Synergy, redundancy, and independence in population codes, revisited.

or

Are correlations important?

Peter Latham* and Sheila Nirenberg[†]

*Gatsby Computational Neuroscience Unit [†]University of California, Los Angeles

The neural coding problem

Estimate stimulus from responses:

S

Approach problem probabilistically:

$$P(r_{1}, r_{2}, ..., r_{n} | \mathbf{s}) \qquad P(\mathbf{s} | r_{1}, r_{2}, ..., r_{n})$$
Bayes
$$P(r_{1}, r_{2}, ..., r_{n} | \mathbf{s}) P(\mathbf{s})$$

$$P(r_{1}, r_{2}, ..., r_{n})$$

The problem is easy for one neuron (1-D) but harder for populations (≥ 2-D). Why? Because correlations force you to measure the probability in every bin.

- If you want to understand how to decode spike trains, you have to figure out how to deal with correlations.
- The first step is to understand whether you need to deal with correlations.
- In other words, are correlations important?

How to determine if correlations are important:

- Get rid of them by treating the cells as though they were independent and then estimate the stimulus.
- If your estimate of the stimulus is different from the true estimate, then correlations are important.
 Otherwise they are not.

Formally, compare $P_{ind}(s|r_1, r_2)$ to $P(s|r_1, r_2)$, where

$$P_{\text{ind}}(s|r_1, r_2) = \frac{P(r_1|s)P(r_2|s)P(s)}{\sum_{s'} P(r_1|s')P(r_2|s')P(s')}$$
Independent
response distribution

If $P_{ind}(s|r_1, r_2) \neq P(s|r_1, r_2)$, correlations are important for decoding. If $P_{ind}(s|r_1, r_2) = P(s|r_1, r_2)$, correlations are not important. One might wonder: how can $P_{ind}(s|r_1, r_2) = P(s|r_1, r_2)$ when neurons are correlated – i.e., when $P(r_1|s)P(r_2|s) \neq P(r_1, r_2|s)$?

Neurons are correlated, that is, $P(r_1|s)P(r_2|s) \neq P(r_1, r_2|s)$, but correlations don't matter: $P_{ind}(s|r_1, r_2) = P(s|r_1, r_2)$. Intuitively, the closer $P_{ind}(s|r_1, r_2)$ is to $P(s|r_1, r_2)$, the less important correlations are. We measure "close" using

$$\Delta I = \sum_{r_{l}, r_{2}, s} P(r_{l}, r_{2}) P(s|r_{l}, r_{2}) \log \frac{P(s|r_{l}, r_{2})}{P_{\text{ind}}(s|r_{l}, r_{2})}$$

- = 0 if and only if P_{ind}(s|r₁, r₂) = P(s|r₁, r₂)
 = penalty in yes/no questions for ignoring correlations
- = upper bound on information loss.

If $\Delta I/I$ is small, then you don't lose much information if you treat the cells as independent.

Quantifying information loss

Information is the log of the number of messages that can be transmitted over a noisy channel with vanishingly small probability of error.

An example: neurons coding for orientation.

You know: $P(\theta|r_1, r_2)$. You build: $\hat{\theta}(r_1, r_2) = optimal estimator.$

You know: $P_{ind}(\theta | r_1, r_2)$. You build: $\hat{\theta}_{ind}(r_1, r_2) =$ suboptimal estimator

Information loss: *I* - *I*_{ind}

if $\Delta \theta$ is large:

- Show multiple trials.
- Stimuli appear in only two possible orders.

Formal analysis: the general case

true distribution:p(r|s)approximate distribution:q(r|s)how many code words (a.k.a. orders) can you transmit using each?

- Observe $r_1 r_2 r_3 \dots r_n$; guess code word (guess w).
- More code words ⇒mistakes are more likely.
- You can transmit more code words without mistakes if use *p* to decode than if you use *q*.
- The difference tells you how much information you lose by using *q* rather than *p*.

true probability:
$$p(w|r_1, r_2, r_3, ..., r_n) \sim \prod_i p(r_i|s_i(w)) p(w)$$

approx. probability: $q(w|r_1, r_2, r_3, ..., r_n) \sim \prod_i q(r_i|s_i(w)) p(w)$ constant

decode: $\hat{w} = \underset{w}{\operatorname{arg\,max}} \prod_{i} p(r_{i}|s_{i}(w)) \text{ or } \prod_{i} q(r_{i}|s_{i}(w))$ **want:** $\prod_{i} p(r_{i}|s_{i}(w^{*})) > \prod_{i} p(r_{i}|s_{i}(w)) \forall w \neq w^{*}$ true code word

prob. error:
$$P_e[p,w] = \operatorname{prob}\left\{\prod_i p(r_i | s_i(w)) > \prod_i p(r_i | s_i(w^*))\right\}$$

 $P_e[q,w] = \operatorname{prob}\left\{\prod_i q(r_i | s_i(w)) > \prod_i q(r_i | s_i(w^*))\right\}$

number of code words that can be transmitted with vanishingly small probability of error $\sim 1/P_e$.

Other measures

$$\Delta I_{\text{synergy}} = I(r_1, r_2; s) - I(r_1; s) - I(r_2; s)$$

Intuition: If responses taken together provide more information than the sum of the individual responses, which can only happen when correlations exist, then correlations "must" be important.

Good points: • Cool(ish) name.

• Compelling intuition.

Bad points: • Intuition is wrong: $\Delta I_{synergy}$ can't tell you whether correlations are important.

Example: A case where and you can decode perfectly, that is, $P_{ind}(s|r_1, r_2) = P(s|r_1, r_2)$ for all responses that occur, but, $\Delta I_{synergy} > 0$.

Schneidman, Bialek and Berry (2003) used this example to argue that $\Delta I_{synergy}$ is a good measure of whether or not correlations are important. We find this baffling.

 $\Delta I_{\text{synergy}}$ can be: zero, positive, negative when $P_{\text{ind}}(s|r_1, r_2) = P(s|r_1, r_2)$ (Nirenberg and Latham, PNAS, 2003).

$$\Delta I_{\text{shuffled}} = I_{\text{true}} - I_{\text{shuffled}}$$

Information from neurons that saw the same stimulus but at different times (so that correlations are removed).

Intuition:

1. $I_{\text{shuffled}} > I_{\text{true}}$: 2. $I_{\text{shuffled}} < I_{\text{true}}$: 3. $I_{\text{shuffled}} = I_{\text{true}}$: **Correlations hurt Correlations help Correlations don't matter**

Good point: • Can be used to answer high-level questions about neural code (what class of correlations increases information?).

Bad points: • Intuition #3 is false; #1 and #2 are not so relevant, as they correspond to cases the brain doesn't see.

Example: A case where and you can decode perfectly, that is, $P_{ind}(s|r_1, r_2) = P(s|r_1, r_2)$ for all responses that occur, but, $\Delta I_{shuffled} > 0$.

 $\Delta Is_{\text{huffled}}$ can be: zero, positive, negative when $P_{\text{ind}}(s|r_1, r_2) = P(s|r_1, r_2)$ (Nirenberg and Latham, PNAS, 2003).

Summary #1

 $\Delta I_{\text{shuffled}}$ and $\Delta I_{\text{synergy}}$ do not measure the importance of correlations for decoding – they are confounded.

 ΔI does measure the importance of correlations for decoding:

ΔI = 0 if and only if P_{ind}(s|r₁, r₂) = P(s|r₁, r₂).
ΔI is an upper bound on information loss.

Summary #2

1.Our goal was to answer the question:

Are correlations important for decoding?

- 2.We developed a quantitative information-theoretic measure, ΔI , which is an <u>upper bound</u> on the information loss associated with ignoring correlations.
- 3. For pairs of neurons, $\Delta I/I$ is small, < 12%, except in the LGN where it's 20-40%.
- 4. For larger populations, this is still an open question.