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s r1, r2, ..., rn

Estimate stimulus from responses:

P(r1, r2, ..., rn|s) P(s|r1, r2, ..., rn)

P(r1, r2, ..., rn|s) P(s)
P(r1, r2, ..., rn)

?

Bayes

Approach problem probabilistically:

The neural coding problem
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harder  in 2-D impossible in high-D. 
“ high”  ~ 3.
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The problem is easy for  one neuron (1-D) but harder  for
populations ( 2-D). Why? Because correlations force you
to measure the probability in every bin.    

Note: this problem disappears
when the responses are uncorrelated.



I f you want to understand how to decode
spike trains, you have to figure out how
to deal with correlations.

 The first step is to understand whether
you need to deal with correlations.

 In other  words, are correlations impor tant?



How to determine if correlations are impor tant:

• Get r id of them by treating the cells as though they
were independent and then estimate the stimulus.

• I f your  estimate of the stimulus is different from the
true estimate, then correlations are impor tant.
Otherwise they are not.

Formally, compare Pind(s|r1, r2) to P(s|r1, r2), where

Pind(s|r1, r2) =
P(r1|s)P(r2|s)P(s)

P(r1|s')P(r2|s')P(s')
s'

Independent
response
distr ibution

I f Pind(s|r1, r2) P(s|r1, r2), cor relations are impor tant for  decoding.
I f Pind(s|r1, r2) = P(s|r1, r2), cor relations are not impor tant.
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Neurons are correlated, that is, P(r1|s)P(r2|s) P(r1, r2|s),

but correlations don’ t matter : Pind(s|r1, r2) = P(s|r1, r2).

P(r1, r2|s) P(r1|s)P(r2|s)

r2

r1

s4

s3
s2
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One might wonder : how can Pind(s|r1, r2) = P(s|r1, r2) when
neurons are correlated – i.e., when P(r1|s)P(r2|s) P(r1, r2|s)?



Intuitively, the closer  Pind(s|r1, r2) is to P(s|r1, r2),
the less impor tant correlations are. We measure
“ close”  using

∆∆∆∆I = P(r1, r2)P(s|r1, r2) log
P(s|r1, r2)

Pind(s|r1, r2)r1,r2,s

= 0 if and only if Pind(s|r1, r2) = P(s|r1, r2)
= penalty in yes/no questions for  ignor ing

correlations
= upper  bound on information loss.

I f ∆∆∆∆I /I is small, then you don’ t lose much information
if you treat the cells as independent.



Quantifying information loss

Information is the log of the number of
messages that can be transmitted over  a
noisy channel with vanishingly small
probability of er ror .

An example: neurons coding for  or ientation.



You know: P( |r1, r2). You build: (r1, r2) = optimal estimator .^

You know: Pind( |r1, r2). You build: ind(r1, r2) = suboptimal estimator^
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distr ibution
of given 1
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^ ^ I log 180distr ibution
of given 2
was presented.  

Information loss: I - I ind

1 2

inddistr ibution
of ind given 1
was presented.  

^ ^ I ind log
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180distr ibution
of ind given 2
was presented.  



if is large:
Show multiple tr ials.
 Stimuli appear  in only two possible orders.
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r igorous as n !!!!



Formal analysis: the general case

c(1) = s1(1) s2(1) s3(1) ... sn(1) 

c(2) = s1(2) s2(2) s3(2) ... sn(2) 

c(w) = s1(w) s2(w) s3(w) ... sn(w) 

...

code words
(different order ing of stimuli)

Observe r1 r2 r3 ... rn; guess code word (guess w).
 More code words = mistakes are more likely.
 You can transmit more code words without mistakes if use p to
decode than if you use q.

 The difference tells you how much information you lose by using
q rather  than p.

...

true distr ibution:                p(r|s)
approximate distr ibution:  q(r|s)
how many code words (a.k.a. orders) can you transmit using each?

tr ials



true probabilty:         p(w|r1, r2, r3, ...,  rn) ~ i p(ri|si(w)) p(w)
approx. probability: q(w|r1, r2, r3, ...,  rn) ~ i q(ri|si(w)) p(w)

decode: w = arg max   i p(ri|si(w))   or    i q(ri|si(w))

want: i p(ri|si(w* )) > i p(ri|si(w))    w w* true code word

prob. er ror : Pe[p,w]= prob{ i p(ri| si(w)) > i p(ri|si(w* ))}
Pe[q,w]= prob{ i q(ri| si(w)) > i q(ri|si(w* ))}

number  of code words that can be transmitted with
vanishingly small probability of error  ~ 1/Pe .

I [p] = log(1/Pe[p,w])/n
I [q] = log(1/Pe[q,w])/n

Information loss = I [p] – I [q] I

constant

algebra algebra algebra

definition

^
w



∆∆∆∆I synergy = I (r1, r2;s) – I (r1;s) – I (r2;s)

Intuition: I f responses taken together  provide more
information than the sum of the individual
responses, which can only happen when
correlations exist, then correlations “ must”
be impor tant.

Good points: Cool(ish) name.
Compelling intuition.

Bad points: Intuition is wrong: ∆∆∆∆I synergy can’ t tell you
whether  correlations are impor tant.

Other  measures
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Schneidman, Bialek and Berry (2003) used this example to argue
that ∆∆∆∆I synergy is a good measure of whether  or  not cor relations are
impor tant. We find this baffling.

∆∆∆∆I synergy can be: zero, positive, negativewhen Pind(s|r1, r2) = P(s|r1, r2)
(Nirenberg and Latham, PNAS, 2003).

Example: A case where and you can decode per fectly,
that is, Pind(s|r1, r2) = P(s|r1, r2) for  all responses that occur , 
but, ∆∆∆∆I synergy > 0.



∆∆∆∆I shuffled = I true – I shuffled

Intuition:
1. I shuffled > I true:       Correlations hur t
2. I shuffled < I true:       Correlations help
3. I shuffled = I true:       Correlations don’ t matter

Good point:  Can be used to answer  high-level questions
about neural code (what class of correlations
increases information?).

Bad points:  Intuition #3 is false; #1 and #2 are not so
relevant, as they correspond to cases the
brain doesn’ t see.

Information from neurons that saw the 
same stimulus but at different times (so 
that cor relations are removed).
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I = 1 bit I shuffled = 3/4 bit

Example: A case where and you can decode per fectly,
that is, Pind(s|r1, r2) = P(s|r1, r2) for  all responses that occur , 
but, ∆∆∆∆I shuffled > 0.

∆∆∆∆Ishuffled can be: zero, positive, negativewhen Pind(s|r1, r2) = P(s|r1, r2)
(Nirenberg and Latham, PNAS, 2003).



∆∆∆∆I shuffled and ∆∆∆∆I synergy do not measure the impor tance
of correlations for  decoding – they are confounded.

∆∆∆∆I does measure the impor tance of correlations
for  decoding:

• ∆∆∆∆I  = 0 if and only if Pind(s|r1, r2) = P (s|r1, r2).
• ∆∆∆∆I is an upper  bound on information loss.

Summary #1



1.Our goal was to answer the question:

Are cor relations impor tant for  decoding?

2.We developed a quantitative information-theoretic 
measure, ∆∆∆∆I , which is an upper  bound on the 
information loss associated with ignor ing 
correlations.

3. For  pairs of neurons, ∆∆∆∆I /I is small, < 12%, except in 
the LGN where it’s 20-40%.

4. For  larger  populations, this is still an open question.

Summary #2


