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How the brain works:

Output

o Input

« We need to understand computation in
highly recurrent neuronal networks.

e One of the simplest non-trivial computations
are those performed by attractor networks.



Can realistic neuronal
networks support attractors?

realistic:
1. Low firing rate 3. Realistic gain
background state functions.
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Why is this a hard problem?

First observation: neuronal networks are
high gain.

« Small amount of bicuculine;
Small amount of kindling;
Bad luck:

— Epilepsy

 Back-of-the envelope:

PSP: 0.1 mV

R: 50 MQ EPSC=.02 pA
TS 10 ms = x5000=.1 nA
rate: 1 Hz
each excitatory
—) spike causes 25
other spikes!



Consequences

No feedback
to inhibitory
cells

Feedback to/from
inhibitory cells
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Attractor Network

e Excitatory
Inhibitory
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What we are likely to get:
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Toy model

Vei = (I)E(JEEVE_ JEIVI + O + /[f; g%igj\’w)

Vi = (I)I (JIEVE_ JHVI + eIi )
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. _ 1I-f prob=f
| -f  prob=1-f

v, = Average excitatory firing rate

v, = Average inhibitory firing rate



A little algebra

1. Inhibitory equation: average over threshold:
v, = <CI>, (J V= J v, + 6, )>9
1
i Vi=8 (VE)
2. « Replace v; by g(v,) In v, equation.

* Drop “E” sub- and super-scripts.
e Define:
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3. N equations for the excitatory cells:

V=P (6,-Jv + Bgzm)



Why -Jv (rather than +Jv)?

Vi = 6I (o IEVE_ JHVI"' 6;)

v, = BT~ T, + 6,)

Ve

Balanced excitation and inhibition

e van Vreeswijk and Sompolinsky (1996, 1998)
« Latham et al. (2000)



Average over 0 and &:

overbar indicates average

F over distribution of 0

B (0-J +(1-HPm)+(1-PHD (0 - Jv - fPm)

m=®(0-J +1-Hpm) - D(0-Jv-fpm)

Or:

=0(0-J -fpm) + fA®( ,m)

m =AD( ,m)

in the sparse coding limit (f— 0),
is independent of m




Graphical approach

AD( ,m)

p. stable

// unstable
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Bistability (a.k.a. attractors) exist, but
parameter regime is narrow.

Not robust!!

e Brunel (2000)
e Latham et al. (1999)



m(v)

Increasing

AD( ,m)

m/




v(m)

d /dm =pfa-Hl® (6 -J + (1-HPm)
-0 (0-J - fpm)]

D(x)

D’ (x)




v—m phase space

/.

Bistable and robust!



More realistic model

vi=pp*® (8- (@+1)v + @N)'2C, g(W+ y)v.)
J

b

number of sparseness 1257 b
attractors (0’s and 1’s) P4 S, Ej
Gaussian random. .
distribution clipping connectivity
function:

g(x)‘ /
x

Mean field analysis:

=<.{)[6( ~J - fpm) + fad( ,m,0)]

m = (.)AD( ,m)

1\

Var[0] = G( , m)

Relatively unimportant
factors associated with
multiple attractors



v—m phase space

Additional thickness
due to multiple attractors;
scales as N~

1/2

Background unstable
when gap vanishes



Simulations
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* No attractors embedded

» Attractors embedded; background stable
» Background unstable

'| Boundaries, from mean field theory



Simulation details

4,=pp"® (- (@+1)v + @N)EC, 8 Wy ;) - v

N =8000
p =200
f =0.1

a =0.5

Mean[0] =1.5
Var[6] =6.0/p
Ronnect — 03

Mean|W/ =1
Var|W/ = 0.09
d(x) = max(x, 0)




Summary

By avoiding sparse-coding limit, it
becomes possible to robustly embed
attractors in realistic neuronal networks.

Future directions:
 Simulations with spiking neurons.

e Scaling -- implications for cortical
networks.



