
I t’ s raining outside;
want to go to the pub?

I t’s dry outside;
want to go to the pub?

Sure; I ’ ll grab the umbrella.

What, are you insane? I ’ ll
grab the umbrella.

Typical exchanges in London



• The present state of networks depend on past input.

• For many task, “ past”  means 10s of seconds.

• Goal: understand how a singlenetwork can do this.

• Use an idea suggested by Jaeger  (2001) and Maass
et al. (2002).



A par ticular  input – and
only that input – strongly
activates an output unit.

Time varying
input dr ives a
randomly connected
recurrent network.

Output is a linear
combination of activity;
many linear  combinations
are possible in the same
network.
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The idea:

Can randomly connected networks like this one do a
good job classifying input?

In other  words: can randomly connected networks tell
that two different inputs really are different?



Answer can be visualized by looking at trajector ies
in activity space:
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There is a subtlety involving time:
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distinguishable inputs

indistinguishable inputs

How big can we make before the inputs are indistinguishable? 

inputs are the same
star ting here
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Three main regimes:
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Can we build a network that operates here? 



Reduced model* :

xi(t+1) = sign[ j wij xj(t) + ui(t)]

Question: what happens to nearby trajector ies?

*Ber tschinger and Natschläger (2004): low connectivity.
Our  network: high connectivity.
Analysis is vir tually identical.

random matr ix
mean = 0
var iance = 2/N
number of neurons = N

temporally uncorrelated
input



Two trajector ies:

x1,i(t) and x2,i(t) (different initial conditions)

Normalized Hamming distance:

d(t) = (1/N) i |x1,i(t)-x2,i(t)|/2

How does d(t) evolve in time? For  small d,

d(t+1) ~ d(t)1/2

This leads to very rapid growth of small separations:

d(t) ~ d(0)1/2 =>    d(t) ~ 1  when  t ~ log log [1/d(0)]
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h

P(h)

0

xi(t+1) = sign[hi(t) + u]

j wij xj(t)

-u

What happens if oneneuron (neuron k) is different between
the two trajector ies?

x1k = -x2,k
h1,i = h2,i ± 2wik

= h2,i + Order( /N1/2)

=> N O( /N1/2)/ = O(N1/2) neurons 
are different on the next time step.

In other  words,
d(0) = 1/N
d(1) ~ N1/2/N = N-1/2 = d(0)1/2

~ /N1/2

threshold

“ Der ivation”
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Real neurons: 

spike generation sur face: small
differences in initial conditions
are strongly amplified (=> chaos).

van Vreeswijk and Sompolinsky (1996)
Baner jee (2001)

Operation in the neutral regime (on the edge of chaos) is
not an option in realistic networks.



Implications 
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• Trajector ies evolve onto chaotic attractors (blobs).
• Different initial conditions will lead to different points on the

attractor .

• What is the typical distance between points on an attractor?
• How does that compare the typical distance between attractors?
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input:
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stable equilibr ium, d*

near  attractor ,  d(t+1)-d*  = f' (d*) (d(t)-d*)

=>     d(t)-d*  ~ exp[t log(f' (d* ))]

Distance between
attractors is d0 > d* After  a long time, the distance

between attractors decays to d* .
At that point, inputs are no longer
distinguishable (with caveat).

Typical distance between points on an attractor : d* .

Typical distance between attractors: d0 at time 0; d*  at long times.



-T 0

d*

d0

input different same

All points on the attractor  are a distance d*+O(1/N1/2) apar t.
Distance between attractors is d*+(d(0)-d*)exp[t log(f' (d*))]+O(1/N1/2).

State of the network no longer  provides reliable information about
the input when exp[ log(f' (d* ))] ~ 1/N1/2, or :

~   log N
-2 log(f' (d* ))

distance between
attractors

distance within
attractors

indistinguishable
when O(1/N1/2)
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Conclusions

1. Expanding on a very simple model proposed by
Bertschinger and Natschläger (2004), we found that
randomly connected networks cannot exhibit a
temporal memory that extends much beyond the
time constants of the individual neurons.

2. Scaling with the size of the network is not favorable:
memory scales as log N.

3. Our  arguments were based on the observation that
high connectivity, recurrent networks are chaotic
(Baner jee, 2001), and so our  conclusions should be
very general.



Mean field limit:

d(t) = prob{sign[ j wij x1,j(t) + ui(t)]
sign[ j wij x2,j(t) + ui(t)]}

Define:

hk,i = j wij xk,j(t),         k=1, 2

hk,i is a zero mean Gaussian random var iable.

Covar iance matr ix:

Rkl = <hk hl> = (1/N) i jj' wij xk,j(t) wij' xl,j'(t)

= ( 2/N) j xk,j(t)xl,j(t) = 2[1 – 2d(t) (1- kl)]

Technical details

2
jj'



More succinctly:

R = 2

Can compute d(t+1) as a function of d(t) by doing Gaussian integrals:

The d1/2 scaling is gener ic; it comes from the fact that the
Gaussian ellipse has width d1/2 in the narrow direction.

(-u, -u)

d1/2

integral is over
these regions

1      1-2d

1-2d 1( )



This scaling also holds for  more realistic reduced models with
excitatory and inhibitory cells and synaptic and cellular  time constants.

xi(t+1) = sign[ j wxx,ij zxj(t) - j wxy,ij zyj(t) + ui(t)] + (1- )xi(t)
yi(t+1) = sign[ j wyx,ij zxj(t) - j wyy,ij zyj(t) + ui(t)] + (1- )yi(t)

zxi(t+1) = xi(t) + (1- ) zxi(t)
zyi(t+1) = xi(t) + (1- ) zyi(t) leaky integrator

synapses with
temporal dynamics
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