraction of neurons that contribute
to f (d) is reduced by a factor of Kd. This means f (d) is proportional to
KdP(h + u = 0)�h(d), where now �h(d) is is the typical difference between
h(1)

i and h(2)
i given that h(1)

i �= h(2)
i (and, of course, trajectories are a distance

d apart). As just discussed and as can be seen in Figure 8, this distance is
2σw/K1/2. Putting this all together and using equation 3.8 for P(h + u), we
see that in the small Kd limit,

f (d) ∝ 2K1/2σw

e−u2
/2σ 2

tot

(2πσ 2
tot)

1/2
d. (4.9)

See section A.2 of the appendix (especially equation A.18), for a more de-
tailed derivation.

What this analysis tells us is that when Kd � 1, f (d) is proportional to
d, not d1/2. Thus, if we tune the parameters so that f (d) = d, the network
is at the edge of chaos, and nearby points in phase-space stay roughly the
same distance apart as the network evolves. That such a regime exists has
been known for some time (Bertschinger & Natschläger, 2004; Maass et al.,
2005; Legenstein & Maass, 2007; Büsing et al., 2010); the reason we missed
it above (see in particular sections 4.1 and 4.2) is that we assumed K � 1
and d small but O(1), for which we can never have Kd � 1.

While the edge of chaos can be accessed when K is finite, it is not robust
to a ubiquitous feature in cortex: synaptic failures (Del Castillo & Katz, 1954;
Branco & Staras, 2009; Borst, 2010). That is because failures automatically
induce a distance between trajectories. Even if the pattern of activity on time
step t is exactly the same on two trials, on time step t + 1, the synaptic drive
to each neuron will be different, thus inducing an effective distance. To
determine the effective distance, note that the fraction of active presynaptic
neurons is the mean firing rate, ν, and the probability that there will be
release from a single active presynaptic neuron on one trial and not another
is 2p f (1 − p f) (there is a factor of 2 because there could be a failure on
either the first or second trial). Thus, the average effective distance is at
least 2νp f (1 − p f). Using this distance, which we denote deff, the condition
Kd � 1 translates to

Kdef f = 2Kνp f (1 − p f) � 1.

For this to be satisfied, we must have ν � 1/(2Kp f (1 − p f)). Given that the
average failure rate in the brain is on the order of 0.5 (Branco & Staras, 2009;
Borst, 2010), and using K = 5000 (Braitenberg & Schüz, 1991), this implies
that we must have ν � 0.0004. With a time step of 10 ms, this corresponds

Randomly Connected Networks Have Short Temporal Memory 1429

to a mean firing rate less than 0.04 Hz, much smaller than is observed in
the brain. Thus, synaptic failures preclude operation on the edge of chaos.

5 Discussion

Using a simple network model consisting of randomly connected
McCullough-Pitts neurons, we established a link between chaotic dynamics
and temporal memory: in the chaotic regime, temporal memory scales as
the log of the network size times the characteristic timescales in the net-
work. Because of the log N scaling, increasing the size of the network has
very little effect on memory lifetime. For example, increasing the network
from 105 to 1011 neurons, about the increase one sees in humans over fruit
flies, results in an improvement in memory lifetime by a factor of only about
two.

Although we used a simple model (chosen primarily for its analytical
tractability), our conclusions are consistent with theoretical studies. For
example, in simulations of integrate-and-fire neurons, temporal memory is
on the same order as the time constants of the synapses (Maass et al., 2002);
both are about 1 second. It is also likely that our conclusions apply to cortical
networks, for which connectivity is high. In essence, the link between chaos
and short temporal memory relies on the fact that trajectories approach
chaotic attractors exponentially rapidly. Exponential approach to attractors
is typical (Ashwin, Buescu, & Stewart, 1996), so the only question is: Is chaos
typical? There is now strong theoretical (van Vreeswijk & Sompolinsky,
1996, 1998; Banerjee, 2006; Izhikevich & Edelman, 2008; Monteforte & Wolf,
2010) and experimental (London et al., 2010) evidence that it is for the kinds
of high-connectivity networks found in the brain. Our results effectively rule
out the possibility that randomly connected cortical networks can exhibit
long temporal memory at the level of spike times.

There are, of course, several caveats to this study. The first is that
nonrandom connectivity could lead to long temporal memory at the level of
spike times, as in synfire chains or polychronization (Diesmann, Gewaltig,
& Aertsen, 1999; Izhikevich, 2006). Although at this time there is little ex-
perimental evidence for either of these in cortex, their existence cannot be
ruled out. The second is that it may be possible to operate at the edge of
chaos at the level of firing rates rather than spike times (Sussillo & Abbott,
2009; Rajan, Abbott, & Sompolinsky, 2010), thus leading to long temporal
memory using a rate-based neural code. Importantly, a recent study showed
that spiking networks can exhibit complex, if not necessarily chaotic, be-
havior at the level of firing rates (Litwin-Kumar & Doiron, 2012), exactly
what is needed for liquid state machines. Third, our results should not be
interpreted to mean that the liquid state machine operating at the level of
spike times, as proposed originally by Maass and colleagues (Maass et al.,
2002) is not useful; it could still perform complex computations, just not
with long temporal memory.

1430 E. Wallace, H. Maei, and P. Latham

Appendix: Rate Distribution, Distance Evolution Function,
and Linear Classifier

Here we compute various mean field quantities used in the main text. Our
primary approximation in all of these computations is that sums over index
(e.g., the sum over j on the right-hand side of equation 3.1b) can be treated
as gaussian random variables. This has two important ramifications. The
first is that for such sums, all we need is the mean and variance, which
greatly simplifies our calculations. The second is that sums over indices
turn into averages over gaussian distributions. It is not entirely obvious
that this is a good approximation, especially since we are considering de-
terministic equations. However, there are two sources of randomness. One
is initial conditions; the other is chaotic dynamics, which amplifies small
differences in initial conditions. We assume, without proof, that these two
sources of randomness are sufficient to justify this assumption. Comparison
of theoretical predictions with simulations will be our litmus test.

A.1 Firing Rate Distribution. Primarily to provide a stringent test of
our analysis, here we compute the distribution of firing rates. Our starting
point is an expression for the firing rate of the ith neuron, denoted νi. Using
the fact that νi is the probability, over time, that hi(t) + ui(t) is positive, we
have

νi = 〈�(hi(t) + ui(t))〉t (A.1)

where hi(t) is given by equation 3.1b, the distribution of ui(t) is given by
equation 3.3, the subscript t on the angle bracket represents an average over
time, and, recall, � is the Heaviside step function.

The term inside the Heaviside step function, hi(t) + ui(t), can be broken
into time-independent and time-dependent pieces,

hi(t) + ui(t) = u + αηi + βξi(t),

where

αηi ≡
∑

j

wi j〈x j(t)〉t, (A.2a)

βξi(t)≡
∑

j

wi j(x j(t) − 〈x j(t)〉t) + ui(t) − u. (A.2b)

As just discussed, we assume that sums over indices can be treated as
gaussian random variables. Using also the fact that ui(t) is gaussian (see
equation 3.3), it follows that both ηi and ξi(t) are gaussian random variables.
Since they are zero mean by construction, we can, without loss of generality,

Randomly Connected Networks Have Short Temporal Memory 1431

let them have unit variance. Consequently, the variances on the right-hand
sides of equations A.2a and A.2b are α2 and β2, respectively. Once we know
α and β, computing the distribution of firing rates is, as we show below
(see in particular equations A.6 to A.9), straightforward.

We first compute the variance of the expression on the right-hand side
of equation A.2a. Using exactly the same techniques we used to derive an
expression for the mean firing rate (see in particular equations 3.6 and 3.7),
we find, after a small amount of algebra, that

α2 = σ 2
wσ 2

x , (A.3)

where

σ 2
x ≡ 1

N

∑
j

〈x j(t)〉2
t . (A.4)

We next turn to equation A.2b, which is slightly more complicated. As-
suming the terms in the sum over j are independent and using the fact that
x2

j = 1, we have

Var

⎡
⎣∑

j

wi j(x j(t) − 〈x j(t)〉t)

⎤
⎦ =

∑
j

w2
i j(1 − 〈x j(t)〉2

t).

All terms on the right-hand side are nonnegative, so the sum self-averages,
meaning it is independent of i. We can therefore average it over i. This
yields a factor of σ 2

w/N in place of w2
i j (see equation 3.2), and we are left

with an average over 1 − 〈x j(t)〉2
t . This average is, via equation A.4, just

(1 − σ 2
x). Combining this with equation 3.3, which tells us that the variance

of ui(t) − u is σ 2
u , and using the fact that ξi(t) has unit variance, we have

β2 = σ 2
w(1 − σ 2

x) + σ 2
u . (A.5)

We can now compute νi by turning the time average in equation A.1 into
an average over the gaussian random variables, ξi(t). This gives us

νi =
∫

dξe−ξ 2/2

(2π)1/2 �(u + αηi + βξ) = �((u + αηi)/β), (A.6)

where

�(z) ≡
∫ z

−∞
dy

exp(−y2/2)

(2π)1/2 (A.7)

is the cumulative normal function.

1432 E. Wallace, H. Maei, and P. Latham

Because we are interested only in the probability distribution of the firing
rate, we do not need to keep track of which neuron has which firing rate.
We may therefore interpret equation A.6 to mean

ν(η) = �((u + αη)/β), (A.8)

where, recall, η is a zero mean, unit variance gaussian random variable.
To find p(ν), we use the usual relationship for transforming probability
distributions, p(ν) = p(η) |dη/dν|. Since the derivative of the cumulative
normal function is just a gaussian, we arrive at the expression given in
equation 3.11.

Our remaining task is to compute σ 2
x , which must be done self-

consistently. Using equation A.4 for the definition of σ 2
x , replacing 〈xi(t)〉

with 2νi − 1, and turning averages over index into averages with respect to
p(ν), we see that

σ 2
x = (2ν − 1)2 + 4Var[ν],

where ν is given by equation 3.10 and

Var[ν] =
∫

dν p(ν)
(
ν − ν

)2
.

Finally, using the fact that p(ν)dν = p(η)dη to turn the integral over ν into
an integral over η, and using equation A.8 for ν(η), we arrive at

σ 2
x = (2ν − 1)2 + 4

∫
dη e−η2/2

(2π)1/2 (�((u + αη)/β) − ν)2. (A.9)

Because α and β, which appear on the right-hand side, depend on σ 2
x (via

equations A.3 and A.5, respectively), equation A.9 must be solved self-
consistently. This can be done efficiently by iterating that equation.

A.2 The Distance Evolution Function. Here we compute the distance
evolution function, f (d), which tells us the time evolution of the distance
between trajectories that have different initial conditions but receive the
same input. This function is given by the right-hand side of equation 3.13.
Using our approximation that sums over indices can be turned into averages
over distributions, this equation becomes

f (d) = 1
2

∫
du P(u)

∫
dh(1)dh(2) P(h(1), h(2))

× |sgn(h(1) + u) − sgn(h(2) + u)|d, (A.10)

Randomly Connected Networks Have Short Temporal Memory 1433

where, as in the main text, the subscript d indicates that the two trajectories
are a distance d apart. It is convenient to make the change of variables

a = h(1) + h(2)

2
+ u, (A.11a)

b= h(1) − h(2)

2
. (A.11b)

It is easy to see that a and b are uncorrelated, which follows because 〈ab〉 ∝
Var[h(1)] − Var[h(2)] = 0 (the second equality follows from the symmetry
between h(1) and h(2)). We assume also that they are independent. With this
assumption, we find, after a small amount of algebra to determine the limits
of integration in the new variables, that equation A.10 becomes

f (d) =
∫ ∞

−∞
du P(u)

∫ ∞

−∞
db P(b)

∫ |b|

−|b|
da P(a). (A.12)

Because a consists of the sum of a large number of random variables,
P(a) is gaussian. Its variance is given by

Var[a] = Var[h(1)] + 2Covar[h(1), h(2)|d] + Var[h(1)]
4

. (A.13)

The variances we computed in equation 3.7; they are equal to σ 2
w. The

covariance can be computed in the same way,

Covar[h(1), h(2)] = 1
N

∑
i

∑
j

wi jx
(1)

j

∑
j′

wi j′ x
(2)

j′ = 1
N

∑
i j j′

wi jwi j′ x
(1)

j x(2)

j′ .

As usual, because the weights are i.i.d. with mean zero and variance σ 2
w/N,

in the large N limit the average over i (which involves only the weights) is
δ j j′σ

2
w/N. Consequently,

Covar[h(1), h(2)|d] = σ 2
w

N

∑
j

x(1)

j x(2)

j = 1× (1−d)+ (−1)×d = σ 2
w(1−2d).

Inserting this into equation A.13 yields Var[a] = σ 2
w(1 − d). The mean of a

is u, and so we can write

f (d) =
∫ ∞

−∞
db P(b)

∫ ∞

−∞
du

e−(u−u)2/2σ 2
u

(2πσ 2
u)1/2

∫ |b|

−|b|
da

e−(a−u)2/2σ 2
w
(1−d)

(2πσ 2
w(1 − d))1/2 ,

1434 E. Wallace, H. Maei, and P. Latham

where we used equation 3.3 for P(u) and exchanged the order of the u and
b integrations.

The integrals over u and a are straightforward, and we have

f (d) =
∫ ∞

−∞
db P(b)

[
�

(
u + |b|

σd

)
− �

(
u − |b|

σd

)]
, (A.14)

where

σ 2
d ≡ σ 2

w(1 − d) + σ 2
u = σ 2

tot − dσ 2
w. (A.15)

The second equality in equation A.15 follows from equation 3.9.
To compute the right-hand side of equation A.14, we need an explicit

expression for P(b). For that, we restore indices on b and write

bi = 1
2

∑
j

wi j

(
x(1)

j − x(2)

j

)
. (A.16)

The probability distribution over b, P(b), is a probability distribution with
respect to index, i. Normally when we have a sum over indices, we as-
sume that it has a gaussian distribution. For that, however, we need a large
number of terms in the sum to be nonzero. Here this is not necessarily the
case, since the number of nonzero terms on the right-hand side is approx-
imately Kd. (That follows because the probability that x(1)

j − x(2)

j �= 0 is d,
the probability that wij is nonzero is K/N, and there are N terms in the sum;
multiplying these together yields Kd.) We generally assume that Kd � 1.
That is typically true when K is large, but we note that d = 1/N, the smallest
possible value; then Kd = K/N, which need not be large. We thus consider
two regimes: Kd � 1 and Kd � 1. We start with the former.

The mean of b is clearly zero (independent of the size of Kd). And since
we are assuming Kd � 1, b is gaussian, and we can use our usual approach
to finding the variance,

Var[b] = 1
4N

∑
i j j′

wi jwi j′
(
x(1)

j − x(2)

j

)(
x(1)

j′ − x(2)

j′
)

= σ 2
w

4N

∑
j

(
x(1)

j − x(2)

j

)2 = σ 2
wd.

Thus, when Kd � 1,

P(b) = e−b2/2σ 2
w

d

(2πσ 2
wd)1/2 .

Randomly Connected Networks Have Short Temporal Memory 1435

Inserting this expression for P(b) into equation A.14 and noting that both
P(b) and the term in brackets in equation A.14 are symmetric around b = 0,
we arrive at

f (d) = 2
∫ ∞

0
db

exp[−b2/2σ 2
wd]

(2πσ 2
wd)1/2

[
�

(
u + b
σd

)
− �

(
u − b
σd

)]
. (A.17)

In the small d limit, b is small; we can Taylor-expand the term in brackets
around b = 0. Working to first order in b and using that fact that in the small
d limit σ 2

d ≈ σ 2
tot (see equation A.15) equation A.17 reduces to equation 3.18.

We now consider the second limit, Kd � 1. In this limit, with probability
1 − Kd (plus O((Kd)2) corrections), all the terms on the right-hand side
of equation A.16 are zero. Thus, the dominant component of P(b) is (1 −
Kd)δ(b). The next most likely case is exactly one term nonzero, for which
x(1) − x(2) = ±2. This happens with probability Kd (again with O((Kd)2)

corrections). Because of the factor of 1/2 in equation A.16, this means bi is
+wi j with probability Kd/2 and −wi j with the same probability. Combining
these two components and using equation 3.2 for the distribution of nonzero
w’s, we have, in the small Kd limit,

p(b) = (1 − Kd)δ(b) + Kd
Pc

w(b) + Pc
w(−b)

2
.

Inserting this into equation A.14, Taylor-expanding the term in brackets
around b = 0 (which is valid since Pc

w(w) has a standard deviation of σw/K1/2

and K � 1), and replacing σ 2
d with σ 2

tot, we find that

f (d) =
[

2
σw/K1/2

∫ ∞

−∞
db Pc

w(b) |b|
]

K1/2σw

e−u2
/2σ 2

tot

(2πσ 2
tot)

1/2
d (A.18)

with, of course, O(Kd) corrections. The divisive term, σw/K1/2, inside the
square brackets ensures that the term in brackets is O(1). Consequently,
we recover equation 4.9, but with the constant of proportionality computed
explicitly.

A.3 Scaling of the Linear Classifier with Distance, d. Here we deter-
mine how Z(t), equation 4.5, scales with the distance between the two
trajectories. Our starting point is to determine the scaling of J(t) and〈
x(1)(t) − x(2)(t)

〉
. That will tell us how the numerator scales and, as it turns

out, will provide us enough information to write down the scaling of the
denominator.

We assume, for simplicity, that we use R trials for both training and
testing (which is what we do in our simulations). Consequently, for the

1436 E. Wallace, H. Maei, and P. Latham

numerator of equation 4.5, we have

J(t) · 〈x(1)(t) − x(2)(t)〉

= 1
R2

R∑
r=1

R∑
s=1

1
N

N∑
i=1

1
σ 2

i

(
x(1)r

i (t) − x(2)r
i (t)

)(
x(1)s

i (t) − x(2)s
i (t)

)
, (A.19)

where we used equation 4.4 for J(t), and x(k)r
i is the value of xi on the rth

trial of trajectory k. We assume that σ 2
i is, on average, independent of the

product of the xi’s, which allows us to write

1
N

N∑
i=1

1
σ 2

i

(
x(1)r

i (t) − x(2)r
i (t)

)(
x(1)s

i (t) − x(2)s
i (t)

)

≈ 1/σ 2

N

N∑
i=1

(
x(1)r

i (t) − x(2)r
i (t)

)(
x(1)s

i (t) − x(2)s
i (t)

)
, (A.20)

where 1/σ 2 ≡ N−1 ∑
i 1/σ 2

i is the population average of 1/σ 2
i . Explicitly

multiplying the terms in parentheses yields sums over products of xi’s (e.g.,∑
i x(1)r

i x(1)s
i). Using the fact that by definition, d∗(t) = P

(
x(1)r

i (t) �= x(1)s
i (t)

)
and d(t) = P

(
x(1)r

i (t) �= x(2)s
i (t)

)
, we see that those sums depend on only the

distance between trajectories,

1
N

N∑
i=1

x(k)r
i (t)x(k)s

i (t) = 1 − 2d∗(t), (A.21a)

1
N

N∑
i=1

x(k)r
i (t)x(k)s

i (t) = 1 − 2d(t), (A.21b)

where k means “not k”: k = 1 if k = 2 and k = 2 if k = 1. Inserting these
expressions into equation A.20, we find that the right-hand side is equal to
4(d(t) − d∗(t)) on average. Because this is independent of r and s, the sums
over r and s in equation A.19 are trivial, and we arrive at

J(t) · 〈
x(1)(t) − x(2)(t)

〉 ≈ 1/σ 2 × 4(d(t) − d∗(t)). (A.22)

This is as expected: the closer d(t) is to d∗(t), the harder it is to distinguish
the two trajectories.

Randomly Connected Networks Have Short Temporal Memory 1437

For the denominator in equation 4.5, we start with the explicit expression

Var
[
J(t) · (

x(1)(t) − x(2)(t)
)]

= J(t) · 〈(
x(1)(t) − x(2)(t)

)(
x(1)(t) − x(2)(t)

)〉 · J(t).

Making the usual approximation that the neurons are independent, the
term in angle brackets is a diagonal matrix with the ith diagonal element
given by σ 2

i . Thus, using equation 4.4 for J(t), we have

Var
[
J(t) · (

x(1)(t) − x(2)(t)
)] = 1

N2

∑
i

〈(
x(1)

i − x(2)
i

)2〉
σ 2

i
. (A.23)

Again using the fact that angle brackets correspond to an average over
trials, this expression is almost the same as equation A.20. However, there
are two differences. One is that there is an extra factor of 1/N. The other
is that the xi are evaluated on the same set of trials. So when r = s, x(1)r

i

is identical to x(1)s
i , and similarly for x(2)

i . We thus need to consider r = s
and r �= s separately. For r �= s, we get the same answer as in equation A.22
(except, of course, for the extra factor of 1/N). Since there are R(R − 1) such
terms, equation A.23 becomes

Var
[
J(t) · (

x(1)(t) − x(2)(t)
)]

≈ 1/σ 2

N

[
4(1 − 1/R)(d(t) − d∗(t)) + 1

R2

∑
r

1
N

∑
i

(
x(1)r

i − x(2)r
i

)2

]
.

The second term inside the brackets is just 4d(t)/R, and so

Var
[
J(t) · (

x(1)(t) − x(2)(t)
)] = 4/σ 2

N
[d(t) − d∗(t) + d∗(t)/R].

We can now compute Z(t): combining equation A.22 with equation A.23
and using the definition of Z(t), equation 4.5, we have

Z(t) =
[

2/σ 2 N(d(t) − d∗(t))
1 + d∗(t)/[R(d(t) − d∗(t))]

]1/2

. (A.24)

Replacing d(t) − d∗(t) by (d∗/c0)e
−λt , and defining c1 ≡ (

2/σ 2 d∗/c0

)1/2
,

where c0 and c1 are O(1) quantities that depends on network parameters,
we arrive at equation 4.7.

1438 E. Wallace, H. Maei, and P. Latham

Acknowledgments

We thank Lars Büsing for insightful discussions and comments on the
manuscript. This work was supported by the Gatsby Charitable Founda-
tion.

References

Ashwin, P., Buescu, J., & Stewart, I. (1996). From attractor to chaotic saddle: A tale
of transverse instability. Nonlinearity, 9, 703–737.

Banerjee, A. (2006). On the sensitive dependence on initial conditions of the dynamics
of networks of spiking neurons. J. Comput. Neurosci., 20, 321–348.

Bertschinger, N., & Natschläger, T. (2004). Real-time computation at the edge of
chaos in recurrent neural networks. Neural Comput., 16, 1413–1436.

Borst, J. (2010). The low synaptic release probability in vivo. Trends Neurosci., 33,
259–266.

Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex. Berlin: Springer-Verlag.
Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability

and feedback control at single synapses. Nat. Rev. Neurosci., 10, 373–383.
Brody, C., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent

activity: Discrete attractors, continuous attractors, and dynamic representations.
Curr. Opin. Neurobiol., 13, 204–211.

Buonomano, D., & Maass, W. (2009). State-dependent computations: Spatiotemporal
processing in cortical networks. Nat. Rev. Neurosci., 10, 113–125.

Büsing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and
memory in reservoir computing with binary and analog neurons. Neural Comput.,
22, 1272–1311.

Del Castillo, J., & Katz, B. (1954). Quantal components of the end-plate potential. J.
Physiol. (London), 124, 560–573.

Diesmann, M., Gewaltig, M., & Aertsen, A. (1999). Stable propagation of synchronous
spiking in cortical neural networks. Nature, 402, 529–533.

Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical systems.
Proc. Natl. Acad. Sci. USA, 105, 18970–18975.

Izhikevich, E. (2006). Polychronization: Computation with spikes. Neural Comput,
18, 245–282.

Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocor-
tical systems. Proc. Natl. Acad. Sci. USA, 105, 3593–3598.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent
neural networks. Biol. Cybern., 81, 211–225.

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304, 78–80.

Kauffman, S., & Johnsen, S. (1991). Co-evolution to the edge of chaos: Coupled
fitness landscapes, poised states, and co-evolutionary avalanches. J. Theor. Biol.,
149, 467–505.

Koulakov, A., Raghavachari, S., Kepecs, A., & Lisman, J. (2002). Model for a robust
neural integrator. Nature Neurosci., 5, 775–782.

Randomly Connected Networks Have Short Temporal Memory 1439

Langton, C. (1990). Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D: Nonlinear Phenomena, 42, 12–37.

Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational
performance for neural circuit models. Neural Networks, 20, 323–334.

Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in bal-
anced cortical networks with clustered connections. Nat. Neurosci., 15(11), 1498–
1505.

London, M., Roth, A., Beeren, L., Häusser, M., & Latham, P. E. (2010). Sensitivity
to perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature, 466, 123–127.

Maass, W., Legenstein, R., & Bertschinger, N. (2005). Methods for estimating the
computational power and generalization capability of neural microcircuits. In
L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing
systems, 17 (pp. 865–872). Cambridge, MA: MIT Press.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Comput., 14, 2531–2560.

Monteforte, M., & Wolf, F. (2010). Dynamical entropy production in spiking neuron
networks in the balanced state. Phys. Rev. Lett., 105, 268104.

Rajan, K., Abbott, L., & Sompolinsky, H. (2010). Stimulus-dependent suppression of
chaos in recurrent neural networks. Phys Rev. E Stat Nonlin. Soft Matter Phys., 82,
011903.

Seung, H. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA, 93,
13339–13344.

Sussillo, D., & Abbott, L. (2009). Generating coherent patterns of activity from chaotic
neural networks. Neuron, 63, 544–557.

van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science, 274, 1724–1726.

van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of
cortical circuits. Neural Comput., 10, 1321–1371.

Received November 3, 2012; accepted December 16, 2012.

