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In biophysics the main thing we’re interested in is the membrane potential, V (t), which is
the voltage difference between the inside and outside of a neuron. Neurons, though, are
big objects – they consist of a soma (cell body), as well as dendrites, axons and synapses
(Fig. 1). The membrane potential could refer to any of these.

The primary equation we use to describe the membrane potential is Q = CV (charge =
capacitance × voltage). Taking a time derivative (and noting that dQ/dt = current) gives
us

C
dV

dt
= −I . (1)

Here I is, by convention, the outward current – the current flowing out of the cell. The
sign should make sense: if I is positive, current flows out and the voltage goes down; if I is
negative, current flows in and the voltage goes up.

Equation (1) is absolutely fundamental. OK, sort of absolutely fundamental: it ignores
magnetic fields, and assumes that the voltage is the same everywhere inside the cell, which
isn’t always the case. But here we’ll assume that Eq. (1) holds.

So what’s the current? If charge were carried by electrons, the current would be computed
from V = IR where R is resistance, and if R were constant, we would have a classic RC
circuit,

C
dV

dt
= −V/R (2)

which has the solution V (t) = V (0)e−t/RC . However, neurons are not nearly this simple, so
the equations are a bit more complicated. For several reasons.

First, charge is not carried by electrons, it’s carried by ions. And, because neurons have
ion pumps, the ions have different concentrations on the inside and outside of the cell. In
particular, the concentrations of sodium and chloride (abbreviated Na and Cl) are high on
the outside of the cell, while the concentration of potassium (abbreviated K) is high on the
inside. (If you ever become a neuroscientist you should memorize that; but if not I wouldn’t
bother; it’s one of those facts you can always look up.) What’s important is the effect of an
ion imbalance: even when the membrane potential, V , is zero, an ion imbalance will cause a
current to flow (for example, an inward Na current). That rules out V = IR, and it means
we need something more complicated. The thing we use is

Ix = gx(V − Ex) (3)

where x refers to the ion, so it could be Na, Cl or K (other common ions used by neurons are
Ca, for calcium, and Mg, for magnesium, but we won’t worry about either). The parameter
gx is the conductance of a channel that allows ion x to pass through (it’s the inverse of the
resistance, Rx: gx = 1/Rx), and Ex is the reversal potential. The reversal potential needs to
be included because of the concentration imbalance. For example, the reversal potential for
Na is about 20 mV, which means the voltage on the inside of the cell has to be about 20
mV higher than the voltage on the outside to keep the sodium current from flowing.
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Notice that the conductance depends on the ion. That’s because channels, which are
holes in the cell that ions can flow through, can be ion specific. For example, a channel
may allow only Na, or only Cl, to flow through it. But because this is biology, which is
inherently complicated, some channels aren’t ion specific, and they let any ion flow through
them (although often with different conductances). And, of course, there’s the in-between
case: channels that let a few ions through, like Na and K but nothing else.

The main reason we use conductance rather than resistance is that conductances add:
adding more channels gives you more current (remember parallel circuits?). Thus, the total
current is

I =
∑
x

gx(V − Ex) . (4)

It is useful to combine Eqs. (1) and (4), which gives us

C
dV

dt
= −

∑
x

gx(V − Ex) . (5)

This is the starting point for pretty much all of biophysics.
All the interesting behavior that we see in the brain is due to the behavior of the conduc-

tances, gx. They can – and do – depend on just about anything. In the simplest case, they’re
constant, which gives us a passive neuron. Passive neurons are simple, but not very useful as
computing devices. Consequently, evolution invented voltage-dependent conductances. As
we saw in class, this led to the Hodgkin-Huxley equation,

C
dV

dt
= −gL(V − EL)− gNam

3h(V − ENa)− gKn
4(V − EK) (6)

where gL is the leak (meaning passive) conductance and m, h and n are the probability of
channels being open. These variables obey the equation

τx(V )
dx

dt
= x∞(V )− x (7)

where x = m,h or n. The time constants, τx(V ), the shapes of the curve x∞(V ), and the
relative values of gL, gNa and gK tell you everything about the channel. For the latter, the
active conductances are quite large: gNa/gL ≈ 400 and gK/gL ≈ 120.

As a bit of an aside, the equations for the channels were derived from the opening/closing
probabilities,

αx(V ) = probability per unit time that channel x goes from closed to open

βx(V ) = probability per unit time that channel x goes from open to closed.
(8)

From these, you should be able to show that

τx(V ) =
1

αx(V ) + βx(V )
(9a)

x∞(V ) =
αx(V )

αx(V ) + βx(V )
. (9b)

2



The conductances can also depend on the concentration of a neurotransmitter in the
synaptic cleft (the area between the red presynaptic terminal and the green spine in Fig. 1).
In that case the channels are on the spine, and we have

Is = gs(V − Es) (10a)

gs = gss (10b)

where s (which stands for “synaptic”), lies between 0 and 1. It obeys the equation

ds

dt
= c(1− s)− βs . (11)

Here c is the neurotransmitter concentration in the synaptic cleft (which is generally near
zero, but goes up when a spike arrives at the presynaptic terminal), and β tells us how fast
the synaptic conductance decays when the concentration drops back to near zero.

There is a bit of a subtlety associated with Eq. (10). The voltage should really refer to
the voltage in the spine, not at the soma. However, to model networks, we often pretend
that it’s the voltage at the soma; basically, we pretend that dendrites don’t exist (this is the
point neuron approximation). In that case, the current, Is = gs(V −Es)s, is the current that
flows into the soma.

With this approximation, we can combine Eq. (10) with the Hodgkin-Huxley equation,
Eq. (6), to give us a set of equations describing a network of neurons. Using the subscript i
to label neurons, and letting Es → Ej, s(t) → sj(t) and gs → Wij (and summing over j), we
have a set of equations that looks like

C
dVi

dt
= −gL(Vi − EL)− gNam

3
ihi(Vi − ENa)− gKn

4
i (Vi − EK)−

∑
j

Wij(Vi − Ej)sj(t) .

(12)

There are several things to note about this equation. First, the reversal potential, Ej,
depends on the presynaptic neuron – something that evolution gave us. Second, we should
be aware that the weights, Wij, are very sparse: each neuron makes only about 1,000 con-
nections, and a brain the size of, say, a human, contains 100 billion neurons, so most of the
weights are zero. Third the very last term, sj(t), determines the shape of the PSP (post-
synaptic potential) associated with neuron j. It obeys something like Eq. (11), but we often
assume it has a stereotyped shape, and write

sj(t) =
∑
k

fj(t− tkj ) (13)

where tkj is the time of the kth spike on neuron j and fj(t) is a function that rises rapidly and
decays slightly more slowly than it rises. It is sometimes modeled as a double exponential,

fj(t) =
e−t/τsj − e−t/τfj

τ sj − τ fj
Θ(t) . (14)

Here τ sj and τ fs are fast and slow time constants; for fast synapses, τ ff is in the range 1-5 ms
and τ sj is in the range 3-10 ms (and they can be many 10s of ms for slow synapses), and Θ(t)
is the Heaviside step function: Θ(t) = 1 if t > 0 and 0 otherwise. However, we could swap
in just about any function and that wouldn’t have much effect on the network dynamics.

As you can see, things are relatively complicated. But just keep in mind two things:

3



1. All of biophysics comes from Eq. (5).

2. Conductances, gx, are the interesting part of Eq. (5). So far we have seen that they
can depend on voltage and the concentration of a neurotransmitter. (They can, of
course, depend on both – this being biology, evolution has thought of just about any-
thing we can imagine, within reason.) But that’s not all. For instance, for very early
sensory processing, conductances can depend on the outside world: photoreceptors in
the retina have conductances that respond to light; hair cells in the ear have conduc-
tances that respond to mechanical vibration; the olfactory receptor neurons in the nose
have conductances that respond to chemicals, and so on. So, if we want to know the
fundamental equations describing the brain, we need to focus on conductances!

So far we have focused on the soma. But neurons also have axons and dendrites. The
equations that describe those structures follow, as for the soma, from Eq. (5). But it takes
a bit of thinking to derive them.
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Figure 1: Coupled neurons. The two objects on the left are neurons (which don’t really
all look alike; I was just too lazy to make them different). The neurons have three main
parts: soma (blue), dendrites (green) and axons (red). The dendrites are much, much bigger
than shown (50-100 times the size of the soma, which is on the order of 10-20 microns),
and so are the axons, which branch (because they connect to about 1,000 other neurons),
and can travel long distances (up to a meter). Neurons communicate via synapses, which
connect axons to dendrites (usually; axons can also connect directly to the soma). A typical
synapse is shown on the right: the presynaptic terminal (red) connects to a spine (green),
which is a small structure that sticks out of the dendrites. This being biology, a spine is not
always present; the conventional wisdom is that excitatory neurons connect to spines and
inhibitory neurons connect directly to dendrites or to the soma. But, this being biology, that
conventional wisdom is often violated.
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