Associative memory in realistic neuronal networks

Peter E. Latham

University of California, Los Angeles

NIPS 2001 Vancouver, Canada

How the brain works:

- We need to understand computation in highly recurrent neuronal networks.
- One of the simplest non-trivial computations are those performed by attractor networks.

Can realistic neuronal networks support attractors?

realistic:

- 1. Low firing rate background state
- 2. Low firing rate during recall

3. Realistic gain functions.

Why is this a hard problem?

First observation: neuronal networks are high gain.

Small amount of bicuculine;
 Small amount of kindling;
 Bad luck:

 \Rightarrow Epilepsy

• Back-of-the envelope:

$$\begin{array}{ccc}
\text{PSP: } 0.1 \text{ mV} \\
R: & 50 \text{ M}\Omega \\
\tau: & 10 \text{ ms} \\
\text{rate: } 1 \text{ Hz}
\end{array}$$

$$\Rightarrow \begin{array}{c}
\text{EPSC=.02 pA} \\
\text{x5000=.1 nA}
\end{array}$$

each excitatory

spike causes 25
other spikes!

Consequences

Attractor Network

What we want:

What we are likely to get:

Toy model

$$\mathbf{v}_{Ei} = \Phi_{E} \left(J^{EE}_{\mathbf{v}_{E}} - J^{EI}_{\mathbf{v}_{I}} + \theta_{Ei} + \hat{\beta} \sum_{j} \xi_{i} \xi_{j} \mathbf{v}_{Ej} \right)$$

$$V_{Ii} = \Phi_{I} \left(J^{IE} V_{E} - J^{II} V_{I} + \theta_{Ii} \right)$$

$$\widehat{\beta} = \frac{\beta}{N_{E} f(1-f)}$$

$$\xi = \begin{cases} 1-f & prob = f \\ -f & prob = 1-f \end{cases}$$

 v_E = Average excitatory firing rate

 v_I = Average inhibitory firing rate

A little algebra

1. Inhibitory equation: average over threshold:

$$v_{I} = \left\langle \Phi_{I} \left(J^{IE} v_{E} - J^{II} v_{I} + \theta_{I} \right) \right\rangle_{\theta_{I}}$$

$$\Rightarrow v_{I} = g(v_{E})$$

- 2. Replace v_I by $g(v_E)$ in v_E equation.
 - Drop "E" sub- and super-scripts.
 - Define:

$$m = \frac{1}{N_E f(1-f)} \sum_{j} \xi_{j} v_{j}$$

3. N equations for the excitatory cells:

$$v_i = \Phi \left(\theta_i - J v + \beta \xi_i m \right)$$

Why J_{V} (rather than J_{V})?

- van Vreeswijk and Sompolinsky (1996, 1998)
- Latham et al. (2000)

Average over θ and ξ :

over distribution of
$$\theta$$

$$\mathbf{v} = f\overline{\Phi} \left(\theta - J\mathbf{v} + (1 - f)\beta m \right) + (1 - f)\overline{\Phi} \left(\theta - J\mathbf{v} - f\beta m \right)$$

$$m = \overline{\Phi} \left(\theta - J\mathbf{v} + (1 - f)\beta m \right) - \overline{\Phi} \left(\theta - J\mathbf{v} - f\beta m \right)$$

$$\mathbf{Or:}$$

$$\mathbf{v} = \overline{\Phi} \left(\theta - J\mathbf{v} - f\beta m \right) + f\Delta\Phi(\mathbf{v}, m)$$

$$m = \Delta\overline{\Phi}(\mathbf{v}, m)$$

in the sparse coding limit $(f \rightarrow 0)$, \lor is independent of m

Graphical approach

Bistability (a.k.a. attractors) exist, but parameter regime is narrow.

Not robust!!

- Brunel (2000)
- Latham et al. (1999)

$\underline{m(v)}$

$$\underline{v}(m)$$

$$\frac{d\mathbf{V}/dm}{-\overline{\Phi}'(\theta - J\mathbf{V} + (1-f)\beta m)} - \overline{\Phi}'(\theta - J\mathbf{V} - f\beta m)$$

v-m phase space

Bistable and robust!

More realistic model

Mean field analysis:

$$\mathbf{v} = (...) \left[\overline{\Phi} \left(\mathbf{\theta} - J \mathbf{v} - f \mathbf{\beta} \mathbf{m} \right) + f \Delta \Phi(\mathbf{v}, \mathbf{m}, \mathbf{\theta}) \right]$$

$$\mathbf{m} = (...) \Delta \overline{\Phi}(\mathbf{v}, \mathbf{m})$$

$$\mathbf{Var}[\mathbf{\theta}] = G(\mathbf{v}, \mathbf{m})$$
Relatively unimportant factors associated with multiple attractors

v−m phase space

Additional thickness due to multiple attractors; scales as $N^{-1/2}$

Background unstable when gap vanishes

Simulations

- No attractors embedded
- Attractors embedded; background stable
- Background unstable
- Boundaries, from mean field theory

Simulation details

$$\dot{\mathbf{v}}_{i} = \beta p^{\frac{1}{2}} \Phi \left(\hat{\boldsymbol{\theta}}_{i} - (\alpha + 1) \mathbf{v} + (\overline{g} N)^{-1} \sum_{j} C_{ij} g(W_{ij} + J_{ij}) \mathbf{v}_{j} \right) - \mathbf{v}_{i}$$

$$N = 8000$$
 $p = 200$
 $f = 0.1$
 $a = 0.5$
 $Mean[\hat{\theta}] = 1.5$
 $Var[\hat{\theta}] = 6.0/p$
 $Pconnect = 0.3$
 $Mean[W] = 1$
 $Var[W] = 0.09$
 $\Phi(x) = max(x, 0)$

$$g = 2$$

Summary

• By avoiding sparse-coding limit, it becomes possible to robustly embed attractors in realistic neuronal networks.

Future directions:

- Simulations with spiking neurons.
- Scaling -- implications for cortical networks.