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Theneural coding problem

Estimate stimulus from responses:
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Approach problem probabilistically:

P(ry, ry, .oh 1]S) P(SIr{, Iy, -y 1)

/
Ba‘yes P(ry, ry, ... 14]S) P(S) >

P(ryro, ooy 1)




The problem iseasy for one neuron (1-D) but harder for
populations (= 2-D). Why? Because correlations for ce you
to measurethe probability in every bin.

easy in 1-D harder in 2-D Impossible in high-D.
“high” ~ 3.
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Note: this problem disappears
when the responses are uncorrelated.




e |f you want to under stand how to decode
spiketrains, you haveto figure out how
to deal with correlations.

e Thefirst step isto understand whether
you need to deal with correlations.

e |n other words, are correlations important?



How to determineif correlations are important:

o Getrid of them by treating the cells asthough they
wer e independent and then estimate the stimulus.

o |f your estimate of the stimulusisdifferent from the
true estimate, then correlations are important.
Otherwisethey are not.

Formally, compare P, 4(S|r4, I,) to P(S|r4, 1,), where

| ndependent
response

P(r1|S)P(r2|S (S) distribution
Pina(slry, ro) = L—:

% P(r,|s)P(rsls)P(s)

If P, 4(S|ry, ry) # P(Sry, 1,), correlations are important for decoding.
If P, 4(SIry, 1y) = P(Slry, 1',), correlations are not important.




One might wonder: how can P, 4(s|ry, r,) = P(S]r4, I,) when
neuronsarecorrelated —i.e.,, when P(r|S)P(r,|s) # P(ry, r,|9)?
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Neuronsare correlated, that is, P(r,|S)P(r,|s) # P(r4, r,]S),

but correlationsdon’t matter: P, 4(S|rq, Iy) = P(S|ry, 1y).



Intuitively, the closer P, 4(S|rq, ry) Isto P(Sry, 1),
thelessimportant correlationsare. We measure
“close’ using

P(slry, 1,)
Pina(SIre, 1))

Al =) P(rq, r,)P(grq, 1,) l0g

0o,

=0if and only if P, 4(S|r4, o) = P(g|ry, 15)

= penalty in yes/no questionsfor ignoring
correlations

= upper bound on information loss.

o

If Al/l Issmall, then you don’t lose much information
If you treat the cellsasindependent.



Quantifying information loss

Information isthelog of the number of
messages that can be transmitted over a
noisy channd with vanishingly small
probability of error.

An example: neuronscoding for orientation.



You know: P(@|r,, r,). You build: 9(r1, r,) = optimal estimator.

digtribution —AO —1 digtribution

of 6 given 0, w‘_j— of 6 given 0,
was presented. 0 0 was presented.
1 2

You know: P, 4(d|r,, I,). You build: @ind(rl, r,) = suboptimal estimator

digtribution ——Af. 1 ditribution

of 6,4 given Hl , : f of 6,4 given 0,

was presented. 0 0 was presented.
1 2

Information loss: | - 1.,



If A@islarge:
e Show multipletrials.
e Stimuli appear in only two possible orders.

® ¢, presented 10rqer #1 orc.ler #H2

® (, presented
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Formal analysis: the general case

truedistribution: p(r[s)
approximate distribution: q(r|s)
how many code wor ds (a.k.a. orders) can you transmit using each?

¢(1) = 5,(1) (1) 8(1) ... §,(1)

c(2) = 5,(2) 5,(2) $4(2) ... 5,(2) code words

(different ordering of stimuli)

c(w) = $,(W) S,(W) (W) ... §,(W)

&L trials

e Observer,r,r,...r,; guess codeword (guessw).

e More codewords=>mistakesare morelikely.

e You can transmit more code wordswithout mistakesif usepto
decode than if you use 0.

e Thedifferencetellsyou how much infor mation you lose by using
g rather than p.



true probabilty: P(W|ry, Iy, gy ooy 1) ~ T P(F|S (W)
approx. probability: q(wlry, ry, rs, ..., r,) ~ 1 a(rils(w) \

constant
decode: W=argmax [[; p(ris(w) or T, a(rils(w)
s
want: [Ti p(rils(w*)) > [T p(rils(w)) Yw=w* ~true codeword

prob.error:  Pdpw]= prob{TT; p(r;| s(w)) > [T; p(rils(w*))}
PJa.w]= prob{[T; a(r;| s(w)) > [T; a(rils(w*))}

number of code wordsthat can betransmitted with
vanishingly small probability of error ~ 1/P,,.

I[p] = log(L/Pp,w])/n
I[q] =log(L/P[gw])/n __ definition

17 ~——— algebra algebra algeb
Information loss = I[p] —1[q] < Al digebra algedra aigeora




Other measur es

Al gnergy =1, 129 —1(ry;8) —1(ry;9)

Intuition: |f responsestaken together provide more
Information than the sum of the individual
I esponses, which can only happen when
correlations exist, then correlations “ must”
be important.

Good points: e Cool(ish) name.
e Compelling intuition.

Bad points. e Intuition iswrong: Al Synergy can't tell you
whether correlations areimportant.



Example: A case where and you can decode perfectly,
that is, P, (S|r{, ry) = P(S|rq, 1,) for all responsesthat occur,

but, Al e, > O.
P(ry, r,ls) P(r,|s)P(r,|s)
[y [y
EIEC]
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Schneidman, Bialek and Berry (2003) used this exampleto argue

that Al g, ISagood measur e of whether or not correlationsare
Important. We find this baffling.

Al gnergy CAN DE: ZEr O, positive, negative when P (sfry, rp) = P(S]r, 1)
(Nirenberg and Latham, PNAS, 2003).



/\ | nfor mation from neuronsthat saw the

Al shuffled — Itrue_ Ishuffled same stimulus but at different times (so
that correlations are removed).

| ntuition:

L T gusfied = lirue
2. L gusfied < ltruer
3. qwutfied = ltruer

Corrdations hurt
Correlations help
Corrdationsdon’t matter

Good point: e Can beused to answer high-level gquestions
about neural code (what class of correlations

Increases information?).

Bad points. e Intuition #3 isfalse; #1 and #2 are not so
relevant, asthey correspond to casesthe
brain doesn’t see.



Example: A case where and you can decode perfectly,
that is, P, (S|r{, o) = P(S|rq, 1,) for all responsesthat occur,
bUt, AI shuffled > O

P(ry, ryls) P(r4|s)P(r,[s)
ly ly
[S][]
E0OE]
HR
ry r

Al's, g CAN DE: zero, positive, negative when P, 4(S|r, r,) = P(S|ry, I'y)
(Nirenberg and Latham, PNAS, 2003).



Summary #1

Al g uieq @Nd Al gy d0 NOt Measur e the Importance
of correlationsfor decoding —they are confounded.

Al does measurethe importance of correlations
for decoding:

e Al =0ifand only if P, 4(S|rq, Iy) = P(S|ry, 1y).

e Al iIsan upper bound on infor mation loss.




Summary #2

1.Our goal wasto answer the question:
Arecorrelationsimportant for decoding?

2.We developed a quantitative infor mation-theor etic
measure, Al, which isan upper bound on the
Information loss associated with ignoring
correlations.

3. For pairsof neurons, Al/l issmall, < 12%, except In
the LGN whereit’s 20-40%.

4. For larger populations, thisis still an open question.



