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Abstract

Zipf’s law, which states that the probability of an observation is inversely proportional to its

rank, has been observed in many domains. While there are models that explain Zipf’s law in

each of them, those explanations are typically domain specific. Recently, methods from sta-

tistical physics were used to show that a fairly broad class of models does provide a general

explanation of Zipf’s law. This explanation rests on the observation that real world data is

often generated from underlying causes, known as latent variables. Those latent variables

mix together multiple models that do not obey Zipf’s law, giving a model that does. Here we

extend that work both theoretically and empirically. Theoretically, we provide a far simpler

and more intuitive explanation of Zipf’s law, which at the same time considerably extends

the class of models to which this explanation can apply. Furthermore, we also give methods

for verifying whether this explanation applies to a particular dataset. Empirically, these

advances allowed us extend this explanation to important classes of data, including word

frequencies (the first domain in which Zipf’s law was discovered), data with variable

sequence length, and multi-neuron spiking activity.

Author Summary

Datasets ranging from word frequencies to neural activity all have a seemingly unusual

property, known as Zipf’s law: when observations (e.g., words) are ranked from most to

least frequent, the frequency of an observation is inversely proportional to its rank. Here

we demonstrate that a single, general principle underlies Zipf’s law in a wide variety of

domains, by showing that models in which there is a latent, or hidden, variable controlling

the observations can, and sometimes must, give rise to Zipf’s law. We illustrate this mech-

anism in three domains: word frequency, data with variable sequence length, and neural

data.

Introduction

Both natural and artificial systems often exhibit a surprising degree of statistical regularity.

One such regularity is Zipf’s law. Originally formulated for word frequency [1], Zipf’s law has
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since been observed in a broad range of domains, including city size [2], firm size [3], mutual

fund size [4], amino acid sequences [5], and neural activity [6, 7].

Zipf’s law is a relation between rank order and frequency of occurrence: it states that when

observations (e.g., words) are ranked by their frequency, the frequency of a particular observa-

tion is inversely proportional to its rank,

Frequency /
1

Rank
: ð1Þ

Partly because it is so unexpected, a great deal of effort has gone into explaining Zipf’s law.

So far, almost all explanations are either domain specific or require fine-tuning. For language,

there are a variety of domain-specific models, beginning with the suggestion that Zipf’s law

could be explained by imposing a balance between the effort of the listener and speaker [8–10].

Other explanations include minimizing the number of letters (or phonemes) necessary to

communicate a message [11], or by considering the generation of random words [12]. There

are also domain-specific models for the distribution of city and firm sizes. These models pro-

pose a process in which cities or firms grow by random amounts [2, 3, 13], with a fixed total

population or wealth and a fixed minimum size. Other explanations of Zipf’s law require fine

tuning. For instance, there are many mechanisms that can generate power laws [14], and these

can be fine tuned to give an exponent of −1. Possibly the most important fine-tuned proposal

is the notion that some systems sit at a highly unusual thermodynamic state—a critical point

[6, 15–18].

Only very recently has there been an explanation, by Schwab and colleagues [19], that does

not require fine tuning. This explanation exploits the fact that most real-world datasets have

hidden structure that can be described using an unobserved variable. For such models—com-

monly called latent variable models—the unobserved (or latent) variable, z, is drawn from a

distribution, P (z), and the observation, x, is drawn from a conditional distribution, P (x|z).

The distribution over x is therefore given by

P xð Þ ¼
Z

dz P xjzð ÞP zð Þ: ð2Þ

For example, for neural data the latent variable could be the underlying firing rate or the time

since stimulus onset.

While Schwab et al.’s result was a major advance, it came with some restrictions: the obser-

vations, x, had to be a high dimensional vector, and the conditional distribution, P (x|z), had

to lie in the exponential family with a small number of natural parameters. In addition, the

result relied on nontrivial concepts from statistical physics, making it difficult to gain intuition

into why latent variable models generally lead to Zipf’s law, and, just as importantly, why they

sometimes do not. Here we use the same starting point as Schwab et al. (Eq 2), but take a very

different theoretical approach—one that considerably extends our theoretical and empirical

understanding of the relationship between latent variable models and Zipf’s law. This

approach not only gives additional insight into the underlying mechanism by which Zipf’s law

emerges, but also gives insight into where and how that mechanism breaks down. Moreover,

our theoretical approach relaxes the restrictions inherent in Schwab et al.’s model [19] (high

dimensional observations and an exponential family distribution with a small number of natu-

ral parameters). Consequently, we are able to apply our theory to three important types of

data, all of which are inaccessible under Schwab et al.’s model: word frequencies, models

where the latent variable is the sequence length, and complex datasets with high-dimensional

observations.
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For word frequencies—the domain in which Zipf’s law was originally discovered—we show

that taking the latent variable to be the part of speech (e.g. noun/verb) can explain Zipf’s law.

As part of this explanation, we show that if we take only one part of speech (e.g. only nouns)

then Zipf’s law does not emerge—a phenomenon that is not, to our knowledge, taken into

account by any other explanation of Zipf’s law for words. For models in which the latent vari-

able is sequence length (i.e. observations in which the dimension of the vector, x, is variable),

we show that Zipf’s law emerges under very mild conditions. Finally, for models that are high

dimensional and sufficiently realistic and complex that the conditional distribution, P (x|z),

falls outside Schwab et al.’s model class, we show that Zipf’s law still emerges very naturally,

again under mild conditions. In addition, we introduce a quantity that allows us to assess how

much a given latent variable contributes to the observation of Zipf’s law in a particular dataset.

This is important because it allows us to determine, quantitatively, whether a particular latent

variable really does contribute significantly to Zipf’s law.

Results

Under Zipf ’s law (Eq 1) frequency falls off relatively slowly with rank. This means, loosely,

that rare observations are more common than one would typically expect. Consequently,

under Zipf ’s law, one should observe a fairly broad range of frequencies. This is the case, for

instance, for words—just look at the previous sentence: there are some very common words

(e.g. “a”, “of”), and other words that are many orders of magnitude rarer (e.g. “frequencies”,

“consequently”). This is a remarkable property: you might initially expect to see rare words

only rarely. However, while a particular rare word (e.g. “frequencies”) is far less likely to

occur than a particular common word (e.g. “a”), there are far more rare words than com-

mon words, and these factors balance almost exactly, so that a random word drawn from a

body of text is roughly equally likely to be rare, like “frequencies” as it is to be common,

like “a”.

Our explanation of Zipf’s law consists of two parts. The first part is the above observation—

that Zipf ’s law implies a broad range of frequencies. This notion was quantified by Mora and

Bialek, who showed that a perfectly flat distribution over a range of frequencies is mathemat-

ically equivalent to Zipf ’s law over that range [6]—a result that applies in any and all

domains. However, it is important to understand the realistic case: how a finite range of fre-

quencies with an uneven distribution might lead to something similar to, but not exactly,

Zipf ’s law. We therefore extend Mora and Bialek’s result, and derive a general relationship

that quantifies deviations from Zipf ’s law for arbitrary distributions over frequency—from

very broad to very narrow, and even to multi-modal distributions. That relationship tells us

that Zipf ’s law emerges when the distribution over frequency is sufficiently broad, even if it

is not very flat. We complete the explanation of Zipf ’s law by showing that latent variables

can, but do not have to, induce a broad range of frequencies. Finally, we demonstrate theo-

retically and empirically that, in a variety of important domains, it is indeed latent variables

that give rise to a broad range of frequencies, and hence Zipf ’s law. In particular, we explain

Zipf ’s law in three domains by showing that, in each of them, the existence of a latent vari-

able leads to a broad range of frequencies. Furthermore, we demonstrate that data with both

a varying number of dimensions, and fixed but high dimension, leads to Zipf ’s law under

very mild conditions.

A broad range of frequencies implies Zipf’s law

By “a broad range of frequencies”, we mean the frequency varies by many orders of magnitude,

as is the case, for instance, for words: “a” is indeed many orders of magnitude more common

Zipf’s Law Arises When There Are Underlying, Unobserved Variables
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than “frequencies”. It is therefore convenient to work with the energy, defined by

EðxÞ � � log P xð Þ ¼ � log Frequency xð Þ þ const ð3Þ

where, as above, x is an observation, and we have switched from frequency to probability. To

translate Zipf’s law from observations to energy, we take the log of both sides of Eq (1) and use

Eq (3) for the energy; this gives us

Zipf’s law holds exactly () log rðEÞ ¼ E þ const; ð4Þ

where rðEÞ is the rank of an observation whose energy is E.

Given, as discussed above, that Zipf’s law implies a broad range of frequencies, we expect

Zipf’s law to hold whenever the low and high energies (which translate into high and low fre-

quencies) have about the same probability. Indeed, previous work [6] showed that when the

distribution over energy, PðEÞ, is perfectly constant over a broad range, Zipf’s law holds

exactly in that range. However, in practice the distribution over energy is never perfectly con-

stant; the real world is simply not that neat. Consequently, to understand Zipf’s law in real-

world data, it is necessary to understand how deviations from a perfectly flat distribution over

energy affect Zipf plots. For that we need to find the exact relationship between the distribu-

tion over energy and the rank.

To find this exact relationship, we note, using an approach similar to [6], that if we were to

plot rank versus energy, we would see a stepwise increase at the energy of each observation, x.

Consequently, the gradient of the rank is 0 almost everywhere, and a delta-function at the loca-

tion of each step,

drðEÞ
dE
¼
X

x

d E � EðxÞð Þ: ð5Þ

The right hand side is closely related to the probability distribution over energy. That distribu-

tion can be thought of as a sum of delta-functions, each one located at the energy associated

with a particular x and weighted by its probability,

P Eð Þ ¼
X

x

P xð Þd E � EðxÞð Þ ¼ e� E
X

x

d E � EðxÞð Þ; ð6Þ

with the second equality following from Eq (3). This expression says that the probability distri-

bution over energy is proportional to e� E � the density of states, a standard result from statis-

tical physics [20]. Comparing Eqs (5) and (6), we see that

drðEÞ
dE
¼ eEP Eð Þ: ð7Þ

Integrating both sides from −1 to E and taking the logarithm gives

log rðEÞ ¼ E þ log PS Eð Þ ð8Þ

where PSðEÞ is PðEÞ smoothed with an exponential kernel,

PS Eð Þ �
Z E

� 1

dE 0P E 0ð ÞeE0 � E : ð9Þ

Comparing Eqs (8) to (4), we see that for Zipf’s law to hold exactly over some range (i.e.

log rðEÞ ¼ E þ const, or r(x)/ 1/P (x)), we need PSðEÞ ¼ const over that range. This is not

new; it was shown previously by Mora and Bialek using essentially the same arguments we

used here [6]. What is new is the exact relationship between PðEÞ and rðEÞ given in Eq (8),

Zipf’s Law Arises When There Are Underlying, Unobserved Variables
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which is valid whether or not Zipf’s law holds exactly. This is important because the distribu-

tion over energy is never perfectly flat, so we need to reason about how deviations from

PSðEÞ ¼ const affect Zipf plots—something that our analysis allows us to do. In particular, Eq

(8) tells us that departures from Zipf’s law are due solely to variations in log PSðEÞ. Conse-

quently, Zipf’s law emerges if variations in log PSðEÞ are small compared to the range of

observed energies. This requires the distribution over energy to be broad, but not necessarily

very flat (see Eq (22) and surrounding text for an explicit example). Much of the focus of this

paper is on showing that latent variable models typically produce sufficient broadening in the

distribution over energy for Zipf’s law to emerge.

Narrow distributions over energy are typical. The analysis in the previous section can be

used to tell us why a broad (i.e. Zipfian) distribution over energy is special, and a narrow distri-

bution over energy is generic. Integrating Eq (6) over a small range (from E to E þ DE) we see

that

P E to E þ DEð Þ � e� EN ðE to E þ DEÞ ð10Þ

where N ðE to E þ DEÞ is the number of states with energy between E and E þ DE . As we just

saw, for a broad, Zipfian distribution over energy, we require PðEÞ to be nearly constant.

Thus, Eq (10) tells us that for Zipf’s law to emerge, we must have N ðE to E þ DEÞ / eE (an

observation that has been made previously, but couched in terms of entropy rather than den-

sity of states [6, 17–19]). However, there is no reason for the number of states to take this par-

ticular form, so we do not, in general, see Zipf’s law. Moreover, because of the exponential

term in Eq (10), whenever the range of energies is large, even small imbalances between the

number of states and the energy lead to highly peaked probabilities. Thus, narrow distributions

over energy are generic—a standard result from statistical physics [20].

The fact that broad distributions are not generic tells us that Zipf’s law is not generic. How-

ever, the above analysis suggests a natural way to induce Zipf’s law: stack together many nar-

row distributions, each with a peak at a different energy. In the following sections we expand

on this idea.

Latent variables lead to a broad range of frequencies

We now demonstrate that latent variables can broaden the distribution over energy sufficiently

to give Zipf’s law. We begin with generic arguments showing that latent variables typically

broaden the distribution over energy. We then show empirically that, in three domains of

interest, this broadening leads to Zipf’s law. We also show that Zipf’s law emerges generically

in data with varying dimensions and in latent variable models describing data with fixed, but

high, dimension.

General principles. To obtain Zipf’s law, we need a dataset displaying a broad range of

frequencies (or energies). It is straightforward to see how latent variables might help: if the

energy depends strongly on the latent variable, then mixing across many different settings of

the latent variable leads to a broad range of energies. We can formalise this intuition by noting

that for a latent variable model, the distribution over x is found by integrating P (x|z) over the

latent variable, z (Eq 2). Likewise, the distribution over energy is found by integrating PðEjzÞ
over the latent variable,

P Eð Þ ¼
Z

dzP Ejzð ÞP zð Þ: ð11Þ

Therefore, mixing multiple narrow (and hence non-Zipfian) distributions, PðEjzÞ, with suffi-

ciently different means (e.g., coloured lines in Fig 1A) gives rise to a broad (and hence Zipfian)

Zipf’s Law Arises When There Are Underlying, Unobserved Variables
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distribution, PðEÞ (solid black line Fig 1A). This tells us something very important: “special”

Zipfian distributions, with a broad range of energies, can be constructed merely by combining

many “generic” non-Zipfian distributions, each with a narrow range of energies. Critically, to

achieve large broadening, the mean energy, and thus the typical frequency, of an observation

must depend on the latent variable; i.e. the mean of the conditional distribution, PðEjzÞ, must

depend on z. Taking words as an example, one setting of the latent variable should lead mainly

to common (and thus low energy) words, like “a”, whereas another setting of the latent variable

should lead mainly to rare (and thus high energy) words, like “frequencies”.

Our mechanism (mixing together many narrow distributions over energy to give a broad

distribution) is one of many possible ways that Zipf’s law could emerge in real datasets. It is

thus important to be able to tell whether Zipf’s law in a particular dataset emerges because of

our mechanism, or another one. Critically, if our mechanism is operative, even though the full

dataset displays Zipf’s law (and hence has a broad distribution over energy), the subset of the

data associated with any particular setting of the latent variable will be non-Zipfian (and hence

have a narrow distribution over energy). In this case, a broad distribution over energy, and

hence Zipf’s law, emerges because of the mixing of multiple narrow, non-Zipfian distributions

(each with a different setting of the latent variable). To complete the explanation of Zipf’s law,

we only need to explain why, in that particular dataset, it is reasonable for there to be a latent

variable that controls the location of the peak in the energy distribution.

Of course there is, in reality, a continuum—there are two contributions to the width of

PðEÞ. One, corresponding to our mechanism, comes from changes in the mean of PðEjzÞ as

the latent variable changes; the other comes from the width of PðEjzÞ. To quantify the contri-

bution of each mechanism towards an observation of Zipf’s law, we use the standard formula

for the proportion of explained variance (or R2) to define the proportion of explained energy

variance (PEEV; see Methods PEEV, and the law of total variance for further details). PEEV

gives the proportion of the total energy variance that can be explained by changes in the mean

of PðEjzÞ as the latent variable, z, changes. PEEV ranges from 0, indicating that z explains

none of the energy variance, so the latent variable does not contribute to the observation of

Zipf’s law, to 1, indicating that z explains all of the energy variance, so our mechanism is

entirely responsible for the observation of Zipf’s law. As an example, we plot energy distribu-

tions with a range of values for PEEV (Fig 1). The black line is PðEÞ, and the coloured lines are

PðEjzÞ for different settings of z. For high values of PEEV, the distributions PðEjzÞ are narrow,

but have very different means (Fig 1A). In contrast, for low values of PEEV, the distributions

PðEjzÞ are broad, yet have very similar means, so the width of PðEÞ comes mainly from the

width of PðEjzÞ (Fig 1C).

Fig 1. PEEV measures the average width of PðEjzÞ relative to PðEÞ. PEEV is close to 0 if the widths are the

same, and close to 1 if PðEjzÞ is, on average, much narrower that PðEÞ. In all panels, the black line is PðEÞ,
and the coloured lines are PðEjzÞ for three different settings of the latent variable, z. A. For high PEEV, the

conditional distributions, PðEjzÞ, are narrow, and have very different means. B. For intermediate PEEV, the

conditional distributions are broader, and their means are more similar. C. For low PEEV, the conditional

distributions are very broad, and their means are very similar.

doi:10.1371/journal.pcbi.1005110.g001
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Categorical data (word frequencies)

It has been known for many decades that word frequencies obey Zipf’s law [1], and many

explanations for this finding have been suggested [8–12]. However, none of these explanations

accounts for the observation that, while word frequencies overall display Zipf’s law (solid

black line, Fig 2B), word frequencies for individual parts of speech (e.g. nouns vs conjunctions)

do not (coloured lines, Fig 2B; except perhaps for verbs, which we discuss below). We can see

directly from these plots that the mechanism discussed in the previous section gives rise to

Zipf’s law: different parts of speech have narrow distributions over energy (coloured lines, Fig

2A), and they have different means. Mixing across different parts of speech therefore gives a

broad range of energies (solid black line, Fig 2A), and hence Zipf’s law. In practice, the fact

that different parts of speech have different mean energies implies that some parts of speech

(e.g. nouns, like “ream”) consist of many different words, each of which is relatively rare,

whereas other parts of speech (e.g. conjunctions, like “and”) consist of only a few words, each

of which is relatively common. We can therefore conclude that Zipf’s law for words emerges

because there is a latent variable, the part-of-speech, and the latent variable controls the mean

energy. We can confirm quantitatively that Zipf’s law arises primarily through our mechanism

by noting that PEEV is relatively high, 0.58 (for details on how we compute PEEV, see Meth-

ods Computing PEEV).

We have demonstrated that Zipf’s law for words emerges because of the combination of dif-

ferent parts of speech with different characteristic frequencies. However, to truly explain Zipf’s

law for words, we have to explain why different parts of speech have such different characteris-

tic frequencies. While this is really a task for linguists, we can speculate. One potential explana-

tion is that different parts of speech have different functions within the sentence. For instance,

words with a purely grammatical function (e.g. conjunctions, like “and”) are common, because

they can be used in a sentence describing anything. In contrast, words denoting something in

the world (e.g. nouns, like “ream”) are more rare, because they can be used only in the relatively

Fig 2. Zipf’s law for word frequencies, split by part of speech (data from [21]). The coloured lines are for

individual parts of speech, the black line is for all the words. A. The distribution over energy is broad for words

in general, but the distribution over energy for individual parts of speech is narrow. B. Therefore, words in

general obey Zipf’s law, but individual parts of speech do not (except for verbs, which too can be divided into

classes [22]). The red line has a slope of −1, and closely matches the combined data.

doi:10.1371/journal.pcbi.1005110.g002
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few sentences about that object. Mixing together these two classes of words gives a broad range

of frequencies, or energies, and hence, Zipf’s law. Finally, using similar arguments, we can see

why verbs have a broader range of frequencies than other parts of speech—some verbs (like

“is”) can be used in almost any context (and one might argue that they have a grammatical

function) whereas other verbs (like “gather”) refer to a specific type of action, and hence can

only be used in a few contexts. In fact, verbs, like words in general, fall into classes [22].

Data with variable dimension

Two models in which the data consists of sequences with variable length have been shown to

give rise to Zipf’s law [5, 12]. These models fit easily into our framework, as there is a natural

latent variable, the sequence length. We show that if the distribution over sequence length is

sufficiently broad, Zipf’s law emerges.

First, Li [12] noted that randomly generated words with different lengths obey Zipf’s law.

Here “randomly generated” means the following: a word is generated by randomly selecting a

symbol that can be either one of M letters or a space, all with equal probability; the symbols are

concatenated; and the word is terminated when a space is encountered. We can turn this into

a latent variable model by first drawing the sequence length, z, from a distribution, then choos-

ing z letters randomly. Thus, the sequence length, z, is “latent”, as it is chosen first, before the

data are generated—it does not matter that in this particular case, the latent variable can be

inferred perfectly from an observation.

Second, Mora et al. [5] found that amino acid sequences in the D region of Zebrafish IgM

obey Zipf’s law. The latent variable is again z, the length of the amino acid sequence. The

authors found that, conditioned on length, the data was well fit by an Ising-like model with

translation-invariant coupling,

P xjzð Þ / exp
Xz

i¼1

hðxiÞ þ
Xz

i;j¼1

Jji� jjðxi; xjÞ

 !

ð12Þ

where x denotes a vector, x = (x1, x2, . . ., xz), and xi represents a single amino acid (of which

there were 21).

The basic principle underlying Zipf’s law in models with variable sequence length is that

there are few short sequences, so each short sequence has a high probability and hence a low

energy. In contrast, there are many long sequences, so each long sequence has a low probability

and hence a high energy. Mixing together short and long sequences therefore gives a broad dis-

tribution over energy and hence Zipf’s law.

Models in which sequence length is the latent variable are particularly easy to analyze

because there is a simple relationship between the total and conditional distributions,

P xð Þ ¼ P zjxð ÞP xð Þ ¼ P xjzð ÞP zð Þ: ð13Þ

The first equality holds because z, the length of the word, is a deterministic function of x, so

P (z|x) = 1 (as long as z is the length of the vector x, which is what we assume here); the second

follows from Bayes theorem. To illustrate the general approach, we use this to analyze Li’s

model (as it is relatively simple). For that model, each element of x is drawn from a uniform,

independent distribution with M elements, so the probability of observing any particular con-

figuration with a sequence length of z is M−z. Consequently

P xð Þ ¼ M� zP zð Þ: ð14Þ

Taking the log of both sides of this expression and negating gives us the energy of a particular

Zipf’s Law Arises When There Are Underlying, Unobserved Variables
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configuration,

E xð Þ ¼ z logM � log P zð Þ � z logM: ð15Þ

The approximation holds because log P (z) varies little with z (in this case its variance cannot

be greater than (M + 1)/M, and in the worst case its variance is Oððlog Var ½z�Þ2Þ; see Methods

Var [log P (z)] is Oððlog Var ½z�2ÞÞ). Therefore, the variance of the energy is approximately pro-

portional to the variance of the sequence length, z,

Var E xð Þ½ � � logMð Þ
2Var z½ �: ð16Þ

If there is a broad range of sequence lengths (meaning the standard deviation of z is large),

then the energy has a broad range, and Zipf’s law emerges. More quantitatively, our analysis

for high-dimensional data below suggests that in the limit of large average sequence length,

Zipf’s law emerges when the standard deviation of z is on the order of the average sequence

length. For Li’s model [12], the standard deviation and mean of z both scale with M, so we

expect Zipf’s law to emerge when M is large. To check this, we simulated random words with

M = 4. Even for this relatively modest value, PðEÞ (black line, Fig 3A) is relatively flat over a

broad range, but the distributions for individual word lengths (coloured lines, Fig 3A) are

extremely narrow. Therefore, data for a single word length does not give Zipf’s law (coloured

lines, Fig 3B), but combining across different word lengths does give Zipf’s law (black line, Fig

3B; though with steps, because all words with the same sequence length have the same energy).

Of course, this derivation becomes more complex for models, like the antibody data, in

which elements of the sequence are not independently and identically distributed. However,

even in such models the basic intuition holds: there are few short sequences, so each short

sequence has high probability and low energy, whereas the opposite is true for longer

sequences. In fact, the energy is still approximately proportional to sequence length, as it was

in Eq (15), because the number of possible configurations is exponential in the sequence

length, and the energy is approximately the logarithm of that number (see Methods Models in
which the latent variable is the sequence length, for a more principled explanation). Conse-

quently, in general a broad range of sequence lengths gives a broad distribution over energy,

and hence Zipf’s law.

However, as discussed above, just because a latent variable could give rise to Zipf’s law does

not mean it is entirely responsible for Zipf’s law in a particular dataset. To quantify the role of

sequence length in Mora et al.’s antibody data, we computed PEEV (the proportion of the vari-

ance of the energy explained by sequence length) for the 14 datasets used in their analysis. As

can be seen in Fig 4A, PEEV is generally small: less than 0.5 in 12 out of the 14 datasets. And

indeed, for the dataset with the smallest PEEV (0.07), Zipf’s law is obeyed at each sequence

Fig 3. Li’s model of random words displays Zipf’s law because it mixes words of different lengths. A.

The distribution over energy. B. Zipf plot. In both plots the black lines use all the data and each coloured line

corresponds to a different word length. The red line has a slope of −1, and so corresponds to Zipf’s law.

doi:10.1371/journal.pcbi.1005110.g003
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length (Fig 4B). This in fact turns out to hold for all the datasets, even the one with the highest

PEEV (0.72; Fig 4C).

The fact that Zipf’s law is observed at each sequence length complicates the interpretation

of this data. Our mechanism—adding together many distributions, each at different mean

energy—plays only a small role in producing Zipf’s law over the whole dataset. And indeed, an

additional mechanism has been found: a recent study showed that antibody data is well mod-

elled by random growth and decay processes [23], which leads to Zipf’s law at each sequence

length.

High-dimensional data

A very important class of models are those where the data is high-dimensional. We show two

things for this class. First, the distribution over energy is broadened by latent variables—more

specifically, for latent variable models, the variance typically scales as n2. Second, the n2 scaling

is sufficiently large that deviations from Zipf’s law become negligible in the large n limit.

The reasoning is the same as it was above: we can obtain a broad distribution over energy

by mixing together multiple, narrowly peaked (and thus non-Zipfian) distributions. Intui-

tively, if the peaks of those distributions cover a broad enough range of energies, Zipf’s law

should emerge. To quantify this intuition, we use the law of total variance [24],

Var x EðxÞ½ � ¼ Var z Exjz EðxÞ½ �
h i

þ Ez Var xjz EðxÞ½ �
h i

ð17Þ

where again x is a vector, this time with n, rather than z, elements. This expression tells us that

the variance of the energy (the left hand side) must be greater than the variance of the mean

energy (the first term on the right hand side). (As an aside, this decomposition is the essence

of PEEV; see Methods PEEV, and the law of total variance).

As discussed above, the reason latent variable models often lead to Zipf’s law is that the

latent variable typically has a strong effect on the mean energy (see in particular Fig 1). We

thus focus on the first term in Eq (17), the variance of the mean energy. We show next that it is

typically Oðn2Þ, and that this is sufficiently broad to induce Zipf’s law.

The mean energy is given by

Exjz EðxÞ½ � ¼ �
X

x

P xjzð Þlog P xð Þ: ð18Þ

Fig 4. Re-analysis of amino acid sequences in the D region of 14 Zebrafish. A. Proportion of the

variance explained by sequence length (PEEV) for the 14 datasets. Most are low, and all but two are less than

0.5. B and C. Zipf plots for the dataset with the lowest (B) and highest (C) PEEV. In both plots the black line

uses all the data and the coloured lines correspond to sequence lengths ranging from 1 to 7. The red line has

a slope of −1, and so corresponds to Zipf’s law. Data from Ref. [5], kindly supplied by Thierry Mora. (Note that

E increases downward on the y-axis, in keeping with standard conventions).

doi:10.1371/journal.pcbi.1005110.g004
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This is somewhat unfamiliar, but can be converted into a very standard quantity by noting that

in the large n limit we may replace P (x) with P (x|z), which converts the mean energy to the

entropy of P (x|z). To see why, we write

Exjz EðxÞ½ � ¼ �
X

x

P xjzð Þlog P xjzð Þ þ
X

x

P xjzð Þlog
P xjzð Þ

P xð Þ
: ð19Þ

For low dimensional latent variable models (more specifically, for models in which z is k
dimensional with k� n), the second term on the right hand side is Oðk=2 log nÞ. Loosely,

that’s because it’s positive and its expectation over z is the mutual information between x and

z, which is typically Oðk=2 log nÞ [25]. Here, and in almost all of our analysis, we consider low

dimensional latent variables; in this regime, the second term on the right hand side is small

compared to the energy, which is OðnÞ (recall, from the previous section, that the energy is

proportional to the sequence length, which here is n). Thus, in the large n and small k limit—

the limit of interest—the second term can be ignored, and the mean energy is approximately

equal to the entropy of P (x|z),

Exjz EðxÞ½ � � �
X

x

P xjzð Þlog P xjzð Þ � HxjzðzÞ: ð20Þ

Approximating the energy by the entropy is convenient because the latter is intuitive, and

often easy to estimate. This approximation breaks down (as does the Oðk=2 log nÞ scaling

[25]) for high dimensional latent variables, those for which k is on the same order as n. How-

ever, the approximation is not critical to any of our arguments, so we can use our framework

to show that high dimensional latent variables can also lead to Zipf’s law; see Methods High
dimensional latent variables.

At least in the simple case in which each element of x is independent and identically distrib-

uted conditioned on z, it is straightforward to show that the variance of the entropy is Oðn2Þ.

That is because the entropy is n times the entropy of one element ðHxjzðzÞ ¼ nHxijz
ðzÞÞ, so the

variance of the total entropy is n2 times the variance of the entropy of one element,

Var z HxjzðzÞ
h i

¼ n2Var z Hxijz
ðzÞ

h i
; ð21Þ

which is Oðn2Þ, and hence the variance of the energy is also Oðn2Þ. Importantly, to obtain this

scaling, all we need is that Var z½Hxi jz
ðzÞ� � Oð1Þ.

In the slightly more complex case in which each element of x is independent, but not identi-

cally distributed conditioned on z, the total entropy is still the sum of the element-wise entro-

pies: HxjzðzÞ ¼
X

i
Hxi jz
ðzÞ. Now, though, each of the Hxi jz

ðzÞ can be different. In this case, for

the variance to scale as n2, the element-wise entropies must covary, with Oð1Þ and, on average,

positive, covariance. Intuitively, the latent variable must control the entropy, such that for

some settings of the latent variable the entropy of most of the elements is high, and for other

settings the entropy of most of the elements is low.

For the completely general case, in which the elements of xi are not independent, essentially

the same reasoning holds: for Zipf’s law to emerge the entropies of each element (suitably

defined; see Methods Latent variable models with high dimensional non-conditionally indepen-
dent data) must covary, with Oð1Þ and, on average, positive, covariance. This result—that the

variance of the energy scales as n2 when the elementwise entropies covary—has been con-

firmed empirically for multi-neuron spiking data [17, 18] (though they did not assess Zipf’s

law).

Zipf’s Law Arises When There Are Underlying, Unobserved Variables
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We have shown that the variance of the energy is typically Oðn2Þ. But is that broad enough

to produce Zipf’s law? The answer is yes, for the following reason. For Zipf’s law to emerge,

we need the distribution over energy to be broad over the whole range of ranks. For high-

dimensional data, the number of possible observations, and hence the range of possible ranks,

increases with n. In particular, the number of possible observations scales exponentially with n
(e.g. if each element of the observation is binary, the number of possible observations is 2n), so

the logarithm of the number of possible observations, and hence the range of possible log-

ranks, scales with n. Therefore, to obtain Zipf’s law, the distribution over energy must be

roughly constant over a region that scales with n. But that is exactly what latent variable models

give us: the variance scales as n2, so the width of the distribution is proportional to n, matching

the range of log-ranks. Thus, the fact that the variance scales as n2 means that Zipf’s law is,

very generically, likely to emerge for latent variable models in which the data is high

dimensional.

We can, in fact, show that when the variance of the energy is Oðn2Þ, Zipf’s law is obeyed

ever more closely as n increases. Rewriting Eq (8), but normalizing by n, we have

1

n
log rðEÞ ¼

E
n
þ

1

n
log PS Eð Þ: ð22Þ

The normalized log-rank and normalized energy now vary across an Oð1Þ range, so if

log PSðEÞ � Oð1Þ, the last term will be small, and Zipf’s law will emerge. If the variance of the

energy is Oðn2Þ, then log PSðEÞ typically has this scaling. For example, consider a Gaussian dis-

tribution, for which log PSðEÞ � � ðE � E0Þ
2
=ð2n2Þ. Because, as we have seen, the energy is

proportional to n, the numerator and denominator both scale with n2, giving log PSðEÞ the

required Oð1Þ scaling. This argument is not specific to Gaussian distributions: if the variance

of the energy is Oðn2Þ, we expect log PSðEÞ to display only Oð1Þ changes as the energy changes

by an OðnÞ amount.

This result turns out to be very robust. For instance, as we show in Methods Peaks in PðEÞ
do not disrupt Zipf ’s law, even delta-function spikes in the distribution over energy (Fig 5A) do

not disrupt the emergence of Zipf’s law as n increases (Fig 5B). (The distribution over energy

is, of course, always a sum of delta-functions, as can be seen in Eq (6). However, the delta-func-

tions in Eq (6) are typically very close together, and each one is weighted by a very small num-

ber, e� E . Here we are considering a delta-function with a large weight, as shown by the large

spike in Fig 5A). However, “holes” in the probability distribution of the energy (i.e. regions of

0 probability, as in Fig 5C) do disrupt the Zipf plot. That is because in regions where PðEÞ is

low, the energy decreases rapidly without the rank changing; this makes log PSðEÞ very large

and negative, disrupting Zipf’s law (Fig 5D). Between holes, however, we expect Zipf’s law to

be obeyed, as illustrated in Fig 5D.

Importantly, we can now see why a model in which there is no latent variable, so the vari-

ance of the energy is OðnÞ, does not give Zipf’s law. (To see why the OðnÞ scaling of the vari-

ance is generic, see [20]). In this case, the range of energies is Oð
ffiffiffi
n
p
Þ. This is much smaller

than the OðnÞ range of the log ranks, and so Zipf’s law will not emerge.

We have shown that high dimensional latent variable models lead to Zipf’s law under two

relatively mild conditions. First, the average entropy of each individual element of the data, x,

must covary as z changes, and the average covariance must be Oð1Þ (again, see Methods Latent
variable models with high dimensional non-conditionally independent data, for the definition of

elementwise entropy for non-independent models). Second, PðEÞ cannot have holes; that is, it

cannot have large regions where the probability approaches zero between regions of non-zero

probability. These conditions are typically satisfied for real world data.

Zipf’s Law Arises When There Are Underlying, Unobserved Variables
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Neural data. Neural data has been shown, in some cases, to obey Zipf’s law [6, 7]. Here

the data, which consists of spike trains from n neurons, is converted to binary vectors, x(t) =

(x1(t), x2(t), . . .), with xi(t) = 1 if neuron i spiked in timestep t and xi(t) = 0 if there was no

spike. The time index is then ignored, and the vectors are treated as independent draws from a

probability distribution.

To model data of this type, we follow [7] and assume that each cell has its own probability

of firing, which we denote pi(z). Here z, the latent variable, is the time since stimulus onset.

This results in a model in which the distribution over each element conditioned on the latent

variable is given by

P xijzð Þ ¼ piðzÞ
xi 1 � piðzÞð Þ

1� xi : ð23Þ

The entropy of an individual element of x is, therefore,

Hxi jz
ðzÞ ¼ � piðzÞlog piðzÞ � 1 � piðzÞð Þlog 1 � piðzÞð Þ: ð24Þ

The entropy is high when pi(z) is close to 1/2, and low when pi(z) is close to 0 or 1. Because

time bins are typically sufficiently small that the probability of a spike is less than 1/2, probabil-

ity and entropy are positively correlated. Thus, if the latent variable (time since stimulus onset)

strongly and coherently modulates most cells’ firing probabilities—with high probabilities

soon after stimulus onset (giving high entropy), and low probabilities long after stimulus onset

(giving low entropy)—then the changes in entropy across different cells will reinforce, giving

an OðnÞ change in entropy, and thus Oðn2Þ variance.

In our data, we do indeed see that firing rates are strongly and coherently modulated by the

stimulus—firing rates are high just after stimulus onset, but they fall off as time goes by (Fig

6A). Thus, when we combine data across all times, we see a broad distribution over energy

(black line in Fig 6B), and hence Zipf’s law (black line in Fig 6C). However, in any one time

bin the firing rates do not vary much from one presentation of the stimulus to another, and so

the energy distribution is relatively narrow (coloured lines in Fig 6B). Consequently, Zipf’s law

is not obeyed (or at least is obeyed less strongly; coloured lines in Fig 6C).

Fig 5. The relationship between PSðEÞ (left panel) and Zipf plots (E versus log-rank, right panel). As in

Fig 4, ε increases downward on the y-axis in panels B and D. A and B. We bypassed an explicit latent variable

model, and set PðEÞ ¼ UniformðE; 0;30Þ=2þ dðE � 15Þ=2. The deviation from Zipf’s law, shown as a blip

around E ¼ 15, is small. This is general: as we show in Methods Peaks in PðEÞ do not disrupt Zipf’s law,

departures from Zipf’s law scale as 1/n even for large delta-function perturbations. C and D. We again

bypassed an explicit latent variable model, and set PðEÞ ¼ UniformðE; 0;10Þ=2þ UniformðE; 20;30Þ=2. The

resulting hole between E ¼ 10 and 20 causes a large deviation from Zipf’s law.

doi:10.1371/journal.pcbi.1005110.g005
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In our model of the neural data, Eq (23), and in the neural data itself (Methods Experimen-
tal methods), we assumed that the xi were independent conditioned on the latent variable.

However, the independence assumption was not critical; it was made primarily to simplify the

analysis. What is critical is that there is a latent variable that controls the population averaged

firing rate, such that variations in the population averaged firing rate are Oð1Þ—much larger

than expected for neurons that are either independent or very weakly correlated. When that

happens, the variance of the energy scales as n2 (as has been observed [17, 18]), and Zipf’s law

emerges (see Methods High dimensional latent variables).

Exponential family latent variable models

Recently, Schwab et al. [19] showed that a relatively broad class of models for high-dimen-

sional data, a generalization of a so-called superstatistical latent variable model [26],

P xjgð Þ / exp � n
Xm

m¼1

gmOmðxÞ

" #

; ð25Þ

can give rise to Zipf’s law. Importantly, in Schwab’s model, when they refer to “latent vari-

ables,” they are not referring to our fully general latent variables (which we call z) but to gμ, the

natural parameters of an exponential family distribution. To make this explicit, and to also

make contact with our model, we rewrite Eq (25) as

P xjzð Þ / exp � n
Xm

m¼1

gmðzÞOmðxÞ

" #

ð26Þ

Fig 6. Neural data recorded from 30 mouse retinal ganglion cells stimulated by full-field illumination;

see Methods Experimental methods, for details. A. Spike trains from all 30 neurons. Note that the firing

rates are strongly correlated across time. B. PSðEjzÞ (coloured lines) when time relative to stimulus onset is

the latent variable (see text and Methods Experimental methods). The thick black line is PSðEÞ. C. Zipf plots for

the data conditioned on time (coloured lines) and for all the data (black line). The red lines have slope −1.

doi:10.1371/journal.pcbi.1005110.g006
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where the dimensionality of z can be lower than m (see Methods Exponential family latent vari-
able models: technical details for the link between Eqs (25) and (26)).

If m were allowed to be arbitrarily large, Eq (26) could describe any distribution P (x|z).

However, under Schwab et al.’s model m can’t be arbitrarily large; it must be much less than n
(as we show explicitly in Methods Exponential family latent variable models: technical details).
This puts several restrictions on Schwab et al.’s model class. In particular, it does not include

many flexible models that have been fit to data. A simple example is our model of neural data

(Eq (23)). Writing this distribution in exponential family form gives

P xjzð Þ / exp � n
Xn

m¼1

log pmðzÞ
� 1
� 1

� �
ðxm=nÞ

" #

: ð27Þ

Even though there is only one “real” latent variable, z (the time since stimulus onset), there are

n natural parameters, gμ = log(pμ(z)−1 − 1). Consequently, this distribution falls outside of

Schwab et al.’s model class. This is but one example; more generally, any distribution with n
natural parameters gμ(z) falls outside of Schwab et al.’s model class whenever the gμ(z) have a

nontrivial dependence on μ and z (as they did in Eq (27)). This includes models in which

sequence length is the latent variable, as these models require a large number of natural param-

eters (something that is not immediately obvious; see Methods Exponential family latent vari-
able models: technical details).

The restriction to a small number of natural parameters also rules out high dimensional

latent variable models—models in which the number of latent variable is on the order of n.

That is because such models would require at least OðnÞ natural parameters, much more than

are allowed by Schwab et al.’s analysis. Although we have so far restricted our analysis to low

dimensional latent variable models, our framework can easily handle high dimensional ones.

In fact, the restriction to low dimensional latent variables was needed only to approximate the

mean energy by the entropy. That approximation, however, was not necessary; we can instead

reason directly: as long as changes in the latent variable (now a high dimensional vector) lead

to OðnÞ changes in the mean energy—more specifically, as long as the variance of the mean

energy with respect to the latent variable is Oðn2Þ—Zipf’s law will emerge. Alternatively,

whenever we can reduce a model with a high dimensional latent variable to a model with a low

dimensional latent variable, we can use the framework we developed for low dimensional

latent variables (see Methods Exponential family latent variable models: technical details). The

same reduction cannot be carried out on Schwab et al.’s model, as in general that will take it

out of the exponential family with a small number of natural parameters (see Methods Expo-
nential family latent variable models: technical details).

Besides the restrictions associated with a small number of natural parameters, there are two

further restrictions; both prevent Schwab et al.’s model from applying to word frequencies.

First, the observations must be high-dimensional vectors. However, words have no real notion

of dimension. In contrast, our theory is applicable even in cases for which there is no notion of

dimension (here we are referring to the theory in earlier sections; the later sections on data

with variable and high-dimension are only applicable in those cases). Second, the latent vari-

able must be continuous, or sufficiently dense that it can be treated as continuous. However,

the latent variable for words is categorical, with a fixed, small number of categories (the part-

of-speech).

Finally, our analysis makes it is relatively easy to identify scenarios in which Zipf’s law does

not emerge, something that can be hard to do under Schwab et al.’s framework. Consider, for
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example, the following model of data consisting of n-dimensional binary vectors,

P xjzð Þ / exp � h
X

i

xi þ A cos z
X

i

xi cosyi þ A sin z
X

i

xi sinyi

" #

ð28Þ

where θi� 2πi/n, h and A are constant, and z ranges from 0 to 2π. Although this is in Schwab

et al.’s model class, it does not display Zipf’s law. To see why, note that it can be written

P xjzð Þ /
Y

i

exp � hxi þ A cos z � yið Þxi½ �: ð29Þ

This is a model of place fields on a ring: the activity of neuron i is largest when its preferred ori-

entation, θi, is equal to z, and smallest when its preferred orientation is z + π. Because of the

high symmetry of the model, the entropy is almost independent of z. In particular, changes in

z produce Oð1Þ variations in the entropy (see Methods Exponential family latent variable mod-
els: technical details); much smaller than the OðnÞ variations needed to produce Zipf’s law.

This example suggests that any model in which changes in the latent variable cause uniform

translation of place fields, without changing their height or shape, should not display Zipf’s

law. And indeed, non-Zipfian behaviour was found in a numerical study of Gaussian place

fields in one dimension [18]. Note, though, that if the amplitude of the place fields (A in our

model) or the overall firing rate (h in our model) depends on a latent variable, then the popula-

tion would exhibit Zipf’s law. These conclusions emerge easily from our framework, but are

harder to extract from that of Schwab et al.
In conclusion, while Schwab et al.’s approach is extremely valuable, it does have some con-

straints. We were able to relax those constraints, and thus show that latent variables induce

Zipf’s law in a wide array of practically relevant cases (word frequencies, data with variable

sequence length, and simultaneously recorded neural data). Notably, all of these lie outside the

class that Schwab et al.’s approach can handle. In addition, our analysis allowed us to easily

identify scenarios in which the latent variable model lies in Schwab et al.’s model class, but

Zipf’s law does not emerge.

Discussion

We have shown that it is possible to understand, and explain, Zipf’s law in a variety of

domains. Our explanation consists of two parts. First, we derived an exact relationship

between the shape of a distribution over log frequencies (energies) and Zipf’s law. In particu-

lar, we showed that the broader the distribution, the closer the data comes to obeying Zipf’s

law. This was an extension of previous work showing that if a dataset has a broad, and perfectly

flat, distribution over log frequencies (e.g. if a random draw gives very common elements, like

“a” and rare elements, like “frequencies” the same proportion of the time), then Zipf’s law

must emerge [6]. Importantly, our extension allowed us to reason about how deviations from

a perfectly flat distribution over energy manifest in Zipf plots. Second, we showed that if there

is a latent variable that controls the typical frequency of observations, then mixing together dif-

ferent settings of the latent variable gives a broad range of frequencies, and hence Zipf’s law.

This is true even if the distributions over frequency conditioned on the latent variable are very

narrow. Thus, Zipf’s law can emerge when we mix together multiple non-Zipfian distribu-

tions. This is important because non-Zipfian distributions are the typical case, and are thus

easy to understand.

When Zipf’s law is observed, it is an empirical question whether or not it is due to our

mechanism. Motivated by this observation, we derive a measure (percentage of explained vari-

ance, or PEEV) that allows us to separate out, and account for, the contribution of different
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latent variables to the observation of Zipf’s law. We found that our mechanism was indeed

operative in three domains: word frequencies, data with variable sequence length, and neural

data. We were also able to show that while variable sequence length can give rise to Zipf’s law

on it’s own, it was not the primary cause of Zipf’s law in an antibody sequence dataset.

For words, the latent variable is the part of speech. As we described, parts of speech with a

grammatical function (e.g. conjunctions, like “a”) have a few, common words, whereas parts of

speech that denote something in the world (e.g. nouns, like “frequencies”) have many, rare

words. Varying the latent variable therefore induces a broad range of characteristic energies

(or frequencies), giving rise to Zipf’s law.

For data with variable sequence length, we take the latent variable to be the sequence length

itself. There are many possible long sequences, so each long sequence is rare (high-energy). In

contrast, there are few possible short sequences, so each short sequence is common (low-

energy). Mixing across short and long sequences, and everything in between, gives a broad

range of energies, and hence Zipf’s law. We examined the role of sequence length in two data-

sets: randomly generated words and antibody sequences, both of which display Zipf’s law [5,

12]. For the former, randomly generated words, sequence length was wholly responsible for

Zipf’s law. For the latter, antibody sequences, it formed only a small contribution. We were able

to make these assessments quantitative, by computing the percentage of explained variance, or

PEEV. And indeed, a recent model by Desponds et al. indicates that for antibodies, Zipf’s law at

each sequence length is most likely due to random growth and decay processes [23].

For high-dimensional data, small changes in the energy (or entropy) of each element of the

observation can reinforce to give a large change overall, and hence Zipf’s law. As an example,

we considered multi-neuron spiking data, for which the latent variable is the time since stimu-

lus onset. Just after stimulus onset, the firing rate of almost every cell (and hence the energy

associated with those cells), is elevated. In contrast, long after stimulus onset, the firing rate of

almost every cell (and hence the energy associated with those cells) is lower. As all the cells’

energies change in the same direction (high just after stimulus onset, and low long after stimu-

lus onset), the changes reinforce, and so produce OðnÞ changes in the total energy. Conse-

quently, whenever the population firing rate varies with time, Zipf’s law will almost always

appear. This is true regardless of what is causing the variation: it could be a stimulus, or it

could be low dimensional internal network dynamics. Thus, our framework is consistent with

the recent observation that in salamander retina the variance of the energy scales as n2 (the

scaling needed for Zip’s law to emerge), with higher variance when the stimulus induces larger

covariation in the firing rates [17, 18]. This does not, of course, imply that the retina imple-

ments an uninteresting transformation from stimulus to neural response. However, our find-

ings do have implications for the interpretation of observations of Zipf’s law.

Our work shows that there are two types of datasets in which we expect Zipf’s law to emerge

generically. First, for the reason mentioned above, any dataset in which the sequence length

varies (and is thus a latent variable) will display Zipf’s law if the distribution over sequence

length is sufficiently broad. Second, any high-dimensional dataset will display Zipf’s law if the

entropy of each element of the observation changes with the latent variable, and if those

changes are correlated.

Previous authors have pointed out that latent variables models have interesting properties

when the data is high-dimensional. As we discussed, Schwab et al. [19] were the first to show

that a relatively broad class of latent variable models describing high-dimensional data give

rise to Zipf’s law. Their result, however, carries some restrictions: it applies only to exponential

family distributions with continuous latent variables and a small number of natural parame-

ters. We took a far more general approach that relaxes all of these restrictions: it does not

require high-dimensional data, continuous latent variables, or an exponential family
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distribution with a small number of latent variables. Importantly, none of the datasets that we

considered lie within the class considered by Schwab et al. [19]. However, the fact that Schwab

et al.’s analysis applies to a restricted class of models should not detract from its importance:

they were the first that we know of to show that Zipf’s law could arise without fine tuning.

In addition, in work that anticipated some forms of latent variable models, Macke and col-

leagues examined models with common input [27], similar to the model in Eq (23), as well as

simple feedforward spiking neuron models [28]. They showed that both exhibit diverging heat

capacity, for which the variance of the energy is Oðn2Þ. Although they did not explicitly

explore the connection to Zipf’s law, in the latter study [28] they noted that the diverging heat

capacity should lead to Zipf’s law.

These findings have important implications in fields as diverse as biology and linguistics. In

biology, one explanation for Zipf’s law is that biological systems sit at a special thermodynamic

state, the critical point [6, 15–18]. However, our findings indicate that Zipf’s law emerges from

phenomena much more familiar to biologists: unobserved states that influence the observed

data. In fact, as mentioned above, for neural data our analysis shows that Zipf’s law will emerge

whenever the average firing rate in a population of neurons varies over time. Such time varia-

tion is common in neural systems, and can be due to external stimuli, low dimensional internal

dynamics, or both.

For words, we showed that individual parts of speech do not obey Zipf’s law; it is only by

mixing together different parts of speech with different characteristic frequencies that Zipf’s

law emerges. This has an important consequence for other explanations of Zipf’s law in lan-

guage. In particular, the observation that individual parts of speech do not obey Zipf’s law is

inconsistent with any explanation of Zipf’s law that fails to distinguish between parts of speech

[2, 9–12, 29].

In all of these domains, the observation of Zipf’s law is important because it may point to

the existence of some latent variable structure. It is that structure, not Zipf’s law itself, that is

likely to provide insight into statistical regularities in the world.

Methods

Ethics statement

All procedures were performed under the regulation of the Institutional Animal Care and Use

Committee of Weill Cornell Medical College (protocol #0807-769A) and in accordance with

NIH guidelines.

Experimental methods

The neural data in Fig 6 was acquired by electrophysiological recordings of 3 isolated mouse

retinas, yielding 30 ganglion cells. The recordings were performed on a multielectrode array

using the procedure described in [30, 31]. Full field flashes were presented on a Sony LCD

computer monitor, delivering intermittent flashes (2 s of light followed by 2 s of dark, repeated

30 times) of white light to the retina [32]. All procedures were performed under the regulation

of the Institutional Animal Care and Use Committee of Weill Cornell Medical College (proto-

col #0807-769A) and in accordance with NIH guidelines.

Spikes were binned at 20 ms, and xi was set to 1 if cell i spiked in a bin and zero otherwise.

To give us enough samples to plot Zipf’s law, we estimated pi(z), the probability that neuron i
spikes in bin z, from data using the model in Eq (23), and drew 106 samples from that model.

To construct the distributions of energy conditioned on the latent variable—the coloured lines

in Fig 6B and 6C—we treated samples that occurred within 100 ms as if they had the same

latent variable (so, for example, PSðEjz ¼ 300Þ is shorthand for the smoothed distribution over
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energy for spike trains in the five bins between 300 and 400 ms). Finally, to reduce clutter, we

plotted lines only for z = 0 ms, z = 300 ms etc.

PEEV, and the law of total variance

The law of total variance [24] is well known in statistics; it decomposes the total variance into

the sum of two terms. Here we briefly review this law in the context of latent variable models,

and then discuss how it is related to PEEV.

The energy, EðxÞ, can be trivially decomposed as

EðxÞ ¼ Exjz EðxÞ½ � þ EðxÞ � Exjz EðxÞ½ �
� �

ð30Þ

where the first term, Exjz½EðxÞ�, is the mean energy conditioned on z,

Exjz EðxÞ½ � ¼

Z

EðxÞP xjzð Þdx: ð31Þ

The two terms in Eq (30), Exjz½EðxÞ� and ðEðxÞ � Exjz½EðxÞ�Þ, are uncorrelated, so the variance

of EðxÞ is the sum of their variances,

Var x EðxÞ½ � ¼ Var z Exjz EðxÞ½ �
h i

þ Var z;x EðxÞ � Exjz EðxÞ½ �
h i

; ð32Þ

where Varx[. . .] is the variance with respect to P (x) and Varx,z[. . .] is the variance with respect

to P (x, z). As is straightforward to show, the second term can be rearranged to give the law of

total variance,

Var x EðxÞ½ � ¼ Var z Exjz EðxÞ½ �
h i

þ Ez Var xjz EðxÞ½ �
h i

: ð33Þ

This is the same as Eq (17) of the main text, except here we use x rather than x.

We can identify two contributions to the variance. The first, Var z½Exjz½EðxÞ��, is the variance

of the expected energy, Exjz½EðxÞ�, induced by changes in the latent variable, z. This represents

the contribution to the total energy variance from the latent variable (i.e. the contribution

from changes in the peak of PðEjzÞ as z changes) and, under our mechanism, is the contribu-

tion that gives rise to Zipf’s law. The second, Ez½Varxjz½EðxÞ��, is the variance of the energy,

Var xjz½EðxÞ�, for a fixed setting of the latent variable, averaged over the latent variable, z. This

represents the contribution from the width of PðEjzÞ. The proportion of explained energy var-

iance (PEEV)—that is, the portion explained by the first contribution—is the ratio of the first

quantity to the total variance of the energy,

PEEV �
Var z Exjz EðxÞ½ �

h i

Var x EðxÞ½ �
: ð34Þ

This quantity ranges from 0, indicating that z explains none of the energy variance, to 1, indi-

cating that z explains all of the energy variance. PEEV therefore describes how much the latent

variable contributes to the observation of Zipf’s law, though it should be remembered that

PEEV may be large even if the total energy variance is narrow, and hence Zipf’s law is not

obeyed.

Computing PEEV. To compute PEEV, we need to estimate, from data, the distribution

over energy given the latent variable, and the distribution over the latent variable. Here we

consider the case in which the latent variable is category, and each observation, x, falls into a

Zipf’s Law Arises When There Are Underlying, Unobserved Variables

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005110 December 20, 2016 19 / 32



single, known, category. In more realistic cases, P (z|x) must be estimated from a model and

P (x) from data, from which P (x|z) and P (z) can be obtained using Bayes’ theorem.

The starting point is the number of observations, and the category, of each possible value of

x. For instance, for words, we took a list of words, their frequencies, and their parts of speech

from [21]. We then used the frequencies to estimate the probability of each observation, and,

finally, turned those into an energy via Eq (3): EðxÞ ¼ � log PðxÞ. The empirical distribution

over energy, PðEÞ, and over energy given the latent variable, PðEjzÞ, was therefore a set of

delta functions, with each delta-function weighted by the probability of its corresponding

observation,

PðEÞ ¼
X

x

PðxÞdðE � EðxÞÞ; ð35Þ

PðEjzÞ ¼
X

x

PðxjzÞdðE � EðxÞÞ: ð36Þ

The first equation is the same as Eq (6); it is repeated here for convenience.

To compute the terms relevant to PEEV (Eq (34)), we need moments of both the total

energy and the energy conditioned on z. These are given, respectively, by

Ex½E
k
ðxÞ� ¼

X

x

PðxÞEk
ðxÞ; ð37Þ

Exjz½E
k
ðxÞ� ¼

X

x

PðxjzÞEk
ðxÞ: ð38Þ

Then, to compute the variances required for PEEV, we use

Var xjz½EðxÞ� ¼ Exjz½E
2
ðxÞ� � ðExjz½EðxÞ�Þ

2
; ð39Þ

Var z½Exjz½EðxÞ�� ¼ Ez½ðExjz½EðxÞ�Þ
2
� � ðEz½Exjz½EðxÞ��Þ

2
; ð40Þ

where

Ez½Exjz½E
k
ðxÞ�� ¼ Ex½E

k
ðxÞ�; ð41Þ

Ez½Exjz½EðxÞ�
k
� ¼

X

z

PðzÞðExjz½EðxÞ�Þ
k
: ð42Þ

Var[log P (z)] is Oððlog Var½z�Þ2Þ
To compute the variance of the energy for variable length data, we stated that the variance of

log P (z) is small compared to the variance of z (see in particular Eq (15)). Here we first show

that for Li’s model [12], the variance of log P (z) is Oð1Þ; we then show that in general the vari-

ance of log P (z) is at most Oððlog Var ½z�Þ2Þ.
For Li’s model, the probability of observing a sequence of length z is proportional to the

probability of drawing z letters followed by a blank. For an alphabet with M letters, this is

given by

P zð Þ ¼
1

M
M

M þ 1

� �z

: ð43Þ

The leading factor of 1/M ensures that the distribution is properly normalized (note that z
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ranges from 1 to1). Given this distribution, it is straightforward to show that

Var z log P zð Þ½ � ¼ MðM þ 1Þ log 1þ
1

M

� �� �2

: ð44Þ

Using the fact that log(1 + �)� �, we see that the right hand side is bounded by (M + 1)/M.

Thus, for Li’s model, Varz[log P (z)] is indeed Oð1Þ.
To understand how the variance of log P (z) scales in general, we note that the variance is

bounded by the second moment,

Var z log P zð Þ½ � ¼
X

z

P zð Þ½log P zð Þ�2 �
X

z

P zð Þlog P zð Þ

 !2

�
X

z

P zð Þ½log P zð Þ�2: ð45Þ

Shortly we’ll maximize the second moment with the variance of z fixed. When we do that, we

find that the second moment is small compared to s2
z , the variance of z. However, the analysis

is somewhat complicated, so first we provide the intuition.

The main idea is to note that for unimodal distributions, the number of sequence lengths

with appreciable probability is proportional to the standard deviation of z. If we make the

(rather crude) approximation that P (z) is nonzero only for n0 sequence lengths, where

n0/ σz, then the right hand side of Eq (45) is maximum when P (z) = 1/n0, and the corre-

sponding value is (log n0)2. Consequently, the second moment of log P (z) is at most

Oððlog szÞ
2
Þ, giving us the very approximate bound

Var z log P zð Þ½ � � O
log s2

z

2

� �2

ð46Þ

where we used log sz ¼ ð1=2Þlog s2
z .

This does indeed turn out to be the correct bound. To show that rigorously, we take the

usual approach: we use Lagrange multipliers to maximize the second moment of log P (z) with

constraints on the total probability and the variance. This gives us

@

@P zð Þ

X

z0
P z0ð Þ log P z0ð Þð Þ

2
� ðg2 þ a2 � 1Þ

X

z0
P z0ð Þ � 1

 !

�
g2Z2

e2

X

z0
P z0ð Þz02 � m2 � s2

z

 !" #

¼ 0 ð47Þ

where μ is the mean value of z,

m �
X

z

P zð Þz: ð48Þ

We use γ2+α2 − 1 and γ2 Z2/e2 as our Lagrange multiplier to simplify later expressions. As is

straightforward to show (taking into account the fact that μ depends on P (z)), Eq (47) is satis-

fied when P (z) is given by

P zð Þ ¼ exp � 1 � g2 þ a2 �
g2Z2m2

e2
þ

g2Z2ðz � mÞ
2

e2

� �1=2
" #

: ð49Þ

The parameters γ, α and Z must be chosen so that P (z) is normalized to 1 and has variance

s2
z . However, because z is a positive integer, finding these parameters analytically is, as far as

we know, not possible. We can, though, make two approximations that ultimately do yield

analytic expressions. The first is to allow z to be continuous. This turns sums (which are

needed to compute moments) into integrals, and results in an error in those sums that scales

as 1/σz. That error is negligible in the limit that σz is large (the limit of interest here). The
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second is to allow z to be negative. This will increase the maximum second moment of log

P (z) at fixed s2
z (because we are expanding the space of probability distributions), and so result

in a slightly looser bound. But the bound will be sufficiently tight for our purposes.

The problem of choosing the parameters γ, α and Z is now much simpler, as we can do inte-

grals rather than sums. We proceed in three steps: first, we show that none of the relevant

moments depend on μ, so we set it to zero and at the same time eliminate α; second, we use

the fact that P (z) must be properly normalized to express Z in terms of γ; and third, we explic-

itly compute the second moment of log P (z) and the variance of σ2.

To see that the second moment of P (z) and the variance of z do not depend on μ, make the

change of variables z = z0 + μ and let α2 = γ2 Z2 μ2/e2. That yields a distribution P (z0) that is

independent of μ. Thus, μ does not effect either the second moment of log P (z) or the variance

of z, and so without loss of generality we can set both μ and α to zero. We thus have

P zð Þ ¼ exp � 1 � g 1þ Z2z2=e2ð Þ
1=2

h i
: ð50Þ

It is convenient to make the change of variables z = ye/Z, yielding

P yð Þ ¼
e� gð1þy2Þ1=2

ZðgÞ
ð51Þ

where Z, which now depends on γ to ensure that P (z) (and thus P (y)) is properly normalized,

is given by

ZðgÞ ¼
Z

dy e� gð1þy2Þ1=2

: ð52Þ

In terms of P (y), the two quantities of interest are

Ez½ðlogPðzÞÞ
2
� ¼ Ey½ð1þ gð1þ y2Þ

1=2
Þ

2
� ð53Þ

s2

z ¼
e2

Z2ðgÞ
Ey½y

2�: ð54Þ

These expectations can be expressed as modified Bessel functions of the second kind (as can be

seen by making the change of variables y = sinh θ). However, the resulting expressions are not

very useful, so instead, we consider two easy limits: large and small γ. In the large γ limit, P (y)

is Gaussian, yielding

lim
g!1

Ez½ðlogPðzÞÞ
2
� ¼ ðgþ 3=2Þ

2
þOð1Þ ð55Þ

lim
g!1

s2

z ¼
e2ðgþ1Þ

2p
ð1þOð1=gÞÞ: ð56Þ

And in the small γ limit, P (y) is Laplacian, and we have

lim
g!0

Ez½ðlogPðzÞÞ
2
� ¼ 5þOðgÞ ð57Þ

lim
g!0

s2

z ¼
e2

2
þOðgÞ: ð58Þ

As is straightforward to show, in both limits the second moment of log P (z) obeys the
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inequality

Ez ðlog P zð ÞÞ2
� �

� c0 þ
log s2

z

2

� �2

ð59Þ

where

c0 ¼

ffiffiffiffiffi
20
p

� log ðe2=2Þ

2
� 1:58: ð60Þ

We verified numerically that the inequality in Eq (59) is satisfied over the whole range of γ,

from 0 to1. Thus, although very naive arguments were used to derive the bound given in Eq

(46), it is substantially correct.

Models in which the latent variable is the sequence length

For models in which the sequence length is the latent variable, for Zipf’s law to hold the energy

must be proportional to the sequence length, z; that is, the energy must be OðzÞ. To determine

whether this scaling holds, we start with Eq (13) of the main text, which tells us that when the

latent variable is sequence length, the total distribution is a simple function of the latent vari-

ables: P (x) = P (x|z)P (z) where z is the dimension of x (the sequence length). Thus, the energy

is given by

EðxÞ ¼
Xz

i¼1

E iðxÞ � log P zð Þ: ð61Þ

where

E iðxÞ � � log P xijxi� 1 . . . x1ð Þ: ð62Þ

Assuming the value of xi isn’t perfectly determined by the values of x1, . . ., xi−1 (the typical

case), each term in the sum over z is Oð1Þ, and so the first term in Eq (61) is OðzÞ. As we saw

in the previous section, the variance of log P (z) is small compared to the variance of z. Conse-

quently, the energy is OðzÞ.

Latent variable models with high dimensional non-conditionally

independent data

In the main text we argued that for a conditionally independent model—a model in which

each element of x is independent conditioned on z—the variance of the entropy typically scales

as n2. Extending this argument to complex joint distribution is straightforward, and, in fact,

follows closely the method used in the previous section.

The first step is to note that, just as in the conditionally independent case, log P (x|z) can be

written as a sum over each element of xi,

log P xjzð Þ ¼
X

i

log P xijz; x1; x2; :::; xi� 1ð Þ: ð63Þ

Taking the expectation with respect to P (x|z) (and negating) gives the entropy, which consists

of a sum of n terms,

HxjzðzÞ ¼
Xn

i¼1

hiðzÞ ð64Þ
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where hi(z) is the entropy of P (xi|z, x1, x2, . . ., xi−1), averaged over x1 to xi−1, with z fixed,

hiðzÞ � Exjz � log P xijz; x1; x2; :::; xi� 1ð Þ½ �: ð65Þ

The variance of the entropy is thus given by

Var z HxjzðzÞ
h i

¼
X

ij

Covz hiðzÞ; hjðzÞ
h i

: ð66Þ

Just as in the main text, if the individual entropies (the hi) have, on average, Oð1Þ covariance

as z changes, then the variance of the entropy is Oðn2Þ. This illuminates a special case in which

we do not see Zipf’s law: if the x1, x2, . . ., xi−1 determine the value of xi when i> i0 (indepen-

dent of n), then the entropy, hi, is zero whenever i> i0. If this were to happen, the variance of

the entropy would scale at most as i2
0
, independent of n; far smaller than the required Oðn2Þ

scaling. However, for most types of data, including neural data, each neuron has considerable

independent noise (due, for instance, to synaptic failures [33]), so the hi typically remain finite

for all i.
For complex joint distribution, the hi(z) can be hard to reason about and/or compute. How-

ever, here we argue that it is possible to reason about the scaling of the covariance of the hi(z)’s

based on the scaling of the covariance of the elementwise entropies Hxi jz
ðzÞ, which are much

simpler quantities. To see this, note that the hi can be written

hiðzÞ ¼ Hxi jz
ðzÞ � IiðzÞ ð67Þ

where, as in the main text, the first term is the elementwise entropy,

Hxijz
ðzÞ � �

X

xi

P xijzð Þlog P xijzð Þ; ð68Þ

and the second term is the mutual information between xi and x1 to xi−1, conditioned on z,

IiðzÞ � Exjz � log
P xijzð Þ

P xijz; x1; x2; :::; xi� 1ð Þ

� �� �

¼ Hxi jz
ðzÞ þ Exjz log P xijz; x1; x2; :::; xi� 1ð Þ½ �: ð69Þ

Combining Eq (67) with Eq (64), we see that

Var z HxjzðzÞ
h i

¼
X

ij

Covz Hxi jz
ðzÞ;Hxjjz

ðzÞ
h i

�
X

ij

2Covz Hxi jz
ðzÞ; IjðzÞ

h i

þ
X

ij

Covz IiðzÞ; IjðzÞ
h i

: ð70Þ

If the Hxi jz
ðzÞ covary, then the first term is Oðn2Þ. In this situation it would require very pre-

cise cancellation for the whole expression to be OðnÞ. Such cancellation could occur if, for

instance, Hxijz
ðzÞ ¼ IiðzÞ þ const. However, unless the constant were zero, so xi−1. . .x1 deter-

mine the value of xi (see Eq (69)), it is unclear how this could occur. Thus, as claimed in the

main text, except in cases in which there is highly precise cancellation, if the elementwise entro-

pies Hxi jz
ðzÞ covary (with Oð1Þ covariance), the variance of the total entropy will scale as n2.

High dimensional latent variables

So far we have restricted our analysis to low dimensional latent variables. However, this is not

absolutely necessary, and in fact high dimensional latent variable can induce Zipf’s law the

same way low dimensional ones can: if different settings of the latent variable result in OðnÞ
differences in the mean energy, Zipf’s law will emerge. The main difference in the analysis is
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that we can no longer approximate the mean energy by the entropy, as we did in Eq (20). How-

ever, it is not actually necessary to make this approximation; it is merely convenient, as it

allows us to work with the entropy, an intuitive, well-understood quantity. Indeed, if we work

directly with the mean energy, Eq (18), we can see that covariation in the individual energies

leads to Zipf’s law—just as the covariation in the individual entropies led to Zipf’s law in the

previous section.

To show this explicitly, we break Eq (18) into one term for each element of x,

Exjz � log P xð Þ½ � ¼
X

x

liðxÞ ð71Þ

where

liðxÞ � Exjz � log P xijx1; x2; :::; xi� 1ð Þ½ �: ð72Þ

Then, writing the variance of the mean energy in terms of the li, we have

Var z Exjz log P xð Þ½ �
h i

¼
X

ij

Covz li; lj
h i

: ð73Þ

If the li have Oð1Þ, and positive, covariance, the variance of the energy is Oðn2Þ, and Zipf’s law

emerges. The intuition is that each element of x contributes to the energy, −log P (x). These

contributions (or their expected values) change with the latent variable, and if they all change

in the same direction, then the overall change in the energy is OðnÞ, so the variance is Oðn2Þ.

While the above analysis provides the underlying intuition, in practical situations the li may

be difficult to compute. We therefore provide an alternative approach. For definiteness, we’ll

set the dimension of the latent variable to the dimension of the data, n; to make this explicit,

we’ll replace z by z (� z1, z2, . . ., zn). In addition, we’ll assume, without loss of generality, that

each latent variable—each zi—has an Oð1Þ range. We’ll also assume that each latent variable

has an Oð1Þ effect on the mean energy; this ensures that the average energy has sensible scaling

with n.

Because each of the latent variables has a small effect, they need to act together to produce

the OðnÞ variability in the mean energy that is required for Zipf’s law. Specifically, if any two

latent variables, say zi and zj, have the same effect on the average energy (either both increasing

it or both decreasing it), they need to be positively correlated; if they have the opposite effect

(one increasing it and the other decreasing it), they need to be negatively correlated. When

this doesn’t hold—when correlations are essentially arbitrary, or non-existent—variations in z

have an Oð
ffiffiffi
n
p
Þ effect on the average energy. In this regime, the variance of the average energy

is OðnÞ, and Zipf’s law does not emerge. We thus conclude, at least tentatively (and perhaps

not surprisingly) that the zi must to be correlated for Zipf’s law to emerge.

To see this more quantitatively, we make a first-order Taylor series expansion of the

expected energy,

Exjz EðxÞ½ � � Exjz¼μ EðxÞ½ � þ
Xn

i¼1

ðzi � miÞ
@Exjz½EðxÞ�

@zi

�
�
�
�
z¼μ

: ð74Þ

Because each of the zi has an Oð1Þ range and an Oð1Þ effect on the mean energy, each term in

the sum is Oð1Þ. Thus, if the higher order terms in Eq (74) can be neglected, the zi have to be

correlated for the variance of the average energy to scale as Oðn2Þ; if they are not correlated,

the variance is OðnÞ.
Of course, ignoring higher order terms in high dimensions is dangerous, as the number of

terms grows rapidly with n (the number of kth order terms is proportional to nk). However, it

Zipf’s Law Arises When There Are Underlying, Unobserved Variables

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005110 December 20, 2016 25 / 32



turns out to give the right intuition: the Efron-Stein inequality [34–36], along with the assump-

tion that each latent variable has an Oð1Þ effect on the energy, ensures that if the zi are inde-

pendent, the variance of the energy is indeed OðnÞ. Thus, a necessary condition for Zipf’s law

to emerge is that the zi are correlated, as has been pointed out previously [18] (in Supporting

Information).

The fact that correlations are necessary to produce Zipf’s law provides a natural approach

to understanding models with high dimensional latent variables. The approach relies on the

observation that sufficiently correlated variables have a “long” direction—a direction along

which the typical size of |z| is OðnÞ (rather than Oð
ffiffiffi
n
p
Þ, as it is for uncorrelated latent vari-

ables). We can, therefore, construct a low dimensional latent variable that measures distance

along that direction, and then use the analysis developed above for low dimensional latent

variables.

Here we illustrate this idea for binary variables, xi = 0 or 1. For definiteness, and because it

makes the ideas more intuitively accessible, we consider a concrete setting: neural data, with as

many latent variables as neurons. As in the main text, xi = 1 corresponds to one or more spikes

in a small time bin and xi = 0 corresponds to no spikes. Because the long direction in latent

variable space depends on the distribution P (z), it would seem difficult to make general state-

ments. However, in this example the data comes from neural spike trains, and so we can make

use of the fact that firing rates of neurons often covary. Thus, a very natural low dimensional

latent variable, which we denote ν, is the population averaged firing rate,

n ¼
1

n

X

i

piðzÞ ð75Þ

where pi(z) is the probability that xi = 1 given z,

piðzÞ ¼ Exjz xi½ � ¼
X

x

xiP xjzð Þ: ð76Þ

For this model the element-wise entropies have a very simple form,

Hxi jz
ðzÞ ¼ � piðzÞlog piðzÞ � 1 � piðzÞð Þlog 1 � piðzÞð Þ: ð77Þ

We’ll assume that all the pi(z) are less than 1/2, something that is satisfied for realistic spike

trains if the time bins aren’t too large. Consequently, increasing pi(z) increases the element-

wise entropy of neuron i.
We need two conditions for Zipf’s law to emerge: the variance of ν must be Oð1Þ, and Oð1Þ

changes in ν must lead to Oð1Þ, and positively correlated, changes in the element-wise entro-

pies (assuming, as discussed in the previous section, there isn’t very precise cancellation). So

long as the firing rates go up and down together, both conditions are satisfied, and Zipf’s law

emerges. If, on the other hand, the firing rates are not positively correlated on average, the var-

iance of ν is Oð1=
ffiffiffi
n
p
Þ, and the population averaged firing rate provides no information about

Zipf’s law. This is an important example, as the population averaged firing rate is easy to esti-

mate from data.

In summary, high dimensional latent variables are, from a conceptual point of view, no dif-

ferent than low dimensional ones: both lead to Zipf’s law if different settings of the latent vari-

ables lead to average energies that differ by OðnÞ. However, in the high dimensional case, each

latent variable has a small effect on the energy, so a necessary condition for Zipf’s law to

emerge is that the latent variables are correlated. This turns out to be helpful: the correlations

can lead naturally to a low dimensional latent variable, for which our analysis of low dimen-

sional latent variables applies.
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Peaks in PðEÞ do not disrupt Zipf’s law

In the main text, we noted that while holes in the distribution over energy, PðEÞ, disrupt Zipf’s

law, peaks in this distribution do not. To see this explicitly, take an extreme case: PðEÞ is com-

posed of a delta function at E ¼ E0, weighted by α, combined with a smooth component, f ðEÞ,
that integrates to 1 − α. Here αmay be any number between 0 and 1, and in particular it need

not be exponentially small in the energy, as it is in Eq (6). For this case, we can compute PSðEÞ
explicitly using Eq (9),

1

n
log PS Eð Þ ¼

1

n
log ae� E� E0ð ÞY E � E0ð Þ þ fS Eð Þ
� �

ð78Þ

where fS is f smoothed by an exponential kernel, Θ is the Heaviside step function, and we have

normalized by n to give us the quantity relevant for determining the size of departures from

Zipf’s law (see Eq (22)). The term e� ðE� E0ÞYðE � E0Þ ranges from 0 to 1, so log PSðEÞ can be

bounded above and below,

1

n
log fsðEÞð Þ �

1

n
log PS Eð Þ �

1

n
log aþ fsðEÞð Þ : ð79Þ

Assuming the distribution fsðEÞ is such that the first term vanishes in the large n limit (so that

without the delta function Zipf’s law would hold), then the last term must also vanish in the

large n limit. Thus, even delta-function singularities do not prevent convergence to Zipf’s law,

so long as they occur on top of a finite baseline.

Exponential family latent variable models: technical details

Schwab et al. [19] showed that Zipf’s law emerges for a model in which the distribution over x

given the latent variable is in the exponential family. By itself, the fact that the distribution is in

the exponential family places no restrictions on the class of models. However, their derivation

required other conditions to be satisfied, and those conditions do induce restrictions. In par-

ticular, their analysis does not apply to models with a large number of natural parameters (it

thus does not apply when the latent variable is high dimensional), models in which the latent

variable is discrete, and models in which the latent variable is the dimension of the data. Here

we show this explicitly.

The relationship between Schwab et al.’s model and our model. Schwab et al. formu-

lated their model as a latent variable model conditioned on natural parameters, as written in

the main text, Eq (25). Hidden in Eq (25) is the fact that the gμ can be “tied”: the parameters gμ

are drawn from a distribution that allows delta-functions, such as δ(g1 − f(g2)) for some func-

tion f, or even dðg3 � g�
3
Þ. To make this explicit, and to also make contact with our model, we

rewrote Eq (25) as a latent variable model conditioned on z (Eq (26)), where z is a k-dimen-

sional latent variable. Under this model it is easy to tie variables; for instance, letting g1 = z and

g2 = f(z) (with z one-dimensional) enforces the constraint δ(g1 − f(g2)).

Number of latent variables. Here we show that the number of natural parameters (m in

Eqs (25) and (26)) must be small compared to the dimension of the data, n. We start by sketch-

ing Schwab et al.’s [19] derivation, including many steps that were left to the reader in their

paper. Their starting point is the expression for the energy of an observation,

� log P xð Þ ¼ � log
Z

dz P zð Þe� ngðzÞ�OðxÞ� log ZðzÞ: ð80Þ

We have written the right hand side using the form given in Eq (26), except that we explicitly

include the partition function (Eq (82) below), and we use dot products instead of sums. This
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integral is evaluated using the saddle-point method,

� log P xð Þ � ngðz�Þ �OðxÞ þ log Zðz�Þ ð81Þ

where z� maximizes the integrand. For the saddle point method to work—that is, for the

above approximation to hold—the number of latent variables, dim(z), must be subextensive in

n (i.e., dim(z)/n! 0 as n goes to infinity; see [37] for details).

The condition dim(z)� n does not place any restrictions on the number of natural param-

eters (the dimension of g). But the next step in their derivation, computing the partition func-

tion (which is necessary for finding the energy of an observation), does. The log of the

partition function is given by the usual expression,

log ZðzÞ ¼ log
X

x

e� ngðzÞ�OðxÞ: ð82Þ

In the large n limit, the sum can be approximated as an integral over O,

log ZðzÞ ¼ log
Z

dOe� ngðzÞ�OþSðOÞ ð83Þ

where S(O) is the entropy at fixed O,

eSðOÞ ¼
X

x

d O � OðxÞð Þ: ð84Þ

Note that O is in fact a discrete variable. However, eS(O) becomes progressively denser as n
increases, and as n!1, it becomes continuous. As with Eq (80), the integral can be com-

puted using the saddle point method, yielding

log ZðzÞ � � ngðzÞ �O� þ SðO�Þ: ð85Þ

For this approximation to be valid, the dimension of O, and hence the dimension of g (which

is m), must be subextensive in n. Thus, Schwab et al.’s method applies to model in which

m� n (more technically, m/n! 0 as n!1). This restricts it to a relatively small number of

natural parameters.

In sum, because Schwab et al.’s method involves an m-dimensional saddle-point integral

over O, it requires the dimensionality of O (and hence g) to be small (i.e. m/n! 0 as n!1;

again, see [37] for details). There are additional steps in their derivation. However, they are not

trivial, and they do not lead to additional constraints on their model, so we do not consider

them further.

Although high dimensional natural parameters are ruled out by Schwab et al.’s method,

there are many interesting cases (e.g., models of neural data), in which the elements of g

covary. In those cases, one might think that it would be possible to reduce a high-dimensional

latent variable to a low-dimensional one, as we did in previously. While such a reduction is

always possible, doing so typically takes the model out of Schwab et al.’s class. To see this in a

simple setting, we reduce a model with one low-dimensional natural parameter, g, and one

high-dimensional natural parameter, g, to a model with just the low-dimensional natural

parameter. (Here g might represent the overall firing rate, and the other natural parameters, g,

might represent fluctuations around that rate). The model is written

P xjg; gð Þ ¼ e� gOðxÞ� g�OðxÞ� log Zðg;gÞ ð86Þ
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where Z(g,g) is the partition function,

Zðg; gÞ ¼
X

x

e� gOðxÞ� g�OðxÞ: ð87Þ

Marginalizing over g, we have

P xjgð Þ ¼

Z

dg e� gOðxÞ� g�OðxÞ� log Zðg;gÞP gjgð Þ � e� gOðxÞ� cðg;OðxÞÞ: ð88Þ

The function ψ(g,O(x)) typically has an extremely complicated dependence on g and x. In

fact, for all but the simplest model it is not even possible to calculate it analytically, as the parti-

tion function cannot be calculated analytically. Thus, P (x|g) can’t be written in the exponential

family with a single natural parameter. It can, of course, be written in the exponential family

with an exponential number of natural parameters,

cðg;OðxÞÞ ¼
X

x0
cðg;Oðx0ÞÞdðx � x0Þ ð89Þ

where δ(x − x0) is the Kronecker delta, but this clearly takes it out of Schwab et al.’s model

class. This is closely related to the fact that exponential family distributions are not closed

under marginalisation [38].

Latent variable is the sequence length. To show that a model with sequence length as the

latent variable is outside of Schwab’s class, we begin by writing the distribution in exponential

family form. The simplest way to do that is to write

P xjzð Þ ¼ lim
L!1

elog P xð Þ� L 1� ddim xð Þ;zð Þ ð90Þ

where δij is the Kronecker delta (δij = 1 if i = j and 0 otherwise) and, as above, dim(�) denotes

dimension (in this case the number of elements in x). This distribution allows only values of x

which have the correct length: if dim(x) = z, the second term in the exponent is zero, giving

P (x|z) = P (x); in contrast, if dim(x) 6¼ z, the second term in the exponent is −L, giving a large

negative contribution to the energy, and sending P (x|z 6¼ dim(x))! 0.

This distribution is not in the exponential family form, because the term, δdim(x), z is not

written as the product of a natural parameter (in this case a function of z), and a sufficient sta-

tistic (in this case a function of x). It is not possible to write it as a single product, but it can be

written as the sum of multiple products,

ddim xð Þ;z ¼
X

i

dz;idi;dim xð Þ: ð91Þ

This is now in the required form, because each term in the sum is the product of a natural

parameter (δz,i, which is function of z), and a sufficient statistic, (δi,dim(x), which is a function

of x). Inserting this into Eq (90) gives

P xjzð Þ ¼ lim
L!1

elog P xð Þ� L 1�
P

i
dz;idi;dim xð Þð Þ: ð92Þ

This is in the exponential family. However, there are OðnÞ terms in the sum, where n is the

mean sequence length, so it is not in Schwab et al.’s model class.

Entropy of a place field model. Here we compute the entropy, at fixed z, of the place field

model in Eq (29), and show that it depends very weakly on z. Because the distribution over x is
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conditionally independent given z, the entropy has a simple form,

HxjzðzÞ ¼
X

i

HB pðz � yiÞð Þ ð93Þ

where p(z − θi) is the probability that xi = 1 given z,

pðz � yiÞ �
e� hþA cos z� yið Þ

1þ e� hþA cos z� yið Þ
; ð94Þ

and HB(p) is the entropy (in nats) of a Bernoulli random variable,

HBðpÞ � � p log p � ð1 � pÞlog ð1 � pÞ: ð95Þ

To understand how this scales with z, we make the change of variables

z ¼ yj þ dz ð96Þ

where θj is chosen to minimize |δz|. The mean value theorem tells us that for any smooth func-

tion f(z),

f ðz þ dzÞ ¼ f ðzÞ þ dzf 0ðz�Þ ð97Þ

where prime denotes derivative and z� is between z and z + δz. Consequently, for some z�

close to θj,

HxjzðzÞ ¼
X

i

HB pðyj � yiÞ
� �

þ dz
X

i

@HB pðz� � yiÞð Þ

@z�
: ð98Þ

Because the θi are evenly spaced, the first term is independent of z. Except at p = 0 or 1 (which

are not allowed if h and A are finite), the sum over i of the second term is OðnÞ. The spacing

between adjacent θi is 2π/n, so jdzj � p=n � Oð1=nÞ. Consequently, the second term in Eq

(98) scales as Oð1=nÞ �OðnÞ � Oð1Þ, and so Oð1Þ changes in z produce Oð1Þ changes in the

entropy.

Supporting Information

S1 Code/Data. We include a supporting information file containing the code and data

used to obtain our results. Please see the “README” file for details.
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