Typical exchangesin London

|t’sraining outside; Sure; I'll grab the umbréla.
want to goto the pub? r

It’sdry outside; What, areyou insane? Il

want to go to the pub? N\ F grab theumbrella.




* The present state of networ ks depend on past input.
* For many task, “past” means 10s of seconds.
e Goal: understand how a single network can do this.

e Use an idea suggested by Jaeger (2001) and Maass
et al. (2002).



Theidea:

Output isalinear

combination of activity; A particular input —and

many linear combinations NIy that input —strongly
Timevarying are pOSSl blein the same activates an output unit.

input drives a network.
randomly connected
recurr@etwork.

Can randomly connected networkslikethisonedo a
good job classifying input?

output

time

In other words: can randomly connected networkstell
that two different inputsreally are different?



Answer can bevisualized by looking at trajectories
In activity space:

— input 1
— Input 2
— Input 3

Iy

Activity space (N-dimensional)

Thereisasubtlety involving time:



distinguishable inputs

I

time

Indistinguishable inputs

tir;ne

— T

Inputs arethe same
starting here

‘ How big can we make t beforethe inputs are indistinguishable?




input; IWH

Threemain regimes:

converging diverging ‘ neutral ‘

;2 :éf:‘t’ ;2% /3’[:1' %
- ry : I ’
r/t—_T r/t__T r/t__

t=0
v>t:‘r
T "1
Can we build a network that operates here? J




Reduced model*:

temporally uncorrelated
Input

X;(t+1) = sign[X; w; x,(1) + uy(1)]
random matrix
mean =0

variance = ¢4/N
number of neurons=N

Question: what happensto nearby trajectories?

*Bertschinger and Natschlager (2004): low connectivity.
Our network: high connectivity.
Analysisisvirtually identical.




Analysis

Two trajectories.

X4;(t) and x,;(t) (different initial conditions)

Normalized Hamming distance: _S

‘d(t) A+ yitr2)

d(t) = (I/N) X [xq;()-x2,;()I/2 . smulations
How does d(t) evolvein time? For small d, a
+
d(t+1) ~ d(t)¥2 - T
U T
Thisleadsto very rapid growth of small separations: 0 d(t) L

d(t) ~d(0)¥2' => d(t) ~1 when t~loglog [L/d(0)]



“Derivation”

xi(t+1) = sign[h;(t) + u]
\Zj Wi X(t)

S

What happensif one neuron (neuron k) is different between
thetwo trajectories?

P(h
Xk = Kok (h)

hy;=hyp + 2w, /
= h,; + Order(o/NV?) /[Lk
~o/NV2 «—

=> N O(6/N¥2)/6 = O(NY2) neurons U 0 h
are different on the next time step.
L— threshold

|n other words,
d(0) = /N
d(1) ~ N¥2/N = N-¥2 = d(0)¥2



Real neurons:

spike generation surface: small
differencesin initial conditions
are strongly amplified (=> chaos).

van Vreeswijk and Sompolinsky (1996)
Banerjee (2001)

Operation in the neutral regime (on the edge of chaos) is
not an option in realistic networks.



| mplications

t=-1
I t=0

t=1
input: WN & ’7 %
-T 0O 7 4; s -

e Trajectories evolve onto chaotic attractors (blobs).
 Different initial conditionswill lead to different pointson the
attractor.

 What isthetypical distance between pointson an attractor ?
 How doesthat comparethetypical distance between attractors?



Typical distance between points on an attractor: d*.

f(d)
S

stable equilibrium, d*

near attractor, d(t+1)-d* =f'(d*) (d(t)-d*)

0 d(t) 1 => d(t)-d* ~exp[t log(f'(d*))]

Typical distance between attractors: d, at timeO; d* at long times.

t=0
t=71
e -
Distance between S * ‘—\
attractorsisd, > d* 4; r After along time, the distance

between attractors decaysto d*.
At that point, inputsareno longer
distinguishable (with caveat).



All pointson the attractor are a distance d*+O(1/NY2) apart.
Distance between attractorsis d*+(d(0)-d*)exp[t log(f' (d*))]+O(1/NY?2).

State of the network no longer providesreliable infor mation about
the input when exp[t log(f' (d*))] ~ /N2, or:

- log N
-2 log(f' (d*))
L inear readout

— predictions
— simulations

distance within distance between
attractors attractors

indistinguishable
when O(I/N12)

fraction correct

input different | same



Conclusions

1. Expanding on a very simple model proposed by
Bertschinger and Natschlager (2004), we found that
randomly connected networ ks cannot exhibit a
temporal memory that extends much beyond the
time constants of the individual neurons.

2. Scaling with the size of the network is not favorable:
memory scalesas|og N.

3. Our arguments wer e based on the observation that
high connectivity, recurrent networks are chaotic
(Banerjee, 2001), and so our conclusions should be
very general.



Technical details

Mean field limit:

d(t) = prob{sign[¥; w; x;(t) + u(t)] =
sign[ X wi X, (1) + ui(D]}

Define:

hii = X Wi Xy (1), k=1, 2

h; Isa zero mean Gaussian random variable.
Covariance matrix:

%%

Ry = <h, h>= (IN)Lid; Wi Xie(1) wy" x5 (1)
= (6%IN) X Xy ; ()% ;(1) = 0?[1—2d(t) (1-3,)]



Mor e succinctly:

R_GZ( 1 1-2d)
1-2d 1

Can compute d(t+1) as a function of d(t) by doing Gaussian integrals:

(-u, -u)
integral isover
N /’ these regions
P<
y v

The d¥2 scaling isgeneric; it comes from the fact that the
Gaussian dlipse haswidth d¥2 in the narrow direction.




This scaling also holdsfor morerealistic reduced models with
excitatory and inhibitory cells and synaptic and cellular time constants.

X;(t+1) = Sign[zj Wi i Zg(1) = X5 Way 5 Z(0) + u,(t)] + (1-a)x;(t)
yi(t+1) = Sign[zj Wy i Z (1) - X5 Wey 5 Z5(0) + u (0] + (1-B)yi(t)

Z,i(t+1) = x(t) + (1-x) Z,4(t)

2,(t+1) = x,(t) + (1) () leaky Integrator

synapses with
temporal dynamics
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